WorldWideScience

Sample records for trace level chemical

  1. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  2. Levels of chemical contaminants in nonoccupationally exposed U. S. residents

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, J.W.; Hammons, A.S.

    1978-08-01

    Data are presented on the levels of all chemical contaminants resulting from environmental pollution which have been found in human tissues including blood, urine, breast milk, and tissue samples obtained at autopsy. Most data results from specific surveys to determine health hazards. The roles of trace elements and recognition of the need to determine baseline levels of chemicals introduced into the environment are factors which have motivated surveys by individual investigators. Thus, most data on chemicals in human tissues record levels of pesticides (e.g., DDT and metabolites), levels of trace metals such as lead, cadmium, and mercury, or levels of nutritionally essential elements such as zinc, copper, manganese, and fluoride. Data available on iron and calcium are not presented as their presence in the environment is generally not considered hazardous. Data on several uncommon chemicals, such as indium and ytterbium, are included basically as items of interest and to further document their presence in healthy individuals. Baseline data were presented where available to provide perspective as to chemical levels which might be expected under conditions where exposure could be considered normal or not directly related to a pollutant source. Nearly 600 cited surveys or investigations, most of which were reported within the past decade, are listed. Ninety-four different chemical contaminants, primarily trace metals and organochlorine pesticides, are reported. It is estimated that over 75% of the data published during the past 30 years on chemical contaminants derived from environmental pollution and found in human tissue in the United States are represented in this report.

  3. Levels of chemical contaminants in nonoccupationally exposed U.S. residents

    International Nuclear Information System (INIS)

    Holleman, J.W.; Hammons, A.S.

    1978-08-01

    Data are presented on the levels of all chemical contaminants resulting from environmental pollution which have been found in human tissues including blood, urine, breast milk, and tissue samples obtained at autopsy. Most data results from specific surveys to determine health hazards. The roles of trace elements and recognition of the need to determine baseline levels of chemicals introduced into the environment are factors which have motivated surveys by individual investigators. Thus, most data on chemicals in human tissues record levels of pesticides (e.g., DDT and metabolites), levels of trace metals such as lead, cadmium, and mercury, or levels of nutritionally essential elements such as zinc, copper, manganese, and fluoride. Data available on iron and calcium are not presented as their presence in the environment is generally not considered hazardous. Data on several uncommon chemicals, such as indium and ytterbium, are included basically as items of interest and to further document their presence in healthy individuals. Baseline data were presented where available to provide perspective as to chemical levels which might be expected under conditions where exposure could be considered normal or not directly related to a pollutant source. Nearly 600 cited surveys or investigations, most of which were reported within the past decade, are listed. Ninety-four different chemical contaminants, primarily trace metals and organochlorine pesticides, are reported. It is estimated that over 75% of the data published during the past 30 years on chemical contaminants derived from environmental pollution and found in human tissue in the United States are represented in this report

  4. Trace and ultratrace level elemental and speciation analysis

    International Nuclear Information System (INIS)

    Arunachalam, J.

    2012-01-01

    Accurate determination of elements present at parts per million and billion levels in various matrices is a growing requirement in different fields. In environmental sciences various trace elements need to be analyzed so as establish the dispersal models of pollutants or the adequacy of effluent treatment prior to discharge into water bodies. The issues of bioaccumulation and magnification are important in aquatic systems. In nutrition and biochemistry one has to establish the bio-availability of essential and toxic elemental species as toxic elements prevent assimilation of essential elements. Fission and fusion technologies use a variety of structural materials requiring many trace elements to be present at levels strictly below the specified levels. Ultra-pure bulk semiconductor materials are required for fabrication devices. In metallurgy and materials sciences too, various trace elements are known to influence the properties. In the emerging fields like nanotechnology, it is necessary to understand the passage and accumulation of nano-particles inside the cells, through trace analysis. Many analytical techniques exist which can provide the concentration information in the bulk materials with good accuracy. They include ICP-AES, FAAS, and ICP-MS, which are solution based techniques. Direct solid state analytical techniques are Glow Discharge Mass Spectrometry (GDMS) and XRF. Accelerator based ion-beam analysis techniques can provide information on concentration and depth profiles of different elements in layered structures. Hyphenated techniques such as HPLC/lC-ICPMS, are helpful in identifying various chemical oxidation states in which a given element might be present in a matrix, which is termed as speciation analysis. This presentation will include the existing analytical competencies and the laboratory requirements for trace and ultra trace element elemental and speciation analyses and their applications. (author)

