WorldWideScience

Sample records for trace metal distributions

  1. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    that surface distribution pattern of the trace metal concentration of cobalt, nickel and iron was almost similar at the four stations thereby stressing the fact that seasonal fluctuations contributed a major part in the surface distribution of these metals...

  2. 12 Trace Metals Distribution in Fish Tissues, Bottom Sediments and ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Abstract. Water samples, bottom sediments, Tilapia, and Cat Fish from Okumeshi River in Delta state of Nigeria were analysed ... Keywords: Trace metals, Fish Tissues, Water, Bottom sediments, Okumeshi River. Introduction ..... Grey Mangroove Avicemmia marina (Forsk). ... sewage treatment plant oulet pipe extension on.

  3. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    Science.gov (United States)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  4. Interpretation of aerosol trace metal particle size distributions

    International Nuclear Information System (INIS)

    Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W.

    1974-01-01

    Proton-induced X-ray emission (PIXE) analysis is capable of rapid routine determination of 10--15 elements present in amounts greater than or equal to 1 ng simultaneously in aerosol size fractions as collected by single orifice impactors over short periods of time. This enables detailed study of complex relationships between elements detected. Since absolute elemental concentrations may be strongly influenced by meteorological and topographical conditions, it is useful to normalize to a reference element. Comparison between the ratios of concentrations with aerosol and corresponding values for anticipated sources may lead to the identification of important sources for the elements. Further geochemical insights may be found through linear correlation coefficients, regression analysis, and cluster analysis. By calculating correlations for elemental pairs, an indication of the degree of covariance between the elements is obtained. Preliminary results indicate that correlations may be particle size dependent. A high degree of covariance may be caused either by a common source or may only reflect the conservative nature of the aerosol. In a regression analysis, by plotting elemental pairs and estimating the regression coefficients, we may be able to conclude if there is more than one source operating for a given element in a certain size range. Analysis of clustering of several elements, previously investigated for aerosol filter samples, can be applied to the analysis of aerosol size fractions. Careful statistical treatment of elemental concentrations as a function of aerosol particle size may thus yield significant information on the generation, transport and deposition of trace metals in the atmosphere

  5. Distributions of traces of metals on sorption from solutions of vanadium(V)

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turnaov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    A study is made of the distributions of traces of metals between aqueous solutions of vanadium(V) and a solid reagent made by introducing di-2-ethylhexylphosphoric acid into an inert matrix: a nonionic macroporous copolymer of polystyrene with divinyl benzene (wofatit Y 29). As regards degree of extraction, the trace components fall in the series zinc > cadmium > manganese > copper > cobalt, which resemble the extractability series. The vanadium content of the solution and the concentrations of the trace components have virtually no effect on the sorption. The process is effective in concentrating trace components from solutions containing vanadium(V)

  6. Distribution of particulate trace metals in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Murty, P.V.S.P.; Sarma, V.V.

    continuous increase from surface to bottom in the case ofFe, Ni, which appeared to be related to a combination offactors suchas authigenicprecipita tion/scavenging, rcsuspension of bottom rich sediments, and diffusion followed by precipitation at sedimcnt... ), most of these studies do not provide information onthe interaction of trace elements with particulate matter. The present study deals with the distribution of particulate trace metals (Fe, Mn, Co, Ni, Cu, Pb, Zn and Cd) and their possible interactions...

  7. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  8. Speciation and Distribution of Trace Metals and Organic Matter in Marine Lake as In Situ Laboratory

    Science.gov (United States)

    Mlakar, M.; Fiket, Ž.; Cuculić, V.; Cukrov, N.; Geček, S.

    2016-02-01

    Marine lakes are unique, isolated marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. Impact of organic matter cycling on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated. Intense spatial and seasonal variations of physico-chemical parameters and organic matter concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high organic carbon concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers. Speciation modelling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and high proportion of organic matter (up to 9%) and inorganic phases, Fe-oxyhydroxydes or biogenic calcite. Surrounding karstic background, with occasional occurrences of red soil characterize deposited sediments as coarse grained and carbonate rich, whose elemental composition is affected by bathymetry of the basin and overall biological production.

  9. Distribution of uranium and some selected trace metals in human scalp hair from Balkans.

    Science.gov (United States)

    Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K

    2012-11-01

    The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU.

  10. Distribution, provenance and early diagenesis of major and trace metals in sediment cores from the Mandovi estuary, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Prajith, A.; Rao, V.P.; Chakraborty, P.

    Major elements and trace metals were analyzed in four sediment cores recovered along a transect in the Mandovi estuary for their distribution, provenance and early diagenesis. The sediments were clayey silts in cores from the upper/lower estuary...

  11. Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    The concentration and distribution of selected trace metals in surface sediments of the Mandovi estuary were studied to determine the extent of anthropogenic inputs from mining activities and to estimate the effects of monsoon on geochemical...

  12. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    Science.gov (United States)

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  13. Geochemical distribution of trace metals and organochlorine contaminants of a lake ontario shoreline marsh

    Energy Technology Data Exchange (ETDEWEB)

    Glooschenko, W A; Capocianco, J; Coburn, J; Glooschenko, V

    1981-02-01

    Rattray Marsh, an 8 ha marsh on the Lake Ontario shoreline at Mississauga, Ontario, is an important local habitat for waterfowl and shorebirds during spring and fall migration. A study was conducted to determine the distribution of nutrients (carbon, nitrogen, and phosphorus) and potential trace metal and organochlorine pollutants in the marsh as evidenced by the sedimentary concentrations of these compounds. Generally, copper, zinc, lead, and mercury were higher in concentration in local soils than in Lake Ontario sediments. Metals and organic carbon levels did not correlate, and the metals appeared to be associated with silts and clays. Organochlorine contaminants include p,p1-DDE, p,p1-DDD, p,p1-DDT, alpha-chlordane, PCB, mirex, and HCB.

  14. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    Science.gov (United States)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  15. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  16. Fraction-specific controls on the trace element distribution in iron formations : Implications for trace metal stable isotope proxies

    NARCIS (Netherlands)

    Oonk, Paul B.H.; Tsikos, Harilaos; Mason, Paul R.D.; Henkel, Susann; Staubwasser, Michael; Fryer, Lindi; Poulton, Simon W.; Williams, Helen M.

    2017-01-01

    Iron formations (IFs) are important geochemical repositories that provide constraints on atmospheric and ocean chemistry, prior to and during the onset of the Great Oxidation Event. Trace metal abundances and their Mo-Cr-U isotopic ratios have been widely used for investigating ocean redox processes

  17. Spatial distribution of trace metals in water resources impacted by PGM activities

    CSIR Research Space (South Africa)

    Walters, Chavon R

    2012-05-01

    Full Text Available the aquatic environment from natural and anthropogenic sources (such as industrial effluents and mining wastes). Trace metals can accumulate in fish (which are often at the top of the aquatic food chain) either through water or the food chain (1), and metals...

  18. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China

    International Nuclear Information System (INIS)

    Ip, Carman C.M.; Li Xiangdong; Zhang Gan; Wai, Onyx W.H.; Li, Y.-S.

    2007-01-01

    Surface sediments and sediment cores collected at the Pearl River Estuary (PRE) and its surrounding coastal area were analysed for total metal concentrations, chemical partitioning, and Pb isotopic compositions. The distribution of Cu, Cr, Pb, and Zn demonstrated a typical diffusion pattern from the land to the direction of the sea. Two hotspots of trace metal contamination were located at the mixed zone between freshwater and marine waters. The enrichment of metals in the sediments could be attributed to the deposition of the dissolved and particulate trace metals in the water column at the estuarine area. The similar Pb isotopic signatures of the sediments at the PRE and its surrounding coastal area offered strong evidence that the PRE was a major source of trace metals to the adjacent coastal area. Slightly lower 206 Pb/ 207 Pb ratios in the coastal sediments may indicate other inputs of Pb in addition to the PRE sources, including the inputs from Hong Kong and other parts of the region. - The distribution of trace metals in sediments reflected contaminant sources, physical and chemical deposition processes

  19. Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Cooper, A.T.; Woodruff, R.K.

    1993-09-01

    Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates

  20. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  1. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    Science.gov (United States)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and

  2. Spatial distribution of trace metals in sediments from urban streams of Semarang, Central Java, Indonesia.

    NARCIS (Netherlands)

    Widianarko, B.; Verweij, R.A.; van Gestel, C.A.M.; van Straalen, N.M.

    2000-01-01

    Elevated environmental concentrations of metals are usually associated with the impact of urbanization. The present study is focused on metal contamination in urban sediments. A field survey was carried out to determine the distribution of four metals, i.e., cadmium (Cd), lead (Pb), copper (Cu), and

  3. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals

    Science.gov (United States)

    Mlakar, Marina; Fiket, Željka; Geček, Sunčana; Cukrov, Neven; Cuculić, Vlado

    2015-07-01

    Karst marine lakes are unique marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. In this study, organic matter cycle and its impact on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated for the first time. Studied marine lake is small, isolated, shallow basin, with limited communication with the open sea. Intense spatial and seasonal variations of organic matter, dissolved and particulate (DOC, POC), and dissolved trace metals concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high DOC and POC concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers with appearance of sulfur species. Speciation modeling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and organic or inorganic phases, sulfides, Fe-oxyhydroxydes or biogenic calcite. The above is reflected in the composition of the sediments, which are, in addition to influence of karstic background and bathymetry of the basin, significantly affected by accumulation of detritus at the bottom of the Lake.

  4. Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China.

    Science.gov (United States)

    Li, Rui; Bing, Haijian; Wu, Yanhong; Zhou, Jun; Xiang, Zhongxiang

    2018-02-01

    The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.

  5. Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy

    Directory of Open Access Journals (Sweden)

    A. DI LEO

    2013-03-01

    Full Text Available Distribution of metals (Hg, Pb, Sn, Cu, Cd and Zn was determined in sediments and in different tissues of Posidonia oceanica collected from San Pietro Island, Taranto Gulf (Ionian Sea, Southern Italy. In seagrass, results, compared with metal concentrations in sediments, showed that the highest concentrations of Hg, Pb, Sn and Cu were found in the roots, while in the green leaves were found the highest levels of Cd and Zn. Instead the lowest metal concentrations were found in the basal part of the leaf. Levels of  metals in the leaves were similar to those found by other authors in uncontaminated areas of the Mediterranean Sea. Mercury levels in roots were correlated to levels in sediments. This could demonstrate the plant memorizes sediments contamination . This study reinforces the usefulness and the relevance of Posidonia oceanica as an indicator of spatial metal contamination and an interesting tool for environmental quality evaluation.

  6. Urbanization effects on sediment and trace metals distribution in an urban winter pond (Netanya, Israel)

    NARCIS (Netherlands)

    Zohar, I.; Teutsch, N.; Levin, N.; Mackin, G.; de Stigter, H.; Bookman, R.

    2017-01-01

    PurposeThis paper aims to elucidate urban development-induced processes affecting the sediment and the distribution of contaminating metals in a seasonal pond located in the highly populated Israeli Coastal Plain. The paper demonstrates how an integrated approach, including geochemical,

  7. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China

    Science.gov (United States)

    Li, Li; Xiaojing, Wang; Jihua, Liu; Xuefa, Shi

    2017-02-01

    Trace metals play an important role in biogeochemical cycling in ocean systems. However, because the use of trace metal clean sampling and analytical techniques has been limited in coastal China, there are few accurate trace metal data for that region. This work studied spatial distribution of selected dissolved trace metals (Ag, Cu, Co, Cd, and Ni) and Cu speciation in the southern Yellow Sea (SYS) and Bohai Sea (BS). In general, the average metal (Cu, Co, Cd, and Ni) concentrations found in the SYS were lower by a factor of two than those in BS, and they are comparable to dissolved trace metal concentrations in coastal seawater of the United States and Europe. Possible sources and sinks and physical and biological processes that influenced the distribution of these trace metals in the study region were further examined. Close relationships were found between the trace metal spatial distribution with local freshwater discharge and processes such as sediment resuspension and biological uptake. Ag, owing to its extremely low concentrations, exhibited a unique distribution pattern that magnified the influences from the physical and biological processes. Cu speciation in the water column showed that, in the study region, Cu was strongly complexed with organic ligands and concentrations of free cupric ion were in the range of 10-12.6-10-13.2 mol L-1. The distribution of Cu-complexing ligand, indicated by values of the side reaction coefficient α', was similar to the Chl a distribution, suggesting that in situ biota production may be one main source of Cu-complexing organic ligand.

  8. Trace metal distribution in the Arosa estuary (N.W. Spain): The application of a recently developed sequential extraction procedure for metal partitioning

    International Nuclear Information System (INIS)

    Santamaria-Fernandez, Rebeca; Cave, Mark R.; Hill, Steve J.

    2006-01-01

    A study of the trace metal distribution in sediment samples from the Galician coast (Spain) has been performed. A multielement extraction method optimised via experimental design has been employed. The method uses centrifugation to pass the extractant solution at varying pH, through the sediment sample. The sequential leaches were collected and analysed by ICP-AES. Chemometric approaches were utilised to identify the composition of the physico-chemical components in order to characterise the sample. The samples collected at different sites could be classified according to their differences in metal bio-availability and important information regarding element distribution within the physico-chemical components is given. The method has proved to be a quick and reliable way to evaluate sediment samples for environmental geochemistry analysis. In addition, this approach has potential as fast screening method for the bio-availability of metals in the environment

  9. Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile.

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Guiñez, Marcos; Rivera, Lidia; Morales, Tatiana; Morales, Tomás; Avila, Juan; Cortés, Pedro

    2010-08-01

    Cu, Pb, and Hg concentrations were determined in surface sediment samples collected at three sites in San Jorge Bay, northern Chile. This study aims to evaluate differences in their spatial distribution and temporal variability. The highest metal concentrations were found at the site "Puerto", where minerals (Cu and Pb) have been loaded for more than 60 years. On the other hand, Hg does not pose a contamination problem in this bay. Cu and Pb concentrations showed significant variations from 1 year to another. These variations seem to be a consequence of the combination of several factors, including changes in the loading and/or storage of minerals in San Jorge Bay, the dredging of bottom sediments (especially at Puerto), and seasonal changes in physical-chemical properties of the water column that modify the exchange of metals at the sediment-water interface. Differences in the contamination factor and geoaccumulation index suggest that pre-industrial concentrations measured in marine sediments of this geographical zone, were better than geological values (average shale, continental crust average) for evaluating the degree of contamination in this coastal system. Based on these last two indexes, San Jorge Bay has a serious problem of Cu and Pb pollution at the three sampling locations. However, only Cu exceeds the national maximum values used to evaluate ecological risk and the health of marine environments. It is suggested that Chilean environmental legislation for marine sediment quality--presently under technical discussion--is not an efficient tool for protecting the marine ecosystem.

  10. The distribution of radionuclides and some trace metals in the water columns of the Japan and Bonin trenches

    International Nuclear Information System (INIS)

    Nozari, Y.; Yamada, M.; Shitashima, K.; Tsubota, H.

    1998-01-01

    Presented here is the first geochemical data on the U/Th series Th, Pa, Ac, and Pb isotopes and artificial fallout radionuclides ( 90 Sr, 137 Cs, and Pu isotopes), and some trace elements (V, Zn, Cd, Cu, Mn, and Ni) in two water columns of the Japan and Bonin trenches down to the bottom depths of 7585 m and 9750 m, respectively. Hydrographic properties such as temperature, salinity dissolved oxygen, and nutrient content within the trench valley remain constant at the same levels as those in the bottom water of the Northwest Pacific basin (typically ∼6000 m in depth). The radionuclide activities and most trace metal concentrations are also not very different from those in the overlying water at depths of around 5000-6000 m. This means that any chemical alteration which sea water undergoes during its residence within the trench was not obviously detected by the techniques used here. The suggestion follows that the trench water is rather freely communicating y isopycnal mixing with the bottom water overlying the Northwest Pacific abyssal plain. The trench waters contain high 239,240 Pu activities throughout, indicating that Pu is actively regenerating from rapidly sinking, large particles at the bottom interface, probably due to a change in the oxidation state. On the other hand, the vertical profiles of 210 Pb and 231 Pa show lower activities within the trench than those in the overlying deep waters, suggesting that the effect of boundary and bottom scavenging is significant in controlling their oceanic distributions. However, none of the trace metals studied here obviously follows the behaviour of the above nuclides. The 228 Th data show scattering within the Bonin Trench that is largely ascribable to analytical errors. If, however we accept that the scatter of 228 Th data is real and the variation is caused solely by decay of its parent 228 Ra, we can set an upper limit of ∼5 years for the renewal time of the trench water. (authors)

  11. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  12. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-Gonzá lez, Paulina; West, A. Joshua; Tovar-Sá nchez, Antonio; Duarte, Carlos M.; Marañ ó n, Emilio; Cermeñ o, Pedro; Gonzá lez, Natalia; Sobrino, Cristina; Huete-Ortega, Marí a; Ferná ndez, Ana; Ló pez-Sandoval, Daffne C.; Vidal, Montserrat; Blasco, Dolors; Estrada, Marta; Sañ udo-Wilhelmy, Sergio A.

    2015-01-01

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  13. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-08-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high

  14. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    Science.gov (United States)

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  15. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  16. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India

    International Nuclear Information System (INIS)

    Srichandan, Suchismita; Panigrahy, R.C.; Baliarsingh, S.K.; Srinivasa, Rao B.; Pati, Premalata; Sahu, Biraja K.; Sahu, K.C.

    2016-01-01

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd while in zooplankton it was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. - Highlights: • First-hand report on trace metal concentration in zooplankton and seawater covering 2 years from this eco-sensitive region. • In seawater trace metals followed the rank order of Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd. • In zooplankton the rank order was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. • The bioaccumulation factor of Fe was highest followed by Zn. • Strong affinity, coexistence, and similar source of trace metals in the study area.

  17. The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China

    International Nuclear Information System (INIS)

    Yu Xiujuan; Yan Yan; Wang Wenxiong

    2010-01-01

    Surface sediments collected from the Pearl River Estuary (PRE) and the Daya Bay (DYB) were analyzed for total metal concentrations and chemical phase partitioning. The total concentrations of Cr, Cu, Ni, Pb, and Zn in the PRE were obviously higher than those in DYB. The maximum concentrations of trace metals in DYB occurred in the four sub-basins, especially in Dapeng Cove, while the concentrations of these metals in the western side of the PRE were higher than those in the east side. Such distribution pattern was primarily due to the different hydraulic conditions and inputs of anthropogenic trace metals. The chemical partitioning of metals analyzed by the BCR sequential extraction method showed that Cr, Ni, and Zn of both areas were present dominantly in the residual fraction, while Pb was found mostly in the non-residual fractions. The partitioning of Cu showed a significant difference between the two areas.

  18. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis)

    International Nuclear Information System (INIS)

    Teuchies, J.; Deckere, E. de; Bervoets, L.; Meynendonckx, J.; Regenmortel, S. van; Blust, R.; Meire, P.

    2008-01-01

    A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) x 10 -3 mg Cd L -1 and (1.53 ± 0.03) x 10 -3 mg Cd L -1 ). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg -1 and 69.39 ± 0.99 mg Cd kg -1 ) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg -1 and 20.42 ± 0.21 mg Cd kg -1 ) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment. - Pore water metal concentrations and metal root plaque concentration are influenced by the tidal regime

  19. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    Science.gov (United States)

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  20. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: Uranium, arsenic, barium

    International Nuclear Information System (INIS)

    Phan, Thai T.; Capo, Rosemary C.; Stewart, Brian W.; Graney, Joseph R.; Johnson, Jason D.; Sharma, Shikha; Toro, Jaime

    2015-01-01

    Highlights: • Distributions of U, As, and Ba in Marcellus Shale were determined. • As is primarily associated with sulfide minerals, Ba with exchange sites. • Most U is in the silicate minerals, but up to 20% is partitioned into carbonate. • Low [U] and [As] in produced water are consistent with reducing downhole conditions. • Proper waste management should account for potential mobilization of U and As. - Abstract: Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg −1 , respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L −1 ) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals. Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U

  1. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  2. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    Science.gov (United States)

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Trace metal speciation: Finally, correctly addressing trace metal issues

    International Nuclear Information System (INIS)

    Donard, O.F.X.

    2001-01-01

    The history of the development of trace metal speciation was discussed and the reasons behind the relatively slow widespread acceptance of its importance were presented. Partially, this was due to the lack of availability of commercial instrumentation and partly to the drive towards improving sensitivity in analytical chemistry which had focused attention on total concentration determinations. The sophistication and control of analytical instrumentation is now such that the spotlight must be turned onto the chemical species of an element present in a sample since this is what governs its behaviour in the biosphere. Indeed, several companies are currently considering the introduction of instrumentation specifically designed for metal species determination

  4. Trace Metals Bioaccumulation Potentials of Three Indigenous ...

    African Journals Online (AJOL)

    User

    grasses as bioaccumulators of trace metals from polluted soils. Seeds of ... transfer factor (TF) showed that Zn was the most bioaccumulated trace metals by all the grasses followed by. Pb, Mn ... was used to de-contaminate copper (Cu) and.

  5. Urban environmental geochemistry of trace metals

    International Nuclear Information System (INIS)

    Wong, Coby S.C.; Li Xiangdong; Thornton, Iain

    2006-01-01

    As the world's urban population continues to grow, it becomes increasingly imperative to understand the dynamic interactions between human activities and the urban environment. The development of urban environmental geochemistry has yielded a significant volume of scientific information about geochemical phenomena found uniquely in the urban environment, such as the distribution, dispersion, and geochemical characteristics of some toxic and potentially toxic trace metals. The aim of this paper is to provide an overview of the development of urban environmental geochemistry as a field of scientific study and highlight major transitions during the course of its development from its establishment to the major scientific interests in the field today. An extensive literature review is also conducted of trace metal contamination of the urban terrestrial environment, in particular of urban soils, in which the uniqueness of the urban environment and its influences on trace metal contamination are elaborated. Potential areas of future development in urban environmental geochemistry are identified and discussed. - Urban environmental geochemistry as a scientific discipline provides valuable information on trace metal contamination of the urban environment and its associated health effects

  6. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  7. Distribution and health risk assessment of trace metals in freshwater tilapia from three different aquaculture sites in Jelebu Region (Malaysia).

    Science.gov (United States)

    Low, Kah Hin; Zain, Sharifuddin Md; Abas, Mhd Radzi; Md Salleh, Kaharudin; Teo, Yin Yin

    2015-06-15

    The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spatial and Temporal Distribution of Trace Metals (Cd, Cu, Ni, Pb, and Zn in Coastal Waters off the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Kuo-Tung Jiann

    2014-01-01

    Full Text Available Surface water samples were collected along the west coast of Taiwan during two expedition cruises which represent periods of different regional climatic patterns. Information on hydrochemical parameters such as salinity, nutrients, suspended particulate matter (SPM, and Chlorophyll a concentrations were obtained, and dissolved and particulate trace metal (Cd, Cu, Ni, Pb, and Zn concentrations were determined. Spatial variations were observed and the differences were attributed to (1 influence of varying extents of terrestrial inputs from the mountainous rivers of Taiwan to the coast, and (2 urbanization and industrialization in different parts of the island. Geochemical processes such as desorption (Cd and adsorption to sinking particles (Pb also contributed to the variability of trace metal distributions in coastal waters. Results showed temporal variations in chemical characteristics in coastal waters as a consequence of prevailing monsoons. During the wet season when river discharges were higher, the transport of particulate metals was elevated due to increased sediment loads. During the dry season, lower river discharges resulted in a lesser extent of estuarine dilution effect for chemicals of anthropogenic sources, indicated by higher dissolved concentrations present in coastal waters associated with slightly higher salinity.

  9. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  10. Distribution and risk assessment of trace metals in Leptodius exarata, surface water and sediments from Douglas Creek in the Qua Iboe Estuary

    Directory of Open Access Journals (Sweden)

    Nsikak U. Benson

    2017-05-01

    Full Text Available Five trace metals in Leptodius exarata, epipellic sediments and surface water from an intertidal ecosystem in the Niger Delta (Nigeria were studied to evaluate their spatial distributions, degrees of contamination, and associated ecological and health risks. The results show that the Cd (cadmium, Cr (chromium, Ni (nickel, Pb (lead and Zn (zinc concentrations in sediment range from 0.550–1.142, 9.57–15.95, 9.15–13.96, 2.00–8.90 and 91.5–121.6 mg kg−1 dw, respectively, while the L. exarata tissue metal content varies from 0.162–0.931, 3.81–8.62, 4.45–17.15, 1.90–7.35, and 125.55–269.75 mg kg−1 dw, respectively. The bioconcentration factor ranking for trace metals was found to follow the Zn > Ni > Pb > Cr > Cd sequence. The high biota to sediment accumulation factor (BSAF found for L. exarata reveals a sentinel metal bioindicator. Sediments from most sites were found to be uncontaminated to moderately contaminated (geoaccumulation, Igeo > 0, with Cd and Zn associated with anthropogenic intrusions. Low mean-ERM (effect range-median and mean-PEL (probable effect level quotients of sediments were found, indicating low–moderate degrees of contamination with 30% and 21% probabilities of toxicity. The multi-metal potential ecological risk index (RI for the intertidal ecosystem denotes low–moderate risk. Health risks associated with crab (L. exarata consumption are more significant for children than for adults.

  11. Trace metal distributions in the sediments from river-reservoir systems: case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo).

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Niane, Birane; Ngelinkoto, Patience; Thevenon, Florian; Nlandu, José W; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2015-01-01

    The contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2). The maximum concentration of trace elements in sediment profiles was found in the samples from the sites of Pool Malebo, with the values of 107.2, 111.7, 88.6, 39.3, 15.4, 6.1 and 4.7 mg kg(-1) for Cr, Ni, Zn, Cu, Pb, As and Hg, respectively. This site, which is characterized by intense human activities, is especially well known for the construction of numerous boats that are used for regular navigation on Congo River. Concerning Lake Ma Vallée, the concentration of all metals are generally low, with maximum values of 26.3, 53.6, 16.1, 15.3, 6.5 and 1.8 mg kg(-1) for Cr, Ni, Zn, Cu, Pb and As, respectively. However, the comparison of the metal profiles retrieved from the different sampled cores also reveals specific variations. The results of this study point out the sediment pollution by toxic metals in the Congo River Basin. This research presents useful tools for the evaluation of sediment contamination of river-reservoir systems.

  12. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Distribution of persistent organic pollutants and trace metals in surface waters in the Seversky Donets River basin (Eastern Ukraine)

    Science.gov (United States)

    Diadin, Dmytro; Celle-Jeanton, Hélène; Steinmann, Marc; Loup, Christophe; Crini, Nadia; Vystavna, Yuliya; Vergeles, Yuri; Huneau, Frédéric

    2017-04-01

    The paper is focused on surface water of the Seversky Donets River Basin in Eastern Ukraine which undergoes significant anthropogenic pressure due to municipal and industrial wastewater discharge, polluted runoff from both urban and agricultural areas, leakages at oil-gas extraction sites located in the region. In these conditions the Seversky Donets River is used for drinking water supply of the city of Kharkiv with 1.5 million inhabitants as well as other smaller settlements in the basin. The diversity of water pollution sources makes it reasonable to use complex indicators and assessment approaches such as combination of organic and inorganic pollutants. We have studied the distribution of major ions, metals and persistent organic compounds (PAHs and PCBs) in water of the Seversky Donets River and its tributaries. In total 20 sites have been sampled on the river catchment area as of 4.5 thousands km2. PAHs and PCBs were measured in surface water for the first time in the region. The most distinctive transformations of water composition have been found downstream wastewater treatment plants in the city of Kharkiv where treated mixture of municipal and industrial wastewater is discharged to the river. Such metals as Ni, Zn, Cr in combination with phosphates and nitrates has shown significant positive correlation indicating the common source of their input. Ten of sixteen total PAHs were detected in measurable concentrations in at least one sample of river water. Sum of PAHs ranged from 15.3 to 117.2 ng/L with mean of 43.8 ng/L. The ratios of PAHs have indicated rather pyrogenic than petrogenic inputs on all the studied sites. Elevated concentrations of low molecular weight PAHs in water were found close to a coal-burning power station and a coke chemical plant also confirming their origin from coal combustion and subsequent atmospheric deposition. PCBs distribution has appeared to be relatively uniform on the territory despite the vast area of the basin researched

  14. DISTRIBUTION OF TRACE ELEMENTS IN MUSCLE AND ORGANS ...

    African Journals Online (AJOL)

    a

    revealed organ specific distribution of trace metals in Tilapia, which has been discussed .... The concentrations of copper (Table 2) varied from 1.68–4.95 in muscle, .... The lead concentrations in muscle and organs of Tilapia from both lakes were comparable. ... A, D and K, trace minerals, and essential fats and amino acids.

  15. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...

  16. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  17. Trace elements distribution in environmental compartments

    International Nuclear Information System (INIS)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P.

    2017-01-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  18. Trace elements distribution in environmental compartments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P., E-mail: suelip@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  19. Distribution of dissolved trace metals around the Sacrificos coral reef island, in the southwestern Gulf of Mexico.

    Science.gov (United States)

    Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F

    2009-11-01

    A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.

  20. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  1. The distribution of radionuclides and some trace metals in the water columns of the Japan and Bonin trenches; Repartition des nucleides radioactifs et de quelques metaux-traces dans les fosses du Japon et des iles Bonin

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Y.; Yamada, M. [Tokyo Univ. (Japan). Ocean Research Inst; Nakanishi, T. [Kanazawa Univ. (Japan). Dept. of Chemistry; Nagaya, Y.; Nakamura, K.; Yamada, M. [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan); Shitashima, K.; Tsubota, H. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    1998-05-01

    Presented here is the first geochemical data on the U/Th series Th, Pa, Ac, and Pb isotopes and artificial fallout radionuclides ({sup 90}Sr, {sup 137}Cs, and Pu isotopes), and some trace elements (V, Zn, Cd, Cu, Mn, and Ni) in two water columns of the Japan and Bonin trenches down to the bottom depths of 7585 m and 9750 m, respectively. Hydrographic properties such as temperature, salinity dissolved oxygen, and nutrient content within the trench valley remain constant at the same levels as those in the bottom water of the Northwest Pacific basin (typically {approx}6000 m in depth). The radionuclide activities and most trace metal concentrations are also not very different from those in the overlying water at depths of around 5000-6000 m. This means that any chemical alteration which sea water undergoes during its residence within the trench was not obviously detected by the techniques used here. The suggestion follows that the trench water is rather freely communicating y isopycnal mixing with the bottom water overlying the Northwest Pacific abyssal plain. The trench waters contain high {sup 239,240}Pu activities throughout, indicating that Pu is actively regenerating from rapidly sinking, large particles at the bottom interface, probably due to a change in the oxidation state. On the other hand, the vertical profiles of {sup 210}Pb and {sup 231}Pa show lower activities within the trench than those in the overlying deep waters, suggesting that the effect of boundary and bottom scavenging is significant in controlling their oceanic distributions. However, none of the trace metals studied here obviously follows the behaviour of the above nuclides. The {sup 228}Th data show scattering within the Bonin Trench that is largely ascribable to analytical errors. If, however we accept that the scatter of {sup 228}Th data is real and the variation is caused solely by decay of its parent {sup 228}Ra, we can set an upper limit of {approx}5 years for the renewal time of the

  2. studies on trace metal concentration pseudotolithus elongatus from ...

    African Journals Online (AJOL)

    DJFLEX

    KEY WORDS: Trace metals, Lead Pollution, Pseudotolithus elongatus, Mbo coastal waters, ..... Analysis of soil heavy metal pollution and ... Pekey, H., Karakas, D., and Bakog'lu, M., 2004. Source apportionment of trace metals in the surface.

  3. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season.

    Science.gov (United States)

    Mouneyrac, C; Amiard-Triquet, C; Amiard, J C; Rainbow, P S

    2001-07-01

    Crabs, Pachygrapsus marmoratus, were sampled in June 1997 and February 1998 from two sites (at the mouth and 25 km upstream) in the metal-rich Gironde estuary, France. Gills and hepatopancreas were analysed for metal (Cd, Cu, Zn) and metallothionein (MT) contents, in order to examine the influence of both biological and environmental factors on the physico-chemical forms of detoxified metal storage in the crabs. The concentrations of MT and both cytosolic and insoluble metals were not greatly different between males and females, and the influence of organ weights was also minimal. Intersite differences were observed, probably resulting from the gradient of salinity in the estuary, which interacts with both the chemical speciation and bioavailability of metals, and the general protein metabolism of the crabs. Seasonal changes were also important, probably in interaction with the moult and reproductive cycles. In February, concentrations of insoluble metals were generally higher than in June, in both organs, suggesting that essential metals, particularly Zn, are stored during winter then remobilised during the breeding season. The natural variability in the concentrations of MT often concealed any relationship with accumulated metal concentrations. Thus MT in crabs cannot be considered as a useful biomarker of metal pollution.

  4. Accumulation and distribution of trace metals and radionuclides in marine organisms (particularly Tapes decussatus L.) in the Izmir bay area, Turkey

    International Nuclear Information System (INIS)

    Geldiay, R.; Uysal, H.

    1976-01-01

    The shell fish Tapes decussatus has economic importance as a product from Izmir bay. The concentrations of trace metals (Cu, Mn, Zn, Fe, Pb, Co, Cr, Hg, Cd) in this organism have been determined in relation to different localities with polluted and non-polluted waters. Measurement of levels and trends of these trace elements are important in the context of public health. Seasonal as well as spatial variation of 65 Zn and 115 Cd in the organs and tissues of T. decussatus were determined. A comparison of the concentration of trace elements in natural conditions with that in laboratory conditions was made using radioisotopes. The concentrations of trace elements in T. decussatus varied according to the tissues and organs of the body, the size of the animal, the locality of sampling and the season of the year. Bio-concentrations of radioactive 65 Zn and 115 Cd were also observed to vary according to the tissues and organs of the animal. Pathways of the trace elements were also studied using radioisotopes ( 65 Zn and 115 Cd). The effects of toxicity of the stable elements on their uptake and loss were also determined. The toxic effects of different concentrations on the uptake and loss of 65 Zn and 115 Cd were studied. (author)

  5. Plasma trace metals during total parenteral alimentation.

    Science.gov (United States)

    Solomons, N W; Layden, T J; Rosenberg, I H; Vo-Khactu, K; Sandstead, H H

    1976-06-01

    The plasma concentrations of the trace metals zinc and copper were studied prospectively in 13 patients with gastrointestinal diseases treated with parenteral alimentation (TPA) for periods of from 8 days to 7 1/2 weeks. Plasma copper levels fell rapidly and consistently in all patients, with an overall rate of - 11 mug per 100 ml per week. Zinc concentrations declined in 10 of 13 patients at a more gradual rate. Analysis of the standard parenteral alimentation fluids revealed zinc content equivalent to 50% of the daily requirement and a negligible content of copper. From combined analysis of plasma zinc, hair zinc, and taste acuity, there is evidence that increased utilization or redistribution within the body may effect plasma concentrations in some patients. Neither an increase in urinary excretion nor a primary decrease in plasma binding proteins appeared to be a major factor in lowering plasma trace metal concentrations. These findings indicate that a marked decrease in plasma copper is regular and a decline in plasma zinc is common during TPA using fluids unsupplemented with trace metals. Supplementation of parenteral alimentation fluids with the trace metals zinc and copper is recommended.

  6. Atmospheric trace metal concentrations in Suspended Particulate ...

    African Journals Online (AJOL)

    The air particulate samples were collected from the kitchens, living rooms and outdoor environment of five households in the community. The quantification of the trace metals was done using Atomic Absorption spectrometry method, employing HNO based wet digestion. High baseline concentration of SPMwere obtained ...

  7. Trace Metals Bioaccumulation Potentials of Three Indigenous ...

    African Journals Online (AJOL)

    The rapid increase in the number of industries may have increased the levels of trace metals in the soil. Phytoremediation of these polluted soils using indigenous grasses is now considered an alternative method in remediating these polluted soils. The present study investigated and compared the ability of three ...

  8. Trace Metals Concentration Assessment in Urban Particulate Matter ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Principal component analysis revealed that major sources of trace metals in ambient air ... contributed by earth crust and windblown soil .... Source Apportionment: To probe the origin of trace .... atmospheric accumulation of heavy metals and.

  9. Photometric determination of traces of metals

    International Nuclear Information System (INIS)

    Onishi, H.

    1986-01-01

    The first three editions of this widely used classic were published under the title Colorimetric Determination of Traces of Metals, with E.B. Sandell as author. Part I (General Aspects) of the fourth edition was co-authored by E.B. Sandell and H. Onishi and published in 1978. After Sandell's death in 1984, Onishi assumed the monumental task of revising Part II. This book (Part IIA) consists of 21 chapters in which the photometric determinations of the individual metals, aluminium to lithium (including the lanthanoids), are described. Each chapter is divided into three sections: Separations, Methods of Determination, and Applications. The sections on Separations are of general interest and include methods based on precipitation, ion-exchange, chromatography, and liquid-liquid extraction. Molecular absorption and fluorescence techniques are described in the sections on determinations, and the emphasis is on the use of well-established reagents. Several reagents that have been recently introduced for the determination of trace levels of metals are also critically reviewed at the end of each section on methods of determination. Important applications of these methods to the determination of trace metals in complex organic and inorganic materials are described in detail at the end of each chapter

  10. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  11. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  12. Trace metal levels in sediments of Pearl Harbor (Hawaii)

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.; Tamura, T.

    1986-09-01

    This study was conducted to measure the distribution of lead and other trace metals in the sediments of Pearl Harbon (Hawaii) to determine whether paint chips from vessels of the US Navy's Inactive Fleet have affected the environmental quality of Middle Loch. Sediment cores (ranging from 0.5 to 3.0 m long) were collected from Middle Loch near the Naval Inactive Ships Maintenance Facility and in an area of West Loch that is relatively isolated and unaffected by naval operations. Concentrations of copper, lead, and zinc averaged 180 μg/g, 49 μg/g, and 272 μg/g, respectively, in recent Middle Loch sediments. These concentrations are significantly higher than those in either historical Middle Loch sediments or recent West Loch sediments. However, except for lead, the concentrations in recent Middle Loch sediments are similar to those of older Middle Loch sediments, which indicates that the increase in trace metal contamination began before the onset of Inactive Fleet operations (about 1946). Increased trace metal levels in recent Middle Loch sediments might be expected to result from two potential sources: (1) sewage discharges and (2) paint from inactive vessels. Since paint contains elevated levels of lead and zinc but little copper, the elevated copper levels in Middle Loch sediments tend to implicate sewage as the source of trace metal contamination. Moreover, the lead:zinc ratio of recent Middle Loch sediments (0.18:1) is a factor of 10 lower than that measured in paint (2.1:1), and the Middle Loch lead:zinc ratio is not significantly greater than that measured in recent West Loch sediments (0.21:1). Hence, we suggest that sewage rather than paint is the major source of trace metal contamination of Middle Loch. This is consistent with the findings of a previous study by US navy personnel

  13. Trace metal fronts in European shelf waters

    International Nuclear Information System (INIS)

    Kremling, K.

    1983-01-01

    The Hebrides shelf edge area is characterized by strong horizontal salinity gradients (fronts) which mark the boundary between Scottish coastal and oceanic waters. The results presented here, obtained in summer 1981 on a transect between the open north Atlantic and the German Bight, confirm that the hydrographical front is accompanied by dramatic increases in inorganic nutrients (phosphate, silicate) and dissolved trace elements such as Cd, Cu, Mn, and 226 Ra. These data (together with measurements from North Sea regions) suggest that the trace metals are mobilized from partly reduced (organic-rich) sediments and vertically mixed into the surface waters. The regional variations evident from the transect are interpreted as being the result of the hydrography prevailing in waters around the British Isles. (author)

  14. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bonnail-Miguel, E. [Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, 11,510 Puerto Real, Cadiz (Spain); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2015-02-15

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity.

  15. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    International Nuclear Information System (INIS)

    Kalman, J.; Bonnail-Miguel, E.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2015-01-01

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity

  16. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  17. Trace metal contents in barbeque (BBQ) charcoal products

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Ehsanul [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Kim, Ki-Hyun, E-mail: khkim@sejong.ac.kr [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Yoon, H.O. [Korea Basic Science Institute, Seoul Center, Seoul 136-701 (Korea, Republic of)

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 {mu}g kg{sup -1} (As) to 118 mg kg{sup -1} (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  18. Trace metal contents in barbeque (BBQ) charcoal products

    International Nuclear Information System (INIS)

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H.O.

    2011-01-01

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg -1 (As) to 118 mg kg -1 (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  19. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    Science.gov (United States)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size pH and ionic strength .The molecular size and shape of HS is

  20. Concentrations and Size Distributions of Trace Metals in Particulate Matter in Urban New Jersey: Preliminary Results from the Newly Established Rutgers Newark Urban Air Quality Observatory.

    Science.gov (United States)

    Rabinovich, O.; Gao, Y.

    2017-12-01

    Particulate air pollution has been associated with health issues in general and respiratory diseases in particular. Some research has shown that higher concentration of fine particulate matter (PM) is found in lungs. However, why and what kind of PM plays the roles affecting the human health still need more investigations, and most of previous and current studies were limited to those focusing on PM2.5 or larger particles. The city of Newark in New Jersey is the largest metropolitan center in the state with dense population; it is a commerce and transportation hub surrounded by many highways and busy airports, in addition to numerous power plants, waste combustion treatment facilities, etc. in the area. Thus, the city is impacted by air pollution emissions In some areas of the city, the elevated records of respiratory illness were reported. Although some PM2.5 concentration studies were done in the past, the enrichment of toxic metals in PM with respect to their sizes have not been fully addressed. The Rutgers Newark Air Quality Observatory (RNAQO) was recently established to address urban air pollution and its impact on human health. During this study, both size-segregated PM and PM2.5 are collected in RNAQO, Newark, New Jersey. The samples are analyzed to evaluate the enrichment of trace metals focusing on Pb, Cd, Cu, and Zn in different sizes of PM that will be discussed in this presentation. Such data will be valuable to further investigations into the health effects of fine mode PM. Particularly, this data will be helpful in exploring the relationships between respiratory sickness and fine mode toxic metals' concentrations.

  1. Limitation of productivity by trace metals in the sea

    International Nuclear Information System (INIS)

    Morel, F.M.M.; Price, N.M.; Hudson, R.J.M.

    1991-01-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments

  2. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J L; Jamieson, D N; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  3. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J.L.; Jamieson, D.N.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  4. Contamination from an affluent of Furnas reservoir by trace metals

    Directory of Open Access Journals (Sweden)

    PP Cavalcanti

    Full Text Available This study aims to determine concentrations and characterize trace metals distribution in an affluent of Furnas reservoir, Alfenas-MG. Water and sediment samples were taken monthly, 2010/10-2011/07 in five sites of Córrego do Pântano for subsequent determination of Pb, Cd and Zn levels by chemical analysis. The stream studied is in disagreement with Brazilian legislation for Class II water bodies (CONAMA 357. The highlights are the unsuitable concentrations of Pb for human consumption, according to Ministry of Health 2914 decree, providing risk for population.

  5. Radionuclides and trace metals in surface air. Appendix C

    International Nuclear Information System (INIS)

    Feely, H.W.; Toonkel, L.E.; Larsen, R.J.

    1981-01-01

    Since January 1963, the Environmental Measurements Laboratory (EML), formerly the Health and Safety Laboratory (HASL), has been conducting the Surface Air Sampling Program. This study is a direct outgrowth of a program initiated by the US Naval Research Laboratory (NRL) in 1957 and continued through 1962. The primary objective of this program is to study the spatial and temporal distribution of specific natural and man-made radioisotopes, and of trace metals in the surface air. Other special studies of surface air contamination have been performed during the course of the program

  6. A remote tracing facility for distributed systems

    International Nuclear Information System (INIS)

    Ehm, F.; Dworak, A.

    2012-01-01

    Today, CERN's control system is built upon a large number of C++ and Java services producing log events. In such a largely distributed environment these log messages are essential for problem recognition and tracing. Tracing is therefore vital for operation as understanding an issue in a subsystem means analysing log events in an efficient and fast manner. At present 3150 device servers are deployed on 1600 disk-less front-ends and they send their log messages via the network to an in-house developed central server which, in turn, saves them to files. However, this solution is not able to provide several highly desired features and has performance limitations which led to the development of a new solution. The new distributed tracing facility fulfills these requirements by taking advantage of the Streaming Text Oriented Messaging Protocol (STOMP) and ActiveMQ as the transport layer. The system not only allows storing critical log events centrally in files or in a database but also allows other clients (e.g. graphical interfaces) to read the same events concurrently by using the provided Java API. Thanks to the ActiveMQ broker technology the system can easily be extended to clients implemented in other languages and it is highly scalable in terms of performance. Long running tests have shown that the system can handle up to 10.000 messages/second. (authors)

  7. Trace metals analysis in molybdenite mineral sample

    International Nuclear Information System (INIS)

    Tamrakar, Praveen Kumar; Pitre, K.S.

    2000-01-01

    DC polarography and other related techniques, viz., DPP and DPASV have been successfully used for the simultaneous determination of trace metals in molybdenite mineral sample. The polarograms and voltammograms of sample solution have been recorded in 0.1 M (NH 4 ) 2 tartrate supporting electrolyte at two different pH values i.e., 2.7±0.1 and 9.0±0.1. The results indicate the presence of Cu 2+ , Mo 6+ , Cd 2+ , Ni 2+ , In 3+ , Fe 3+ and W 6+ metal ions in the sample. For the determination of tungsten(VI), 11 M HCl has been used as supporting electrolyte. Tungsten(VI) produces a well defined wave/peak with E 1/2 /Ep=-0.42V/-0.48V vs SCE in 11 M HCl. The quantitative analysis by the method of standard addition shows the mineral sample to have the following composition, Cu 2+ ( 14.83), Mo 6+ (253.70), Cd 2+ (41.36), Ni 2+ (16.08), In 3+ (3.06), Fe 3+ (83.00)and W 6+ (4.14 )mg/g of the sample. Statistical treatment of the observed voltammetric data reveals high accuracy and good precision of determination. The observed voltammetric results are comparable with those obtained using AAS method. (author)

  8. Trace element distribution in the rat cerebellum

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Reuhl, K.R.; Hanson, A.L.; Jones, K.W.

    1989-10-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with x-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and non-destructive irradiation. Trace elements were measured in thin rat brain sections of 20-micrometers thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppM wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semi-quantitative mapping of the TE distribution in a section were used

  9. Levels and occupational health risk assessment of trace metals in ...

    African Journals Online (AJOL)

    The levels of trace metals (Pb, Cu, Ni and Cd) were determined in soils from a major automobile repair workshop located in Uyo, Akwa Ibom State, Nigeria. This was carried out to evaluate the potential occupational risk to operators working in and around the site. The mean of trace metal levels were: lead (14.52 mg/kg); ...

  10. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  11. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects.

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-09-01

    This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Analysis of trace metals in various brands of cigarettes

    International Nuclear Information System (INIS)

    Iqbal, M.

    1996-01-01

    The present work deals with the analysis of trace metals in various brands of cigarettes belonging to four different countries. In the present research seven trace elements have been determined spectrophotometrically by the use of suitable analytical reagent of the respective metal ions. The metals which has been analysed quantitatively in forty one brand of cigarettes are aluminium, copper, chromium, nickel, iron titanium and zinc. The concentration per cigarette of these metals are in tolerable range. The concentration of above mentioned metal ions is highest in Pakistani cigarettes tobacco while the concentration of nickel is highest in American cigarettes. (author) 221 refs

  13. Trace Metal Concentrations in Commercially Important Fishes from ...

    African Journals Online (AJOL)

    komla

    Some trace metals such as zinc and copper are important in small quantities for ...... Cameroon: Institut de recherches meddicales et d'etudes des plantes edicinales, ... Determination of Total Cadmium, Zinc, Lead, Copper in Selected Marine ...

  14. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    Science.gov (United States)

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Trace Metals And Organic Matter Diagenesis At The Oman Margin

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Trace Metals (e.g. Mn and Fe) play an important role as secondary oxidants in the degradation of sedimentary OM under sub-oxic conditions. Hence the remineralisation of organic constituents of sediments in the marine environment may significantly...

  16. Hyperaccumulators of metal and metalloid trace elements: facts and fiction.

    NARCIS (Netherlands)

    van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H.

    2012-01-01

    Background: Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc,

  17. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  18. Bibliography on cycling of trace metals in freshwater ecosystems

    International Nuclear Information System (INIS)

    LaRiviere, M.G.; Scott, A.J.; Woodfield, W.G.; Cushing, C.E.

    1978-07-01

    This bibliography is a listing of pertinent literature directly addressing the cycling of trace metals in freshwater ecosystems. Data on cycling, including the influences of environmental mediators, are included. 151 references

  19. Distributed trace using central performance counter memory

    Science.gov (United States)

    Satterfield, David L.; Sexton, James C.

    2013-01-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  20. Trace Metal Requirements and Interactions in Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene B. Rodriguez

    2018-02-01

    Full Text Available Photosynthetic organisms need trace metals for various biological processes and different groups of microalgae have distinctive obligate necessities due to their respective biochemical requirements and ecological niches. We have previously shown that the dinoflagellate Symbiodinium kawagutii requires high concentrations of bioavailable Fe to achieve optimum growth. Here, we further explored the trace metal requirements of S. kawagutii with intensive focus on the effect of individual metal and its interaction with other divalent metals. We found that low Zn availability significantly decreases growth rates and results in elevated intracellular Mn, Co, Ni, and Fe quotas in the dinoflagellate. The results highlight the complex interaction among trace metals in S. kawagutii and suggest either metal replacement strategy to counter low Zn availability or enhanced uptake of other metals by non-specific divalent metal transporters. In this work, we also examined the Fe requirement of S. kawagutii using continuous cultures. We validated that 500 pM of Fe′ was sufficient to support maximum cell density during steady state growth period either at 26 or 28°C. This study shows that growth of S. kawagutii was limited by metal availability in the following order, Fe > Zn > Mn > Cu > Ni > Co. The fundamental information obtained for the free-living Symbiodinium shall provide insights into how trace metal availability, either from ambient seawater or hosts, affects growth and proliferation of symbiotic dinoflagellates and the interaction between symbiont and their hosts.

  1. Trace metal physiology in normal and pathological tissues

    International Nuclear Information System (INIS)

    Hamer, C.J.A. van den; Nooijen, J.L.

    1979-01-01

    Many of the ionic tumour seeking radiopharmaceuticals consist of a metal ion combined with an anion. The choice of metal depends on the existence of radionuclides with suitable radiological properties, and on their availability. Because several of the metal complexes used in nuclear medicine are of rather recent interest, information about their metabolism is scarce. Although nuclear medicine is limited to those metals which radiochemists can produce, we can manipulate the chemical form in which the metals are introduced into the organism to some extent. The relation between chemical form and biological pathway, e.g., the extent of accumulation in certain tissues, is subject of study related to trace metal physiology. It is the purpose of this paper to try and bridge the gap between nuclear medicine and trace metal physiology by showing the progress made by the latter in the study of the metabolism of copper and zinc. Few trace metals have been studied as thoroughly as these, although iron could have been chosen just as well. This presentation is limited to a study of the fate of a metal derivative after its intravenous injection. Where possible the results obtained are related to the behaviour of metals presently of interest to nuclear medicine. (Auth.)

  2. Relation between tobacco trace metals and soil type in Lebanon

    International Nuclear Information System (INIS)

    SLIM, K.; Saad, Z.; Kazpard, V.; El Samarani, A; Nabhan, Ph.

    2006-01-01

    The aim of study was to determine the concentration of nutrients in soil and tobacco samples from different agricultural regions. We studied the influence of soil type on tobacco quality and the transfer and accumulation of trace metals in tobacco leaves. The results showed that human activities in the Nabatiyeh region had a none pronounced effect on one agricultural plot than on its neighbor. The transfer factor of elements between soil and tobacco plants showed that major constituents are leached and absorbed from the soil, whereas some trace elements are finely absorbed from the alkaline soil. Statistical analysis of the micro nutrients in soil and plants confirmed the existence of two principal factors that control the distribution of elements in different compartments. Four tobacco plots in different regions were also studied as a functions of their pedologic and geologic characteristics. The major elements varied in all regions, but were always ordered Ca > Mg > Na > K. The highest transfer factor for nutrients was found in young soil layers. In the Akkar region, clay nutrients form complexes with micronutrients. Thereby reducing their absorption by tobacco plants. (author)

  3. Trace Metals in Mussels from the N.W. Mediterranean

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.

    1976-01-01

    A coastal survey in the northwestern Mediterranean region was initiated to measure existing levels of selected trace metals in mussels. For most metals the highest values were found in samples from port cities and areas in the vicinity of river discharge. Marked seasonal variation for many metals was evident; an overall increase in metal concentration in mussels from most stations during March 1974 was attributed to high precipitation and attendant run-off rather than to local pollution. Data comparison indicates that average metal levels in northwestern Mediterranean mussels do not differ markedly from those measured in similar species from different localities throughout the world. (author)

  4. Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia.

    Science.gov (United States)

    Vallejo Toro, Pedro Pablo; Vásquez Bedoya, Luis Fernando; Correa, Iván Darío; Bernal Franco, Gladys Rocío; Alcántara-Carrió, Javier; Palacio Baena, Jaime Alberto

    2016-10-15

    The Gulf of Urabá (northwestern Colombia) is a geostrategic region, rich in biodiversity and natural resources. Its economy is mainly based on agribusinesses and mining activities. In this research is determined the impact of these activities in bottom surface sediments of the estuary. Thus, grain size, total organic carbon, total nitrogen, carbonates, Ag, Al, Ca, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb and Zn concentrations from 17 surface sediment samples were obtained and enrichment factors (EF) as well as geo-accumulation indices (Igeo) were calculated to determine the contamination level in the gulf. EF and Igeo values revealed that the estuary is extremely contaminated with Ag and moderately contaminated with Zn. Therefore, the observed enrichment of Ag may be explained as a residue of the extraction of gold and platinum-group metals and the enrichment with Zn associated mainly to pesticides used in banana plantations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of Protozoan Grazing on the Marine Geochemistry of Particle Reactive Trace Metals

    National Research Council Canada - National Science Library

    Barbeau, Katherine

    1998-01-01

    .... Principle findings included mobilization of extracellular as well as intracellular trace metals by protists, apparent generation of metal-organic complexes, and decoupling of metal and carbon cycling...

  6. Trace metals in urban road dust

    International Nuclear Information System (INIS)

    Randazzo, Loredana Antonella; Dongarra, Gaetano; Manno, Emanuela; Varrica, Daniela

    2006-01-01

    Heavy metals associated with urban road dust is a matter for concern as they may have serious effects on biological systems. The bioavailability and potential toxicity of metals bound to urban dust is related to the specific chemical form of the element. In the present article are reported the determinations and chemical speciation of As, Ba, Cr, Cu, Mo, Ni, Pb and Zn in six samples of road dust collected within the urban centre and the outskirts of Palermo [it

  7. Measurement of trace metals in vitiligo by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Hamid, Abdel-Aziz M.; Amin, N.E.; Mohy El-Din, Safaa M.

    1985-01-01

    Zn, Cu, Fe, Pb, Mn, Co, Ag, Ca, and Mg were estimated in hair, fingernails and epidermis of vitiligo patients by atomic absorption spectroscopy. There has been a significant reduction in the concentration of trace metals in the studied sites. It seems that any speculation on the role of trace elements in vitiligo would have to take into account the structural defect which underlies the absence of melanin

  8. Spatial distribution and biological effects of trace metals (Cu, Zn, Pb, Cd) and organic micropollutants (PCBs, PAHs) in mussels Mytilus galloprovincialis along the Algerian west coast.

    Science.gov (United States)

    Benali, Imene; Boutiba, Zitouni; Grandjean, Dominique; de Alencastro, Luiz Felippe; Rouane-Hacene, Omar; Chèvre, Nathalie

    2017-02-15

    Native mussels Mytilus galloprovincialis are used as bioindicator organisms to assess the concentration levels and toxic effects of persistent chemicals, polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals using biomarker responses, such as catalase (CAT), glutathione s-transferase (GST), and condition indices, for the Algerian coast. The results show that mussels of Oran Harbour are extremely polluted by PCBs and PAHs, i.e., 97.6 and 2892.1μg/kg d.w., respectively. Other sites present low levels of pollution. Furthermore, high concentrations of zinc, lead and cadmium are found in mussels from fishing, agricultural and estuarine sites, respectively, while low concentrations of copper are found in all of the sites studied. CAT activity is negatively correlated with Cd and Cu, and Zn is positively correlated with GST and CAT. Site classification tools reveal the potential toxicity of coastal areas exposed to anthropogenic pressure and a gradient of toxicity along the Algerian west coast. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluation of toxic trace metals Cd and Pb in Arabian Sea waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.; SenGupta, R.

    An attempt has been made to present a picture of the distribution of toxic trace elements Cd and Pb in the Northern Arabian Sea by applying an improved analytical technique for the detection of dissolved forms of the metals at nanogram levels...

  10. Trace metal removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R. (ed.)

    1986-01-01

    The Industrial Division of the Royal Society of Chemistry organized the symposium, held at the University of Warwick, that gave rise to the 12 typescript papers in this softbound volume. Both biological and chemical methods of recovering or removing metals from water are discussed, and two papers are concerned solely with analysis. Not indexed.

  11. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  12. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: aturner@plymouth.ac.uk; Mawji, Edward [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D{sub ow}, ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10{sup 3.3}-10{sup 5.3} ml g{sup -1}. The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating

  13. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  14. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    Science.gov (United States)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  15. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    International Nuclear Information System (INIS)

    Wahl, A; Dawson, K; Sassiat, N; Quinn, A J; O'Riordan, A

    2011-01-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H 2 SO 4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu 2+ nanomolar concentrations. Linear correlations were observed for increasing Cu 2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  16. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  17. Trace Metals and Mineral Composition of Harmattan Dust Haze in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-01-29

    Jan 29, 2018 ... ABSTRACT: Trace metals and mineralogical composition of harmattan dust haze was carried out on samples collected at Ilorin (80 32'N, ... Sahara desert which transports the dust by wind. Junge (1979) reported that on the .... Schwela et al 2002, it was observed that road transport emission sources ...

  18. Concentration of Trace Metals in Boreholes in the Ankobra Basin ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Most of the boreholes with high trace metal concentrations were located in and around the Bawdie-Bogoso-Prestea area. Introduction. Ankobra basin is one of the main mining areas in Ghana. The major minerals mined in this area include gold, manganese, bauxite and diamond. Gold mining in this basin dates about 500 ...

  19. Trace Metal Levels in Raw and Heat Processed Nigerian Staple ...

    African Journals Online (AJOL)

    The levels of some trace metals (Fe, Zn, Cu, Ni, Cd) were quantitatively determined in raw and heat processed staple food cultivars (yam, cassava, cocoyam and maize) from oil producing areas of part of the Niger Delta and compared with a non-oil producing area of Ebonyi State as control. The survey was conducted to ...

  20. Determination of Sugar and Some Trace Metals Content in Selected ...

    African Journals Online (AJOL)

    Ten brands of commercial fruit juices were analyzed for pH, specific gravity, total solids, reducing sugar and total sugar trace metals contents. The pH was determined using a Hanna pH meter. Sugar content was determined using the Lane and Eynon method. Sodium and potassium were determined by flame photometry ...

  1. Coagulation / flocculation process in the removal of trace metals ...

    African Journals Online (AJOL)

    Attempts were made in this study to examine the effectiveness of polymer addition to coagulation process during treatment of a beverage industrial wastewater to remove some of its trace metals content such as lead, cadmium, total iron, total chromium, nickel and zinc. Experiments were conducted using the standard Jar ...

  2. An appraisal of physicochemical parameters and some trace metals ...

    African Journals Online (AJOL)

    Industrial effluent samples collected from the disposal point of five different companies in Trans-Amadi industrial area of Port Harcourt were analyzed to investigate effect on the environment. The analyzed effluent samples showed results of the physicochemical parameters and trace metals in the ranges : (pH 3.60 - 6.90), ...

  3. Trace Metal Contamination in Water from Abandoned Mining and ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    copper and lead sulpho-salts (Dzigbordi-Adjimah, 1988). ... The resulting solution was analysed for trace metals at the Institute of Mining and Mineral ..... found in the samples (Tables 3 and 4) may be due to the mineral-water interactions and.

  4. Trace metals and vitamin levels in Nigerian patients with sensory ...

    African Journals Online (AJOL)

    The significance of the higher levels of magnesium in the patients is unclear and needs further investigation. Further studies with larger sample sizes are needed to confirm this observation. Keywords: ataxia, trace metals, vitamins, Nigerians Nigerian Journal of Health and Biomedical Sciences Vol. 4(2) 2005: 156–160 ...

  5. Trace metals transfer during vine cultivation and winemaking processes

    Czech Academy of Sciences Publication Activity Database

    Vystavna, Yuliya; Zaichenko, L.; Klimenko, N.; Rätsep, R.

    2017-01-01

    Roč. 97, č. 13 (2017), s. 4520-4525 ISSN 0022-5142 Institutional support: RVO:60077344 Keywords : white wine * Chardonnay * Vitis * Ukraine * vineyard * trace metals Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.463, year: 2016

  6. enrichment factor of atmospheric trace metal using zirconium

    African Journals Online (AJOL)

    user

    Twelve (12) elements (Cl, K, Ca, Ti, V, Fe, Ni, Cu, Zn, Ba, Sr, and Zr ) were detected in total suspended particulate matter (TSP) ..... Ni and V didn't show spatial variation (p>0.05). For K, ..... K.A. Wet deposition of trace metals to a remote.

  7. Diagnostic value of lipids, total antioxidants, and trace metals in ...

    African Journals Online (AJOL)

    Materials and Methods: Anthropometric characteristics, total prostate specific antigen (tPSA), serum lipids (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides), Vit. E, total antioxidant status (TAS), and trace metals (Se, Cu, Fe, Zn, and Mn) were determined in 40 patients with histopathological diagnosis of ...

  8. Resolving and modelling trace metal partitioning in a freshwater sediment

    International Nuclear Information System (INIS)

    Devallois, V.; Boyer, P.; Coulomb, B.; Boudenne, J. L.

    2009-01-01

    Elevated concentrations of trace metals in sediments pose toxicological risks to biota and may impair water quality. the sediment-water interface is the site where gradients in physical, chemical and biological properties are the greatest. Both chemical and microbiological transformation processes are responsible for cycling elements between water and sediments. (Author)

  9. Serum Lipids and Lipoproteins Levels and Selected Trace Metals In ...

    African Journals Online (AJOL)

    This study aim to determine the serum levels of trace metals and correlate same with serum levels of lipoproteins (an established marker of HBP) in newly diagnosed hypertensives (NDH) A total of 50 NDH subjects (24 males and 26 females) attending Ladoke Akintola University of Technology Teaching Hospital, Osogbo ...

  10. Spectrochemical determination of impurities and noble metal traces in carnallite

    International Nuclear Information System (INIS)

    Goldbart, Z.; Carmi, U.; Harrel, A.

    1978-02-01

    A spectrochemical method was developed for the determination of impurities and noble metal traces in carnallite by DC arc excitation. The investigated sample is brought to a standard form of potassium-magnesium sulphate mixed with graphite. Detection limits of 1-10 ppm were determined for 27 elements; the dynamical detection range is 1-400 ppm

  11. Bioavailability of metals-trace in sediments: a review

    International Nuclear Information System (INIS)

    Rodrigues, Rafaela E. de A.V.; Souza, Vivianne Lucia Bormann; Lima, Vanessa Lemos de; Hazin, Clovis Abrahao

    2014-01-01

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl 2 (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution

  12. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  13. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  14. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  15. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    NARCIS (Netherlands)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction.

  16. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  17. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    Science.gov (United States)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  18. Metal Distribution and Mobility under alkaline conditions

    International Nuclear Information System (INIS)

    Dario, Maarten

    2004-01-01

    The adsorption of an element, expressed as its distribution between liquid (aquatic) and solid phases in the bio geosphere, largely determines its mobility and transport properties. This is of fundamental importance in the assessment of the performance of e.g. geologic repositories for hazardous elements like radionuclides. Geologic repositories for low and intermediate level nuclear waste will most likely be based on concrete constructions in a suitable bedrock, leading to a local chemical environment with pH well above 12. At this pH metal adsorption is very high, and thus the mobility is hindered. Organic complexing agents, such as natural humic matter from the ground and in the groundwater, as well as components in the waste (cleaning agents, degradation products from ion exchange resins and cellulose, cement additives etc.) would affect the sorption properties of the various elements in the waste. Trace element migration from a cementitious repository through the pH- and salinity gradient created around the repository would be affected by the presence and creation of particulate matter (colloids) that may serve as carriers that enhance the mobility. The objective of this thesis was to describe and quantify the sorption of some selected elements representative of spent nuclear fuel (Eu, Am) and other heavy metals (Zn, Cd, Hg) in a clay/cement environment (pH 10-13) and in the pH-gradient outside this environment. The potential of organic complexing agents and colloids to enhance metal migration was also investigated. It was shown that many organic ligands are able to reduce trace metal sorption under these conditions. It was not possible to calculate the effect of well-defined organic ligands on the metal sorption in a cement environment by using stability constants from the literature. A simple method for comparing the effect of different complexing agents on metal sorption is, however, suggested. The stability in terms of the particle size of suspended

  19. Trace metal pollution in Umtata River | Fatoki | Water SA

    African Journals Online (AJOL)

    Dissolved trace metals, i.e Fe, Mn, Al, Cu, Zn, Pb and Cd were determined in the Umtata River. High levels of Al, Cd, Pb, Zn and. Cu were observed, which may affect the “health” of the aquatic ecosystem. The high levels of Al, Cd and Pb may also affect the health of the rural community that uses the river water directly for ...

  20. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  1. Subcellular trace element distribution in Geosiphon pyriforme

    International Nuclear Information System (INIS)

    Maetz, Mischa; Schuessler, Arthur; Wallianos, Alexandros; Traxel, Kurt

    1999-01-01

    Geosiphon pyriforme is a unique endosymbiotic consortium consisting of a soil dwelling fungus and the cyanobacterium Nostoc punctiforme. At present this symbiosis becomes very interesting because of its phylogenetic relationship to the arbuscular mycorrhizal (AM) fungi. Geosiphon pyriforme could be an important model system for these obligate symbiotic fungi, which supply 80-90% of all land plant species with nutrients, in particular phosphorous and trace elements. Combined PIXE and STIM analyses of the various compartments of Geosiphon give hints for the matter exchange between the symbiotic partners and their environment and the kind of nutrient storage and acquisition, in particular related to nitrogen fixation and metabolism. To determine the quality of our PIXE results we analysed several geological and biological standards over a time period of three years. This led to an overall precision of about 6% and an accuracy of 5-10% for nearly all detectable elements. In combination with the correction model for the occurring mass loss during the analyses this holds true even for biological targets

  2. Subcellular trace element distribution in Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Maetz, Mischa E-mail: mischa.maetz@mpi-hd.mpg.de; Schuessler, Arthur; Wallianos, Alexandros; Traxel, Kurt

    1999-04-02

    Geosiphon pyriforme is a unique endosymbiotic consortium consisting of a soil dwelling fungus and the cyanobacterium Nostoc punctiforme. At present this symbiosis becomes very interesting because of its phylogenetic relationship to the arbuscular mycorrhizal (AM) fungi. Geosiphon pyriforme could be an important model system for these obligate symbiotic fungi, which supply 80-90% of all land plant species with nutrients, in particular phosphorous and trace elements. Combined PIXE and STIM analyses of the various compartments of Geosiphon give hints for the matter exchange between the symbiotic partners and their environment and the kind of nutrient storage and acquisition, in particular related to nitrogen fixation and metabolism. To determine the quality of our PIXE results we analysed several geological and biological standards over a time period of three years. This led to an overall precision of about 6% and an accuracy of 5-10% for nearly all detectable elements. In combination with the correction model for the occurring mass loss during the analyses this holds true even for biological targets.

  3. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  4. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  5. Evaluation of Heavy and Trace Metals in Fingernails of Young ...

    African Journals Online (AJOL)

    WAHAB

    These elements have been produced by alteration and distribution via wind blow. The result indicates that soil or road dust plays an important role in the concentration buildup of the road side dust near automobile workshops. Table 2: Concentration of heavy metals in the soil samples in the automobile workshop. Metals.

  6. Trace Metals in Urban Stormwater Runoff and their Management

    Science.gov (United States)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations

  7. Health Risk Assessment of Trace Metals in Various Environmental Media, Crops and Human Hair from a Mining Affected Area

    Directory of Open Access Journals (Sweden)

    Wushuang Xie

    2017-12-01

    Full Text Available Long term exposure to trace metals in various media is of great concern for people living in known pollution sources, such as mining and industrial activities. Health risk assessment and human hair analysis can provide important information for local environmental management. Information on distribution characteristics of trace metals in soil, water, sediment, air, local crops, and human hair from a typical mining area in southern China was collected. Results show there exists severely trace metal contamination in soil, sediment, and air. Arsenic and Pb contents in the local children’s hair are higher than the upper reference values, and the accumulation of residents’ hair trace metals shows great correlation with the ingestion and inhalation pathways. Arsenic contributes 52.27% and 58.51% to the total non-cancer risk of adults and children, respectively. The cancer risk of Cd in adults and children are 4.66 and 3.22 times higher than the safe level, respectively. Ingestion exposure pathway of trace metals largely contributes to the total non-cancer and cancer effect. The metals As, Cd, and Pb are major risk sources and pollutants that should be given priority for management, and ingestion pathway exposure to trace metals through soil and crops should be controlled.