  5. Some Chemical Group Separations of Radioactive Trace Elements

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1962-06-15

    As a pretreatment for gamma spectrometric analysis methods have been developed for the chemical separation of traces of P, Sc, Ge, As, Se, Br, Zr, Nb, Ru, Ag, Cd, Sn, Sb, I, Hf, Ta, Re, Os, Au and Hg into 9 different groups. By combining the present methods with already existing chemical group separation methods for traces of Na, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, In, Fe, Cs, Ba, L.a, the rare earths, W and Ir, a complete separation scheme comprising 15 groups of elements has been worked out. The chemical 15-group separation method has been advantageously used in gamma spectrometric routine analysis of biological materials.

  6. Some Chemical Group Separations of Radioactive Trace Elements

    International Nuclear Information System (INIS)

    Samsahl, K.

    1962-06-01

    As a pretreatment for gamma spectrometric analysis methods have been developed for the chemical separation of traces of P, Sc, Ge, As, Se, Br, Zr, Nb, Ru, Ag, Cd, Sn, Sb, I, Hf, Ta, Re, Os, Au and Hg into 9 different groups. By combining the present methods with already existing chemical group separation methods for traces of Na, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, In, Fe, Cs, Ba, L.a, the rare earths, W and Ir, a complete separation scheme comprising 15 groups of elements has been worked out. The chemical 15-group separation method has been advantageously used in gamma spectrometric routine analysis of biological materials

  7. Levels of trace elements in MWSS drinking water

    International Nuclear Information System (INIS)

    Andal, T.T.

    1998-01-01

    As a water supplier for the metropolis, vigilance over the water quality has not been taken for granted at the Metropolitan Waterworks and Sewerage System (MWSS). By the early 1980's, a control laboratory equipped with modern facilities had been set up to supplement the already existing control laboratory at Filter Plant II handling physical, chemical, bacteriological, biological and mineral analyses and examinations, efficiently. The new central laboratory is intended to monitor trace elements, organic constituents and other elements with health related impact so as to assure the consumers of a safe drinking water supply at all times. This presentation reviews the levels of trace element pollution in MWSS tap water, then and now, in justification of the rehabilitation projects along the distribution network, in the treatment plants and other pertinent innovations corresponding to budgeted capital outlays as invested by the system. (author)

  8. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  9. Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues

    Science.gov (United States)

    Gautier, Thomas; Sebree, Joshua A.; Li, Xiang; Pinnick, Veronica T.; Grubisic, Andrej; Loeffler, Mark J.; Getty, Stephanie A.; Trainer, Melissa G.; Brinckerhoff, William B.

    2017-06-01

    The chemical structure and formation pathways of Titan aerosols remain largely unknown. In this work, we studied the effect of trace aromatics on the chemical composition and formation pathways of laboratory analogues of Titan's organic aerosols. The aerosol analogues were produced using four different trace aromatic molecules, comprised of one or two aromatic rings, each with or without a nitrogen heteroatom. Samples were then analyzed by laser desorption/ionization Mass Spectrometry (LDMS), revealing a high variability in the sample composition depending on the trace aromatic used. Our work reveals that the final chemical structure of the aerosols depends strongly on the number of aromatic rings in the trace molecule, leading either to a polymeric or to a random co-polymeric growth of the sample. These different chemical structures can affect the physical properties of the aerosol. Future analysis of Titan's aerosols using better resolution could potentially determine whether either of the growth hypotheses are preferred.

  10. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    Science.gov (United States)

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  11. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Chemical analysis of the trace elements in the soft tissues. The trace elements of interest (Cu, Zn, Fe, Pb, Cd) were then determined in the digested solutions, using Thermoelemental type. M6 brand of an atomic absorption Spectrometer equipped with a flame operated atomisation system and a deuterium ...

  12. Survey of chemical speciation of trace elements using synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1985-01-01

    Information concerning the chemical state of trace elements in biological systems generally has not been available. Such information for toxic elements and metals in metalloproteins could prove extremely valuable in the elucidation of their metabolism and other biological processes. The shielding of core electrons by binding electrons affect the energy required for creating inner-shell holes. Furthermore, the molecular binding and the symmetry of the local environment of an atom affect the absorption spectrum in the neighborhood of the absorption edge. X-ray absorption near-edge structure (XANES) using synchrotron radiation excitation can be used to provide chemical speciation information for trace elements at concentrations as low as 10 ppM. The structure and position of the absorption curve in the region of an edge can yield vital data about the local structure and oxidation state of the trace element in question. Data are most easily interpreted by comparing the observed edge structure and position with those of model compounds of the element covering the entire range of possible oxidation states. Examples of such analyses are reviewed. 14 refs., 1 fig

  13. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  14. Trace elements levels in centenarian ‘dodgers’

    OpenAIRE

    Alis, Rafael; Santos-Lozano, Alejandro; Sanchís-Gomar, Fabián; Pareja Galeano, Helios; Fiuza Luces, María del Carmen; Garatachea, Nuria; Lucía Mulas, Alejandro; Emanuele, Enzo

    2016-01-01

    Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or ‘dodgers’ (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant ...

  15. Radioisotope 45Ca labeling four calcium chemical compounds and tracing calcium bioavailability

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Niu Huisheng; Li Huaifen

    2004-01-01

    Objective: To build up a new method of the radioisotope 45 Ca labeling four calcium chemical compounds, observe and tracing bioavailability change of calcium labeled with radioisotope 45 Ca. Methods: The calcium gluconate (Ca-Glu), calcium citrate (Ca-Cit), calcium carbonate (Ca-Car) and calcium L-threonate (Ca-Thr)were labeled by radioisotope 45 Ca. Four calcium chemical compounds of 45 Ca labeling were used of calcium content 200 mg/kg in the rats and measure the absorption content and bioavailability of calcium in tissue of heart, lever spleen, stomach, kidney, brain, intestine, whole blood, urine, faeces. Results: 1) Radioisotope 45 Ca labeling calcium chemical compound has high radio intensity, more steady standard curve and recover rate. 2) The absorption of organic calcium chemical compounds is higher than the inorganic calcium chemical compound in the study of calcium bioavailability. Conclusion: The method of tracing with radioisotope 45 Ca labeling calcium chemical compounds has the characteristic of the sensitive, objective, accurate and steady in the study of calcium bioavailability

  16. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  17. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.

    Science.gov (United States)

    Plósz, Benedek Gy; Langford, Katherine H; Thomas, Kevin V

    2012-11-01

    Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between

  18. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  19. Estimation of trace levels of plutonium in urine samples by fission track technique

    International Nuclear Information System (INIS)

    Sawant, P.D.; Prabhu, S.; Pendharkar, K.A.; Kalsi, P.C.

    2009-01-01

    Individual monitoring of radiation workers handling Pu in various nuclear installations requires the detection of trace levels of plutonium in bioassay samples. It is necessary to develop methods that can detect urinary excretion of Pu in fraction of mBq range. Therefore, a sensitive method such as fission track analysis has been developed for the measurement of trace levels of Pu in bioassay samples. In this technique, chemically separated plutonium from the sample and a Pu standard were electrodeposited on planchettes and covered with Lexan solid state nuclear track detector (SSNTD) and irradiated with thermal neutrons in APSARA reactor of Bhabha Atomic Research Centre, India. The fission track densities in the Lexan films of the sample and the standard were used to calculate the amount of Pu in the sample. The minimum amount of Pu that can be analyzed by this method using doubly distilled electronic grade (E. G.) reagents is about 12 μBq/L. (author)

  20. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.

    Science.gov (United States)

    Huang, Guangming; Gao, Liang; Duncan, Jason; Harper, Jason D; Sanders, Nathaniel L; Ouyang, Zheng; Cooks, R Graham

    2010-01-01

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds' permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  1. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  2. Trace elements levels in centenarian 'dodgers'.

    Science.gov (United States)

    Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo

    2016-05-01

    Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, Pdodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Trace element distribution in different chemical fractions of False Bay sediments

    International Nuclear Information System (INIS)

    Rosental, R.