  8. Urban farming as a possible source of trace metals in human diets

    Directory of Open Access Journals (Sweden)

    Joshua O. Olowoyo

    2016-02-01

    Full Text Available Rapid industrialisation and urbanisation have greatly increased the concentrations of trace metals as pollutants in the urban environment. These pollutants (trace metals are more likely to have an adverse effect on peri-urban agriculture which is now becoming a permanent feature of the landscape of many urban cities in the world. This review reports on the concentrations of trace metals in crops, including leafy vegetables harvested from different urban areas, thus highlighting the presence of trace metals in leafy vegetables. Various pathways of uptake of trace metals by leafy vegetables, such as the foliar and roots, and possible health risks associated with urban faming are discussed and various morphological and physiological impacts of trace metals in leafy vegetables are described. Defensive mechanisms and positive aspects of trace metals in plants are also highlighted.

  9. Trace metal mobilization in an experimental carbon sequestration scenario

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Virginia [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Kaszuba, John [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Univeristy of Wyoming, School of Energy Resources, Larmaie, WY. 82070 (United States)

    2013-07-01

    Mobilizing trace metals with injection of supercritical CO{sub 2} into deep saline aquifers is a concern for geologic carbon sequestration. Hydrothermal experiments investigate the release of harmful metals from two zones of a sequestration injection reservoir: at the cap-rock-reservoir boundary and deeper within the reservoir, away from the cap-rock. In both systems, Cd, Cr, Cu, Pb, and Zn behave in a similar manner, increasing in concentration with injection, but subsequently decreasing in concentration over time. SEM images and geochemical models indicate initial dissolution of minerals and precipitation of Ca-Mg-Fe carbonates, metal sulfides (i.e. Fe, As, Ag, and Co sulfides), and anhydrite in both systems. The results suggest that Ba, Cu, and Zn will not be contaminants of concern, but Pb, Fe, and As may require careful attention. (authors)

  10. Study of trace metals in evaporites of Sergipe, Brazil

    International Nuclear Information System (INIS)

    Andrade, L.L.

    1982-01-01

    Heavy metals and others which form strong complexes must be present in the brine feed of electrolytic cells only at very low levels. Their occurrence in quantities above the established levels has a deleterious effect on the membranes of the cells and will produce interference on voltage, current efficiency and other factors. The waste resulting from decantation of the brine causes serious environmental problems. Thirty brine samples from different sites, provided by Petrobras Mineracao S.A. (Brazil) were studied. The sample preparation method and the analytical results obtained from semiquantitative determination of trace metals by optical emission spectrography are described. The toxicity of certain metals, their effects on the environment and on electrolytic cell membranes are also discussed. (Author) [pt

  11. Spatial Distribution of Trace Elements in Rice Field at Prafi District Manokwari

    Directory of Open Access Journals (Sweden)

    Aplena Elen S. Bless

    2016-08-01

    Full Text Available Mapping spatial variability of trace elements in rice Ḁeld is necessary to obtain soil quality information to en-hance rice production. ἀis study was aimed to measure concentration and distribution of Zn, Cu, Fe, Pb, and Cd in two diᴀerent sites (SP1, SP2 of PraḀ rice Ḁeld in Manokwari West Papua. ἀe representative 26 soil samples were analysed for their available trace metal concentration (DTPA, soil pH, and C-organic and soil texture. ἀe result indicated that Fe toxicity and Zn deḀcient problems were encountered in both sites.  Rice Ḁeld in SP2 was more deḀcient in Zn than SP1. Site with the highest trace elements (Zn, Fe, Cu, and Cd concentration had low soil pH and high C-organic. Acidic soil has higher solubility of metals; while high C-organic could improve the formation of dissolve organic carbon-metal binding, hence it improving the trace metals concentration in soil solution.

  12. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    Science.gov (United States)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2017-01-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  13. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems

    International Nuclear Information System (INIS)

    Devallois, V.

    2009-02-01

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  14. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  15. Uptake, accumulation and distribution of trace metals and radioisotopes by marine organisms in the Izmir area. Part of a coordinated programme on the fate and significance of foreign substances in the agricultural environment

    International Nuclear Information System (INIS)

    Geldiay, R.

    1976-12-01

    Radiotracer-aided studies were made of the concentrations of trace metals such as copper, manganese, zinc, iron, lead, cobalt, chromium, mercury and cadmium in marine organisms particularly Tapes decussatus in different localities in Izmir Bay. The results demonstrate the marine coastal pollution problems in a developing country where industrialisation has overtaken traditional fisheries. Metals are taken directly from solution in sea water or through feed chains or by absorption through the gills. In Izmir Bay there were found unusually high concentration of toxic elements in edible shellfish (Tapes decussatus) - maximum values in ug/g on a dry weight basis: Fe - 353, Zn - 211, Pb - 21, Mn - 13, Co - 10, Cu - 7, Hg - 20 (wct weight). The concentration of metals in the animals of Cakalburnu was lower than that of Deniz Bostanli and Tuzla. The concentration of copper, manganese, lead and zinc were lower in winter than in other seasons. Considerable seasonal differences are probably the results of changes in environmental temperature and productivity. A decrease in size of the animals tends to be associated with the higher mean concentration of manganese, zinc, lead and cobalt. Copper was found to accumulate mostly in digestive glands, gills and palps; manganese in gills and palps, body fluids and digestive glands; zinc in body fluids, digestive glands, gills and palps; iron in digestive glands gills and palps; lead in body fluids, shells, muscles, gills and palps; cobalt in shells and body fluids; mercury in digestive glands, gills, palps and muscles

  16. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    International Nuclear Information System (INIS)

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  17. Trace elements distribution in the Amazon floodplain soils

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.; Ferraz, E.S.B.; Oliveira, H.

    1994-01-01

    Neutron activation analysis was performed on aluvial soil samples from several sites on the foodplains of the Amazon River and its major tributaries for trace elements determination. The spatial and temporal variations of chemical composition of floodland sediments in the Amazon basin are discussed. No significant difference was found in trace elemental distribution in the floodland soils along the Amazon main channel, even after the source material has been progressively diluted with that from lowland draining tributaries. It was also seen that the average chemical composition of floodplain soils compares well with that of the suspended sedimets. (author) 12 refs.; 5 figs.; 2 tabs

  18. Occurrence of Trace and Toxic metals in River Narmada

    Directory of Open Access Journals (Sweden)

    Mohammed Arif

    2014-12-01

    Full Text Available Deteriorating water quality has become a serious problem in developing countries. Almost 70% of Indian’s surface water resources have become contaminated due to the discharge of untreated sewage and industrial effluents. The results reveals that out of nine water quality stations monitored, water samples collected at 5 water quality stations (Amarkantak, Dindori, Manot, Barmanghat and Handia are found to be within the permissible limit for all purposes in respect to trace & toxic metals. While Sandia, Hoshangabad, Mandleshwar and Garudeshwar stations were beyond the permissible limit due to presence of chromium, copper and iron metals. The major source of pollution to the Narmada river is the anthropogenic municipal solid waste and sewage from nearby towns/habitations, agricultural runoff and native soil erosion. The quality of the Narmada River is degraded due to the municipal and industrial discharges from the catchment.

  19. Trace metal determinations by total-reflection x-ray fluorescence analysis in the open Atlantic Ocean

    International Nuclear Information System (INIS)

    Schmidt, D.; Gerwinski, W.; Radke, I.

    1993-01-01

    The Intergovernmental Oceanographic Commission (IOC), as a major component of its programme ''Global Investigation of Pollution in the Marine Environment'' (GIPME), maintains a long-standing project on ''Open Ocean Baseline Studies of Trace Contaminants''. Initially, the Atlantic Ocean and trace metals were selected. Four deep-water stations in the Cape Basin, Angola Basin, Cape Verde Abyssal Plain and Seine Abyssal Plain were regularly sampled for at least 36 depths. Additional samples were taken between stations. Samples were distributed to participants and a similar number of additional laboratories. As a central part of our own contribution to the project, we determined the trace heavy metals manganese, nickel, copper, zinc and lead and the lighter selenium by total-reflection X-ray fluorescence analysis. For the TXRF, the pre-enrichment of the trace metals and the separation from the salt matrix were performed by complexation with sodium dibenzyldithiocarbamate and reverse-phase chromatography. Generally, very low levels of trace elements were found in filtered and unfiltered water samples from these remote areas of the open Atlantic Ocean. Typical examples of the distributions of trace metal concentrations on depth profiles from the four deep-water stations as well as intercomparisons between the stations are presented. (author)

  20. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    Science.gov (United States)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  1. Estimation of trace metal contents in locally-baked breads

    International Nuclear Information System (INIS)

    Khalid, N.; Rehman, S.

    2013-01-01

    In order to establish base line levels, estimation of some essential trace metals (Cu, Fe, Mn and Zn) has been conducted in four brands of fifteen locally baked breads of Rawalpindi /Islamabad area employing Atomic Absorption Spectrophotometry (AAS). The samples were digested in a mixture of nitric acid and perchloric acid and the analysis was done with air-acetylene flame. The reliability of the procedure employed was verify by analyzing Standard Reference Material, i.e., wheat flour (NBS-SRM-1567) for its Cu, Fe, Mn and Zn contents which were in good agreement with the certified values. The results revealed that brown breads contained higher amount of Fe 177.3 micro g g/sup -1/and Zn 19.27 micro g g/sup -1/while levels of Cu 21.90 micro g g/-sup 1/was found higher in the samples of plain bread. The determined metal concentrations in the bread samples were compared with the reported values for other countries. The effect of kneading/baking/slicing processes on the concentration levels of these metals was also studied. The daily intake of these metals through this source was calculated and compared with the recommended dietary allowance. (author)

  2. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    Science.gov (United States)

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-07

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  3. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  4. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    International Nuclear Information System (INIS)

    Marchand, C.; Fernandez, J.-M.; Moreton, B.

    2016-01-01

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low. • Low

  5. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C., E-mail: cyril.marchand@ird.fr [Institut de Recherche pour le Développement (IRD), UR 206/UMR 7590 IMPMC, 98848 Nouméa, New Caledonia (France); Fernandez, J.-M.; Moreton, B. [AEL/LEA, 7 rue Loriot de Rouvray, 98800 Nouméa, New Caledonia (France)

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low.

  6. Trace element distributions in aquatic sediments of Danang - Hoian area, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, H.T.T.; Tobschall, H.J. [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. fuer Geologie und Mineralogie; An, P.V. [University of Mining and Geology, Hanoi (Viet Nam)

    2000-05-01

    Distribution of the trace elements Cr, Cu, Ni, Pb and Zn in surficial sediments of the river/sea environment in Danang - Hoian area (Vietnam) was investigated to examine the degree of metal pollution caused by anthropogenic activities. Point sources from domestic and industrial wastes are identified as dominant contributors of trace element accumulation. Surficial sediments of Hoian River show extremely high total concentrations of Cu (Average Concentration 295 {mu}g/g), Ni (AC 112 {mu}g/g), Pb (AC 396 {mu}g/g) and Zn (AC 429 mug/g) that exceed assigned safety levels ER-M. Similarly, the sediments of Han River show high Pb (AC 188 {mu}g/g) and Zn (AC 282 {mu}g/g) contents. In marine sediments of Thanhbinh beach Pb is also enriched (138 {mu}g/g) above guideline levels. In contrast the sediments of the Cude River are dominated by trace element concentrations close to background values. (orig.)

  7. Feedback interactions between trace metal nutrients and phytoplankton in the ocean

    Directory of Open Access Journals (Sweden)

    William eSunda

    2012-06-01

    Full Text Available In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon the productivity and species composition of marine phytoplankton communities are affected by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium. Of these, iron exerts the greatest limiting influence on carbon fixation rates and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2 fixation rates, and thus exerts an important influence on ocean inventories of biologically available fixed nitrogen. Because of these effects, iron is thought to play a key role in controlling the biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 levels and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese have a lesser effect on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among algal species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals affect the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and regeneration processes, downward flux of biogenic particles, cellular release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution marine and terrestrial biology over geologic history.

  8. Concentration distribution of trace elements: from normal distribution to Levy flights

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Banas, D.; Braziewicz, J.; Majewska, U.; Pajek, M.

    2003-01-01

    The paper discusses a nature of concentration distributions of trace elements in biomedical samples, which were measured by using the X-ray fluorescence techniques (XRF, TXRF). Our earlier observation, that the lognormal distribution well describes the measured concentration distribution is explained here on a more general ground. Particularly, the role of random multiplicative process, which models the concentration distributions of trace elements in biomedical samples, is discussed in detail. It is demonstrated that the lognormal distribution, appearing when the multiplicative process is driven by normal distribution, can be generalized to the so-called log-stable distribution. Such distribution describes the random multiplicative process, which is driven, instead of normal distribution, by more general stable distribution, being known as the Levy flights. The presented ideas are exemplified by the results of the study of trace element concentration distributions in selected biomedical samples, obtained by using the conventional (XRF) and (TXRF) X-ray fluorescence methods. Particularly, the first observation of log-stable concentration distribution of trace elements is reported and discussed here in detail

  9. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  10. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    Science.gov (United States)

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Fadong, E-mail: lifadong@igsnrr.ac.cn; Liu, Qiang; Zhang, Yan

    2014-02-01

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup −}, SO{sub 4}{sup 2−}, and HCO{sub 3}{sup −}) and stable isotopic composition (δ{sup 18}O and δ{sup 2}H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are

  12. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics

    International Nuclear Information System (INIS)

    Mucha, A.P.; Vasconcelos, M.T.S.D.; Bordalo, A.A.

    2003-01-01

    This study used a novel approach to detect a clear signature of metal contamination and biological impacts in an estuary. - The relationship between macrobenthic community structure and natural characteristics of sediment and trace metal contamination were studied in the lower Douro estuary (Portugal, NW, Iberian Peninsula), using an innovative threefold approach (SQG, Sediment Quality Guidelines), metal normalization to Fe, and macrobenthic community structure. This study allowed detection of a clear signature of anthropogenic contamination, in terms of Zn, Cu, Pb, and Cr in the north bank of the estuary, which experiences high urban pressure. Using the SQG approach, metal concentrations above ERM (effects range--median) were observed only at one sampling station, but several stations had levels above ERL (effects range-low). The macrobenthic community had a low diversity, with only 19 species found in the entire estuarine area, dominated by opportunistic species. The granulometric distribution of the sediments (estimated from the combination of organic matter, Fe and Al) seemed to be the major structuring factor for the communities, establishing the natural macrobenthic distribution pattern. The metals (Zn, Cu, Pb, and Cr) seemed to act as a disturbing factor over the natural distribution, with deleterious consequences for the macrobenthic communities

  13. Epiphytic lichen Flavoparmelia caperata as a sentinel for trace metal pollution

    Directory of Open Access Journals (Sweden)

    Mitrović Tatjana

    2012-01-01

    Full Text Available Widely spread lichen specie Flavoparmelia caperata is used in a biomonitoring study for atmospheric trace metal pollution in natural ecosystems in Southeastern Serbia. The concentration and distribution pattern of 21 metals in lichens were determined by inductively coupled plasma atomic emission spectrometry. The difference observed between metal deposition in peripheral and central parts of lichen thalli reflected air quality changes in the last and previous years. These findings were confirmed with principal component analysis. Our study demonstrated the accumulation of Ba, K, Mg, Na, Tl and Zn in peripheral parts of thalli, while As, B, Cd, Cr, Cu, Fe, Ga, In, Li, Ni, Pb and Se were concentrated in central parts of thalli.

  14. Changes in Trace Metal Species and Other Components of the Rhizosphere During Growth of Radish

    DEFF Research Database (Denmark)

    Hamon, R. E.; Lorenz, S. E.; Holm, Peter Engelund

    1995-01-01

    Changes in the properties of soil solution in the rhizosphere of developing radish plants were investigated. Variations in these properties were expected to affect the distribution and speciation of metals in the soil and soil solution. Applications of essential nutrients were linked to plant...... transpiration rates and prevented excess addition of nutrient ions, so that subtle changes in soil solution composition would not be obscured. Soil solution pH, the concentration of dissolved organic carbon (DOC) and the concentrations of major and trace elements in solution were found to vary over time. Strict...... existing in the uncomplexed state. Changes in the concentrations of uncomplexed Cd and Zn with time gave the best correlations with changes in plant uptake of these metals over time, supporting the hypothesis that plants mainly absorb the free metal ion from soil solution....

  15. Accumulation of trace metals in coastal marine organisms

    International Nuclear Information System (INIS)

    Weers, A.W. van; Raaphorst, J.G. van

    1980-01-01

    ECN at Petten carries out a survey on the occurrence of trace metals in coastal marine organisms. The survey is aimed to provide an estimate of concentration factors in local marine organisms for neutron activation products released as low-level liquid radioactive waste into the North Sea. The organisms studied are red and brown seaweed, edible mussels ans shrimp. A summary of the results of analyses of iron, cobalt, zinc, silver and antimony in these organisms is presented. Concentration factors derived from mean stable-element concentrations range from about 50 for Sb in red seaweed and shrimp to about 10 4 for Fe in red seaweed and mussels. The largest variation is shown for zinc in seaweed, which variation is seasonal and most pronounced in brown seaweed. A discussion of the data is presented in relation to data from other West-European coastal areas and to data used for the radiological assessment of deep sea disposal of radioactive waste

  16. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  17. Study of trace elements distribution in various tissues structures

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Marczewska, E.

    1994-01-01

    Many papers have been written during the past ten years about TE study in cancer and normal tissues describing the use of different methods for detection of trace elements. Concentration of TE depends strongly on the sample measured. However, according to our knowledge, the role of TE in cancerous tissue is still known. Therefore, we propose to perform an experiment which will hopefully given us more information about the relationship between the concentration of elements in different tissues. The developing industry localised near Cracow becomes a serious danger for health of it's inhabitants. The negative influence of the air pollution to the living organisms is seen not only in the nature but also in humans. Therefore we want to analyse the trace element contents in the air. Such investigation will give the information about the pollution level in the City. The pollution has its obvious negative influence to health and toxic element concentration level in blood. It is interesting to check if placenta plays an effective role in foetus protection against toxic metals. In order to study this problem, the trace element analysis of placenta tissues will be done by means of synchrotron microbeam. (author). 1 ref

  18. Distribution of Selected Trace Elements in the Bayer Process

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-05-01

    Full Text Available The aim of this work was to achieve an understanding of the distribution of selected bauxite trace elements (gallium (Ga, vanadium (V, arsenic (As, chromium (Cr, rare earth elements (REEs, scandium (Sc in the Bayer process. The assessment was designed as a case study in an alumina plant in operation to provide an overview of the trace elements behaviour in an actual industrial setup. A combination of analytical techniques was used, mainly inductively coupled plasma mass spectrometry and optical emission spectroscopy as well as instrumental neutron activation analysis. It was found that Ga, V and As as well as, to a minor extent, Cr are principally accumulated in Bayer process liquors. In addition, Ga is also fractionated to alumina at the end of the Bayer processing cycle. The rest of these elements pass to bauxite residue. REEs and Sc have the tendency to remain practically unaffected in the solid phases of the Bayer process and, therefore, at least 98% of their mass is transferred to bauxite residue. The interest in such a study originates from the fact that many of these trace constituents of bauxite ore could potentially become valuable by-products of the Bayer process; therefore, the understanding of their behaviour needs to be expanded. In fact, Ga and V are already by-products of the Bayer process, but their distribution patterns have not been provided in the existing open literature.

  19. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  20. Release kinetics and mechanisms of trace heavy metals from cement based material; Cinetiques et mecanismes de relargage des metaux lourds presents en traces dans les matrices cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Moudilou, E.

    2002-12-15

    Chemical species contained in a solid matrix may be transferred to the environment through water leaching. Previous studies of trace metals released from building materials (particularly cement-based ones) highlight an important analytical difficulty. The aim of this study is to determine the kinetics and the mechanisms involved in the release of trace heavy metals (Cr, Cu, Ni, Pb, V and Zn) from industrial cement pastes (usually ranging from 20 to 300 ppm). The development of a dynamic leaching system, named CTG-LEACHCRETE, (used at pH=5, 20 C) which permits the evaluation of the kinetics of trace heavy metals is presented in the first part. Also, innovative solid analysis techniques (ICP-MS-Laser Ablation, local and Grazing Incidence X-rays Diffraction (GIXD) technique) were used to characterise the cement-degraded layers formed during leaching experiments. These techniques enable to monitor the mineralogical evolution and the distribution of trace metals in these areas. The confrontation of these two approaches, kinetic and solid analysis, coupled with a thorough investigation of previously developed models, lead to proposals concerning the mechanisms of release of the trace heavy metals studied. In all the cement pastes studied (CPA-CEM I, CPJ-CEM II/A and CLC-CEM V/A), chromium is trapped in ettringite by substitution SO{sub 4}{sup 2-}(U)CrO{sub 4}{sup 2-} and its release is then controlled by the dissolution of this hydrate. The behaviour of copper, nickel and zinc in degraded areas and in leachates, are correlated to the silicon of the hydrated calcium silicate (CSH), which imply that they are localised there. Lead, was never detected in the leachates. But it is also correlated to the silicon in the degraded layers. (author)

  1. Bioaccumulation of Trace Metals in Bloody Cockle (Anadara senilis) from Ghana: Biokinetics and Human Bioaccessibility Studies

    International Nuclear Information System (INIS)

    Kuranchie-Mensah, Harriet

    2016-07-01

    A series of experimental studies has been carried out to study the kinetic of accumulation and human exposure to trace metals using the bloody cockle (Anadara senilis) as a model organism. This species is of ecological and economic importance in Ghana and other parts of Western Africa where they are commonly found. Trace metals mainly Mn, Co, Zn, Ag and Cd were studied using both laboratory mesocosm and field investigations. The laboratory experiments were carried out through the use of radiotracers: "5"4Mn, "5"7Co, "6"5Zn, "1"1"0"mAg and "1"0"9Cd, to study the kinetics of metal accumulation in the cockle through 2 different exposure pathways. The variability of metal bioaccumulation in the bloody cockle as a function of environmental and physiological conditions was also investigated. Metal subcellular fractionation, tissue distribution and simulating human digestion through the use of in vitro methodology were incorporated to understand the processes governing metal accumulation and human health risk assessment from the consumption of contaminated shellfish. Following a 2-hour single feeding and a 28-day depuration period, metals ingested with food (Isochrysis galbana or Skeletonema costatum) were moderate to highly assimilated in the cockle (11 to 72%), although, the degree of assimilation was dependant on the type of phytoplankton strain, the studied metals and the size of the cockle. Retention of assimilated metals was metal dependant being described as weak for Ag (T_b_1_/_2 of 2 to 6 days), moderate for Mn, Co and Zn (T_b_1_/_2 of 13 to 47 days) and strong for Cd (T_b_1_/_2 ≥ 97 days). Over a 28-day dissolved exposure period, bioconcentration kinetics of metals in two size classes of bloody cockles studied under different exposure conditions (high and low salinity) generally were best described by a saturation model assuming an apparent steady state concentration. The results showed strong variability on the kinetics of metal uptake among different size

  2. Trace element distribution in different chemical fractions of False Bay sediments

    International Nuclear Information System (INIS)

    Rosental, R.

    1984-05-01

    Trace metals in the aquatic environment are generally concentrated on solid geochemical phases which eventually become incorporated into estuarine and marine sediments. The mechanism of trace metal concentration is believed to be adsorption on various geochemical phases, such as hydrous metal oxides, clays and organic matter. Metals in estuarine sediments can thus be expected to be partitioned between different phases, depending on the concentration of the phase and the strength of the adsorption bond. The bioavailability of sediment-bound metals to deposit-feeding organisms will depend on trace metal partitioning and the kinetics of biological metal uptake from each geochemical phase. The major objective of this study was to establish an analytical procedure involving sequential chemical extractions for the partitioning of particulate trace metals in sediment samples, collected from False Bay. Eight metals were examined, i.e. Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn. X-ray diffraction was also used in the study

  3. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Levels of trace metals (Cd, Pb, Co, Zn Cu and Ni) were determined in water and sediment ... mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, ... Key words: trace metals, water, sediment, farmland, Tyume River

  4. Trace metal associations in the water column of South San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, J.S.; Chang, Cecily C.Y.; Cloern, J.E.; Fries, T.L.; Davis, J.A.; Luoma, S.N.

    1989-01-01

    Spatial distributions of copper (Cu), zinc (Zn) and cadmium (Cd) were followed along a longitudinal gradient of dissolved organic carbon (DOC) in South San Francisco Bay (herein referred to as the South Bay). Dissolved Cu, Zn and Cd concentrations ranged from 24 to 66 nM, from 20 to 107 nM and from 1??2 to 4??7 nM, respectively, in samples collected on five dates beginning with the spring phytoplankton bloom and continuing through summer,1985. Dissolved Cu and Zn concentrations varied indirectly with salinity and directly with DOC concentration which ranged from 2??1 to 4??1 mg l-1. Available thermodynamic data strongly support the hypothesis that Cu speciation may be dominated by association with dissolved organic matter. Analogous control of Zn speciation by organic complexation was, however, not indicated in our computations. Computed free ion activity estimates for Cu, Zn and Cd were of the order of 10-10, 10-8 and 10-10 M, respectively. The availability of these metals may be among the factors regulating the growth of certain phytoplankton species within this region of the estuary. In contrast to dissolved Cu, dissolved Cd was directly related to the concentration of suspended particulate matter, suggesting a source of dissolved Cd coincident with elevated particle concentrations in the South Bay (e.g. runoff and solute desorption). Consistent with work in other estuaries, partitioning of all three trace metals onto suspended particulates was negatively correlated with salinity and positively correlated with increases in particulate organic carbon associated with the phytoplankton bloom. These results for the South Bay indicate that sorption processes influence dissolved concentrations of these trace metals, the degree of this influence varies among metals, and processes controlling metal distribution in this estuary appear to be more element-specific than spatially- or temporally-specific. ?? 1989.

  5. Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.

    Science.gov (United States)

    Garmo, Oyvind A; Davison, William; Zhang, Hao

    2008-08-01

    Equilibrium partitioning of trace metals between bulk solution and hydrogels/filter was studied. Under some conditions, trace metal concentrations were higher in the hydrogels or filter membranes compared to bulk solution (enrichment). In synthetic soft water, enrichment of cationic trace metals in polyacrylamide hydrogels decreased with increasing trace metal concentration. Enrichment was little affected by Ca and Mg in the concentration range typically encountered in natural freshwaters, indicating high affinity but low capacity binding of trace metals to solid structure in polyacrylamide gels. The apparent binding strength decreased in the sequence: Cu > Pb > Ni approximately to Cd approximately to Co and a low concentration of cationic Cu eliminated enrichment of weakly binding trace metal cations. The polyacrylamide gels also had an affinity for fulvic acid and/or its trace metal complexes. Enrichment of cationic Cd in agarose gel and hydrophilic polyethersulfone filter was independent of concentration (10 nM to 5 microM) but decreased with increasing Ca/ Mg concentration and ionic strength, suggesting that it is mainly due to electrostatic interactions. However, Cu and Pb were enriched even after equilibration in seawater, indicating that these metals additionally bind to sites within the agarose gel and filter. Compared to the polyacrylamide gels, agarose gel had a lower affinity for metal-fulvic complexes. Potential biases in measurements made with the diffusive equilibration in thin-films (DET) technique, identified by this work, are discussed.

  6. Pathways of trace metal uptake in the lugworm Arenicola marina

    International Nuclear Information System (INIS)

    Casado-Martinez, M.C.; Smith, B.D.; Valls, T.A. del; Rainbow, P.S.

    2009-01-01

    Radiotracer techniques were used to determine the rates of trace metal (Ag, Cd and Zn) uptake and elimination (33 psu, 10 deg. C) from water and sediment by the deposit-feeding polychaete Arenicola marina, proposed as a test species for estuarine-marine sediments in whole-sediment toxicity tests. Metal uptake rates from solution increase with increasing dissolved metal concentrations, with uptake rate constants (± SE) (l g -1 d -1 ) of 1.21 ± 0.11 (Ag), 0.026 ± 0.002 (Zn) and 0.012 ± 0.001 (Cd). Assimilation efficiencies from ingested sediments were measured using a pulse-chase radiotracer feeding technique in two different lugworm populations, one from a commercial supplier (Blyth, Northumberland, UK) and the other a field-collected population from the outer Thames estuary (UK). Assimilation efficiencies ranged from 2 to 20% for Zn, 1 to 6% for Cd and 1 to 9% for Ag for the Northumberland worms, and from 3 to 22% for Zn, 6 to 70% for Cd and 2 to 15% for Ag in the case of the Thames population. Elimination of accumulated metals followed a two-compartment model, with similar efflux rate constants for Zn and Ag and lower rates of elimination of Cd from the slow pool. Efflux rate constants (± SE) of Zn and Ag accumulated from the dissolved phase were 0.037 ± 0.002 and 0.033 ± 0.006 d -1 whereas Cd was eliminated with an efflux rate constant one order of magnitude lower (0.003 ± 0.002 d -1 ). When metals were accumulated from ingested sediments, the efflux rate constants for the slow-exchanging compartment were of the same order of magnitude for the three metals, and of the same order of magnitude as those derived after the dissolved exposure for Zn and Ag (0.042 ± 0.004 and 0.056 ± 0.012 d -1 for Zn and 0.044 ± 0.012 and 0.069 ± 0.016 d -1 for Ag for the Northumberland and Thames populations, respectively). Cd accumulated from ingested sediments was eliminated with a rate constant not different from the fast-exchanging compartment after the water

  7. Statistical analysis of trace metals in the plasma of cancer patients versus controls

    International Nuclear Information System (INIS)

    Pasha, Qaisara; Malik, Salman A.; Shah, Munir H.

    2008-01-01

    The plasma of cancer patients (n = 112) and controls (n = 118) were analysed for selected trace metals (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sr and Zn) by flame atomic absorption spectroscopy. In the plasma of cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe and Zn were 3971, 178, 44.1, 7.59, 4.38 and 3.90 ppm, respectively, while the mean metal levels in the plasma of controls were 3844, 151, 74.2, 18.0, 6.60 and 2.50 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr and Zn were noted to be significantly higher in the plasma of cancer patients compared with controls. Very strong mutual correlations (r > 0.70) in the plasma of cancer patients were observed between Fe-Mn, Ca-Mn, Ca-Ni, Ca-Co, Cd-Pb, Co-Ni, Mn-Ni, Mn-Zn, Cr-Li, Ca-Zn and Fe-Ni, whereas, Ca-Mn, Ca-Mg, Fe-Zn, Ca-Zn, Mg-Mn, Mg-Zn, Cd-Sb, Cd-Co, Cd-Zn, Co-Sb and Sb-Zn exhibited strong relationships (r > 0.50) in the plasma of controls, all were significant at p < 0.01. Principal component analysis (PCA) of the data extracted five PCs, both for cancer patients and controls, but with considerably different loadings. The average metals levels in male and female donors of the two groups were also evaluated and in addition, the general role of trace metals in the carcinogenesis was discussed. The study indicated appreciably different pattern of metal distribution and mutual relationships in the plasma of cancer patients in comparison with controls

  8. Statistical analysis of trace metals in the plasma of cancer patients versus controls

    Energy Technology Data Exchange (ETDEWEB)

    Pasha, Qaisara; Malik, Salman A. [Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Munir H. [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: munir_qau@yahoo.com

    2008-05-30

    The plasma of cancer patients (n = 112) and controls (n = 118) were analysed for selected trace metals (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sr and Zn) by flame atomic absorption spectroscopy. In the plasma of cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe and Zn were 3971, 178, 44.1, 7.59, 4.38 and 3.90 ppm, respectively, while the mean metal levels in the plasma of controls were 3844, 151, 74.2, 18.0, 6.60 and 2.50 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr and Zn were noted to be significantly higher in the plasma of cancer patients compared with controls. Very strong mutual correlations (r > 0.70) in the plasma of cancer patients were observed between Fe-Mn, Ca-Mn, Ca-Ni, Ca-Co, Cd-Pb, Co-Ni, Mn-Ni, Mn-Zn, Cr-Li, Ca-Zn and Fe-Ni, whereas, Ca-Mn, Ca-Mg, Fe-Zn, Ca-Zn, Mg-Mn, Mg-Zn, Cd-Sb, Cd-Co, Cd-Zn, Co-Sb and Sb-Zn exhibited strong relationships (r > 0.50) in the plasma of controls, all were significant at p < 0.01. Principal component analysis (PCA) of the data extracted five PCs, both for cancer patients and controls, but with considerably different loadings. The average metals levels in male and female donors of the two groups were also evaluated and in addition, the general role of trace metals in the carcinogenesis was discussed. The study indicated appreciably different pattern of metal distribution and mutual relationships in the plasma of cancer patients in comparison with controls.

  9. Main-, minor- and trace elements distribution in human brain

    International Nuclear Information System (INIS)

    Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Bohic, S.; Osterode, W.

    2004-01-01

    Lead (Pb) is known to induce adverse health effects in humans. In fact, cognitive deficits are repeatedly described with Pb exposure, but little is known about the distribution of lead in brain. Measurements of the distribution of Pb in human brain and to study if Pb is associated with the distribution of other chemical elements such as zinc (Zn), iron (Fe) is of great interest and could reveal some hints about the metabolism of Pb in brain. To determine the local distribution of lead (Pb) and other trace elements x-ray fluorescence spectroscopy (XRF) measurements have been performed, using a microbeam setup and highest flux synchrotron radiation. Experiments have been carried out at ID-22, ESRF, Grenoble, France. The installed microprobe setup provides a monochromatic beam (17 keV) from an undulator station focused by Kirkpatrick-Baez x-ray optics to a spot size of 5 μm x 3μm. Brain slices (20 μm thickness, imbedded in paraffin and mounted on Kapton foils) from areas of the frontal cortex, thalamus and hippocampus have been investigated. Generally no significant increase in fluorescence intensities could be detected in one of the investigated brain compartments. However Pb and other (trace) elements (e.g. S, Ca, Fe, Cu, Zn, Br) could be detected in all samples and showed strong inhomogeneities across the analyzed areas. While S, Ca, Fe, Cu, Zn and Br could be clearly assigned to the investigated brain structures (vessels, etc.) Pb showed a very different behavior. In some cases (e.g. plexus choroidei) Pb was located at the walls of the vessel, whereas with other structures (e.g. blood vessel) this correlation was not found. Moreover, the detected Pb in different brain areas was individually correlated with various elements. The local distribution of the detected elements in various brain structures will be discussed in this work. (author)

  10. Distribution of trace elements in moss biomonitors near Mumbai

    International Nuclear Information System (INIS)

    Chakrabortty, S.; Paratkar, G.T.; Jha, S.K.; Puranik, V.D.

    2004-01-01

    Elemental composition of mosses from Mahabaleshwar, a remote hill station near Mumbai was measured. Trace element profiles of two different species of mosses were compared. Chemical analysis for washed and unwashed moss samples was done using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) and Instrumental Neutron Activation Analysis (INAA) techniques in an attempt to understand the variation. The comparative concentration of Al, Sr , Zn and Rb in both the mosses reflected the order of abundance of metal in the soil. The enrichment factor of Pb, was found more in Pinnatella alopccuroides than the other one whereas enrichment factor of Cr was more in Pterobryopsis flexiceps compared to Pinnatella alopccuroides. So they can be preferentially used as bioindicators for respective elements. (author)

  11. Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil.

    Science.gov (United States)

    Varejão, Eduardo V V; Bellato, Carlos R; Fontes, Maurício P F; Mello, Jaime W V

    2011-01-01

    The Iron Quadrangle has been one of the most important gold production regions in Brazil since the end of the seventeenth century. There, arsenic occurs in close association with sulfide-rich auriferous rocks. The most abundant sulfide minerals are pyrite and arsenopyrite, yet trace metal sulfides occur in subordinate phases as well. Historical mining activities have been responsible for the release of As and trace metals to both aquatic and terrestrial environments close to mining sites in the region. Therefore, this study was aimed to evaluate the distribution and mobility of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn in streams in the southeast portion of the Iron Quadrangle between the municipalities of Ouro Preto and Mariana, the oldest Brazilian Au mining province. Total concentrations of some trace metals and arsenic in water were determined. The four-stage sequential extraction procedure proposed by the commission of the European Communities Bureau of Reference (BCR) was used to investigate the distribution of these elements in stream sediments. Arsenic concentration in water was > 10 μg L⁻¹ (maximum limit permitted by Brazilian environmental regulations for water destined for human consumption) at all sampling sites, varying between 36.7 and 68.3 μg L⁻¹. Sequential extraction in sediments showed high concentrations of As and trace metals associated with easily mobilized fractions.

  12. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  13. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  14. Sources and distribution of trace elements in Estonian peat

    Science.gov (United States)

    Orru, Hans; Orru, Mall

    2006-10-01

    This paper presents the results of the distribution of trace elements in Estonian mires. Sixty four mires, representative of the different landscape units, were analyzed for the content of 16 trace elements (Cr, Mn, Ni, Cu, Zn, and Pb using AAS; Cd by GF-AAS; Hg by the cold vapour method; and V, Co, As, Sr, Mo, Th, and U by XRF) as well as other peat characteristics (peat type, degree of humification, pH and ash content). The results of the research show that concentrations of trace elements in peat are generally low: V 3.8 ± 0.6, Cr 3.1 ± 0.2, Mn 35.1 ± 2.7, Co 0.50 ± 0.05, Ni 3.7 ± 0.2, Cu 4.4 ± 0.3, Zn 10.0 ± 0.7, As 2.4 ± 0.3, Sr 21.9 ± 0.9, Mo 1.2 ± 0.2, Cd 0.12 ± 0.01, Hg 0.05 ± 0.01, Pb 3.3 ± 0.2, Th 0.47 ± 0.05, U 1.3 ± 0.2 μg g - 1 and S 0.25 ± 0.02%. Statistical analyses on these large database showed that Co has the highest positive correlations with many elements and ash content. As, Ni, Mo, ash content and pH are also significantly correlated. The lowest abundance of most trace elements was recorded in mires fed only by precipitation (ombrotrophic), and the highest in mires fed by groundwater and springs (minerotrophic), which are situated in the flood plains of river valleys. Concentrations usually differ between the superficial, middle and bottom peat layers, but the significance decreases depending on the type of mire in the following order: transitional mires - raised bogs - fens. Differences among mire types are highest for the superficial but not significant for the basal peat layers. The use of peat with high concentrations of trace elements in agriculture, horticulture, as fuel, for water purification etc., may pose a risk for humans: via the food chain, through inhalation, drinking water etc.

  15. Trace metal excretion in patients with homozygous hypercholesterolaemia.

    Science.gov (United States)

    Jackson, G E; Blewet, R; Rodgers, A L; Wood, L; Jacobs, P

    1999-07-01

    In patients with familial hypercholesterolaemia regular therapeutic apheresis is acknowledged to have long-term benefit. A previously unrecognised complication of such intervention is the development of anaemia that reflects a sub-optimal dietary iron intake coupled with accelerated loss of this trace metal in the fluid discarded after each procedure. Additional contributions result from enhanced urinary excretion as a result of chelation to citrate used as an anticoagulant and frequent blood sampling. The underlying pathophysiologic process appears to be reduced deformability. We now document similar and significant losses of zinc, copper and chromium in these circumstances. In the case of the latter three elements, no associated clinical syndromes have thus far been identified, probably because deficiency states are less well-recognised than that due to iron loss and, additionally, because critical reductions are avoided by their replenishment during a normal food intake. These studies are, nevertheless, relevant since they are the basis for recommending prophylactic supplementation during this form of management.

  16. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia.

    Science.gov (United States)

    Sim, Siong Fong; Ling, Teck Yee; Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu; Bakeh, Tomy

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization.

  17. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis

    International Nuclear Information System (INIS)

    Díaz-de-Alba, Margarita; Huerta-Diaz, Miguel Angel; Delgadillo-Hinojosa, Francisco; Hare, Landis; Galindo-Riaño, M. Dolores; Siqueiros-Valencia, Arturo

    2016-01-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) > 80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20 ± 0.13 to (0.30 ± 0.56) × 10"3 mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (< 25%) while degrees of sulfidization (DOS) were high (~ 50%) because of the contribution of acid volatile sulfide. DOP values correlated with DTMP values (p ≤ 0.001), indicating that metals are gradually incorporated into pyrite as this mineral is formed. Significant correlations were also found between DTMP values and − log(K_s_p_(_M_e_S_)/K_s_p_(_p_y_r_)) for both harbors, indicating that incorporation of trace metals into the pyrite phase is a function of the solubility product of the corresponding metal sulfide. The order in which elements were pyritized in both harbors was Zn ≈ Mn < Fe < Cd ≈ Pb < Ni ≈ Co < < Cu. Lastly, a strong correlation (r"2 = 0.87, p < 0.01) was found between average reactive trace metal concentrations and metal concentrations measured in Armandia brevis (a deposit-feeding Opheliid polychaete), suggesting that these labile sedimentary metals are

  18. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-de-Alba, Margarita [Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio S. Pedro, E-11510, Puerto Real, Cadiz (Spain); Huerta-Diaz, Miguel Angel, E-mail: huertam@uabc.edu.mx [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico); Delgadillo-Hinojosa, Francisco [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico); Hare, Landis [Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9 (Canada); Galindo-Riaño, M. Dolores [Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio S. Pedro, E-11510, Puerto Real, Cadiz (Spain); Siqueiros-Valencia, Arturo [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico)

    2016-02-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) > 80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20 ± 0.13 to (0.30 ± 0.56) × 10{sup 3} mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (< 25%) while degrees of sulfidization (DOS) were high (~ 50%) because of the contribution of acid volatile sulfide. DOP values correlated with DTMP values (p ≤ 0.001), indicating that metals are gradually incorporated into pyrite as this mineral is formed. Significant correlations were also found between DTMP values and − log(K{sub sp(MeS)}/K{sub sp(pyr)}) for both harbors, indicating that incorporation of trace metals into the pyrite phase is a function of the solubility product of the corresponding metal sulfide. The order in which elements were pyritized in both harbors was Zn ≈ Mn < Fe < Cd ≈ Pb < Ni ≈ Co < < Cu. Lastly, a strong correlation (r{sup 2} = 0.87, p < 0.01) was found between average reactive trace metal concentrations and metal concentrations measured in Armandia brevis (a deposit-feeding Opheliid polychaete), suggesting that these labile sedimentary metals are

  19. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Pan, Yunyu; Koopmans, Gerwin F.; Bonten, Luc T.C.; Song, Jing; Luo, Yongming; Temminghoff, Erwin J.M.; Comans, Rob N.J.

    2016-01-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still

  20. Study of heavy trace metals in some medicinal-herbal plants of Pakistan

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2011-01-01

    The paper presents heavy trace metals analysis in some widely used medicinal- herbal plants of Pakistan by using Inductively Coupled Plasma. Because these commonly used medicinal- herbal plants from Pakistan are being specifically utilized for the treatment of various diseases, so samples of medicinal-herbal plants were collected from open market and from the fields. Collected samples were digested and analyzed for their nutritional trace metals (Pb, Cd, Fe, Zn, Ni, Cu and Mn) composition and then the results obtained were compared to international and national standards as required by World Health Organizations. The deficiency or excess of the samples for essential trace metals are reported. (author)

  1. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-01-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic

  2. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France

    International Nuclear Information System (INIS)

    Gandois, L.; Nicolas, M.; VanderHeijden, G.; Probst, A.

    2010-01-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.

  3. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  4. Adsorption of trace metals to plastic resin pellets in the marine environment

    International Nuclear Information System (INIS)

    Holmes, Luke A.; Turner, Andrew; Thompson, Richard C.

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L −1 of trace metals to 10 g L −1 pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g −1 that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. - Highlights: ► Beached plastic production pellets contain considerable concentrations of trace metals. ► In laboratory experiments trace metals are shown to adsorb to both virgin and beached pellets. ► Metal adsorption is greater on aged pellets. ► Pellets may represent an important vehicle for metal transport in the marine environment. - Trace metals accumulate on plastic resin pellets in the marine environment through adsorption to the polymer and to chemical and biological attritions thereon.

  5. Levels of essential and potentially toxic trace metals in Antarctic macro algae

    International Nuclear Information System (INIS)

    Farias, Silvia; Arisnabarreta, Sebastian Perez; Vodopivez, Cristian; Smichowski, Patricia

    2002-01-01

    Eleven species of Antarctic algae were examined for their accumulation ability in the uptake of different metals and metalloids from the Antarctic aquatic environment. Macro algae were collected during the 2000 austral summer season at Jubany Station (Argentinean base) around Potter Cove, King George Island. The elements quantified were: As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. An optimized microwave-assisted digestion procedure was used to digest the samples and the elements were determined by inductively coupled plasma optical emission spectrometry. A wide range of metal retention capacity among the different species was observed. The highest levels of trace elements were found in Monostroma hariotii and Phaeurus antarcticus, with concentrations up to 3095 μg g -1 for Fe. On the basis of the levels of trace elements observed in Monostroma hariotii and its wide distribution in the Antarctic Peninsula, this organism accomplishes a number of prerequisites to be considered as an adequate biomonitor for future studies

  6. Monitoring hydrocarbons and trace metals in Beaufort Sea sediments and organisms. Final report

    International Nuclear Information System (INIS)

    Boehm, P.; LeBlanc, L.; Trefry, J.; Marajh-Whittemore, P.; Brown, J.

    1990-01-01

    As part of the Minerals Management Service's environmental studies of oil and gas exploration and production activities in the Alaskan Beaufort Sea, a study was conducted in 1989 to monitor the marine environment for inputs of chemicals related to drilling and exploration. The 1989 Beaufort Sea Monitoring Program (BSMP) was designed to monitor sediments and selected benthic organisms for trace metals and hydrocarbons so as to infer any changes that might have resulted from drilling and production activities. A series of 49 stations were sampled during the program. The study area extended from Cape Halkett on the western end of Harrison Bay to Griffin Point, east of Barter Island. The sampling design combined an area-wide approach in which stations were treated as replicates of 8 specific geographic regions, with an activity-specific approach, which focused on the potential establishment of metal or hydrocarbon concentration gradients with distance from the Endicott Production Field in Prudhoe Bay. The analytical program focused on the analysis of the fine-fraction of the sediment for a series of trace metals and elements and the analysis of a suite of saturated and aromatic hydrocarbons in the bulk sediment. The total organic carbon (TOB) content and the grain size distribution in the sediments were determined as well. Benthic bivalve molluscs, representative of several feeding types were collected from those stations for which data previously existed from the 1984-1986 BSMP, and were analyzed for metals and saturated and aromatic hydrocarbons. The benthic amphipods were collected, pooled by station or region, and analyzed as well

  7. Sediments of the Lagoa Olho D'Agua: geochronology and accumulation of trace metals

    International Nuclear Information System (INIS)

    Honorato, Eliane Valentim

    2002-01-01

    An assessment of the environmental impact of anthropic activities in the Lagoa Olho D'Agua, located in Jaboatao dos Guararapes County, Brazil, was carried out by assessing the vertical distribution of some trace metals (Cd, Cr, Fe, Hg, Ni, U, Zn and Zr) in dated sediment samples. Sediment cores were collected from thirteen locations at the northern, central and southern sections of the lagoon. The metal content in the samples was determined by Instrumental Neutron Activation Analysis (INAA). Its organic carbon content was also determined and used to characterize the environment as, either oxic or anoxic environments can bias the trace element content of sediment samples. The influence of the hydrodynamic characteristics in the sedimentation process was also studied. The results obtained for the geochronology of sediments showed a pronounced increase in sedimentation rates in the period of 1970 - 1980 and 1980 - 1990 in the sampling stations ST-09, ST-10, ST-11, ST-12 e ST-13 (ca.480% in the 80's to 90's ) compared to ca. 90% increase observed in other sampling stations. This increase can be associated to the demographic growth of ca. 500% that occurred in Jaboatao dos Guararapes County in the 80's to 90's predominantly along the shoreline. The geochemistry analyses of sediment samples, on the other hand, showed that the severe degradation process the occurred in the lagoon in the last 30 years was caused by the release of pollutants from industrial facilities as well as by the discharge of untreated domestic sewage. These domestic sewage favorable the increase of the concentration of organic material in the lagoon, accentuating the adsorption process of the metals on the sediments, mainly Fe and Zr in the suspense particles. The accentuated increase observed in both Fe and Zr concentrations is compatible with period of built industries basic steel works foundries and painting, indicating the anthropogenic origin these metals. (author)

  8. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    CPUT

    trace metals from wastewater treatment plant effluents in Cape Town and .... Geographical locations and design .... The new. Bellville plant uses University of Cape Town design (UCT) ...... batteries, paints, fungicides, textiles, cosmetics, pulp,.

  9. Guidelines for the determination of selected trace metals in aerosols and in wet precipitation

    International Nuclear Information System (INIS)

    1988-01-01

    This publication describes sampling and analytical procedures suitable for the collection and analysis of representative samples of atmospheric aerosols and wet precipitation for selected trace metals. 11 refs, 2 tabs

  10. Statistical significance of biomonitoring of marine algae for trace metal levels in a coral environment

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Muraleedharan, N.S.; Chandramohanakumar, N.; Jayalakshmy, K.V.

    towards essential elements, and the concentration of Fe seemed to be the highest in all the species, irrespective of their classification. The trace metal content reported in this study was much lower than the limit prescribed by Food and Agricultural...

  11. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  12. Trace Metal and Ancillary Data in Puget Sound, 1980 - 1986 (NODC Accession 9100153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In first of three data reports on the trace metal and ancillary data in Puget Sound and its watershed (Paulson et al., 1991a), all water column, sediment, and...

  13. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Science.gov (United States)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-07-01

    The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  14. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Directory of Open Access Journals (Sweden)

    G. Faucher

    2017-07-01

    Full Text Available The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae, intermediate- (E. huxleyi and G. oceanica and least-tolerant (C. pelagicus taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  15. Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene Barra Rodriguez

    2016-02-01

    Full Text Available Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirement of Symbiodinium is lacking. Here we show that the requirement of S. kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn and varying Fe concentrations, we observed that Cu, Zn and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal interreplacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment.

  16. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    Science.gov (United States)

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  17. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    International Nuclear Information System (INIS)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B.; Eqani, Syed Ali Musstjab Akber Shah

    2015-01-01

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  18. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.

    Directory of Open Access Journals (Sweden)

    Jiang Wang

    Full Text Available BACKGROUND: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. CONCLUSIONS/SIGNIFICANCE: Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.

  19. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  20. Past 140-year environmental record in the northern South China Sea: Evidence from coral skeletal trace metal variations

    International Nuclear Information System (INIS)

    Song, Yinxian; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Shi, Qi; Zhang, Huiling; Ayoko, Godwin A.; Frost, Ray L.

    2014-01-01

    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986–1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. -- Highlights: • Geochemical behaviors of trace elements in corals from South China Sea were investigated. • Terrestrial input, SST, war and infrastructure explain about 77.4% of elements behaviors in coral. • Changes of trace elements in coral of Xisha Islands were mainly impacted by local activities. • Spatial change of elements in seawater by was evaluated in 1986–1997 using distribution coefficient K D of coral. -- 140-year changes in the trace metals in corals from South China Sea were investigated. The spatiotemporal change model of the metals in seawater was reconstructed using coral record

  1. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  2. Modified interstitial water squeezer for trace metal analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Rajaraman, V.S.; Mudholkar, A.V.

    Hydraulic squeezer of Manheim, used in the extraction of pore water of sediments, has been modified by providing teflon inner lining and increasing the volume of squeezer. The modified version facilitates collection of pore water sample, for trace...

  3. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution

    International Nuclear Information System (INIS)

    Finger, Annett; Lavers, Jennifer L.; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D.; Robertson, Bruce; Scarpaci, Carol

    2015-01-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. - Highlights: • Trace metals measured in blood and feathers. • Arsenic, Mercury and Lead significantly higher at urban colony. • Correlations found between trace metals in feathers and blood. • Little Penguins are suitable bioindicators for coastal metal pollution. - This study confirms the suitability of the Little Penguin as a bioindicator of coastal metal pollution in coastal areas using non-destructive sampling methods

  4. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    Science.gov (United States)

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  5. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Studies of helium distribution in metal tritides

    International Nuclear Information System (INIS)

    Bowman, R.C. Jr.; Attalla, A.

    1976-01-01

    The distribution of helium ( 3 He) in LiT, TiT 2 , and UT 3 , which are regarded as representative metal tritides, was investigated using pulse nuclear magnetic resonance (NMR) techniques. Analyses of the NMR lineshapes and nuclear relaxation times indicate the 3 He atoms are trapped in microscopic gas bubbles for each tritide. The effects of concentration and temperature on the 3 He distributions were investigated as well

  7. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    Science.gov (United States)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  8. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China.

    Science.gov (United States)

    Chen, Baowei; Liang, Ximei; Xu, Weihai; Huang, Xiaoping; Li, Xiangdong

    2012-11-15

    Surface sediments can provide useful information on the recent pollution status of an estuary. One recent field survey was carried out in the Pearl River Estuary (PRE), South China in 2011. The comparisons with previous surveys demonstrated that the concentrations of Ni and Pb in the PRE declined over the last decade, but the concentration of Cu increased in the same time frame. The significant decreases in the concentrations of Ni and Pb were probably due to a reduction of anthropogenic inputs, such as industrial wastewater, into the PRE environment, and the ban imposed on leaded gasoline. Statistical analyses have consistently demonstrated that the process of the sedimentation of fine particles was the dominant factor in controlling the transport and distribution of trace metals in the PRE. The riverine trace metals generally displayed a pattern of diffusion from the northwest to the southeast in the estuary. However, the riparian industrial activities at the east bank of the inner PRE caused significant metal contamination in sediments. In general, effective pollution control measures in the PRD region have decreased the levels of some trace metals in the entire PRE over the last decade with the exception of Cu. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  10. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    International Nuclear Information System (INIS)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction. A significant correlation between the chemical composition of foliage and soil is not a sufficient condition for using the chemical composition of foliage as a biomonitor for the quality of the soil. The chemical composition of foliage can, however, provide additional information to the traditional soil samples. The phytoextraction potential of a plant species cannot solely be evaluated on the basis of the trace metal concentrations in the plant and soil tissue. Data on the depth of the rooting zone, the density of the soil and the harvestable biomass should also be taken into account. Although plant tissue analysis is a useful tool in a wide range of studies and applications, trace metal concentrations in plant tissue cannot be viewed in isolation. Instead it should be analysed and interpreted in relation to other information such as soil concentrations, rooted zone, biomass production, etc. - Plants that accumulate soil metals in their aboveground biomass are often incorrectly considered to be suitable for monitoring soil pollution or for phytoextraction purposes

  11. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    Science.gov (United States)

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  12. Oceanic distribution and geochemistry of several trace elements at GEOSECS stations

    International Nuclear Information System (INIS)

    Robertson, D.E.

    1975-01-01

    The biogeochemical and physical processes operating in the oceans create substantial geographical and vertical variations in the oceanic distribution of many trace elements. These variations are brought about by diverse mechanisms and involve trace elements of a wide spectrum of physicochemical and biological behavior. Thus, a knowledge of these trace element distributions can help characterize some of the ocean processes in which they participate. (auth)

  13. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.

    Science.gov (United States)

    Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora

    2011-10-01

    This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.

  14. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  15. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  16. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  17. Distribution of trace elements in whole blood of Syrian lymphomas patients using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Bakir, M. A.; Serhil, A.; Mohammad, A.; Habil, K.

    2013-12-01

    In recent years, there had been much interest in the concentrations of trace metals occurring in human and animal tissues and in the manner in which these concentrations may alter in malignant and other diseases. Neutron activation analysis is consider one of several methods that have been described for the determination of trace elements in biological materials. This method possesses the sensitivity and specificity necessary for the estimation at the concentrations existing naturally in most tissues, particularly when only small samples are available for analysis. The purpose of this study was to compare blood concentrations of trace elements Co, Cr, Fe, Rb, Sc, Se, Th, and Zn of lymphomas Syrian patients with those of healthy volunteers. Also, determine the relationships between trace elements concentration and the histological type of lymphomas. The blood samples were collected from 39 healthy volunteers and 49 patients with histologically confirmed lymphomas (29 Hodgkin's HL and 20 non-Hodgkin's lymphomas NHL), and analyzed to obtain the concentration of the trace elements in blood. Then, comparison between the healthy volunteers and lymphomas patients (both HL and NHL) was made to elucidate differences of the concentration distributions of the elements in blood. However, statistical analysis using Student's t test revealed significantly high concentrations of Co, Cr, Sc, and Th in lymphoma patients. Whereas Fe and Rb were found significantly decreased in lymphomas patient comparing to control group. Increasing or decreasing concentrations of Se and Zn in lymphoma patients was found not significant. Comparison between the healthy volunteers and non-Hodgkin's lymphomas patients reveled that Co, Cr, Sc, and Th were significantly elevated whereas, Rb only one trace element was decreased and all change in concentrations (elevating or decreasing) of Se and Zn were not significant. Comparison between the healthy volunteers and Hodgkin

  18. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    Science.gov (United States)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise

  19. Composition of Trace Metals in Dust Samples Collected from Selected High Schools in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    J. O. Olowoyo

    2016-01-01

    Full Text Available Potential health risks associated with trace metal pollution have necessitated the importance of monitoring their levels in the environment. The present study investigated the concentrations and compositions of trace metals in dust samples collected from classrooms and playing ground from the selected high schools In Pretoria. Schools were selected from Pretoria based on factors such as proximity to high traffic ways, industrial areas, and residential areas. Thirty-two dust samples were collected from inside and outside the classrooms, where learners often stay during recess period. The dust samples were analysed for trace metal concentrations using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. The composition of the elements showed that the concentrations of Zn were more than all other elements except from one of the schools. There were significant differences in the concentrations of trace metals from the schools (p<0.05. Regular cleaning, proximity to busy road, and well maintained gardens seem to have positive effects on the concentrations of trace metals recorded from the classrooms dust. The result further revealed a positive correlation for elements such as Pb, Cu, Zn, Mn, and Sb, indicating that the dust might have a common source.

  20. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B

  1. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    Science.gov (United States)

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  3. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    International Nuclear Information System (INIS)

    Turner, Andrew; Mawji, Edward

    2005-01-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D ow , ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant ( 3.3 -10 5.3 ml g -1 . The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating trace metals in natural waters

  4. DETERMINATION OF TRACE HEAVY METALS IN SOME TEXTILE ...

    African Journals Online (AJOL)

    a

    the environmental and industrial samples including textile products [1-5]. Textile is one of the ... Toxic and allergic metals including cadmium, copper, nickel, zinc, and chemicals like formaldehyde and chlorinated hydrocarbons can exist in ...

  5. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  6. Levels and occupational health risk assessment of trace metals in ...

    African Journals Online (AJOL)

    JohnDOCTOR;OFFIONG, edu

    2015-04-01

    Apr 1, 2015 ... Edu Inam*, John B. Edet, and Nnanake-Abasi O. Offiong. Department of ... as they are difficult to metabolize (Pezzarossa et al.,. 2011). ... Metals from this source get leached into ..... Besnard E, Chenu C, Robert M (2001).

  7. Coagulation / flocculation process in the removal of trace metals ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    elements such as Cu, Zn, Ni and Cr, as well as ... solids, (2) separation of suspended solids by chemical ... Total Metal Concentration Of The Wastewater: The .... Copper adsorption by esterifies and unesterified fractions of sphagnum peat ...

  8. Trace metals in pelagic organisms from the Mediterranean Sea

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.; LaRosa, J.

    1976-01-01

    As a result of current interest in heavy metal pollution in the marine environment much information is accruing on the present levels of metals in certain marine species. By far the majority of the studies have involved elemental analysis of coastal organisms which are relatively easy to collect. However, due to inherent problems in sampling, far less information exists on element concentration in pelagic organisms, species which are important in terms of total marine biomass, their position in the food web, and their ability to concentrate and transport relatively large amounts of metals in various ways. Microplankton and larger zooplanktonic and nektonic species were sampled over a wide geographical range throughout the Mediterranean as well as along selected transects to assess possible gradients in metal concentrations in plankton communities

  9. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    ABSTRACT. This study was carried out to determine the level of soil contamination by metals around some automobile mechanic .... and this was done all through the sample preparation. ... shaking was done by a mechanical sieve shaker and.

  10. Trace metal concentration in Great Tit (Parus major) and Greenfinch (Carduelis sinica) at the Western Mountains of Beijing, China

    International Nuclear Information System (INIS)

    Deng Haili; Zhang Zhengwang; Chang Chongyan; Wang Yong

    2007-01-01

    We examined the concentrations of 11 trace metals in tissues from 10 body parts of Great Tits and Greenfinches collected at Badachu Park in the Western Mountains of Beijing, China to assess the metal accumulation level, distribution among body parts, and species and gender related variations. The highest concentrations of Hg, Ni, Zn, and Mn were found in the feather; Pb and Co in the bone; Cd, Cr, and Se in the kidney, and Cu in the liver and heart. Metal concentrations had substantial interspecific variation with Great Tits showing higher levels of Hg, Cr, Ni, and Mn than Greenfinches in tissues of most body parts. Gender related variations were body part and species specific. Meta-analyses using data from this study and other studies suggested that metal concentrations of Great Tits at our study site were relatively low and below the toxic levels. - Trace metal concentrations of Great Tits and Greenfinches from Beijing, China, varied by body part, gender, and species, and were below toxic levels

  11. Distribution of metals in vacuum residuums, asphaltenes and maltenes by PIXE

    International Nuclear Information System (INIS)

    Romero G, E.T.; Camacho M, V.; Sanchez B, A.C.; Lopez M, J.; Ramirez T, J.J.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    The PIXE technique for determining directly the distribution and abundance of trace metals in vacuum residuum, asphaltenes and maltenes separated with n-alkanes (C 5 -C 8 ) is used. The metal content of petroleum derivatives revealed that the vacuum residuum contains iron, aluminium, vanadium and nickel mainly, while that the asphaltenes and maltenes maintain inside of their composition only preferably the vanadium and nickel as majority elements. (Author)

  12. Trace metal uptake by garden herbs and vegetables.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C; Mather, F

    1986-12-01

    In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.

  13. A Geographic Information System (GIS) analysis for trace metal assessment of sediments in the Gulf of Paria, Trinidad

    International Nuclear Information System (INIS)

    Ragbirsingh, Y.; Norville, W.

    2005-01-01

    The Gulf of Paria is a semi-enclosed shallow basin with increasing coastal development activities along Trinidad's west coast. Sediments present a host for trace metal pollutants from overlying waters, therefore determination of their content is critical in evaluating and detecting sources of marine pollution. This paper presents a Geographic Information System (GIS) analysis of geochemical assessment for trace metals in coastal sediments of the Gulf of Paria. This GIS approach facilitates interpretation of the spatial relationships among key environmental processes. The GIS development involves the integration of spatial and attribute data pertaining to bathymetry, current systems, topography, rivers, land use/land cover and coastal sediments. It employs spatial interpolation and retrieval operations to analyze the total trace metal concentrations of aluminum, copper and lead in the sediments and the clay-enriched sediments, to determine whether they are related to sediment type or are affected by the discharge from anthropogenic sources. Spatial distribution modeling of element concentrations are produced to indicate contamination plumes from possible anthropogenic sources such as rivers entering the Gulf of Paria, and to reveal potential hot spots and dispersion patterns. A direct spatial correlation between clay-enriched sediments and high concentrations of aluminum and lead is detected, however regions of high concentrations of copper and lead indicate a relationship to anthropogenic sources. The effectiveness of GIS for visualization, spatial query and overlay of geochemical analysis is demonstrated [es

  14. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  15. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Total petroleum hydrocarbons and trace metals in tropical estuary of Todos os Santos Bay, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Celino, Joil Jose; Oliveira, Olivia Maria Cordeiro de; Queiroz, Antonio Fernando de Souza [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Trigueis, Jorge Alberto [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Garcia, Karina Santos [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2008-07-01

    As part of the environmental assessment within Todos os Santos Bay, State of Bahia - Brazil, in summer of 2005, superficial water and sediments samples of the mangrove were collected at five locations to determine the spatial distribution of anthropogenic pollutants in the Dom Joao estuary at the Sao Francisco do Conde Region. Sandy sediments with low organic matter content dominate the studied area. Trace metal levels indicated that sediments were moderately polluted with Cu (overall mean: 21.48 +/- 4.76 {mu}g.g-1 dry sediment), but not with Pb (15 +/- 8), Zn (38 +/- 10), Cr (15 +/- 7), Ni (13 +/- 6) and Cd (0.4 +/- 0.2). Depending on location, total petroleum hydrocarbons ranged from 1.6 to 10.6 {mu}g.g-1. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the stations investigated and confirmed our analytical results. Principal components analysis confirmed two regions according to their environmental quality. The results pointed out that almost all the area presented some substances that can cause adverse biological effects, especially in the outermost region where some metals are above TEL level. (author)

  17. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  18. Transport of trace metals in the Magela Creek system, Northern Territory. II. Trace metal concentrations in the Magela Creek billabongs at the end of the 1978 dry season

    International Nuclear Information System (INIS)

    Davies, S.H.R.; Hart, B.T.

    1981-12-01

    Billabongs downstream of the Ranger uranium mining operation have been identified as potential deposition areas for released trace metals. Samples were taken at the end of the dry season and analysed for total and filterable concentrations of Fe, Mn, Cd, Cu and Zn. There was an increase in the concentrations of total Fe, Zn, Cd and Cu in the backflow and flood plain billabongs compared with the concentrations recorded during the wet season. The increase was most noticeable for iron

  19. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea: use as a biological monitor?

    Directory of Open Access Journals (Sweden)

    Gosselin Marc

    2006-09-01

    Full Text Available Abstract Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1 the spatial and 2 temporal variations of these metals in these areas and 3 to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue and in sheaths (dead tissue demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades, seem to be less sensitive to variations in the metal concentration in the environment

  20. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    Science.gov (United States)

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters

    Science.gov (United States)

    Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.

    2002-12-01

    As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron

  2. Comparative analysis of trace metal accumulation in forest ecosystems

    International Nuclear Information System (INIS)

    Turner, R.R.; Lindberg, S.E.; Coe, J.M.

    1985-01-01

    Wet- and dry-deposition inputs and streamflow outputs of Cd, Mn, Pb, and Zn were measured at four forested watersheds in the southeastern United States. Atmospheric inputs to each site were similar, varying by a factor of 1.1 to 2.2. Dry deposition dominated input of Mn, while wet deposition was the major process for the other metals (54 to 85% of total). Except for Mn, the metals were strongly retained by each system: only 2% of the Pb, 8 to 29% of the Cd, and 8 to 34% of the Zn inputs were transported in annual streamflow. Metal export is related to stream pH, dissolved organic carbon, and bedrock geology at each site

  3. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-01-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  4. Distribution of uranium and some trace elements in groundwater of eastern delta, egypt

    International Nuclear Information System (INIS)

    Hamza, M.S.; Aly, A.I.M.; Swailem, F.M.; Elreedy, W.; Nada, A.

    1986-01-01

    The distribution pattern of uranium and some trace elements in groundwater of eastern Nile delta indicate general trend of increasing trace element concentration from west and south to North and east direction. This trend is most probably due to extensive leaching from the soil due to recharge from irrigation water. The geochemical correlation among trace elements was also investigated. Possible industrial pollution in bahtim area was detected.1 fig.,4 tab

  5. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  6. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  7. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  8. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  9. Trace metals in water and sediments from Ologe Lagoon, southwestern Nigeria

    International Nuclear Information System (INIS)

    Yusuf, K.A.; Osibanjo, O.

    2006-01-01

    The concentrations of trace metals in water and sediment samples from Ologe lagoon located in southwestern Nigeria were investigated. The lagoon is a source of water for domestic, transportation and fishing activities. The water quality characteristics for a period of two years (January, 1997 - November, 1998), and the speciation of metals in the lagoon sediments were evaluated. The lagoon water quality characteristics, with respect to heavy metal contamination, were compared with global averages for freshwater and international water quality standards for drinking water. All elements except iron, were well within the safety limits. Sequential extraction techniques were used to establish the association of the total concentrations of Zn, Cu, Pb, Cd and Mn in the sediment samples with their contents as exchangeable, carbonates, Fe/Mn oxides, and organic and residual fractions. The concentrations of trace metals in the whole sediments were generally below the world-wide background levels. When compared to a number of sediment quality guidelines, the concentrations of trace metals were found to be below the level considered to have the potential to cause biological effects. Pb and Cd were extracted from the residual fraction at values greater than 50%. The metals that were most easily extractable in the samples analyzed were Mn and Zn, which posed the highest risk to water contamination. The low level of industrialization in the study area has kept the lagoon relatively free from heavy metal contamination. (author)

  10. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  11. Metals pollution tracing in the sewerage network using the diffusive gradients in thin films technique.

    Science.gov (United States)

    Thomas, P

    2009-01-01

    Diffusive Gradients in Thin-films (DGT) is a quantitative, passive monitoring technique that can be used to measure concentrations of trace species in situ in solutions. Its potential for tracing metals pollution in the sewer system has been investigated by placing the DGT devices into sewage pumping stations and into manholes, to measure the concentration of certain metals in the catchment of a sewage treatment works with a known metals problem. In addition the methodology and procedure of using the DGT technique in sewers was investigated. Parameters such as temperature and pH were measured to ensure they were within the limits required by the DGT devices, and the optimum deployment time was examined. It was found that although the results given by the DGT technique could not be considered to be fully quantitative, they could be used to identify locations that were showing an excess concentration of metals, and hence trace pollution back to its source. The DGT technique is 'user friendly' and requires no complicated equipment for deployment or collection, and minimal training for use. It is thought that this is the first time that the DGT technique has been used in situ in sewers for metals pollution tracing.

  12. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  13. LEVELS OF MAJOR AND TRACE METALS IN THE LEAVES AND ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    to meet some of their primary health care needs. In Africa, up to ... of children with high fever resulting from malaria is the use of herbal medicines at home [3]. Many of the .... Blending device (Moulex, France) and ceramic pestle and mortar were used for grinding and ..... minimize the risk of these two heavy metal toxicity.

  14. Trace metal levels in the sediments of the Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Venugopal, P.; Devi, K.S.; Remani, K.N.; Unnithan, R.V.

    Levels of Cu, Mn, Co, Ni and Zn at four stations in the northern arm of the Cochin backwaters, Kerala, India, which runs through an industrial belt is reported. All metals showed some degree of variation over the area studied. Co showed the lowest...

  15. concentration levels of major and trace metals in onion

    African Journals Online (AJOL)

    Preferred Customer

    like stews, soups, tomato sauces, cooked vegetables and meat by slicing, chopping, ... including metal concentrations in soils, soil pH, cation exchange capacity, ... determination was done by flame atomic absorption spectrophotometer (FAAS) (Buck ...... Margen, S. Onions, The Wellness Encyclopedia of Food and Nutrition, ...

  16. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2015-01-01

    Full Text Available Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al, cadmium (Cd, cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb, and zinc (Zn from natural aerosol samples in seawater over a 7 day period to (1 evaluate the role of extraction time in trace metal dissolution behavior and (2 explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples, to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples. Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples. Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.

  17. Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands

    NARCIS (Netherlands)

    Pižeta, I.; Sander, S.G.; Hudson, R.J.M.; Omanovic, D.; Baars, O.; Barbeau, K.A.; Buck, K.N.; Bundy, R.M.; Carrasco, G.; Croot, P.L.; Garnier, C.; Gerringa, L.J.A.; Gledhill, M.; Hirose, K.; Kondo, Y.; Laglera, L.M.; Nuester, J.; Rijkenberg, M.J.A.; Takeda, S.; Twining, B.S.; Wells, M.

    2015-01-01

    With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods

  18. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley

    Science.gov (United States)

    Badawy, W. M.; Ghanim, E. H.; Duliu, O. G.; El Samman, H.; Frontasyeva, M. V.

    2017-07-01

    The distributions of 32 major and trace elements in 72 surface soil and sediment samples collected from the Asyut to Cairo Nile river section were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust, North American Shale Composite, Average Soil and Average Sediment as well as suspended sediments from Congo and Upper Niger Rivers, in order to establish to which extent the Nile sedimentary material can be related to similar material all over the world as well as to local geology. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering of the Ethiopian Highlands and transported by the Blue Nile, the Nile main tributary. The distributions of nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with heavy metals, so that, in spite of a human activity, which lasted four millennia, the Nile River continues to be less affected by any anthropogenic contamination.

  19. Study of the migration of toxic metals in steelmaking waste using radioactive tracing

    International Nuclear Information System (INIS)

    Andre, C.; Jauzein, M.; Charentus, T.; Margrita, R.; Dechelette, O.

    1991-01-01

    The danger presented by toxic metals contained in steelmaking wastes put into slag piles may be neutralized by suitably chosen alternation of these wastes when they are deposited. Presentation of a study method using radioactive tracing of the migration of toxic metal (cadmium, zinc, chromium) in steelmaking wastes (slag, blast furnace sludge). This non destructive method was used in columns in the laboratory, but may be used in on-site slag piles [fr

  20. Biorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes

    OpenAIRE

    Tarayre, Cédric; Fischer, Christophe; De Clercq, Lies; Michels, Evi; Meers, Erik; Buysse, Jeroen; Delvigne, Frank; Thonart, Philippe

    2014-01-01

    At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs). Currently, sewage sludge, for example is usually used as a fertilizer in agriculture, in energy production or in the field of construction. Ashes originating from sludge incineration contain heavy metals and minerals in large quantities. Manure is mainly used in agriculture, although considerable...

  1. Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de Janeiro, Brazil

    OpenAIRE

    Farias,Cassia O.; Hamacher,Claudia; Wagener,Angela de Luca R.; Campos,Reinaldo C. de; Godoy,José M.

    2007-01-01

    The Guanabara Bay in Rio de Janeiro has undergone profound alterations of its natural environmental conditions. Metal concentration increase in sediments has been reported to be among these alterations. Trace-metal contamination and availability were studied in sediments of 3 mangrove areas of the bay. Cd, Zn, Pb, Ni, Cu and Al concentrations were determined in segments of sediment cores, after treatment with 1 mol L-1 HCl and with concentrated HNO3. Fe and Mn were determined in the leach wit...

  2. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China

    Science.gov (United States)

    Fu, Jun; Tang, Xiao-Liang; Zhang, Jing; Balzer, Wolfgang

    2013-04-01

    Dissolved and particulate cadmium, copper, iron, lead, cobalt and nickel were analyzed in surface waters of the Wanquan River estuary and the Wenchang/Wenjiao River estuary in East-Hainan Island during the dry season (December 2006) and two wet seasons (August 2007 and July/August 2008). A major difference to other Chinese rivers was the very low concentration of suspended particles in these tropical Hainan estuaries. In the dissolved phase, a positive deviation from the theoretical dilution line was observed for Cd during different expeditions. Dissolved Cu and Ni essentially behaved conservatively, while Fe, Pb and partly also Co correlated in their negative deviation from simple mixing. Strong seasonal variability was observed only for dissolved Fe, Pb and Cd: sorption by the much higher loading with suspended particles during the dry season lead to a strong lowering of dissolved Fe and Pb, while the opposite was observed for dissolved Cd. In both estuaries all six metals in particulate form showed almost constant values with a tendency for slight decreases along the salinity profile. The normalization to particulate Al revealed some specific particle properties during the different expeditions. The dynamics of Fe chemistry dominated the distribution of Pb in all forms. The distribution coefficients KD showed a general decrease in the order Fe>Pb>Co>Ni>Cu≈Cd. There was no "particle concentration effect"; rather the KD's of Fe and Pb exhibited slightly positive correlations with the suspended particle loadings. Elevated concentrations levels in the Wenchang/Wenjiao river estuary, especially during the wet season 2008, were ascribed to diffuse inputs from aquaculture ponds which girdle the upper estuary. In comparison to major Chinese rivers, the tropical Hainan estuaries (S>0) showed similar levels for Cd, Cu, Pb, Co and Ni in particles and solution, while Fe was enriched in both matrices. On a global scale, neither in the Wanquan river estuary nor in the

  4. Determination of some trace metals in elsaraf dam (GEDAREF)

    International Nuclear Information System (INIS)

    Yagoob, T. I.

    2001-07-01

    In this study the part of the plant analyzed was the root, while by the soil we mean the soil which is in direct contact with the plant root. This analysis was carried to find the relation between the concentrations of the free ions in water, the mobile ions in the soil in contact with the root of the plant and the ions uptake by the plant as well as the movement of these ions between different reservoirs. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd). Because of its natural abundance, iron has the highest concentration (54900/56600, 33580/36800), manganese has shown the second highest concentration, followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations, while cadmium has shown the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant and then water. Cyperus rotandus has shown high affinity towards most of the metal ions, while the rest of plants have shown almost similar affinity. Because of the generally low concentration of metal ions in water, preconcentration was used using 8-hydroxyquinoline (oxine) and ammonium pyrolidine dithiocarbamate APDC to extract (pre concentrate) the metal ions at the optimum parameters before measurement in AAS.(Author)

  5. New method for mass spectrometric trace analysis of metals in biology and medicine

    International Nuclear Information System (INIS)

    Schulten, H.R.; Bahr, U.; Palavinskas, R.

    1984-01-01

    A first survey on the basic aspects and applications of a novel method for trace analyses of metals is given. The advantages of this methodology for analyses of trace metals which was developed by our group are: small sample amount, high sensitivity and selectivity, simple sample preparation for the measurement (no ashing) and reliability and precision of the results. The time consumption for one complete quantitative analysis lies below 30 min. The concentration of monoisotopic metals, as for example aluminium, cesium, manganese etc. is determined using a calibration curve. Using stable isotope dilution analysis quantification of metals with at least two stable isotopes further improved the precision of the results. If this technique is utilized, on one hand contamination of the environment by radioactive substances is avoided, on the other even the smallest changes in concentrations of trace metals are detected unambigeously. The accuracy of the resulting quantitative data has been confirmed test measurements with other analytical methods such as atomic absorption spectroscopy and thermal ionization mass spectrometry. Although there is no doubt that the greatest analytical capacity of field desorption mass spectrometry is in the field of high-molecular weight natural products, it has been possible in the last years to modify the method for qualitative and quantitative investigations of more than 60 metals. (orig./EF) [de

  6. Sandhopper solar orientation as a behavioural biomarker of trace metals contamination

    International Nuclear Information System (INIS)

    Ungherese, Giuseppe; Ugolini, Alberto

    2009-01-01

    Although many studies have focused on trace metals accumulation, investigations of talitrid amphipods as biomarkers are rare. This study explores the possibility of using the solar orientation capacity of Talitrus saltator as a behavioural marker of exposure to two essential (Cu and Zn) and two non-essential (Cd and Hg) metals. LC 50 analyses performed before the solar orientation tests showed that the 72 h LC 50 for Hg was 0.02 ppm while the 96 h LC 50 values for Cu, Cd and Zn were 13.28 ppm, 27.66 ppm, and 62.74 ppm, respectively. The presence of metals in seawater affects the solar orientation capacity of T. saltator in a concentration-dependent manner and according to the toxicity ranking of the metals (Hg > Cu > Cd > Zn). Therefore, the solar orientation capacity of T. saltator seems to be a promising behavioural marker for exposure to trace metals. - Solar orientation capacity is a promising behavioural marker for exposure to trace metals in sandhoppers

  7. Trace elements distribution in bottom sediments from Amazon River estuary

    International Nuclear Information System (INIS)

    Lara, L.B.L.S.; Nadai Fernandes, E. de; Oliveira, H. de; Bacchi, M.A.

    1994-01-01

    The Amazon River discharges into a dynamic marine environment where there have been many interactive processes affecting dissolved and particulate solids, either those settling on the shelf or reaching the ocean. Trace elemental concentration, especially of the rare earth elements, have been determined by neutron activation analysis in sixty bottom sediment samples of the Amazon River estuary, providing information for the spatial and temporal variation study of those elements. (author). 16 refs, 6 figs, 3 tabs

  8. Assessment of concentrations of trace and toxic heavy metals in soil ...

    African Journals Online (AJOL)

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy ...

  9. Metals in environmental media: A study of trace and platinum group ...

    African Journals Online (AJOL)

    A detailed study has been conducted to determine the contamination of Thohoyandou roadside soils, vegetation, sewage and river waters by Zn, Cu, Cr, Pb, Cd, Fe, Pt and Pd. The study further investigated the correlation between these trace metals in roadside soils and vegetation in order to infer the potential impacts of ...

  10. Microbial and trace metal content of well water in three rural ...

    African Journals Online (AJOL)

    Microbial and trace metal content of well water in three rural communities in Bauchi State, Nigeria*. E Ikeh, PN Durfee, RH Glew, R Amato, FJ Frost, DJ Vanderjagt. Abstract. No Abstract. Nigerian Journal of Health and Biomedical Sciences Vol. 5 (2) 2006: 66-70. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  11. Seasonal comparison of trace metal residues in white-footed mice and soil from colliery stripmines

    International Nuclear Information System (INIS)

    Hausbeck, J.S.; Husby, M.P.; McBee, K.

    1994-01-01

    Mine tailings of abandoned coal stripmines in Oklahoma and other regions of the US have been shown to contain slightly elevated levels of copper (Cu) and zinc (Zn). Metalliferous stripmine spoil has been found to contain much higher levels of Cu and Zn than colliery stripmines, and many other trace metals including cadmium (Cd) and lead (Pb) among others. Although levels of trace metal contamination were lower for coal stripmines, research has shown small mammals exposed to low levels of trace metals may bioaccumulate trace metals. This study intended to determine the levels of Cd, Cu, Pb, and Zn in liver, kidney, and bone tissues of white-footed mice (Peromyscus leucopus) and examine the variance of these levels among sites and seasons. Preliminary results of soil analysis have indicated that mice collected from stripmine sites were exposed to slightly elevated levels of Zn and Cd in stripmine spoil collected from Okmulgee Co., OK. Kidney and liver tissues from mice collected at stripmine sites within this county have shown significantly greater levels of Cd and Zn than tissues collected from reference mice. Significant seasonal variation in renal and hepatic Zn concentrations was observed and possibly was related to a change in diet or reproductive activity

  12. Monsoon control on trace metal fluxes in the deep Arabian Sea

    Indian Academy of Sciences (India)

    Monsoon control on trace metal fluxes in the deep Arabian Sea ... at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 ... Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 gm−2 in the ...

  13. Petroleum hydrocarbons and trace metals in Visakhapatnam harbour and Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; VaraPrasad, S.J.D.; Gupta, G.V.M.; Sudhakar, U.

    High concentrations of PHC were observed in the inner channels (viz. South lighter canal, Northern arm, North Western arm and Western arm) of Visakhapatnam Harbour, Andhra Pradesh, India. The estimation of trace metals (Cu, Zn, Pb, Cd, Co, Ni and Cr...

  14. Minor and trace metals levels in human milk in north western cities of Libya

    International Nuclear Information System (INIS)

    Mahabbis, M. T.; Elkubat, M. S.; Kut, H. M.

    2009-01-01

    Levels of twelve minor and trace metals were determined by using (AAS, ES and ICP/MS) in breast milk obtained from 60 women living in north western cities of Libya. Samples were collected at one week up to two years after delivery. Women with age>21 years old to an age of <43 years old were investigated. (Author)

  15. Geochemistry of trace metals in a fresh water sediment: Field results and diagenetic modeling

    International Nuclear Information System (INIS)

    Canavan, R.W.; Cappellen, P. van; Zwolsman, J.J.G.; Berg, G.A. van den; Slomp, C.P.

    2007-01-01

    Concentrations of Fe, Mn, Cd, Co, Ni, Pb, and Zn were determined in pore water and sediment of a coastal fresh water lake (Haringvliet Lake, The Netherlands). Elevated sediment trace metal concentrations reflect anthropogenic inputs from the Rhine and Meuse Rivers. Pore water and sediment analyses, together with thermodynamic calculations, indicate a shift in trace metal speciation from oxide-bound to sulfide-bound over the upper 20 cm of the sediment. Concentrations of reducible Fe and Mn decline with increasing depth, but do not reach zero values at 20 cm depth. The reducible phases are relatively more important for the binding of Co, Ni, and Zn than for Pb and Cd. Pore waters exhibit supersaturation with respect to Zn, Pb, Co, and Cd monosulfides, while significant fractions of Ni and Co are bound to pyrite. A multi-component, diagenetic model developed for organic matter degradation was expanded to include Zn and Ni dynamics. Pore water transport of trace metals is primarily diffusive, with a lesser contribution of bioirrigation. Reactions affecting trace metal mobility near the sediment-water interface, especially sulfide oxidation and sorption to newly formed oxides, strongly influence the modeled estimates of the diffusive effluxes to the overlying water. Model results imply less efficient sediment retention of Ni than Zn. Sensitivity analyses show that increased bioturbation and sulfate availability, which are expected upon restoration of estuarine conditions in the lake, should increase the sulfide bound fractions of Zn and Ni in the sediments

  16. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; DineshKumar, P.K.; Nair, M.; Muraleedharan, K.R.

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance...

  17. Biogeochemical Cycling of Nutrients and Trace Metals in the Sediment of Haringvliet Lake: Response to Salinization

    NARCIS (Netherlands)

    Canavan, R.W.

    2006-01-01

    This thesis examines sediment redox processes associated with organic matter degradation and their impact on the cycling of nutrients (N, P) and trace metals (Cd, Co, Ni, Pb, Zn). Our study site, Haringvliet Lake, is located in the Rhine-Meuse River Delta in the southwest of The Netherlands. This

  18. Trace metal concentrations in zooplankton from the eastern Arabian Sea and western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Balachandran, K.K.; Nair, M.; Joseph, T.; DineshKumar, P.K.; Achuthankutty, C.T.; Nair, K.K.C.; Pillai, N.G.K.

    Trace metal contents in zooplankton samples were estimated as a part of the Marine Research-Living Resource program at 24 stations in the Bay of Bengal (November, 2002) and 29 stations in the Arabian Sea (September-October, 2003) during the Cruises...

  19. Dissolved and particulate trace metals in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajendran, A.; De; Reddy, C.V.G.

    Concentrations of Cu, Zn, Mn, Fe, Co, Ni and Pb, both in soluble and particulate forms were studied in the upper 200 m depth. Correlation between the trace metal concentration and the primary productivity was also investigated. Zn, Ni and Co were...

  20. Activation analysis of trace metals in several kinds of tissues of even-toed ungulates

    International Nuclear Information System (INIS)

    Fukushima, M.; Tamate, H.; Sato, S.; Terui, S.; Mitsugashira, T.

    1999-01-01

    The normal concentration levels of trace metals in several kinds of tissues of even-toed ungulates have been determined by instrumental neutron activation analysis, photon activation analysis, and flame atomic absorption spectrometry. In the present work the concentrations of 13 elements (Ag, Br, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Rb, Se, and Zn) were analyzed. (author)

  1. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    International Nuclear Information System (INIS)

    Nabulo, G.; Black, C.R.; Young, S.D.

    2011-01-01

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl 2 -soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: → Cadmium uptake by tropical green vegetables varies greatly between types. → Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. → Modelling with dilute CaCl 2 extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl 2 extraction of soil but model parameters are genotype-specific.

  2. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  3. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique

    International Nuclear Information System (INIS)

    Janaki-Raman, D.; Jonathan, M.P.; Srinivasalu, S.; Armstrong-Altrin, J.S.; Mohan, S.P.; Ram-Mohan, V.

    2007-01-01

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO 3 , organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO 3 indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources. - Natural and anthropogenic trace metals afeecting mangrove sediments

  4. A study about trace element distribution in cancer tissue and serum of cancer patients

    International Nuclear Information System (INIS)

    Lee, Jong In; Lee, Eun Joo; Jung, Young Joo

    1993-01-01

    Authers analyzed the trace element distribution of cancer tissue and its corresponding normal tissue and serum of preoperative and postoperative stage in gastric, colon, breast cancer patients. Zinc and rubidium were higher in concentration in breast cancer tissue than in normal tissue. As for the distribution of trace element in serum, bromine became about 10 times higher after gastric resection. This result can be applied to experimental carcinogenesis and to relationship with other prognostic factors. (Author)

  5. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  6. Trace metals in coastal sediments of Costa Rica

    International Nuclear Information System (INIS)

    Garcia Cespedes, J.; Acuna Gonzalez, J.; Vargas Zamora, J.A.

    2004-01-01

    Marine sediment samples from four coastal ecosystems in Costa Rica were taken between the years 2000-2002 and their iron, lead, copper and zinc concentrations were determined by the atomic absorption technique with flame or graphite furnace. In the Pacific coast, Culebra Bay (Papagayo Gulf), Gulf of Nicoya, and Golfito Bay (Dulce Gulf), were selected as representative sites, and Moin Bay, at the Caribbean coast. Mean metal concentrations for all ecosystems followed the same pattern: Fe> Zn> Cu> Pb. No temporal pattern was found for any metal. Iron and copper mean concentrations were higher in Golfito Bay (5.8% and 87 μg / g, respectively) and lower in Moin Bay (3.4% and 52 μg / g, respectively). Zinc mean concentration was also higher in Golfito Bay (96 μg / g), but lower in Culebra Bay (66 μg / g). Lead mean concentration was higher in Moin Bay (6.4 μg / g) and lower in Culebra Bay (3.0 μg / g). Lead highest concentrations occurred in the Caribbean and in Golfito Bay, and for the rest of the elements the maximum values were found in Golfito Bay. On the basis of data obtained in this work, Culebra Bay was considered a relatively unpolluted location; Golfito Bay was more contaminated, and Moin Bay and the Gulf of Nicoya showed an intermediate condition. (Author) [es

  7. Radioactivity and concentration of some trace elements in sponges distributed along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Haleem, M. A.; Ammar, I.

    2009-07-01

    natural and artificial radionuclides ( 210 Po, 210 Pb, 40 K, 137 Cs, 234 U, 238 U) and concentration of some trace elements (Zn, Cu, Pb, Cd) in several types of sponges distributed along the Syrian coast have been studied. The samples were collected from four stations distributed at the Syrian coast (Al-Basset, Lattakia, Banise, Tartous). Concentration factors (CF) for the studied radionuclides and trace elements have been calculated in order to determine the sponges types to be used as biomonitors for the radionuclides and trace elements. (authors)

  8. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico

    International Nuclear Information System (INIS)

    Ruiz-Fernandez, Ana Carolina; Paez-Osuna, Federico; Machain-Castillo, Maria Luisa; Arellano-Torres, Elsa

    2004-01-01

    Distributions of Al, Cd, Cu, Fe, Li, Mn and Pb were analyzed in a sediment core collected in the Gulf of Tehuantepec, an important fisheries region located in the South Pacific of Mexico, where data on metal accumulation and accretion rates were previously almost nonexistent. Depth profiles of metal concentrations were converted to time-based profiles by using a 210 Pb-derived vertical accretion rate, estimated to be 0.05 cm year -1 on the average. Sediments were dated up to 8 cm depth, corresponding to a layer of ca. 140 years old. The historical changes of metal accumulation along the sediment core have shown a moderate enrichment of Cd, Cu and Pb concentrations at present, of about threefold the corresponding background concentrations. Chronological trace metal records showed that metal fluxes have increased over the last 20 years, reaching the maximum values at present of 2.5, 22.5 and 45.8 (μg cm -2 year -1 ) for Cd, Pb and Cu, respectively. These increments in metal fluxes are likely influenced by the development of anthropogenic land-based activities since over this period of time oil production activities in the region have had a significant development

  9. Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time.

    Science.gov (United States)

    Rubio, Juan Carlos; Garcia-Alonso, Maria Cristina; Alonso, Concepcion; Alobera, Miguel Angel; Clemente, Celia; Munuera, Luis; Escudero, Maria Lorenza

    2008-01-01

    Metallic transfer from implants does not stop at surrounding tissues, and metallic elements may be transferred by proteins to become lodged in organs far from the implant. This work presents an in vivo study of metallic implant corrosion to measure metallic element accumulation in organs located far from the implant, such as kidneys, livers, lungs and spleens. The studied metallic implant materials were CoCr alloy, Ti, and the experimental alloy MA956 coated with alpha-alumina. The implants were inserted in the hind legs of Wistar rats. Analysis for Co, Cr, Ti and Al metallic traces was performed after a long exposure time of 12 months by Inductively Coupled Plasma (ICP) with Mass Spectrometry (MS). According to the results, the highest Cr and Ti concentrations were detected in spleens. Co is mainly found in kidneys, since this element is eliminated via urine. Cr and Ti traces increased significantly in rat organs after the long implantation time. The organs of rats implanted with the alpha-alumina coated experimental MA956 did not present any variation in Al content after 12 months, which means there was no degradation of the alumina layer surface.

  10. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    International Nuclear Information System (INIS)

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  11. Uptake and distribution of soil-applied labelled heavy metals in cereal plants and products

    International Nuclear Information System (INIS)

    Oberlaender, H.E.; Roth, K.

    1983-01-01

    In the present paper investigations are described on the uptake, distribution and translocation of mercury, cadmium, chromium and zinc by spring and winter varieties of wheat, rye and barley. Pot experiments were carried out at low concentrations of the heavy metals in order to avoid growth interference during the uptake. Using radioisotopes the pathway of the metals was traced through different organs into the milling products. An ion-exchanger was added to the soils and its efficiency of reducing the uptake of the metals by the plants was tested

  12. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  13. Sorbent control of trace metals in sewage sludge combustion and incineration

    Science.gov (United States)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  14. Mass spectrometric methods for trace analysis of metals

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.

    1981-01-01

    A brief outline is given of the principles of mass spectrometry (MS) and the fundamentals of qualitative and quantitative mass spectrometric analysis emphasizing recent developments and results. Classical methods of the analysis of solids, i.e. spark-source MS and thermal ionization MS, as well as recent methods of metal analysis are described. Focal points in this survey of recently developed techniques include secondary ion MS, laser probe MS, plasma ion source MS, gas discharge MS and field desorption MS. Here, a more detailed description is given and the merits of these emerging methods are discussed more explicitly. In particular, the results of the field desorption techniques in elemental analyses are reviewed and critically evaluated

  15. Bioindication of atmospheric trace metals - With special references to megacities

    International Nuclear Information System (INIS)

    Markert, Bernd; Wuenschmann, Simone; Fraenzle, Stefan; Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P.; Wang Meie

    2011-01-01

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental 'health', the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable. - Highlights: → Chemical Pollution. → Bioindication. → Multi-Markered-Bioindication-Concept (MMBC). → Mega cities. - Bioindication is a relevant technique for observing the atmospheric deposition of chemical elements of the environment in megacities.

  16. Determination of fluorine trace amounts in metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kukisheva, T N; Bolshakova, A S; Yefimova, N S

    1976-05-01

    A simple and rapid method was proposed for the determination of fluorine in metallic uranium without the removal of the latter. The method is based on the weakening of the color intensity of a complex of zirconium with xylenol orange in the presence of fluorine in a 1 N solution with respect to hydrochloric acid. For preparation for photometry, the solution to be analyzed is neutralized with ammonia to a pH of approximately 3. It is suggested that a complex of sulfosalicylic acid with uranium (VI) be used as the indicator in neutralization. The required acidity in the solution subjected to photometry is provided by the addition of a 5 N hydrochloric acid solution of zirconium. The coefficient of variation V/sub 15/ (at a fluorine content 3x10/sup -3/%) is 10%. In 7 h, 15-20 determinations can be performed.

  17. Trace metals behaviour during salt and fresh water mixing in the Venice Lagoon

    International Nuclear Information System (INIS)

    Ghermandi, G.; Campolieti, D.; Cecchi, R.; Costa, F.; Zaggia, L.; Zonta, R.

    1993-01-01

    Preliminary results of an investigation on trace metals behaviour in the estuarine system of the Dese River (Venice Lagoon) are described. Hydrodynamical and water chemical-physical measurements and PIXE concentrations analysis on size-fractionated samples emphasize the complexity of the processes occurring in the area of salt and fresh water mixing. Suspended load variations in the bottom layer of the water column, which may be mostly ascribed to resuspension, regulate the trace metal concentrations and seem to play a fundamental role in the transport of pollutants in shallow water areas of the estuary. The behaviour of dissolved metals is masked by the presence of suspended matter, but some relationships with chemical-physical variables are distinguishable, furnishing information on the processes affecting their concentration in the system. (orig.)

  18. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves?

    Science.gov (United States)

    Queiroz, Hermano Melo; Nóbrega, Gabriel Nuto; Otero, Xose L; Ferreira, Tiago Osório

    2018-01-01

    Acid-volatile sulfides (AVS) formation and its role on trace metals bioavailability were studied in semi-arid mangroves. The semi-arid climatic conditions at the studied sites, marked by low rainfall and high evapotranspiration rates, clearly limited the AVS formation (AVS contents varied from 0.10 to 2.34μmolg -1 ) by favoring oxic conditions (Eh>+350mV). The AVS contents were strongly correlated with reactive iron and organic carbon (r=0.84; r=0.83 respectively), evidencing their dominant role for AVS formation under semi-arid conditions. On the other hand, the recorded ΣSEM/AVS values remained >1 evidencing a little control of AVS over the bioavailability of trace metals and, thus, its minor role as a sink for toxic metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Distribution of dissolved trace metals in western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Murty; Sarma

    stream_size 6 stream_content_type text/plain stream_name Indian_J_Mar_Sci_19_206.pdf.txt stream_source_info Indian_J_Mar_Sci_19_206.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  20. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    International Nuclear Information System (INIS)

    Amorim, Eduardo P.; Favaro, Deborah I.T.; Berbel, Glaucia; Braga, Elisabete S.

    2009-01-01

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  1. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Eduardo P.; Favaro, Deborah I.T., E-mail: ducamorim@yahoo.com.b, E-mail: defavaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Berbel, Glaucia; Braga, Elisabete S., E-mail: edsbraga@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos (LABNUT)

    2009-07-01

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  2. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    Science.gov (United States)

    Moreno, T.; Querol, X.; Alastuey, A.; Reche, C.; Cusack, M.; Amato, F.; Pandolfi, M.; Pey, J.; Richard, A.; Prévôt, A. S. H.; Furger, M.; Gibbons, W.

    2011-09-01

    Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.

  3. Trace metals in Antarctica related to climate change and increasing human impact.

    Science.gov (United States)

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals

  4. Correlation study of trace metals in malignant and normal breast tissues by AAS technique

    International Nuclear Information System (INIS)

    Rahman, S.

    2012-01-01

    The study reports the application of atomic absorption spectrophotometry (AAS) for quantification of Fe, Cu and Zn in forty one formalin-fixed biopsy breast carcinoma tissue and adjoining fifteen normal tissue samples. These tissues samples were of category two breast carcinoma patients and of normal subjects. The qualitative comparison between the elements levels measured in the two types of specimens suggests significant elevation of these metals in the histopathological samples of carcinoma tissue. The samples were collected from women aged 19-51 years. Most of the patients belong to urban areas of Pakistan and middle to high socioeconomic status with the exception of few. Findings of study depicts that these elements have an important role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu and Zn was observed. The results showed the excessive accumulation of Fe (166.9 mg/L) in tissue samples of breast carcinoma patients (p < 0.01) than that in normal tissues samples (23.5 mg/L). In order to validate our method of analysis certified reference material Muscle Tissue Lyophilised (IAEA) MA-M-2/TM was analyzed for Fe, Cu and Zn. Determined concentrations were in good agreement with certified levels. The concentration distribution of trace elements Cu, Zn and Fe measured in the malignant tissues were found to be higher when compared to benign tissues, indicating the involvement of these metals in the breast malignancy. Results also indicate that excess iron may play a role in breast carcinogenesis. (Orig./A.B.)

  5. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, A.K.; Tripathy, S.C.; Patra, S.; Sarma, V.V.

    York), pp. 265?286, 1975. 12. Ranga Rao, V., Reddy, B. S. R., Raman, A. V. & Ramana Murthy, M. V. Oceanographic features of the Bay-mangrove waterways of Coringa, East coast of India. Proc. AP Akad. Sc., 7 (2): 135-142, 2003. 13. Robertson, A. I...-Godavari estuarine mangrove ecosystem, Andhra Pradesh, India. Indian J Mar. Sc. (in press), 2004. 18. Turkian, K. K. and Wedephol, K. H. Distribution of the elements in some major units of the earth crust. Bull. Geol. Soc. Amer., 72: 175-192, 1961. 19. Twilley, R...

  6. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination

    Directory of Open Access Journals (Sweden)

    Congiu A.

    2013-04-01

    Full Text Available A mineralization method HCl-free for heavy metals analysis in sediments and soils by DRC-ICP-MS was developed. The procedure, which uses concentrated nitric, hydrofluoric acid and hydrogen peroxide, was applied for the analysis of arsenic, cadmium, chromium, nickel and vanadium. The same samples were then analyzed, as pressed pellets, by wavelength dispersive X ray fluorescence (WD-XRF using the dedicated PANalytical Pro Trace solution for the determination of trace elements. Comparison of ICP and XRF data showed good agreement for the elements under investigation, unless for chromium in soils, which recovery was not complete.

  7. Log-stable concentration distributions of trace elements in biomedical samples

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Kuternoga, E.; Braziewicz, J.; Pajek, M.

    2004-01-01

    In the present paper, which follows our earlier observation that the asymmetric and long-tailed concentration distributions of trace elements in biomedical samples, measured by the X-ray fluorescence techniques, can be modeled by the log-stable distributions, further specific aspects of this observation are discussed. First, we demonstrate that, typically, for a quite substantial fraction (10-20%) of trace elements studied in different kinds of biomedical samples, the measured concentration distributions are described in fact by the 'symmetric' log-stable distributions, i.e. the asymmetric distributions which are described by the symmetric stable distributions. This observation is, in fact, expected for the random multiplicative process, which models the concentration distributions of trace elements in the biomedical samples. The log-stable nature of concentration distribution of trace elements results in several problems of statistical nature, which have to be addressed in XRF data analysis practice. Consequently, in the present paper, the following problems, namely (i) the estimation of parameters for stable distributions and (ii) the testing of the log-stable nature of the concentration distribution by using the Anderson-Darling (A 2 ) test, especially for symmetric stable distributions, are discussed in detail. In particular, the maximum likelihood estimation and Monte Carlo simulation techniques were used, respectively, for estimation of stable distribution parameters and calculation of the critical values for the Anderson-Darling test. The discussed ideas are exemplified by the results of the study of trace element concentration distributions in selected biomedical samples, which were obtained by using the X-ray fluorescence (XRF, TXRF) methods

  8. Source apportionment of trace metals in river sediments: A comparison of three methods

    International Nuclear Information System (INIS)

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-01-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4–42.2%), followed by mining wastewater (29.0–33.5%), and agricultural activities (18.2–18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. - Highlights: • Three advanced receptor models were comparatively employed for source apportionment. • The MCR-WALS and PMF models produce essentially same source profiles. • Copper

  9. Metal and trace element assessment of estuary sediments from Santos, Brazil, by neutron activation and atomic absorption techniques

    International Nuclear Information System (INIS)

    Amorim, Eduardo P.; Favaro, Deborah I.T.; Berbel, Glaucia B.B.; Braga, Elisabete S.

    2007-01-01

    In order to better understanding geochemical and environmental processes and their possible changes due to anthropogenic activities trace metal analyses and their distribution in marine sediments are commonly undertaken. The present study reports result concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirteen bottom sediment samples (SV0501 to SV0513) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao, Vicente de Carvalho and Santos' Bay, in the summer of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). For total mercury determination cold vapor atomic absorption technique (CV AAS) was employed. In both cases methodology validation was performed by certified reference material analyses. The results obtained for multielemental concentrations in the sediment samples were compared with NASC (North American Shale Composite) values. The concentration values obtained for As and metals Cr, Hg and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values). In general, the samples located near the Cubatao region showed higher concentrations for all elements analyzed probably due to the high impact of industrial activities. (author)

  10. Metal and trace element assessment of estuary sediments from Santos, Brazil, by neutron activation and atomic absorption techniques

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Eduardo P.; Favaro, Deborah I.T. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: ducamorim@yahoo.com.br; defavaro@ipen.br; Berbel, Glaucia B.B.; Braga, Elisabete S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos - LABNUT]. E-mail: edsbraga@usp.br

    2007-07-01

    In order to better understanding geochemical and environmental processes and their possible changes due to anthropogenic activities trace metal analyses and their distribution in marine sediments are commonly undertaken. The present study reports result concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirteen bottom sediment samples (SV0501 to SV0513) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao, Vicente de Carvalho and Santos' Bay, in the summer of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). For total mercury determination cold vapor atomic absorption technique (CV AAS) was employed. In both cases methodology validation was performed by certified reference material analyses. The results obtained for multielemental concentrations in the sediment samples were compared with NASC (North American Shale Composite) values. The concentration values obtained for As and metals Cr, Hg and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values). In general, the samples located near the Cubatao region showed higher concentrations for all elements analyzed probably due to the high impact of industrial activities. (author)

  11. Metal and trace element assessment of sediments from Guarapiranga reservoir, Sao Paulo State, by neutron activation analysis

    International Nuclear Information System (INIS)

    Guimaraes, Guilherme M.; Favaro, Deborah I.T.; Franklin, Robson L.; Ferreira, Francisco J.; Bevilacqua, Jose E.

    2009-01-01

    Guarapiranga Reservoir is extremely important due to the fact that it is one of the main water reservoirs for South America's largest city, Sao Paulo, Brazil. Guarapiranga Basin is located within the Metropolitan Region of Sao Paulo - RMSP, and occupies an area of approximately 630 km 2 , and the reservoir itself is located in the northern part of the basin occupying approximately 26 km 2 . This reservoir is characterized by environmental impacts from urban invasion, industrial and sewage wastes, all of which seriously affect its water quality. Due to its vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) regularly monitors the contamination levels of waters and once a year sediment samples. In order to better understand geochemical and environmental processes and their possible changes due to anthropogenic activities trace metals analyses and their distribution in sediments are commonly undertaken. The present study reports results concerning the distribution of some major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Hg, Rb, Sb, Sc, Ta, Tb, Th, U and Zn) and rare earth (Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) elements in sediments from the Guarapiranga Reservoir. Multielementar analysis was carried out by instrumental neutron activation analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cr and Zn in the sediment samples were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and adopted by CETESB. (author)

  12. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    Science.gov (United States)

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.

    2013-12-01

    Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm

  13. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    Science.gov (United States)

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  14. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    Science.gov (United States)

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  15. Migration of trace heavy metals at the sea water/sediment interface

    International Nuclear Information System (INIS)

    Terada, Kikuo; Tomiyama, Chisato

    1984-01-01

    Migration behavior of some trace heavy metals such as Co(II), Cu(II), Mn(II) and Zn(II) at the sea water/sediment interface was investigated by tank experiments. The sea water which was doped with these metal ions (ppb to ppm levels) allowed to contact with the raw-, ignited- and autoclaved-marine sediments and the change of the concentration of each metal was traced at definite time intervals. At the end of the experiments, a core sample of the sediment was taken and analyzed for each metal in every 1 mm thick segment. On the other hand, the surface sediment was submitted to partial extraction with various kinds of reagents to estimate the chemical species of the metals captured in the sediment. While every metal ion was quickly adsorbed on surface of the raw sediment, a concentration gradient from surface to bottom of the water phase occurred in the ignited sediment system. The migration of manganese to the sediment phase was assumed to be concerned with bacterial activity in the sediment. Copper and zinc seemed to be adsorbed very quickly onto some fine sediment particles by the formation of organometallic complexes with some organic materials existing in the sediments. Cobalt migrated relatively fast downward within the sediment phase after its deposition. (author)

  16. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    Science.gov (United States)

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  17. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    Science.gov (United States)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  18. Evaluation of distribution patterns and decision of distribution coefficients of trace elements in high-purity aluminium by INAA

    International Nuclear Information System (INIS)

    Hayakawa, Yasuhiro; Suzuki, Shogo; Hirai, Shoji

    1986-01-01

    Recently, a high-purity aluminium has been used in semi-coductor device, so on. It was required that trace impurities should be reduced and that its content should be quantitatively evaluated. In this study, distribution patterns of many trace impurities in 99.999 % aluminium ingots, which was purified using a normal freezing method, were evaluated by an INAA. The effective distribution coefficient k for each detected elements was calculated using a theoretical distribution equation in the normal freezing method. As a result, the elements of k 1 was Hf. Especially, La, Sm, U and Th could be effectively purified, but Sc and Hf could be scarcely purified. Further more, it was found that the slower freezing gave the effective distribution coefficient close to the equilibrium distribution coefficient, and that the effective distribution coefficient became smaller with the larger atomic radius. (author)

  19. Distribution of trace and minor elements in Hungarian spice paprika plants

    Energy Technology Data Exchange (ETDEWEB)

    Sziklai, I L; Oerdoegh, M; Szabo, E; Molnar, E

    1988-06-01

    Detailed investigations were carried out to study the distribution of trace and minor elements in different parts (fruit, seed and rib, peduncle, stem, leaf, root) of ripe Hungarian spice paprika plants. Two varieties were analyzed for their Cl, Co, Fe, K, Mg, Mn, Na, Rb, Sc, V and Zn content by non-destructive neutron activation analysis. The results showed that the iron contents of the samples were much higher than those of the other trace elements. For trace elements Co, Fe, Mn, Sc, V and Zn a considerable enrichment was observed in the leaf, while the Rb and K, Na, Mg showed accumulation mainly in the peduncle. (author) 8 refs.; 3 tabs.

  20. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India

    International Nuclear Information System (INIS)

    Ayyamperumal, T.; Jonathan, M.P.; Srinivasalu, S.; Armstrong-Altrin, J.S.; Ram-Mohan, V.

    2006-01-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar. - Both natural and anthropogenic factors are affecting metals in sediments

  1. A Lagrangian View of Stratospheric Trace Gas Distributions

    Science.gov (United States)

    Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.

  2. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  3. First assessment of trace metal concentration in mangrove crab eggs and other tissues, SE Brazil.

    Science.gov (United States)

    de Almeida, Eduardo Vianna; Kütter, Vinicius Tavares; Marques, Eduardo Duarte; da Silva-Filho, Emmanoel Vieira

    2016-07-01

    The mangrove crab Ucides cordatus is widespread in the Brazilian coast, which has an important role in nutrient cycling. This species reproduces in summer and females carry eggs about a month, when they maintain contact with water and sediments. It remains unclear if trace metals can be absorbed or adsorbed by the eggs during development. The present study aims to investigate, for the first time, trace metal concentrations in ovigerous female tissues and eggs of U. cordatus in two areas with different metal pollution levels in the Southeastern Brazil. Samples were collected in two different mangroves, Guanabara Bay (GB) highly polluted environment and Paraíba do Sul River (PSR). In both populations, we observed significant increase of V, Cr, and Mn concentrations along eggs maturation. The higher metals averages were found in PSR population. This trend was reported since the 1990s and lower concentrations in GB marine organisms were attributed to reducing conditions, high organic load, and the presence of sulfide ions. These conditions restrict the bioavailability of metals in the bay, with exception of Mn. No significant differences were observed in gills and muscles. In both populations of the present study, V, Zn, As, and Pb were higher in eggs of initial stage, whereas Mn, Ni, Cu, and Cd were higher in hepatopancreas. Beside this, V, Cr, Mn, As, and Pb showed an increase concerning egg development. Thus, V, As, and Pb in eggs come from two sources previous discussed: females and environment. Zinc came mainly from females due to essential function. Those new information should be considered as one of the mechanisms of trace metal transfer to the trophic chain, between benthonic and pelagic environment.

  4. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  5. Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France)

    Science.gov (United States)

    Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.

    2007-04-01

    In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role

  6. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses.

    Science.gov (United States)

    Natali, Marco; Zanella, Augusto; Rankovic, Aleksandar; Banas, Damien; Cantaluppi, Chiara; Abbadie, Luc; Lata, Jean -Christophe

    2016-12-01

    Mosses are useful, ubiquitous accumulation biomonitors and as such can be used for biomonitoring surveys. However, the biomonitoring of atmospheric pollution can be compromised in urban contexts if the targeted biomonitors are regularly disturbed, irregularly distributed, or are difficult to access. Here, we test the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled mosses growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. We focused on Grimmia pulvinata (Hedwig) Smith, a species abundantly found in all studied cemeteries and very common in Europe. The concentration of Al, As, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, Mn, Ni, V, P, Pb, Rb, S, Sr, Ti, and Zn was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method (slurry-TXRF). This method avoids a digestion step, reduces the risk of sample contamination, and works even at low sample quantities. Elemental markers of road traffic indicated that the highest polluted cemeteries were located near the highly frequented Parisian ring road and under the influence of prevailing winds. The sites with the lowest pollution were found not only in the peri-urban cemeteries, adjoining forest or farming landscapes, but also in the large and relatively wooded cemeteries located in the center of Paris. Our results suggest that (1) slurry-TXRF might be successfully used with moss material, (2) G. pulvinata might be a good biomonitor of trace metals air pollution in urban context, and (3) cemetery moss sampling could be a useful complement for monitoring urban areas. Graphical abstract We tested the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled 110 moss cushions (Grimmia pulvinata) growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. The concentration of 20

  7. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  8. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems; Transferts et mobilite des elements traces metalliques dans la colonne sedimentaire des hydrosystemes continentaux

    Energy Technology Data Exchange (ETDEWEB)

    Devallois, V.

    2009-02-15

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  9. LA-ICP-MS Study of Trace Elements in the Chanuskij Metal

    Science.gov (United States)

    Petaev, Michail I.

    2005-01-01

    This progress report covers work done during the second year of the 3-year proposal. During this year we resolved many issues relevant to the analytical technique developed by us for measuring trace elements in meteoritic metals. This technique was used to measure concentrations of Fe, Ni, Co, Cr, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sb, W, Re, Os, Ir, Pt, and Au in eight large (120 - 160 microns) metal grains from both "igneous" and "metamorphic" lithologies of the Chanuskij silicate inclusions. The first application of OUT technique to metal grains from thin sections showed some limitations. Small thickness of metal grains in the thin section limited the signal to 3-4 time-slices instead of 10- 1 1 ones in polished sections of iron meteorites studied before.

  10. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as biomonitors

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokołowski, A.; Wołowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ

  11. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    OpenAIRE

    Worsfold, P. J.; Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals i...

  12. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Higher levels of Cd (0.038 ± 0.004 to 0.044 ± 0.003 mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, which may be detrimental to the “health” of the aquatic ecosystem and the rural communities that utilise the river water for ... Key words: trace metals, water, sediment, farmland, Tyume River

  13. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    Science.gov (United States)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Trace metal concentrations in marine organisms from the Eastern Aegean, Turkey

    International Nuclear Information System (INIS)

    Kucuksezgin, F.

    1999-01-01

    Monitoring of mercury, cadmium and lead levels in striped mullet (Mullus barbatus) was conducted in the Eastern Aegean over 3 year period and in some other species during 1996 in the framework of a National Marine Measurement Program and MED-POL II Project for the Aegean Sea. Of all the research on the concentrations of trace metals in the Aegean environment only a little has been carried out in that part of the Eastern Aegean

  15. Determination of trace metals in Cladophora glomerata: C. glomerata as a potential biological monitor

    Energy Technology Data Exchange (ETDEWEB)

    Keeny, W.L.; Breck, W.G.; Vanloon, G.W.; Page, J.A.

    1976-01-01

    A differential pulse anodic stripping voltammetry method has been developed for the determination of Zn, Cd, Pb and Cu in Cladophora glomerata. The method has been applied to samples taken in August from a remote island in Lake Ontario (Main Duck) and a shore site near Kingston, Ontario (Deadman Bay). It is postulated that C. glomerata can act as a biological monitor, concentrating the trace metals present in the aqueous environment with a reasonably constant CF for each element.

  16. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer.

    Science.gov (United States)

    Li, Siyang; Du, Lin; Tsona, Narcisse T; Wang, Wenxing

    2018-04-01

    Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe 3+ , Pb 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Cr 3+ , Cd 2+ , and Co 2+ , with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn 2+ and Fe 3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn 2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe 3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The trace metals accumulation in marine organisms of the southeastern Adriatic coast, Montenegro

    Directory of Open Access Journals (Sweden)

    Joksimovic Danijela

    2012-01-01

    Full Text Available The concentration and accumulation of trace metals (Co, Ni, As, Cd, Pb and Hg were measured in sea water, sediments and marine organisms in the coastline of the Montenegro. The obtained results of trace metals in seagrass and mussels were compared with those found in the water column and sediment. Sampling was performed in the fall of 2005 at five locations in the Montenegrin coastline, Sveta Stasija, Herceg Novi, Zanjice, Budva and Bar, which present different levels and sources of human impact. The heavy metals analyses in seawater, sediment, P. oceanica and M. galloprovincialis identified the harbor of Bar as the most Hg-contaminated site, Zanjice as the most As contaminated and Sveta Stasija as the most Pb-contaminated areas of the Montenegrin coastal area. This study showed that P. oceanica may have a greater bioaccumulation capacity than M. galloprovincialis for the considered metals, except for As and Hg, and both organisms may reflect contamination in the water column and in the sediment. For the first time, seagrass P. oceanica and M. galloprovincialis were employed as metal bioindicators for the southeastern Adriatic. The results of this study could serve as a baseline in the future for the assessment of anthropogenic effects in this marine ecosystem.

  18. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ∼< 1

    International Nuclear Information System (INIS)

    Lehner, N.; Howk, J. C.; Tripp, T. M.; Tumlinson, J.; Thom, C.; Fox, A. J.; Prochaska, J. X.; Werk, J. K.; O'Meara, J. M.; Ribaudo, J.

    2013-01-01

    We assess the metal content of the cool (∼10 4 K) circumgalactic medium (CGM) about galaxies at z ∼ H I ∼ H I selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N H I in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] ≅ –1.6 and –0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z ∼< 1 galaxies.

  19. Concentration of trace metals in boreholes in the Ankobra Basin, Ghana

    International Nuclear Information System (INIS)

    Kortasi, B. K.

    2006-01-01

    Analysis of trace metals in ground water from the Ankobra basin revealed high levels of iron, manganese and aluminium. Approximately 40% of boreholes had total iron concentration exceeding 1000 μ 1 -1 (maximum WHO permissible limit). Aluminium concentration varied from 0.1 μ to 2510 μ 1 -1 with a median value of 10.0 μ 1 -1 . Approximately 20% of the boreholes had aluminium concentration exceeding the WHO maximum acceptable limit (200 μ 1 -1 ) for drinking water. Manganese concentration was in the range 6-2510 μ 1 -1 with a median of 356 μ 1 -1 . Roughly 25% of the boreholes had manganese concentrations higher that 500 μ 1 -1 , which is the WHO maximum acceptable limit for drinking water. The concentrations of mercury was higher than 1.0 μ 1 -1 (WHO maximum acceptable limit) in 60% of the boreholes during the rainy season but below detection limit in the dry season, suggesting anthropogenic origin for mercury in the groundwater. Other trace metals that occurred, but in insignificant concentration in the boreholes, include lead, arsenic, nickel and selenium. Most of the boreholes with high trace metal concentrations were located in and around the Bawdie-Bogoso-Prestea area. (au)

  20. Soil, climate and the environment - an indissociable threesome. Soil carbon and global changes: reciprocal impacts; Carbon in all its forms; Echomicadas, a new tool to analyse carbon 14; Biotransformation of metallic trace elements by soil micro-organisms; Absorption and distribution of metallic elements in plants; Dynamics of metallic contaminants in agricultural systems; Is photo-remediation for tomorrow? Hyper-accumulator plants; Sediments, tell me the Seine history... The complex history of plant feeding by the soil; The environmental analysis

    International Nuclear Information System (INIS)

    Hatte, Christine; Tisnerat-Laborde, Nadine; Ayrault, Sophie; Balesdent, Jerome; Chapon, Virginie; Bourguignon, Jacques; Alban, Claude; Ravanel, Stephane; Denaix, Laurence; Nguyen, Christophe; Vavasseur, Alain; Sarrobert, Catherine; Gasperi, Johnny; Latrille, Christelle; Savoye, Sebastien; Augusto, Laurent; Conan Labbe, Annie; Bernard Michel, Bruno; Douysset, Guilhem; Toqnelli, Antoine; Vailhen, Dominique; Moulin, Christophe

    2016-01-01

    The articles of this file on the relationships between soils, climate and the environment discuss the reciprocal impacts of soil carbon and global changes with the objective of reduction of greenhouse effect and of increase of carbon sequestration; the various forms of carbon are presented and their properties commented ; a compact radiocarbon system (ECHoMiCADAS) is presented, developed by the Laboratory of sciences of climate and environment (LSCE) and designed for the analysis of carbon 14; an article describes how micro-organisms can play a crucial role in the transformation of soil pollutants by modifying their chemical speciation and thus their toxicity; strategies based on the absorption of metallic trace elements present in the soil to control physiological processes in plants are discussed, with applications to agriculture, food supply and to the environment; researches related to the study of effects of metallic contaminants in agricultural systems are evoked, and the reasons for a slow development of phyto-technologies, notably phyto-remediation, for pollution control and decontamination of soils and liquid media, are explained. Other themes are presented : hyper-accumulator plants which present very high contents of non-essential (As, Cd, Hg, Pb, Se) or essential (Co, Cu, Fe, Mn, Mo, Ni) elements, are slowly growing, and display a limited biomass, but could be used for a phyto-extraction of metals from contaminated soils; how analysis and dating of sediments can reveal the presence of contaminants, and therefore give an insight into human activities and regulations, and into their impact on the river; how plants are able to develop strategies in their search for nutrients in different types of soils, even poor ones, and presentation of the various disciplines, methods and techniques used for environmental analysis with their applications to installation and site control, or to the study of pollutant migration

  1. Trace and major metal abundances in the shale and coal of various ...

    African Journals Online (AJOL)

    The distribution of a number of trace and major elements in the shale and coal of differing seams in Okaba, Kogi State, Nigeria, was studied using energy dispersive x-ray fluorescence spectrometer. The study was necessary to compare the quality of Okaba coal to world standards of coal quality. Major elements of Al, K, Ca ...

  2. The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong

    International Nuclear Information System (INIS)

    Tang, Chloe Wing-yee; Ip, Carman Ching-man; Zhang Gan; Shin, Paul K.S.; Qian Peiyuan; Li Xiangdong

    2008-01-01

    Victoria Harbour has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1950s. Inputs of contaminants have declined dramatically during the last two decades as a result of better controls at the source and improved wastewater treatment facilities. To assess the spatial and temporal changes of metal contaminants in sediments in Victoria Harbour, core and grab sediments were collected. The central harbour areas were generally contaminated with heavy metals. The spatial distribution of trace metals can probably be attributed to the proximity of major urban and industrial discharge points, and to the effect of tidal flushing in the harbour. In the sediment cores, the highest concentrations of trace metals were observed to have accumulated during the 1950s-1980s, corresponding with the period of rapid urban and industrial development in Hong Kong. From the late 1980s, there has been a major decline in the concentrations of trace metals, due to a reduction in industrial activities and to the enactment of wastewater pollution controls in the territory. The Pb isotopic compositions of the sediments revealed the anthropogenic inputs of Pb to the harbour. The 206 Pb/ 207 Pb ratios varied from 1.154 to 1.190, which were lower than those of background geological materials in Hong Kong ( 206 Pb/ 207 Pb: 1.201-1.279). The data also indicated that the Pb in the harbour sediments most likely originated from mixed sources, including the leaded gasoline used in the past and other anthropogenic sources

  3. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  4. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    The general abundance distribution pattern for metals was Zn > Cu > Pb > Cr > Ni > As > Co > Cd > Hg. The removal efficiency ranged from 1.5% for Hg at Zandvliet WWTP plant during winter to 98.27% for Cu at Athlone WWTP treatment plant during summer. The final effluent concentration for most of the metals were within ...

  5. Accumulation of trace metals by aquatic macrophytes and their possible use in phytoremediation techniques

    Directory of Open Access Journals (Sweden)

    Michaela Hillermannová

    2008-01-01

    Full Text Available The aim of the performed research was to obtain knowledge on the ability of aquatic plants naturally growing at a site to absorb trace metals contained in bottom sediments and surface water. Furthermore, we compared differences in the accumulation of trace metals by the individual groups of aquatic plants (submerged and emergent and assessed a possible use of the individual plant species in phytoremediation techniques. Representative samples of water, sediments and aquatic macrophytes were taken from three anthropogenically loaded streams in six monitoring cycles in several collection profiles differing in the distance from a source of contamination. The samples were analysed for the total content of selected trace metals (As, Cd, Pb, Al, Hg, Zn, Fe, Mn, Cr, Ni and Cu. For comparison, one profile at an unloaded site was sampled as well. The obtained results were subjected to multivariate statistical analysis of data. Increased contents of Fe, Al, Mn, Cr and Zn were detected in sediments and plant biomass at loaded sites, namely 2–3× higher than at the comparing site. The contents of metals in surface water samples were altogether below the detection limit of the analytical method. When evaluating the individual plant species, we can state that the lowest contents of metals were detected in shore species (reed canary grass Phalaroides arundinacea, wood club-rush Scirpus silvaticus and red dock Rumex aquaticus; plant species growing in the very water current (water star-wort Callitriche sp. and flote-grass Glyceria fluitans exhibited mean contents of metals. In species forming mats (Fontinalis antipyretica and Cladophora sp., these contents were several times higher as compared to the previous species. The results of the performed research show that one of important factors, which influence the accumulation of trace metals in plants, is their ecological group (emergent – submerged affiliation and the species classification within this group

  6. Dissolved trace metals (Ni, Zn, Co, Cd, Pb, Al, and Mn) around the Crozet Islands, Southern Ocean

    Science.gov (United States)

    Castrillejo, Maxi; Statham, Peter J.; Fones, Gary R.; Planquette, Hélène; Idrus, Farah; Roberts, Keiron

    2013-10-01

    A phytoplankton bloom shown to be naturally iron (Fe) induced occurs north of the Crozet Islands (Southern Ocean) every year, providing an ideal opportunity to study dissolved trace metal distributions within an island system located in a high nutrient low chlorophyll (HNLC) region. We present water column profiles of dissolved nickel (Ni), zinc (Zn), cobalt (Co), cadmium (Cd), lead (Pb), aluminium (Al), and manganese (Mn) obtained as part of the NERC CROZEX program during austral summer (2004-2005). Two stations (M3 and M1) were sampled downstream (north) of Crozet in the bloom area and near the islands, along with a control station (M2) in the HNLC zone upstream (south) of the islands. The general range found was for Ni, 4.64-6.31 nM; Zn, 1.59-7.75 nM; Co, 24-49 pM; Cd, 135-673 pM; Pb, 6-22 pM; Al, 0.13-2.15 nM; and Mn, 0.07-0.64 nM. Vertical profiles indicate little island influence to the south with values in the range of other trace metal deprived regions of the Southern Ocean. Significant removal of Ni and Cd was observed in the bloom and Zn was moderately correlated with reactive silicate (Si) indicating diatom control over the internal cycling of this metal. Higher concentrations of Zn and Cd were observed near the islands. Pb, Al, and Mn distributions also suggest small but significant atmospheric dust supply particularly in the northern region.

  7. Metal and trace elements assessment in sediments of Kakinada Bay, East Coast India, by INAA and PIXE

    International Nuclear Information System (INIS)

    Dasari, K.B.; Ratna Raju, M.; Lakshminarayana, S.; Naidu, T.Y.; Raju, V.S.

    2012-01-01

    Aquatic sediment is more homogeneous in grain-size (< 0.06 mm) distribution, and the fine particles are more capable of adsorbing pollutants than coarser fractions. Aquatic mediums are the receipt of the liquid effluents of the variety of industries, atmosphere changes and anthropogenic processes. Godavari river is one of the most important rivers in India and which is adjoining coast into the Bay of Bengal near Kakinada. The study area viz. Kakinada Bay (Godavari delta) rich in industries, appears to be fragile with thick pile of sediments dipping towards sea and underlain by faults. Hence any change in existing equilibrium would affect aquatic ecosystem. The objective of this study is to quantify the amount of trace, heavy metals ions present in sediments collected from Kakinada Bay, Andhra Pradesh, India. Five sites were selected along the coastal area covering the important potential pollutions sources at Godavari delta. Instrumental neutron activation analysis and particle induced X-ray emission techniques were carried out for trace and some metals determination

  8. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations.

    Science.gov (United States)

    Song, Yinxian; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Shi, Qi; Zhang, Huiling; Ayoko, Godwin A; Frost, Ray L

    2014-02-01

    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of incubation on solubility and mobility of trace metals in two contaminated soils

    International Nuclear Information System (INIS)

    Ma, Lena Q.; Dong Yan

    2004-01-01

    Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl 2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg -1 ), Tampa soil was also contaminated with As (230 mg kg -1 ). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO 3 . The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation. - Iron is important in controlling metal solubility and mobility in flooded soils

  10. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  11. Levels of some Trace Metals in Macroalgae from the Red Sea in Egypt

    International Nuclear Information System (INIS)

    Aboul-Naga, Wafiqa Mohamed

    2005-01-01

    The concentrations of iron (Fe), Zinc (Zn), manganese (Mn), Copper (Cu), chromium (Cr), nickel (Ni), and cobalt (Co) in ten macroalgae species from the Red Sea coastal water varied widely and also the trend of abundance of each metal also differed from one group to another. Concentration factors varied among species for iron (Fe) copper (Cu) manganese (Mn), but with iron (Fe) showing generally high concentration factors. Highly significant (P<0.05) relationships were found between manganese (Mn) and Nickel (Ni), and, Zinc (Zn) and copper (Cu). Moreover, moderate correlations were observed between manganese (Mn) and iron (Fe) and chromium (Cr), indicating that manganese (Mn) is the most accumulated metal in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae, dominance is moderate relative to other sea areas subjected to intensive pollution. That is, the results indicated a nonpolluted environment. (author)

  12. Monitoring of Trace Metal Pollution in Meenachil River at Kottayam, Kerala (India

    Directory of Open Access Journals (Sweden)

    Indu. V. Nair

    2011-01-01

    Full Text Available The water quality of the Meenachil river at Kottayam has been studied with reference to toxic trace metals during pre and post monsoon seasons for 10 stations during May 2009-September 2009. The metals analyzed include Zinc, Manganese, Iron, Lead, Copper and Cadmium. Among the metals studied, iron, lead and cadmium showed higher concentrations above the permissible limit for drinking water prescribed by Bureau of Indian Standards. Iron and lead showed higher concentration during post monsoon and the cadmium content was high during pre-monsoon. It was observed that the main causes of deterioration in water quality might be due to the discharge of domestic wastes, municipal wastes, terrestrial runoff from seepage sites, agricultural sites and also due to geological weathering process.

  13. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    Science.gov (United States)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  14. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability

    International Nuclear Information System (INIS)

    Mao, L.C.; Young, S.D.; Tye, A.M.; Bailey, E.H.

    2017-01-01

    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-value as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables. Trace metal reactivity in urban soils depends on both soil properties and the original source material

  15. HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER.

    Science.gov (United States)

    Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T

    2015-11-01

    Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The

  16. Effective removal of hazardous trace metals from recovery boiler fly ashes.

    Science.gov (United States)

    Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti

    2018-02-15

    The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Possibilities of assessing trace metal pollution using Betula pendula Roth. leaf and bark - experience in Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Dragana

    2017-01-01

    Full Text Available In this study, both seasonal and spatial variations in trace metal uptake, as well as concentration of photosynthetic pigments in Silver birch (Betula pendula Roth. trees in five urban parks in Pančevo, Smederevo, Obrenovac and Belgrade (Serbia affected by different anthropogenic activities were studied. The characteristics of soil were assessed in terms of texture, pH and trace element content. Concentrations of boron, strontium and zinc in both leaves and bark showed an increasing temporal trend, however, copper showed an opposite seasonal trend. A higher accumulation of trace elements was noticed in leaves compared to bark. The obtained results for photosynthetic pigments showed low sensitivity of birch to B, Cu, Sr and Zn contamination, indicating that birch tolerates pollution and climate stress by increasing the amount of pigments. Analysis of the effects on soil chemistry of trace element accumulation in plant tissues proved that soil chemistry poorly explains the variability of elements in bark (27.6 % compared to leaves (82.99 %. Discriminant analysis showed that Belgrade and Smederevo are clearly separated from the other three sites. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173018

  18. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enrichment of trace metals in water utilizing the coagulation of soybean protein

    International Nuclear Information System (INIS)

    Musha, Soichiro; Takahashi, Yoshihisa.

    1975-01-01

    An enrichment of trace metals in water with a coagulated soybean protein and the complex-forming character of heavy metal ions with the soybean protein were investigated by means of emission spectrography. Fixed amounts of soybean milk (collector) and delta-gluconic lactone (coagulant) were added to a sample solution containing various metal ions, and then the mixture was heated to boiling in order to coagulate the protein. The coagulum (soybean curd) separated from the suspension with a centrifuge was burned to ashes with a low temperature plasma asher. Then metals enriched in the soybean curd were determined by means of emission spectrography. The pH of the solution was adjusted to 4.4--5.0 by adding suitable amounts of delta-gluconic lactone for the complete coagulation of the soybean protein. The proposed method can be applied to the collection and enrichment of various metal ions such as gold, silver, mercury, platinum, cadmium, beryllium, palladium, antimony, gallium, indium, cerium, lanthanum, thorium, yttrium, zirconium, etc. Those metals are not detectable in the original soybean. (auth.)

  20. The failure trace archive : enabling comparative analysis of failures in diverse distributed systems

    NARCIS (Netherlands)

    Kondo, D.; Javadi, B.; Iosup, A.; Epema, D.H.J.

    2010-01-01

    With the increasing functionality and complexity of distributed systems, resource failures are inevitable. While numerous models and algorithms for dealing with failures exist, the lack of public trace data sets and tools has prevented meaningful comparisons. To facilitate the design, validation,

  1. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  2. Metals distribution in Kumkol deposit petroleum

    International Nuclear Information System (INIS)

    Musaeva, Z.G.; Nadirov, A.N.; Ajdarbaev, A.S.

    1997-01-01

    Metals content in samples of Kumkol deposit petroleum is determined by the method of X-ray diffraction and neutron activation analysis. Specific consideration was devoted to nickel and vanadium. It is possible, that sources of these metals are various petroleum formation as well as both the absorbed or the got in stratum microelements. (author)

  3. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  4. Central Tibetan Plateau atmospheric trace metals contamination: a 500-year record from the Puruogangri ice core

    Science.gov (United States)

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2017-12-01

    Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri ice core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early

  5. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Science.gov (United States)

    Munier, B; Bendell, L I

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P Plastic debris will affect metals within coastal ecosystems by; 1) providing a sorption site (copper and lead), notably for PVC 2) desorption from the plastic i.e., the "inherent" load (cadmium and zinc) and 3) serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  6. Comprehensive large-scale investigation and assessment of trace metal in the coastal sediments of Bohai Sea.

    Science.gov (United States)

    Li, Hongjun; Gao, Xuelu; Gu, Yanbin; Wang, Ruirui; Xie, Pengfei; Liang, Miao; Ming, Hongxia; Su, Jie

    2018-04-01

    The Bohai Sea is characterized as a semi-closed sea with limited water exchange ability, which has been regarded as one of the most contaminated regions in China and has attracted public attention over the past decades. In recent years, the rapid industrialization and urbanization around the coastal region has resulted in a severe pollution pressure in the Bohai Sea. Although efforts from official government and scientific experts have been made to protect and restore the marine ecosystem, satisfactory achievements were not gained. Moreover, partial coastal areas in the Bohai Sea seemingly remain heavily polluted. In this study, we focused on five coastal regions around the Bohai Sea to study the spatial distribution pattern of trace elements in the sediments and their ecological risk. A total of 108 sediment samples were analyzed to determine the contamination degree of trace elements (Cu, Cd, As, Pb, Zn, Cr, and Hg). Contamination factor (CF), pollution load index (PLI), geoaccumulation index (I geo ), and potential ecological risk index (PERI) were utilized to assess the pollution extent of these metals. Spatial distribution patterns revealed that the sedimentary environments of coastal Bohai were in good condition, except Jinzhou Bay, according to the Marine Sediment Quality of China. The concentrations of Hg and Cd were considerably higher than the average upper crust value and presented high potential ecological risk and considerable potential ecological risk, respectively. The overall environment quality of the coastal Bohai Sea does not seem to pose an extremely serious threat in terms of metal pollution. Thus, the government should continue implementing pollution control programs in the Bohai Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dynamics and fates of trace metals chronically input in a Mediterranean coastal zone impacted by a large urban area.

    Science.gov (United States)

    Oursel, B; Garnier, C; Durrieu, G; Mounier, S; Omanović, D; Lucas, Y

    2013-04-15

    Quantification and characterization of chronic inputs of trace metals and organic carbon in a coastal Mediterranean area (the city of Marseille) during the dry season was carried out. The 625 km(2) watershed includes two small coastal rivers whose waters are mixed with treated wastewater (TWW) just before their outlet into the sea. Dissolved and particulate Cu, Pb, Cd, Zn, Co, Ni and organic carbon concentrations in the rivers were comparable to those in other Mediterranean coastal areas, whereas at the outlet, 2- to 18-fold higher concentrations reflected the impact of the TWW. A non-conservative behavior observed for most of the studied metals in the mixing zone was validated by a remobilization experiment performed in the laboratory. The results showed that sorption/desorption processes could occur with slow kinetics with respect to the mixing time in the plume, indicating non-equilibrium in the dissolved/particulate metal distribution. Thus, a sample filtration immediately after sampling is strictly required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The effects of trace metal exposure on agonistic encounters in juvenile rainbow trout, Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Sloman, K.A.; Baker, D.W.; Ho, C.G.; McDonald, D.G.; Wood, C.M.

    2003-01-01

    The effects of five trace metals, copper, cadmium, nickel, zinc and lead (presented as soluble salts) on the ability of juvenile rainbow trout to form social relationships were investigated. Comparable concentrations of the five metals in relation to their acute 96 h LC50s (concentration at which population mortality=50% at 96 h) were used (i.e. 15% of the 96 h LC50) and water quality parameters (hardness=120 mg l -1 as CaCO 3 , pH 8; DOC=3 mg l -1 ) were kept constant throughout. In the first experiment, trout exposed to sublethal concentrations of cadmium for 24 h displayed significantly lower numbers of aggressive attacks during pair-wise agonistic encounters than fish paired in the copper, nickel, zinc, lead and control water. In a second experiment, fish were exposed to the same concentration of metal for 24 h, and then returned to normal water for 24 h. When these metal pre-exposed fish were paired with non-exposed fish only cadmium pre-exposure had a significant effect on social interaction. All of the cadmium pre-exposed fish became subordinate when paired with non-exposed fish, whereas the probability of a fish pre-exposed to copper, nickel, zinc or lead becoming subordinate did not significantly differ from random. Therefore, at around 15% of the 96 h LC50, different metals exert different effects on the social behaviour of fish, suggesting potential implications for social structure and population stability

  9. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    Directory of Open Access Journals (Sweden)

    Cristina Yacoub

    2012-01-01

    Full Text Available This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL. The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES. The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  10. Concentrations and solubility of selected trace metals in leaf and bagged black teas commercialized in Poland

    Directory of Open Access Journals (Sweden)

    L. Polechońska

    2015-09-01

    Full Text Available The objective of this study was to determine the concentrations of heavy metals in bagged and leaf black teas of the same brand and evaluate the percentage transfer of metals to tea infusion to assess the consumer exposure. Ten leaf black teas and 10 bagged black teas of the same brand available in Poland were analyzed for Zn, Mn, Cd, Pb, Ni, Co, Cr, Al, and Fe concentrations both in dry material and their infusion. The bagged teas contained higher amounts of Pb, Mn, Fe, Ni, Al, and Cr compared with leaf teas of the same brand, whereas the infusions of bagged tea contained higher levels of Mn, Ni, Al, and Cr compared with leaf tea infusions. Generally, the most abundant trace metals in both types of tea were Al and Mn. There was a wide variation in percentage transfer of elements from the dry tea materials to the infusions. The solubility of Ni and Mn was the highest, whereas Fe was insoluble and only a small portion of this metal content may leach into infusion. With respect to the acceptable daily intake of metals, the infusions of both bagged and leaf teas analyzed were found to be safe for human consumption.

  11. Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater--a review.

    Science.gov (United States)

    La Colla, Noelia Soledad; Domini, Claudia Elizabeth; Marcovecchio, Jorge Eduardo; Botté, Sandra Elizabeth

    2015-03-15

    Evaluation of trace metal levels in seawater samples is undertaken regularly by research groups all over the world, leading to a growing demand for techniques involving fewer toxic reagents, less time-consuming protocols and lower limits of detection. This review focuses on providing a brief but concise description of the latest methodologies developed to this end, outlining the advantages and disadvantages of the various protocols, chelating and dispersive agents and instruments used. Conclusions are drawn on the basis of the articles reviewed, highlighting improvements introduced in order to enhance the performance of the protocols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  13. Neutron activation analysis of trace metals in the livers of Japanese sika deer (cervus Nippon)

    International Nuclear Information System (INIS)

    Fukushima, Michiko; Tamate, Hidetoshi; Sasaki, Yoshiro; Mitsugasira, Satoaki; Masumoto, Kazuyoshi.

    1997-01-01

    Neutron activation analysis facilities at the JMTR reactor was used to determine the levels of trace metals in the livers of nine Japanese sika deer. The samples were cut into pieces, pulverized in liquid nitrogen, freeze-dried, and finally fractionated through a stainless steel sieve of 200 mesh. Then the samples were irradiated for 6 or 24 hours by a neutron flux of 1.0x10 14 n·cm -2 ·sec -1 . In the present work, we analysed the concentrations of six elements (Ag, Co, Fe, Rb, Se, and Zn) in the livers of nine deer. (author)

  14. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    Accurate measurement of the free metal ion is difficult, especially for trace metals present in very small concentrations (less than micromolar) in natural systems. The recently developed Donnan membrane technique can measure the concentrations in solution in the presence of inorganic and organic

  15. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  16. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    Science.gov (United States)

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  17. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  18. Evaluation of Circle Diameter by Distributed Tactile Information in Active Tracing

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nakamoto

    2013-01-01

    Full Text Available Active touch with voluntary movement on the surface of an object is important for human to obtain the local and detailed features on it. In addition, the active touch is considered to enhance the human spatial resolution. In order to improve dexterity performance of multifinger robotic hands, it is necessary to study an active touch method for robotic hands. In this paper, first, we define four requirements of a tactile sensor for active touch and design a distributed tactile sensor model, which can measure a distribution of compressive deformation. Second, we suggest a measurement process with the sensor model, a synthesis method of distributed deformations. In the experiments, a five-finger robotic hand with tactile sensors traces on the surface of cylindrical objects and evaluates the diameters. We confirm that the hand can obtain more information of the diameters by tracing the finger.

  19. Smallest eigenvalue distribution of the fixed-trace Laguerre beta-ensemble

    International Nuclear Information System (INIS)

    Chen Yang; Liu Dangzheng; Zhou Dasheng

    2010-01-01

    In this paper we study the entanglement of the reduced density matrix of a bipartite quantum system in a random pure state. It transpires that this involves the computation of the smallest eigenvalue distribution of the fixed-trace Laguerre ensemble of N x N random matrices. We showed that for finite N the smallest eigenvalue distribution may be expressed in terms of Jack polynomials. Furthermore, based on the exact results, we found a limiting distribution when the smallest eigenvalue is suitably scaled with N followed by a large N limit. Our results turn out to be the same as the smallest eigenvalue distribution of the classical Laguerre ensembles without the fixed-trace constraint. This suggests in a broad sense, the global constraint does not influence local correlations, at least, in the large N limit. Consequently, we have solved an open problem: the determination of the smallest eigenvalue distribution of the reduced density matrix-obtained by tracing out the environmental degrees of freedom-for a bipartite quantum system of unequal dimensions.

  20. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    International Nuclear Information System (INIS)

    West, K.A.; Wilson, T.P.

    1992-01-01

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  1. Vertical and horizontal fluxes of selected radionuclides and trace metals off the coast of southern California

    International Nuclear Information System (INIS)

    Huh, C.-A.

    1990-01-01

    The overall objective of our research, within the structure of the CaBS program, is to understand the transport pathways and mass balances of some metabolically-active and inactive chemical species in the Santa Monica/San Pedro (SM/SP) Basin. Our focus is to examine selected trace metals and radionuclides in seawater, sediment trap material, and bottom sediments. Knowledge of the inventories, fluxes, and routes of these nuclides and metals in or among these reservoirs should lead to a cogent model for these elements in SM/SP Basin, which in turn should shed light on the fate and effects of energy-related by-products in a coastal region impacted by intense human activities. 4 figs., 3 tabs

  2. Fingerprinting Marcellus Shale waste products from Pb isotope and trace metal perspectives

    International Nuclear Information System (INIS)

    Johnson, Jason D.; Graney, Joseph R.

    2015-01-01

    Highlights: • Dry drilled, uncontaminated cuttings from Marcellus Shale and surrounding units. • Unoxidized and oxidized samples leached short and long term with H 2 O or dilute HCl. • Pb isotope ratios have distinctly different values from Marcellus Shale samples. • Mo and other trace metals can be used as Marcellus Shale environmental tracers. • Marcellus Shale leachate concentrations can exceed EPA contaminant screening levels. - Abstract: Drill cuttings generated during unconventional natural gas extraction from the Marcellus Shale, Appalachian Basin, U.S.A., generally contain a very large component of organic-rich black shale because of extensive lateral drilling into this target unit. In this study, element concentrations and Pb isotope ratios obtained from leached drill cuttings spanning 600 m of stratigraphic section were used to assess the potential for short and long term environmental impacts from Marcellus Shale waste materials, in comparison with material from surrounding formations. Leachates of the units above, below and within the Marcellus Shale yielded Cl/Br ratios of 100–150, similar to produced water values. Leachates from oxidized and unoxidized drill cuttings from the Marcellus Shale contain distinct suites of elevated trace metal concentrations, including Cd, Cu, Mo, Ni, Sb, U, V and Zn. The most elevated Mo, Ni, Sb, U, and V concentrations are found in leachates from the lower portion of the Marcellus Shale, the section typically exploited for natural gas production. In addition, lower 207 Pb/ 206 Pb ratios within the lower Marcellus Shale (0.661–0.733) provide a distinctive fingerprint from formations above (0.822–0.846) and below (0.796–0.810), reflecting 206 Pb produced as a result of in situ 238 U decay within this organic rich black shale. Trace metal concentrations from the Marcellus Shale leachates are similar to total metal concentrations from other black shales. These metal concentrations can exceed screening

  3. Trace Metals in Vegetables and Cereals- A Case Study of Indian Market-2016

    Directory of Open Access Journals (Sweden)

    Abaidya Nath Singh

    2017-03-01

    Full Text Available Background & Aims of the Study: Vegetables and Cereals are considered vital for properly-balanced diet given that they deliver vitamins, minerals, nutritional fiber, and phytochemicals. This study aimed to assess the concentration of As, Cu, Cd, Pb, Cr and Hg in common vegetables and cereals in urban open markets in Varanasi district, India Materials & Methods: Total 260 edible portions of vegetable samples of 13 species were collected in March to October, 2016 from predefined market sites. These samples classified into roots, stems, leafy vegetables, fruits, and legumes. These samples (unwashed, acetic acid washed and boiled were assessed using atomic absorption spectrophotometer. The statistical evaluations were carried out using the IBM SPSS 21. Results: The results obtained reveal that unwashed vegetables and cereals as compared to washed and boiled samples contain higher trace metal concentration. The order of heavy metal concentration was observed in Cu>Pb>Cd>As in vegetable and cereals samples. Hg and Cr were not detected in any samples. The mean value of Cu, Cd and Pb in unwashed and washed vegetables and cereals were lower than PFA standard except As, whereas in boiled vegetables and cereals are lower than PFA standard but the mean value of Cd and Pb were many folds higher than the EU standard at all the market site samples. Leafy vegetables were found to contain the highest metals values especially Spinacia oleracea followed by roots vegetable like Brassica rapa, at all the studied sites. The market sites MS3 located in the vicinity of industrial zone and in proximity to national highway showed elevated levels of trace metals concentration in the vegetables and cereals as compared to other market sites. Conclusions: The results showed that, the As, Cu, Cd and Pb concentration were reduced to about 12.5%, 5.87%, 11.36% and 10.42% of the initial concentrations by 2% acetic acid washing and to 25%, 21.87%, 20.45% and 16.67% of the initial

  4. Trace element distribution in the snow cover from an urban area in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-05-01

    This work presents the first results from winter field campaigns focusing on trace metals and metalloid chemistry in the snow cover from an urbanized region in central Poland. Samples were collected between January and March 2013 and trace element concentrations were determined using GF-AAS. A large inter-seasonal variability depending on anthropogenic emission, depositional processes, and meteorological conditions was observed. The highest concentration (in μg L(-1)) was reported for Pb (34.90), followed by Ni (31.37), Zn (31.00), Cu (13.71), Cr (2.36), As (1.58), and Cd (0.25). In addition, several major anthropogenic sources were identified based on principal component analysis (PCA), among which the most significant was the activity of industry and coal combustion for residential heating. It was stated that elevated concentrations of some trace metals in snow samples were associated with frequent occurrence of south and southeast advection of highly polluted air masses toward the sampling site, suggesting a large impact of regional urban/industrial pollution plumes.

  5. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs

  6. The Effect of Organism Size on the Content of Certain Trace Metals in Marine Zooplancton

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1976-01-01

    Individual species of euphausiids and pelagic shrimp, collected at the same time and place, were sorted into different size groups and analyzed for several biologically important trace metals by atomic absorption spectrophotometry and neutron activation. Other specimens from these samples were dissected into gross anatomical parts and analyzed in the same way. Molts collected from zooplankters maintained live in the laboratory were also analyzed for metals. Results for the different size-group experiments showed that in general the concentrations of zinc, iron, and manganese were inversely correlated with dry body weight. Depending upon the crustacean species, metal concentrations in smaller individuals ranged from 1.2 to 4.1 times greater than those in larger individuals of the same species. Copper concentration on the other hand, tended to be a direct function of dry weight. Concentrations of zinc, iron, and manganese were generally higher in molts and dissected exoskeletons than in muscle tissue, however, the opposite was true for copper. The amount of material shed by euphausiids in molting ranged from 4.7 to 10.9% of dry body weight with smaller animals tending to lose a greater percentage of body weight than the larger specimens. These molts, in which ash accounted for about 40-50% of the dry weight, contained 15-20, 19-45, 28-40, and 15% of the total body zinc, iron, cobalt and manganese, respectively. Only 5% of the total body copper content was associated with the molt. In addition, molts from smaller crustaceans had higher concentrations of zinc and iron than those from larger species. With the exception of copper, it appears that a relatively large fraction of the animal's metal content is associated with the older inert chitin, indicating that much of the trace metal measured in small planktonic crustaceans is merely sorbed to the surface and is not physiologically necessary. In an ecological sense, the rapid molting frequency of these Crustacea

  7. Determination of trace amounts of metals in saline water by energy-dispersive XRF (with the Na-DDTC preconcentration)

    International Nuclear Information System (INIS)

    Holynska, B.; Bisiniek, K.

    1975-01-01

    A simple method for the determination of trace concentrations of metals in saline water is described. The analytical procedure involves the separation of metal ions of Cu(2), Zn(2), Hg(2) and Fe(3) by precipitation with diethyldithiocarbamate (DDTC). The radioisotope X-ray fluorescence method using Si/Li detector has been applied for the determination of metal ions closed in the DDTC deposition. (author)

  8. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Ip, C.C.M.; Li, X.D.; Zhang, G.; Farmer, J.G.; Wai, O.W.H.; Li, Y.S.

    2004-01-01

    The rapid economic development in the Pearl River Delta (PRD) region in South China in the last three decades has had a significant impact on the local environment. Estuarine sediment is a major sink for contaminants and nutrients in the surrounding ecosystem. The accumulation of trace metals in sediments may cause serious environmental problems in the aquatic system. Thirty sediment cores were collected in the Pearl River Estuary (PRE) in 2000 for a study on trace metal pollution in this region. Heavy metal concentrations and Pb isotopic compositions in the four 210 Pb-dated sediment cores were determined to assess the fluxes in metal deposits over the last one hundred years. The concentrations of Cu, Pb and Zn in the surface sediment layers were generally elevated when compared with the sub-surface layers. There has been a significant increase in inputs of Cu, Pb and Zn in the PRE since the 1970s. The results also showed that different sampling locations in the estuary received slightly different types of inputs. Pb isotopic composition data indicated that the increased Pb in the recent sediments was of anthropogenic origin. The results of trace metal influxes showed that about 30% of total Pb and 15% of total Zn in the sediments in the 1990s were from anthropogenic sources. The combination of trace metal analysis, Pb isotopic composition and 210 Pb dating in an estuary can provide vital information on the long-term accumulation of metals in sediments

  9. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf

    International Nuclear Information System (INIS)

    Naji, Abolfazl; Khan, Farhan R.; Hashemi, Seyed Hassan

    2016-01-01

    This study was carried out to evaluate the concentration of trace metals (Cd, Cu, Ni, Pb and Zn) in the muscle of four fish species from the Persian Gulf. Trace metals were analyzed using atomic absorption spectroscopy and consumption rates advisory for minimizing chronic systemic effects in children and adults were estimated. The metals concentrations in analyzed fish samples were lower than legal limits. Cadmium target hazard quotient values suggested that the threshold to avoid the potential risk for children health is an exposure level lower than 3 meals per week. Hazard index values based on four metals (not including Pb) for the child age class were higher than those of the adult age class, suggesting that children may suffer from a higher health risk. This study provides information about the consumption limits of certain metals, in particular Cd, necessary for minimizing potential health risks resulting from human consumption. - Highlights: • Trace metals in wild marine fish from the Persian Gulf were investigated. • Metal concentrations descended in the following order: Zn > Cu > Pb ≈ Ni > Cd > . • The Cd and Pb may be potential risk to human. • No obvious health risk from the intake of trace elements through fish consumption.

  10. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    Science.gov (United States)

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.

  11. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands.

    Science.gov (United States)

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Jiang, Fenghua; Wang, Shuai; Zhuang, Zhixia; Wang, Xiaoru

    2017-09-15

    Trace metal contents in 38 species of tropical marine fishes harvested from the Spratly islands of China were determined by microwave digestion and inductively coupled plasma mass spectrometry analysis. Arsenic species were determined by high-performance liquid chromatography and inductively coupled plasma mass spectrometry analysis. The average levels of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb, and U in the fish samples were 1.683, 0.350, 0.367, 2.954, 36.615, 0.087, 0.319, 1.566, 21.946, 20.845, 2.526, 3.583, 0.225, 0.140, and 0.061mg·kg -1 , respectively; Fe, Zn, and As were found at high concentrations. The trace metals exhibited significant positive correlation between each other, with r value of 0.610-0.852. Further analysis indicated that AsB (8.560-31.020mg·kg -1 ) was the dominant arsenic species in the fish samples and accounted for 31.48% to 47.24% of the total arsenic. As(III) and As(V) were detected at low concentrations, indicating minimal arsenic toxicity. Copyright © 2017. Published by Elsevier Ltd.

  12. Trace elements and heavy metals in hair of stage III breast cancer patients.

    Science.gov (United States)

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  13. Determination of trace metals in coastal seawater around Okinawa and its multielement profiling analysis

    International Nuclear Information System (INIS)

    Itoh, Akihide; Ishigaki, Teruyuki; Arakaki, Teruo; Yamada, Ayako; Yamaguchi, Mami; Kabe, Noriko

    2009-01-01

    In the present study, trace metals in coastal surface seawater around Okinawa were determined by inductively coupled plasma mass spectrometry (ICP-MS) with chelating disk preconcentration. As a result, the concentrations of V, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb, and U were obtained in the range from 10 μgL -1 to 0.001 μgL -1 for 6 samples. In addition, multielement profiling analyses were carried out using analytical values obtained in order to elucidate the features of trace metals in each coastal sea area. For coastal surface seawater near an urban area, the analytical values for Zn, Cu, Mn, and Pb were higher by more than 10-fold the literature values for open-surface seawater, and those of Cd were also relatively high. Such a trend concerning the multi-element profile was almost similar to the literature values for coastal seawater of the main island of Japan. On the other hand, the analytical values of most elements for coastal surface seawater near a suburb area were in the range from 0.5 to 5 fold, compared to the literature values for open surface seawater. From multielement profiling analyses for nutrient type elements in marine chemistry, it was suggested that the concentrations of Zn and Cd in a coral sea area normalized to literature values for open surface-seawater were higher than those of Ni and Cu. (author)

  14. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ model version 5.0

    Directory of Open Access Journals (Sweden)

    K. W. Appel

    2013-07-01

    trace metals. Removing the anthropogenic fugitive dust (AFD emissions and the effects of wind-blown dust (WBD lowered the model soil concentrations. However, even with both AFD emissions and WBD effects removed, soil concentrations were still often overestimated, suggesting that there are other sources of errors in the modeling system that contribute to the overestimation of soil components. Efforts are underway to improve both the nighttime mixing in urban areas and the spatial and temporal distribution of dust-related emission sources in the emissions inventory.

  15. Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009

    Directory of Open Access Journals (Sweden)

    J. Fölster

    2011-07-01

    Full Text Available Long term data series (1996 through 2009 for trace metals were analyzed from a large number of streams and rivers across Sweden varying in tributary watershed size from 0.05 to 48 193 km2. The final data set included 139 stream sites with data for arsenic (As, cobalt (Co, copper (Cu, chromium (Cr, nickel (Ni, lead (Pb, zinc (Zn, and vanadium (V. Between 7 % and 46 % of the sites analyzed showed significant trends according to the seasonal Kendall test. However, in contrast to previous studies and depositional patterns, a substantial portion of the trends were positive, especially for V (100 %, As (95 %, and Pb (68 %. Other metals (Zn and Cr generally decreased, were mixed (Ni and Zn, or had very few trends (Co over the study period. Trends by region were also analyzed and some showed significant variation between the north and south of Sweden. Regional trends for both Cu and Pb were positive (60 % and 93 %, respectively in the southern region but strongly negative (93 % and 75 %, respectively in the northern region. Kendall's τ coefficients were used to determine dependence between metals and potential in-stream drivers including total organic carbon (TOC, iron (Fe, pH, and sulphate (SO42−. TOC and Fe correlated positively and strongly with As, V, Pb, and Co while pH and SO42− generally correlated weakly, or not at all with the metals studied.

  16. Multielement determination of trace metals in river water (certified reference material, JSAC 0301-1) by high efficiency nebulization ICP-MS after 100-fold preconcentration with a chelating resin-packed minicolumn

    International Nuclear Information System (INIS)

    Zhu, Yanbei; Hattori, Ryota; Fujimori, Eiji; Umemura, Tomonari; Haraguchi, Hiroki

    2005-01-01

    The determination of 34 trace metals in a river water certified reference material (CRM), i.e. JSAC 0301-1, which was issued by the Japan Society for Analytical Chemistry in January 2004, was performed by ICP-MS with a high efficiency nebulizer after preconcentration with a laboratory-made chelating resin-packed minicolumn, with which trace metals were concentrated 100-fold from 50 mL of a river water sample to 0.5 mL of the final analysis solution. Trace metals in JSAC 0301-1 were observed in the concentration range from 19 μg L -1 of Al to 0.000053 μg L -1 of Bi. It was found that most of the concentrations of trace metals, including rare earth elements (REEs), in JSAC 0301-1 were lower than those in JAC 0031, which was also a previously issued CRM prepared with water from the same river as that of JSAC 0301-1. The low concentrations of trace metals in JSAC 0301-1 might be attributed to the fact that there was heavy rain before collecting the original water sample to prepare the present CRM. Furthermore, the REE distribution patterns of JSAC 0301-1, JAC 0031 and the average values of river water samples in Japan were parallel to each other. These results indicate that the distributions of REEs in JSAC 0301-1 and JAC 0031 were the typical ones of river water samples in Japan. (author)

  17. Surficial and vertical distribution of heavy metals in different estuary wetlands in the Pearl river, South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honggang; Cui, Baoshan [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Zhang, Kejiang [Xinjiang Research Center of Water and Wastewater Treatment, Xinjiang Deland Co., LTD., Urumqi (China)

    2012-10-15

    A total of 87 soil profiles sampled from five types of wetlands in the Pearl River estuary were analyzed to investigate the surficial and vertical distributions of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn). The results show that wetlands directly connected with rivers (e.g., riparian wetlands, estuarine wetlands, and mangrove wetlands) has much higher metal concentrations than those indirectly connected with rivers (e.g., pond wetlands and reclaimed wetlands). The river water is the major pollution source for all investigated heavy metals. The vertical distribution of heavy metals can be classified into three patterns: (i) linear distribution pattern. The concentration of heavy metals gradually decreases with an increase in soil depth (for riparian and estuarine wetlands); (ii) irregular and stable pattern (for pond and reclaimed wetlands); and (iii) middle enrichment pattern (for mangrove wetlands). In addition to river-borne inputs, a variety of vegetation composition, hydraulic conditions, and human activities also contribute to the variation in distribution of heavy metals in different wetlands. Soil properties (e.g., particle size, pH, salinity, and SOM) also affect the distribution of trace metals in each soil layer. The major pollution source of heavy metals is industrial wastewater. Other sources include agriculture and domestic premises, and atmospheric deposition. This study provides a sound basis for the risk assessment of heavy metals in the studied wetlands and for wetland conservation in general. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses.

    Science.gov (United States)

    Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico

    2016-02-15

    Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct

  19. Trace metals content (contaminants) as initial indicator in the quality of heat treated palm oil whole extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fauzi, Noor Akhmazillah bt [Chemical and Bioprocess Department, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Sarmidi, Mohd Roji [Chemical Engineering Pilot Plant, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-07-01

    An investigation was carried out on the effect of different sterilization time on the trace metals concentration of palm oil whole extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 minutes. The kernels were then stripped from the sterilized fruits to get the pulp and later the pulp was pressed using small scale expeller. The resulting puree was centrifuge at 4000 rpm for 20 minutes. The palm oil whole extract were then collected and trace metals analysis was conducted using Inductively Couple Plasma-Mass Spectrometry (ICP-MS). The result showed that the highest yield was obtained at 40 minutes of sterilization with 19.9 {+-} 0.21 % (w/w). There was no significant different (p < 0.5) in total trace metals content between the degrees of the heat treatment. Na+ was found as the highest trace metals content in the extract with mean concentration ranging from 1.05 {+-} 0.03 ppm to 2.36 {+-} 0.01 ppm. 40 minutes of heating time was predicted to have good oil quality due to higher content in trace metals that inhibit the lipase enzyme activity.

  20. Trace metals bioaccumulation potentials of three indigenous grasses grown on polluted soils collected around mining areas in Pretoria, South Africa

    International Nuclear Information System (INIS)

    Lion, G. N.; Olowoyo, J. O.; Modise, T. A.

    2016-01-01

    The rapid increase in the number of industries may have increased the levels of trace metals in the soil. Phyto remediation of these polluted soils using indigenous grasses is now considered an alternative method in re mediating these polluted soils. The present study investigated and compared the ability of three indigenous grasses as bioaccumulators of trace metals from polluted soils. Seeds of these grasses were introduced into pots containing polluted soil samples after the addition of organic manure. The seeds of the grasses were allowed to germinate and grow to maturity before harvesting. The harvested grasses were later separated into shoots and roots and the trace metal contents were determined using ICP –MS. From all the grasses, the concentrations of trace metals in the roots were more than those recorded in the shoot with a significant difference (P Themeda trianda > Cynodon dactylon. The study concluded that the three grasses used were all able to bioaccumulate trace metals in a similar proportion from the polluted soils. However, since livestock feed on these grasses, they should not be allowed to feed on the grasses used in this study especially when harvested from a polluted soil due to their bioaccumulative potentials. (au)

  1. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B.; Ringwood, Amy H.; Sokolova, Inna M.

    2013-01-01

    Highlights: •P CO 2 alters accumulation of Cd and Cu in clam cells. •Accumulation of Cd induces release of free Zn 2+ . •Accumulation of Cu induces an increase in free Cu 2+ and Fe 2+ . •Metal-induced oxidative stress is alleviated at high P CO 2 . •Toxicity of Cu in likely enhanced while that of Cd alleviated by high P CO 2 . -- Abstract: Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO 2 (P CO 2 ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high P CO 2 (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between P CO 2 and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of P CO 2 (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants – cadmium (Cd) and copper (Cu). Elevated P CO 2 resulted in a decrease in intracellular pH (pH i ) of the isolated mantle cells from 7.8 to 7.4. Elevated P CO 2 significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated P CO 2 levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd 2+ concentration remained the same, while intracellular levels of free Zn 2+ increased suggesting that Cd 2+ substitutes bound Zn 2+ in these cells. In contrast, Cu exposure did not affect intracellular Zn 2+ but led to a profound increase in the intracellular levels

  2. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles--a systematic analytical review.

    Science.gov (United States)

    Matusiewicz, Henryk

    2014-06-01

    Metal ion release from metallic materials, e.g. metallic alloys and pure metals, implanted into the human body in dental and orthopedic surgery is becoming a major cause for concern. This review briefly provides an overview of both metallic alloys and pure metals used in implant materials in dental and orthopedic surgery. Additionally, a short section is dedicated to important biomaterials and their corrosive behavior in both real solutions and various types of media that model human biological fluids and tissues. The present review gives an overview of analytical methods, techniques and different approaches applied to the measurement of in vivo trace metals released into body fluids and tissues from patients carrying metal-on-metal prostheses and metal dental implants. Reference levels of ion concentrations in body fluids and tissues that have been determined by a host of studies are compiled, reviewed and presented in this paper. Finally, a collection of published clinical data on in vivo released trace metals from metallic medical implants is included. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the element Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  4. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the elements Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  5. Trace metals in floodplain lake sediments : SEM/AVS as indicator of bioavailability and ecological effects

    NARCIS (Netherlands)

    Griethuysen, van C.

    2006-01-01

    This thesis addresses the geochemical aspects of AVS (Acid Volatile Sulfide) and SEM (Simultaneously Extracted Metals) in floodplain lake sediment, its spatial distribution in floodplain lakes and dynamics over time, the link with effects on single species (bioassays), as well as the impact of

  6. Distribution of trace species in power plant streams: A European perspective

    International Nuclear Information System (INIS)

    Meij, R.

    1994-01-01

    In the Netherlands only pulverized coal-fired dry bottom boilers are installed. The flue gases are cleaned by high-efficiency cold-side electrostatic precipitators (ESPs) and in all large coal-fired power plants by flue-gas desulfurization (FGD) installations of the lime(stone)/gypsum process. KEMA has performed a large research program on the fate of (trace) elements at coal-fired power plants. A great deal of attention has been paid to the concentrations and distribution of trace elements in coal, in ash and in the vapor phase in the flue gases. Sixteen balance studies of coal-fired power plants, where coal imported from various countries is fired, have been performed. With the information provided by these studies the enrichment factors for the trace elements in ash and the vaporization percentage of the minor and trace elements in the flue gases have been calculated. Using these enrichment factors and vaporization percentages combined with data on the concentration in the coal, the concentrations in the ash and in the vapor phase in the flue gases can be predicted. The emission into the air of trace elements occurs in the solid state (fly ash) and in the gaseous state. The emissions in the solid state are low due to the high degree of removal in the ESPs. The emissions in the gaseous phase are, relatively speaking, more important. In an FGD both emissions are further diminished. In the next section the behavior of elements in the boiler and ESP will be discussed. The influence of the electrostatic precipitators will be reviewed the section thereafter, followed by the fate of gaseous minor and trace elements. And finally the behavior of elements in the FGD will be treated in the last section

  7. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    Science.gov (United States)

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  8. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf

    DEFF Research Database (Denmark)

    Naji, Abolfazl; Khan, Farhan; Hashemi, Seyed Hassan

    2016-01-01

    This study was carried out to evaluate the concentration of trace metals (Cd, Cu, Ni, Pb and Zn) in the muscle of four fish species from the Persian Gulf. Trace metals were analyzed using atomic absorption spectroscopy and consumption rates advisory for minimizing chronic systemic effects in chil...... health risks resulting from human consumption....... in children and adults were estimated. The metals concentrations in analyzed fish samples were lower than legal limits. Cadmium target hazard quotient values suggested that the threshold to avoid the potential risk for children health is an exposure level lower than 3 meals per week. Hazard index values based...... on four metals (not including Pb) for the child age class were higher than those of the adult age class, suggesting that children may suffer from a higher health risk. This study provides information about the consumption limits of certain metals, in particular Cd, necessary for minimizing potential...

  9. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    Science.gov (United States)

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  10. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  11. Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Allabaksh Murad Basha

    2014-01-01

    Full Text Available Vegetables (Tomato – Solanum lycopersicum, green chilli – Capsicum annum and bitter gourd – Momordica charantia and fruits (Banana – Musa acuminata colla, papaya – Carica papaya and mosambi – Citrus limetta from the cultivated areas around the Tummalapalle uranium mining site were analyzed for trace metals (Al, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Be, V, Co, Cd and U using inductively coupled plasma-mass spectrometer (ICP-MS. As per the estimated data, the concentrations of trace metals in vegetables and fruits are found in the range of 47.5–7.8 mg/kg for Al, 9.7–1.0 mg/kg for Cr, 3.8–1.0 mg/kg for Mn, 75.5–13.9 mg/kg for Fe, 1.4–0.2 mg/kg for Ni, 2.3–0.8 mg/kg for Cu, 9.2–3.1 mg/kg for Zn, 0.2–1.4 mg/kg for Pb, 19.2–1.9 μg/kg for Be, 96.1–15.8 μg/kg for V, 48.2–12.9 μg/kg for Co, 46.5–2.3 μg/kg for Cd and 16.4–2.7 μg/kg for U. The trace metals observed are compared to the literature reported values. Trace elemental data were subjected to statistical analysis to examine the interrelationship between the investigated trace elements and possible source identification of the trace metal contamination in vegetable and fruits. Daily intake of trace metals through ingestion of vegetables and fruits are also calculated.

  12. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiming; Qian, Xin, E-mail: xqian@nju.edu.cn; Hu, Wei; Wang, Yulei; Gao, Hailong

    2013-07-01

    The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied for partitioning and evaluating the mobility, availability and persistence of trace metals (Al, Cd, Co, Cr, Cu, Ni, Pb, Sr, V and Zn) in urban street dusts collected from different areas of Nanjing, China. The mobility sequence based on the sum of the BCR sequential extraction stages was: Sr (91.65%) > Pb (79.16%) > Zn (74.26%) > Cu (68.53%) > Co (45.98%) > Al (40.01%) ≈ V (38.45%) ≈ Ni (37.88%) > Cr (29.35%) > Cd (22.68%). Almost every trace metal had its highest total concentrations in the industrial area, except for Sr which had its highest concentration in the commercial area. Contamination factors (Cf), risk assessment code (RAC) and enrichment factor (Ef) were then calculated to further assess the environmental risk and provide a preliminary estimate of the main sources of trace metals in street dusts. Non-carcinogenic effects and carcinogenic effects due to exposure to urban street dusts were assessed for both children and adults. For non-carcinogenic effects, ingestion was the main route of exposure to street dusts for these metals, followed by dermal contact and inhalation. Hazard index values for all studied metals were lower than the safe level of 1, and Pb exhibited the highest risk value (0.125) in the case of children. The carcinogenic risk for Cd, Co, Cr and Ni were all below the acceptable level (< 10{sup −6}). - Highlights: • This study assesses a comprehensive environmental risk of urban trace metal pollution. • This study evaluates human health risk combined with the speciation of trace metals. • This study points the critical contaminated metals that need to be paid special attention. • This study supplies useful information and reference on the application of BCR SPE method.

  13. Investigation and evaluation of airborne pollution in the framework of PARCOM (North Sea) and HELCOM (Baltic Sea) - subproject: Measurements of trace metals

    International Nuclear Information System (INIS)

    Schneider, B.

    1993-01-01

    On the basis of measurements of the deposition and concentrations of atmospheric trace metals the annual input of some selected elements (Pb, Zn, Cd, Ni, V) into the North Sea and the Baltic Sea was estimated. For the Baltic Sea, deposition measurements with a buoy system in the Kiel Bight and data from the EGAP(HELCOM)-monitoring network were used. Data from the measurement stations were extrapolated to related sub-basins according to the deposition fields obtained from model calculations (EMEP). For the North Sea, a mean atmospheric trace metal distribution was determined from numerous measurements at a coastal site and over the central North Sea and the annual input was calculated by multiplication with corresponding deposition velocities and scavenging ratios. A comparison of the deposition data based on measurements with those from model calculations show good agreement in the case of Pb in the Baltic Sea as well as in the North Sea. However, for Zn and Cd large discrepancies are observed. Additionally, deposition processes were studied. Scavenging ratios were determined and dry deposition velocities were estimated by the use of a new method for high time resolution measurements of atmospheric trace metal concentrations (impactor/TXRF). (orig.). 9 figs., 14 tabs [de

  14. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  15. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z {approx}< 1

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, N.; Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Tumlinson, J.; Thom, C.; Fox, A. J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Prochaska, J. X.; Werk, J. K. [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); O' Meara, J. M. [Department of Physics, Saint Michael' s College, Vermont, One Winooski Park, Colchester, VT 05439 (United States); Ribaudo, J. [Department of Physics, Utica College, 1600 Burrstone Road, Utica, New York 13502 (United States)

    2013-06-20

    We assess the metal content of the cool ({approx}10{sup 4} K) circumgalactic medium (CGM) about galaxies at z {approx}< 1 using an H I-selected sample of 28 Lyman limit systems (LLS; defined here as absorbers with 16.2 {approx}< log N{sub H{sub I}} {approx}< 18.5) observed in absorption against background QSOs by the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The N{sub H{sub I}} selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N{sub H{sub I}} in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] {approx_equal} -1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z {approx}< 1 galaxies.

  16. Selected Trace Metals and Organic Compounds and Bioavailability of Selected Organic Compounds in Soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    National Research Council Canada - National Science Library

    Becker, Mark F

    1997-01-01

    .... S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected...

  17. Trophic relationships in an Arctic food web and implications for trace metal transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dehn, Larissa-A. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)]. E-mail: ftld@uaf.edu; Follmann, Erich H. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Thomas, Dana L. [Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-6660 (United States); Sheffield, Gay G. [Alaska Department of Fish and Game, Fairbanks, Division of Wildlife Conservation, Fairbanks, Alaska, 99701-1599 (United States); Rosa, Cheryl [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Duffy, Lawrence K. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); O' Hara, Todd M. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)

    2006-06-01

    dynamic and actively regulated trace metals.

  18. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Dehn, Larissa-A.; Follmann, Erich H.; Thomas, Dana L.; Sheffield, Gay G.; Rosa, Cheryl; Duffy, Lawrence K.; O'Hara, Todd M.

    2006-01-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15 N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15 N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  19. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Distribution characteristics of available trace elements in soil from a reclaimed land in a mining area of north Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Li Zhanbin

    2013-06-01

    Full Text Available Through field and laboratory tests we studied the temporal and spatial variation in the soil content of four available trace elements :copper(Cu, iron(Fe, manganese(Mn and zinc (Zn, to analyze their distribution characteristics in reclaimed mining land under different reclamation conditions. The available trace elements content varied considerably with different land reclamation patterns. Extended reclamation time was helpful for the recovery of the available trace element content in the soil, and after more than eight years of soil reclamation, the content of available trace elements was closer to or greater than that in soil under natural conditions. Various treatment measures significantly influenced the content and distribution of available trace elements in the soil, and reasonable artificial treatments, including covering the soil and growing shrubs and herbaceous plants, increased the content of available trace elements.

  1. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  2. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    Energy Technology Data Exchange (ETDEWEB)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  3. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    B Munier

    . Plastic debris will affect metals within coastal ecosystems by; 1 providing a sorption site (copper and lead, notably for PVC 2 desorption from the plastic i.e., the "inherent" load (cadmium and zinc and 3 serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  4. Preliminary investigation on determination of radionuclide distribution in field tracing test site

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Takebe, Shinichi; Guo Zede; Li Shushen; Kamiyama, Hideo.

    1993-12-01

    Field tracing tests for radionuclide migration have been conducted by using 3 H, 60 Co, 85 Sr and 134 Cs, in the natural unsaturated loess zone at field test site of China Institute for Radiation Protection. It is necessary to obtain confidable distribution data of the radionuclides in the test site, in order to evaluate exactly the migration behavior of the radionuclides in situ. An available method to determine the distribution was proposed on the basis of preliminary discussing results on sampling method of soils from the test site and analytical method of radioactivity in the soils. (author)

  5. The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chloe Wing-yee; Ip, Carman Ching-man [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Shin, Paul K.S. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Qian Peiyuan [Department of Biology and Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-07-01

    Victoria Harbour has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1950s. Inputs of contaminants have declined dramatically during the last two decades as a result of better controls at the source and improved wastewater treatment facilities. To assess the spatial and temporal changes of metal contaminants in sediments in Victoria Harbour, core and grab sediments were collected. The central harbour areas were generally contaminated with heavy metals. The spatial distribution of trace metals can probably be attributed to the proximity of major urban and industrial discharge points, and to the effect of tidal flushing in the harbour. In the sediment cores, the highest concentrations of trace metals were observed to have accumulated during the 1950s-1980s, corresponding with the period of rapid urban and industrial development in Hong Kong. From the late 1980s, there has been a major decline in the concentrations of trace metals, due to a reduction in industrial activities and to the enactment of wastewater pollution controls in the territory. The Pb isotopic compositions of the sediments revealed the anthropogenic inputs of Pb to the harbour. The {sup 206}Pb/{sup 207}Pb ratios varied from 1.154 to 1.190, which were lower than those of background geological materials in Hong Kong ({sup 206}Pb/{sup 207}Pb: 1.201-1.279). The data also indicated that the Pb in the harbour sediments most likely originated from mixed sources, including the leaded gasoline used in the past and other anthropogenic sources.

  6. An off-line automated preconcentration system with ethylenediaminetriacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Minami, Tomoharu; Konagaya, Wataru; Zheng, Linjie; Takano, Shotaro; Sasaki, Masanobu; Murata, Rena; Nakaguchi, Yuzuru; Sohrin, Yoshiki

    2015-01-07

    A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al.). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Portable detection of trace metals in airborne particulates and sediments via μPADs and smartphone.

    Science.gov (United States)

    Jia, Yuan; Dong, Hui; Zheng, Jianping; Sun, Hao

    2017-11-01

    Particulate matter (PM), a key indicator of air pollution by natural and anthropogenic activities, contributes to a wide spectrum of diseases that lead to a shortening of life expectancy. It has been recognized that trace metals in airborne PM are highly toxic and can be correlated with lesion in respiratory, gastrointestinal, immunological, and hematological systems. Traditional methods for trace metal assay require sophisticated instrumentations and highly trained operators in centralized laboratories. In this work, by integrating the technologies of microfluidic paper-based analytical devices, additive manufacturing, smartphone, and colorimetric sensing, we developed the first smartphone based paper microfluidic platform for portable, disposable, and quantitative measurements of cobalt (Co), copper (Cu), and iron (Fe) in ambient air and street sediments. On a single A4-sized paper, 48 devices were fabricated in under 30 s with a total cost of ∼$1.9. On each device, 12 reaction units were patterned and used for colorimetric tests. Particulate samples from urban ambient air and street sediments were collected, processed, and analyzed. Signals of the on-chip complexation product were recorded using a smartphone camera and processed by a self-developed app on an iOS system. For precisely controlling the object distance, chip position, and luminance, a hand-held 3D cellphone housing was designed and printed. The detection limits of Co, Cu, and Fe were determined to be 8.2, 45.8, and 186.0 ng, while the linear dynamic ranges were calculated to be 8.2-81.6, 45.8-4.58 × 10 2 , and 1.86 × 10 2 -1.86 × 10 3  ng, representing a practically relevant device performance with a significant reduction in the detection cost and time consumption. Trace metals in ambient air and sediments of two cities in China have been quantified portably, thus demonstrating the utility of our system in improving strategies for air pollution control in low-resource settings.

  8. Selected trace metal levels in common vegetables grown in NWFP, Pakistan

    International Nuclear Information System (INIS)

    Masud, K.; Jaffar, M.

    1998-01-01

    Seventeen vegetables procured from local markets of Peshawar and its suburbs were analyzed using wet digestion atomic absorption method for Fe, Pb, As, Hg, Cd, Cr, and Ni. The families investigated were: Cucurbitaceae, Solanaceae, Cruciferae, Liliaceae, Araceae, Leguminosae, Malvaceae, Umbelliferae and Zingiberaceae. The heavy metal data are reported at 99%(- + 2S) confidence level for triplicate measurements on sub samples of a given sample with an overall reproducibility of 2% compared with standard material samples. Comparison of averages through t-test indicates that each vegetable group is distinctly different from the other in terms of metal content. Maximum iron was present in garlic, at 4.585 mu g/g, dry weight (edible part-stem) of the Liliacease family. Arsenic was found to be below detection limit in all the vegetable groups. Lead levels were quite low, maximum concentration (0.0200 mu g/g, dry weight) was found in karaila (edible part-fruit). Mercury levels were relatively higher, with maximum concentration (2.590 mu g/g, dry weight) in gem (edible part-stem). The levels of nickel were moderately higher, being maximum (2.375 mu g/g dry weight) in karaila. The overall content of trace metals appeared to be within laid down internationally for safe human consumption, with only a few exceptions. (author)

  9. Linking Environmental Magnetism to Geochemical Studies and Management of Trace Metals. Examples from Fluvial, Estuarine and Marine Systems

    Directory of Open Access Journals (Sweden)

    Michael Scoullos

    2014-07-01

    Full Text Available Among the diverse research fields and wide range of studies encompassed by environmental magnetism, the present work elaborates on critical aspects of the geochemistry of trace metals that emerged through years of original research in a variety of environmental compartments. This review aims at sharing the insights gained on (a tracing metal pollution sources; and (b identifying processes and transport pathways from sources to depositional environments. Case studies on the Elefsis Gulf (Greece and the Gulf of Lions (France demonstrate the potential of combined magnetic measurements and chemical analysis to trace pollution signals resulting from land-based sources and atmospheric deposition. Case studies on estuarine environments, namely the Louros, Acheloos, and Asopos Estuaries (Greece, address modes of trace metal behavior under the influence of different hydrological regimes and elucidate in situ processes within the transitional estuarine zone, that define their ultimate fate. As sources, transport pathways, and processes of trace metals are fundamental in environmental management assessments, the involvement of magnetic measurements in the policy cycle could facilitate the development and implementation of appropriate regulatory measures for the integrated management of river basins, coastal, and marine areas.

  10. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  11. Modelling the atmospheric transport of trace metals from Europe to the North Sea and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G; Weber, H; Grassl, H [GKSS-Forschungszentrum Geesthacht G.m.b.H., Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik

    1989-01-01

    Within the framework of a research contract with the German Federal Environmental Agency the long range transport of trace metals over Europe and the deposition of trace metals into the North Sea and the Baltic Sea are estimated using the EMEP- (European Monitoring and Evaluation Programme) trajectory model. The methodology for the model calculations is explained. Preliminary results for the total deposition of lead into the North Sea and the Baltic Sea show, that the calculated values are lower than previous estimates based on extrapolations from measurements at coastal sites and ship measurements in the southern Baltic Sea, respectively. (orig.).

  12. Application of neutron activation analysis to the development of a monitoring system for trace metals in coastal waters

    International Nuclear Information System (INIS)

    Karbe, L.; Schnier, C.

    1976-03-01

    In view of the development of monitoring systems for trace metals in coastal waters, a research program has been started for a better understanding of interrelationships between input of trace metals, water chemistry, suspended matter, sediment and organisms. For multielement determinations neutron activation analysis has been chosen. Since environmental studies require the analysis of a large number of samples, the efficiency of the method is improved by automation of the acquisition and analysis of the γ-spectra from the Ge(Li) detectors. An automatic sample changer with counting device is described. First applications of the method in environmental research are presented. (orig.) [de

  13. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  15. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Science.gov (United States)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  16. Distribution of trace elements in the natural waters of Bacino del Cordevole (Dolomite Alps, Agordo, Belluno, Italy)

    International Nuclear Information System (INIS)

    Brondi, M.; De Cassan, M.; Gragnani, R.; Orlandi, C.; Paganin, G.

    1989-12-01

    This work deals with (the study of the) distribution and circulation of trace elements in Italian aquifers corresponding to a wide range of environmental conditions, such as water chemism, lithology, hydrogeology, geochemical conditions as well as level of contamination. During 1985 the hydrogeochemical study was carried out on springs and surface waters from an area located in the East-Alpine- Range (Agordo, BL). The waters salinity is generally low (100+200 mg/1 of t.d.s.). Some springs, leaching levels of gypsum in the Bellerophon formation, present salinity values higher than 1 g/1. In the studied area the chemisa of the water is widely influenced by lithology. In fact different percentage ratios of principal cations and anions were observed for groups of samples: waters leaching carbonatic-rocks show the highest in Ca/Mg and HCO 3 ratios; waters coming from volcanic or metamorphic formations have the lowest Ca+Mg ratio; waters leaching gypsum horizons show the highest sulphates ratio. The content of trace elements are generally very low and show non significant contamination of the examined area. The high Zn contents of the springs 36 and 37 are due to the presence of heavy metal mineralization near the sampling sites. Vanadium reaches relative high contents in the samples 22 (11μg/l) and 35 (9 μg/1), that flow in volcanic rocks. In general, the higher vanadium contents correspond to waters in volcanites. Uranium and molybdenum exhibit significant correlation coefficient with the electric conductance, respectively r=0,87 and r=0,51. These two elements are characterized by high geochemical mobility and generally their concentrations increase with increasing salinity if precipitation processes do not occur. The geochemical characteristics of elements and peculiar geochemical processes effect trace concentrations element more than lithology. In fact only vanadium contents show a significant correlation with volcanic rocks. (author)

  17. Preparation of an estuarine sediment quality control material for the determination of trace metals

    Directory of Open Access Journals (Sweden)

    Hatje Vanessa

    2006-01-01

    Full Text Available Quality Control Materials (QCM have being used routinely in daily laboratory work as a tool to fill the gap between need and availability of Certified Reference Materials (CRM. The QCM are a low-cost alternative to CRMs, and they are in high demand, especially, for the implementation of quality control systems in laboratories of several areas. This paper describes the preparation of a QCM for the determination of trace metals in estuarine sediments and the results of an interlaboratory exercise. Homogeneity and stability studies were performed and analysis of variance was carried out with the results. No statistical significant differences were observed in the concentrations of Co, Cr, Cu, Mn, Pb and Zn between- or within bottle results. Neither the storage nor temperature affected the results. Therefore, the QCM produced is considered homogeneous and stable and can be used for statistical control charts, evaluation of reproducibility and interlaboratory exercises.

  18. Trace metal concentrations in mussels in the outfall zones of thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Krishna Kumar, P.T.; Sekimoto, Hiroshi

    2008-01-01

    Many trace elements (TE) like Mn, Fe, Cu, and Zn, occur naturally in marine environments and these TE accomplish decisive functions in humans to maintain good health. Living organisms like Mytilus galloprovincialis are a rich source of TE and are grown extensively near the industrial water outfalls. Some of these TE tend to be pollutants when their elevated levels produce deleterious effects on the ecological system. As chemical analysis for TE toxicity are expensive, organisms like Mytilus galloprovincialis can be used as monitors of environmental contamination. Most studies reported so far are directed towards the effect of a single environmental factor on marine bivalves. However in the areas receiving mixed effluents from various point and non-point sources, the studies on combined effect of two or more stresses would be a more practical approach. In this paper, We investigate the heavy metal concentrations of mercury, cadmium, lead, zinc, cooper, nickel, manganese, and chromium in Mytilus galloprovincialis to provide information on the pollution of water bodies by thermal and nuclear power plants for the choice of sites from where edible mussels can be harvested. We also propose a chemometric approach developed by us using information theory to mitigate trace element toxicity in the edible part of Mytilus galloprovincialis harvested in these sites. (author)

  19. The flux distribution from a 1.25m2 target aligned heliostat: comparison of ray tracing and experimental results

    CSIR Research Space (South Africa)

    Maliage, M

    2012-05-01

    Full Text Available The purpose of this paper is to validate SolTrace for concentrating solar investigations at CSIR by means of a test case: the comparison of the flux distribution in the focal spot of a 1.25 m2 target aligned heliostat predicted by the ray tracing...

  20. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake.

    Science.gov (United States)

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi

    2017-09-04

    Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10 -5 to 10 -4 ). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.

  1. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  2. Sediment trace metal profiles in lakes of Killarney Park, Canada from regional to continental influence

    International Nuclear Information System (INIS)

    Belzile, Nelson; Chen Yuwei; Gunn, John M.; Dixit, Sushil S.

    2004-01-01

    The lakes in Killarney Provincial Park (KPP) located 40-60 km southwest of Sudbury, Ontario are beginning to recover after decades of being severely affected by acidification and atmospheric pollutants. Detailed profiles of acid-recoverable trace elements (As. Cd, Cu, Co. Fe, Mn, Ni, Pb and Zn) were obtained after aqua regia digestion and ICP-OES analysis of sediment cores taken from six Park lakes. Results permitted the identification of two types of profiles. The first type applies to elements such as Fe, Mn, As and Co for which historical deposition and recent recovery are strongly masked by diagenetic remobilization. The second type of profile applies to elements such as Cd, Cu, Ni, Pb and Zn on which the history of industrialisation in North America and mining activities in Sudbury can be superimposed. Based on sediment data of trace elements less affected by diagenetic remobilization (Cd, Cu, Ni, Pb, Zn), chemical recovery indices can be estimated from depth profiles. Indices of maximum (C p ) and surface (C s ) contamination were calculated by dividing the concentration of a given metal by the pre-industrial level. The ratio of the two indices provided a simple estimation of the chemical recovery of lakes that does not consider the influence of the watershed or the lake pH. Profiles of metals in sediment of KPP complement the water quality monitoring data and tend to indicate that this area is in transition from dominant influence of regional pollution sources to becoming controlled by continental atmospheric deposition. - Lakes in Killarney Park are in transition from being impacted by regional pollution to being controlled by continental atmospheric deposition

  3. Concentrations and distributions of trace and minor elements in Chinese and Canadian coals and ashes

    International Nuclear Information System (INIS)

    Sun Jingxin; Jervis, R.E.

    1987-01-01

    A total of 35 trace and minor elements including some of environmental significance were determined in each of a selection of 15 Chinese and 6 Canadian thermal coals and their ashes by using the SLOWPOKE-2 nuclear reactor facility of the University of Toronto. The concentrations and distributions of these constituents among the coals and their combustion products (viz. ash and volatile matter) are presented. The detailed results showed wide variations in trace impurity concentrations (up to a factor of 100 and more) among the coals studied. Values for elemental enrichment factors (EF) relative to normal crustal abundances indicated that only As(EF=13), Br(5.7), I(16), S(230), Sb(11) and Se(320) were appreciably enriched in coal. (author) 14 refs.; 5 tabs

  4. Vertical distribution of particulate trace elements in a street canyon determined by PIXE analysis

    International Nuclear Information System (INIS)

    Raunemaa, T.; Hautojaervi, A.; Kaisla, K.; Gerlander, M.

    1981-01-01

    Suspended particles in a street canyon were investigated by collecting air particulate matter on thin filters at heigths 2.3 to 20.5 m. The weather parameters and traffic characteristics were registered during the collection. Quantitative analysis of 15 trace elements from AI to Pb was carried out by the PIXE method using 1.8-2.0 MeV protons. The concentration of lead was found to decrease exponentially when going from street level to roof level. Almost all the trace elements analyzed were found to fall into two groups with different vertical distributions. The collected matter above 10 m height was found to be due mainly to combustion originated motor vehicle exhaust, the matter below 10 m to soil originated dust. (orig.)

  5. Distribution of trace elements between clays and zeolites and aqueous solutions similar to sea water

    International Nuclear Information System (INIS)

    Berger, G.

    1992-01-01

    The mechanisms of solid-solution partitioning during mineral crystallization in sea water have been investigated for Rb, Cs, Co, Sr, U, Th and lanthanides as trace elements, and Fe, Mg-chlorite/smectites and Na-zeolites as solid phases. These minerals have been synthesized by alteration at 40 o C in saline solutions of silicate glasses of appropriate compositions. The variation of the distribution coefficients (D) with the concentration of the elements as well as competition mechanisms between elements of analogous crystallochemical properties have been studied. The ''trapping'' of trace elements is shown to be governed by two mechanisms, according to D values or to water-rock ratios. At low values of D the incorporation of elements is controlled only by D, whereas at high values it is controlled by the number of available crystallochemical sites. (Author)

  6. Assessment of trace metals using lichen transplant from automobile mechanic workshop in Ile-Ife metropolis, Nigeria.

    Science.gov (United States)

    Odiwe, Anthony I; Adesanwo, Adeyemi T J; Olowoyo, Joshua O; Raimi, Idris O

    2014-04-01

    The level of air pollution around the automobile mechanic workshops has been generally overlooked. This study, examined the level of trace metals in automobile mechanic workshops and the suitability of using transplanted lichen thalli of Lepraria incana for measuring air pollution in such areas. Samples of the lichen thalli were transplanted into seven different sites and were attached to the bark of trees at each site. The samples were harvested from the sites after 3-month exposure. Concentrations of Pb, Cu, Cd, Fe, Zn, and S content were determined using an atomic absorption spectrophotometer. Results showed that there was a significant difference in the trace metals concentrations across the sites (p trend in the concentration of these heavy metals suggests that activities in these workshops might become a major source of certain heavy metals in the environment and if the pollution activities persist, it might become worrisome over time.

  7. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  8. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  9. Studies of trace metals in fish, sediment and water from kpong reservior

    International Nuclear Information System (INIS)

    Yikpo, Wisdom Kwasi

    2014-06-01

    Water of good quality is indispensable to human survival on earth. The provision of potable water to both the rural and the urban populations is necessary to prevent health hazards. The aim of this research was to assess water quality with respect to physicochemical parameters and trace metals levels in the water, the sediment and the fish species from the Kpong Reservoir on the Lower Volta River. The water, the sediment and the fish samples were collected monthly for six (6) months from November 2011 to February 2012 (dry season) and from May to July 2012 ( wet season). The water, the sediment and the fish samples were analyzed for Hg, Se, Fe, Mn and Pb using Atomic Absorption spectroscopy (AAS). Mercury was determined using a cold vapour technique with the AAS equipped with a hydride generator. Selenium was also determined by hydride generation. A mixture of nitric acid (HNO3 65%), hydrochloric acid ( HCl 35%) and hydrogen peroxide (H2O2 30%) was used for complete oxidation of the organic sample in a fume chamber. The samples were loaded on a Milestone microwave Labstation ETHOS 900, INSTR:MLS -1200 MEGA. The results of this study showed that there were significant differences in concentrations of the physicochemical parameters between the two seasons. Domestic, municipal and Agricultural waste might have contributed to the release of higher contaminants into the sediment in both seasons. Coefficients of variation for the physicochemical parameters were below 50%, while iron and lead in addition to phosphate and sulphate were more than 50%. The mean concentration of trace metals in the water were 0.008 mg/L for Hg, 0.0035 mg/L for Se, 0.255 mg/L for Fe, 0.087 mg/L for Mn and 0.135 mg/L for Pb. Levels of all trace metals were below the WHO guideline values, except Pb which exceeded at 0.05 mg/L. Levels of nutrients were also below the WHO guideline value except phosphate which recorded a standard deviation of ±0.02 for the WHO guideline value of 0.3 mg/ L. The

  10. Trace metals adhered to urban sediments. Results from fieldwork in Poços de Caldas, Brazil

    Science.gov (United States)

    Isidoro, Jorge; Silveira, Alexandre; Júnior, José; Poleto, Cristiano; de Lima, João; Gonçalves, Flávio; Alvarenga, Lívia

    2016-04-01

    The urbanization process has consequences such as the introduction of new sources of pollution and changes in the natural environment, like increase of impervious areas that accumulate pollutants between rainfall events. The pollution caused by the washing of accumulated sediment on the gutters, ultimately carried to water bodies through the stormwater drainage system, stands out in this process. This study aimed to quantify and characterize the sediments accumulated in the gutters of roads in an urban area of Poços de Caldas (MG), Brazil. Fieldwork took place during the period of 21.05.2013 to 27.08.2013. Main goal was to investigate the process of accumulation of dry sediments on impervious surfaces and find how this process relates with the urban occupation. More specific goals were to quantify the average mass and characterize the granulometric distribution of accumulated sediments, and identify the occurrence of trace metals Zn, Cu, Ni, Cd, Cu and Pb in the fraction of sediments with diameter smaller or equal to 63μm. The samples were weighed to find the aggregate mass and then sieved through meshes of 63μm, 125μm, 250μm, 600μm, 1180μm, and 2000μm for the granulometric analysis. Samples of the sediment fraction smaller than 63μm of diameter were subjected to analysis by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for the identification of trace metals. We found that the aggregate mass of accumulated sediments varies in time and space and is particularly influenced by the land use of the sampling areas. Areas under construction produced more sediments than built areas or areas without construction. This study may serve as an input for creating diffuse pollution control and mitigation strategies towards the reduction of accumulated pollutants in the urban environment of Poços de Caldas. Pb and Zn shown the highest concentrations. The heavy metal concentration decreases after wet

  11. Trace/Heavy Metal Impact on Agricultural Soils from Commonly used Fertilizers of Bangladesh

    International Nuclear Information System (INIS)

    Islam, A.; Jolly, Y. N.

    2005-01-01

    On investigation of seven commonly used fertilizers of Bangladesh for evaluation of their trace/heavy metal impact on the agricultural soils it was observed that TSP, SSP and Cow-dung were more potential in supplying a broad range of these elements including toxin ones such as, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, Y, Pb, Cd. In phosphate fertilizers, the concentrations of Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb ranged from 106-129, 21.1-124, 12.2-16.1, 8.6-27.1, 8.2-12.5, 93.5-245, 8.4-12.1 mgkg -1 respectively. In cow-dung the respective contents of the same elements except Cd were 8.1, 820, 11.1, 6.1, 12.4, 72.2, 12.1 mg kg -1 . Zinc sulphate was also found to be a potential fertilizer capable of supplying Mn, Co, Ni, Cu, Zn, Cd, Pb, containing 182, 311, 63, 10.5, 300, 27.5, 28.1 mg kg -1 respectively. MP and Gypsum has shown to be of less potential in adding trace/heavy elements in soils. MP contained Mn, Fe, Br, Sr and its Mn concentration was 13.2 mg kg -1 . The elements, Fe, Cu, Zn, Sr were measured in Gypsum where Cu and Fe concentrations were 15.3 and 13.2 mg kg -1 respectively. Urea was found to contain Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Sr at low levels in comparison with other fertilizers. The trace/heavy metals load from chemical fertilizers per hectare of agricultural land per year was also calculated. The Maximum input of V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were 14.8, 23.2, 22.3, 646, 2.9, 4.9, 3.9, 2816, 2.2 and 4.5 g respectively.(author)

  12. Heavy metals distribution in the Dead Sea black mud, Jordan

    International Nuclear Information System (INIS)

    Momani, K.; El-Hasan, T.; Auaydeh, S.

    2009-01-01

    The concentrations of trace metals (Fe, Mn, Ni, Zn, Co, Cr, Cu and Pb) were investigated in the Dead Sea black mud and river sediments in the northern basin of the Dead Sea region, Jordan. The pH of the mud was slightly above 8 while it was around 6 for the seawater. All analyzed heavy metal content in the black mud, except Pb, was less than their contents in other types of mud. Tlis might be due to the effect of the mildly acideic pH of seawater, which would enhance the metal solubility or incorporation within salt mineral structure, rather than precipitation. The sequential extraction results showed that Ni and Co transferred into the carbonate fraction, Mn is found mostly as manganese-iron oxide, and the residual phase contained Cr, Cu, Fe,and Pb. This study illustrated that the black mud had low heavy metal contents, thus indicating low toxicity. additionally, it shows insignificance effect of the mixing of freshwater with seawater on the heavy metal contents in the black mud. (authors).

  13. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  14. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    Science.gov (United States)

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  15. Trace metal variations in the shells of Ensis siliqua record pollution and environmental conditions in the sea to the west of mainland Britain

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Nicholas J.G. [Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB, Wales (United Kingdom)]. E-mail Nick.Pearce@aber.ac.uk; Mann, Victoria L. [Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB, Wales (United Kingdom)

    2006-07-15

    Shells of the pod razor shell (Ensis siliqua) from 13 locations around the west coast of mainland Britain have been analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for a range of trace metals including Zn, Cd, Pb, U, Ba, Sr and Mg. The trace metal record in these shells is a proxy record for changes in seawater chemistry during the 1990s. Regional variations exist in the median concentrations of the analysed metals. Barium concentrations are related to increased productivity from sewage sludge dumping at sea. Strontium shows a local relationship to salinity, but there is no clear relationship over the study area, instead high Sr is often associated with high Ba, and may reflect ontogenetic factors such as growth rate. Magnesium shows a seasonal variation within individual shells and can be used to calculate sea surface temperatures from groups of shells. Contaminant metals show a clear regional relationship with known sources, thus high Pb and Zn are typically associated with former metal mining areas (e.g. Cardigan Bay, Anglesey), and high Pb, Zn, Cd and U are associated with industrial activity in Liverpool Bay. Anomalies such as the high U in shells from northern Scotland cannot at present be explained. A seasonal variation of Pb is also seen in Cardigan Bay and Liverpool Bay, relating to increased winter fluxes of these metals to the marine environment. The regional distribution of these metals is consistent with known sources of contamination and patterns of seawater migration around the coast of Britain.

  16. Mobility of nutrients and trace metals during weathering in the late Archean

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  17. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?

    Science.gov (United States)

    Vondráčková, Stanislava; Tlustoš, Pavel; Száková, Jiřina

    2017-08-01

    Willows (Salix spp.) are considered to be effective for the phytoremediation of trace elements from contaminated soils, but their efficiency is limited in heavily polluted soils because of poor growth. Liming can be a desirable measure to decrease the plant availability of elements, resulting in improved plant development. Notably, large root area and maximum soil penetration are basic parameters that improve the efficiency of phytoremediation. The impact of soil chemical properties on willow root anatomy and the distribution of trace elements below-ground have rarely been studied. The effect of liming on root parameters, biomass allocation and trace element distribution in non-harvestable (coarse roots, fine roots, stumps) and harvestable plant parts (twigs and leaves) of Salix × smithiana was assessed at the end of a 4-year pot experiment with two trace element-polluted soils that differed in terms of soil pH. Stump biomass predominated in weakly acidic soil. In neutral soil, the majority of biomass was located in fine roots and stumps; the difference from other plant parts was minor. Trace elements were the most concentrated in fine roots. Translocation to above-ground biomass increased as follows: Pb roots roots). Lime application decreased the concentrations of mobile Cd and Zn and related levels in plants, improved biomass production and root parameters and increased the removal of all trace elements in weakly acidic soil. None or minimum differences in the monitored parameters were recorded for dolomite treatments in both soils. The dose and source of liming had crucial effects on root anatomy. Growing willows in limed trace element-polluted soils is a suitable measure for combination of two remediation strategies, i.e. phytoextraction of Cd and Zn and assisted phytostabilization of As and Pb.

  18. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  19. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu isotope fractionation

    International Nuclear Information System (INIS)

    Mathur, R.; Munk, L.A.; Townley, B.; Gou, K.Y.; Gómez Miguélez, N.; Titley, S.; Chen, G.G.; Song, S.; Reich, M.; Tornos, F.; Ruiz, J.

    2014-01-01

    Highlights: • Cu isotope fractionation of ores and waters identifies copper sulfide weathering. • Redox reactions cause isotopic shift measured in areas of sulfide weathering. • Consistent isotope signature in different deposit, climate, or concentration. - Abstract: Copper isotope signatures in waters emanating from mineralized watersheds provide evidence for the source aqueous copper in solution. Low-temperature aqueous oxidation of Cu sulfide minerals produces significant copper isotopic fractionation between solutions and residues. Abiotic experimental data of fractionation (defined as Δ liquid–solid ‰ = δ 65 Cu liquid − δ 65 Cu solid ) are on the order of 1–3‰ and are unique for copper rich-sulfide minerals. Data presented here from ores and waters within defined boundaries of porphyry copper, massive sulfide, skarn, and epithermal ore deposits mimic abiotic experiments. Thus, the oxidation of sulfide minerals appears to cause the signatures in the waters although significant biological, temperature, and pH variations exist in the fluids. Regardless of the deposit type, water type, concentration of Cu in solution, or location, the data provide a means to trace sources of metals in solutions. This relationship allows for tracking sources and degree of metal migration in low temperature aqueous systems and has direct application to exploration geology and environmental geochemistry

  20. Studies on chelation properties of ampicillin with trace metal ions and comparison with penicillin complexes

    International Nuclear Information System (INIS)

    Rehmani, F.S.; Hameed, W.

    2003-01-01

    The penicillin is highly effective antibiotic with extremely wide margin of safety. Ampicillin e is the penicillin group of antibiotic in which side chain is phenyl group i.e. D-amino benzyl penicillin. The side chain determines many of anti bacterial and pharmacological characteristics. They inhibit the protein synthesis in bacterial cell wall. The chelating properties of the antibiotic may be used in the metal transport across the membrane. The present investigations are helpful in drug metabolism and their effects on minerals contents of the body. The complex formation between Ampicillin and penicillin with trace metal ions such as Fe(III), Cr(III), Al(III), Mn(II), Ni(II), Co(II), Ca(II), Mg(II), Cu(III) and Zn(II) were studied by potentiometric titrations and spectrophotometric methods. Stoichiometry of these complexes were studied by mole ratio method. It was found that the Fe(III) and Cu(II) ions form most stable complexes near physiological pH and the mole ratio was 1:1. (author)

  1. Trace metal chemistry and silicification of microorganisms in geothermal sinter, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, E.J.; Brown, K.L.; Campbell, K.A. [University of Auckland (New Zealand). Dept. of Geology; Cady, S.L. [Portland State University, Portland, OR (United States). Dept. of Geology

    2001-08-01

    As part of a pilot study investigating the role of microorganisms in the immobilisation ol As, Sb, B, Tl and Ug, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92-94{sup o}C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and TI were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92-94{sup o}C) ends of the terrestrial thermal spring ecosystems studied. (author)

  2. TRACE METAL CONTENT (Cu, Zn, Mn AND Fe) IN URTICA DIOICA L. AND PLANTAGO MAJOR L.

    Science.gov (United States)

    Krolak, Elzbieta; Raczuk, Jolanta; Borkowska, Lidia

    2016-11-01

    The aim of the study was to compare the contents of Cu, Zn, Mn and Fe in the washed and unwashed leaves and roots of two plant species: Urica dioica L. and Plantago major L., used in herbal medicine. These two herb species occur in the same environmental habitats, yet their morphological structure is different. The soil and plant samples for analyses were collected from an uncontaminated area in Eastern Poland. In each habitat location, the samples were taken from sandy soils with slightly acidic and neutral pH values. The obtained results showed that U. dioica and P. major accumulated similar amounts of trace metals, such as: Cu, Zn and Fe, in leaves, despite the differences in the morphological structure of their overground parts. The content of Mn in leaves U. dioica was about twice as much as in P. major. Also, no differences in the metal content were observed between washed and unwashed leaves of both species. However, in the same habitat conditions, a significantly higher content of Cu, Zn and Mn was found in the roots of P. major than U. dioica. The content of Fe in the roots was similar in both species. P. major and U. dioica may be a valuable source of microelements, if they are obtained from unpolluted habitats.

  3. Impact of simulated acid rain on trace metals and aluminum leaching in latosol from Guangdong Province, China

    Science.gov (United States)

    Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin. Xu

    2014-01-01

    Acid rain is one of the most serious ecological and environmental problems worldwide. This study investigated the impacts of simulated acid rain (SAR) upon leaching of trace metals and aluminum (Al) from a soil. Soil pot leaching experiments were performed to investigate the impacts of SAR at five different pH levels (or treatments) over a 34-day period upon the...

  4. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Science.gov (United States)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  5. Temporal and spatial variability of trace metals in suspended matter of the Mandovi estuary, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Kessarkar, P.M.; Rao, T.G.

    of the estuary. SPM is consistently low at all stations during the post-monsoon. Trace metals (Cu, Ni, Zn, Cr, and Pb) show strong inter-relationships. They correlate well with Fe and Mn only during the monsoon. The concentrations of Cr, Cu, and Pb are high...

  6. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  7. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    J.A.O. Oyekunle

    2014-01-01

    Full Text Available Bread loaves randomly sampled from nine outlets and bakeries within Ile-Ife were analysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determination was carried out via spectrophotometric method while trace metals in the digested bread samples were profiled using Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the trace metal levels were of the order: 0.03–0.10 μg/g Co = 0.03–0.10 μg/g Pb < 0.23–0.46 μg/g Cu < 2.23–6.63 μg/g Zn < 25.83–75.53 μg/g Mn. This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples contained both essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.

  8. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  9. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  10. Metal and trace element sediment assessment from Guarapiranga reservoir, Alto Tiete Basin, Sao Paulo, SP, Brazil

    International Nuclear Information System (INIS)

    Guimaraes, Guilher