    1984-05-01

    Trace metals in the aquatic environment are generally concentrated on solid geochemical phases which eventually become incorporated into estuarine and marine sediments. The mechanism of trace metal concentration is believed to be adsorption on various geochemical phases, such as hydrous metal oxides, clays and organic matter. Metals in estuarine sediments can thus be expected to be partitioned between different phases, depending on the concentration of the phase and the strength of the adsorption bond. The bioavailability of sediment-bound metals to deposit-feeding organisms will depend on trace metal partitioning and the kinetics of biological metal uptake from each geochemical phase. The major objective of this study was to establish an analytical procedure involving sequential chemical extractions for the partitioning of particulate trace metals in sediment samples, collected from False Bay. Eight metals were examined, i.e. Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn. X-ray diffraction was also used in the study

  4. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  5. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  6. Levels and occupational health risk assessment of trace metals in ...

    African Journals Online (AJOL)

    The levels of trace metals (Pb, Cu, Ni and Cd) were determined in soils from a major automobile repair workshop located in Uyo, Akwa Ibom State, Nigeria. This was carried out to evaluate the potential occupational risk to operators working in and around the site. The mean of trace metal levels were: lead (14.52 mg/kg); ...

  7. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  8. Chemical Evolution of Ozone and Its Precursors in Asian Pacific Rim Outflow During TRACE-P

    Science.gov (United States)

    Hamlin, A.; Crawford, J.; Olson, J.; Pippin, M.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2002-12-01

    During NASA's GTE/TRACE-P (Transport and Chemical Evolution over the Pacific) mission, a widespread stagnant pollution layer was observed between 2 and 4 km over the central Pacific. In this region, high levels of O3 (70~ppbv), CO (210~ppbv), and NOx (130~pptv) were observed. Back trajectories suggest this airmass had been rapidly transported from the Asian coast near the Yellow Sea to the central Pacific where it underwent subsidence. The chemical evolution of ozone and its precursors for this airmass is examined using lagrangian photochemical box model calculations. Simulations are conducted along trajectories which intersect the flight path where predicted mixing ratios are compared to measurements. An analysis of the photochemical processes controlling the cycling of nitrogen oxides and ozone production and destruction during transport will be presented.

  9. Fluorescent discrimination between traces of chemical warfare agents and their mimics.

    Science.gov (United States)

    Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär

    2014-03-19

    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.

  10. Trace metal levels in sediments of Pearl Harbor (Hawaii)

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.; Tamura, T.

    1986-09-01

    This study was conducted to measure the distribution of lead and other trace metals in the sediments of Pearl Harbon (Hawaii) to determine whether paint chips from vessels of the US Navy's Inactive Fleet have affected the environmental quality of Middle Loch. Sediment cores (ranging from 0.5 to 3.0 m long) were collected from Middle Loch near the Naval Inactive Ships Maintenance Facility and in an area of West Loch that is relatively isolated and unaffected by naval operations. Concentrations of copper, lead, and zinc averaged 180 μg/g, 49 μg/g, and 272 μg/g, respectively, in recent Middle Loch sediments. These concentrations are significantly higher than those in either historical Middle Loch sediments or recent West Loch sediments. However, except for lead, the concentrations in recent Middle Loch sediments are similar to those of older Middle Loch sediments, which indicates that the increase in trace metal contamination began before the onset of Inactive Fleet operations (about 1946). Increased trace metal levels in recent Middle Loch sediments might be expected to result from two potential sources: (1) sewage discharges and (2) paint from inactive vessels. Since paint contains elevated levels of lead and zinc but little copper, the elevated copper levels in Middle Loch sediments tend to implicate sewage as the source of trace metal contamination. Moreover, the lead:zinc ratio of recent Middle Loch sediments (0.18:1) is a factor of 10 lower than that measured in paint (2.1:1), and the Middle Loch lead:zinc ratio is not significantly greater than that measured in recent West Loch sediments (0.21:1). Hence, we suggest that sewage rather than paint is the major source of trace metal contamination of Middle Loch. This is consistent with the findings of a previous study by US navy personnel

  11. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  12. Evaluation of Predicted and Observed Data on Biotransformation of Twenty-Nine Trace Organic Chemicals

    KAUST Repository

    Bertolini, Maria

    2011-07-01

    Trace organic chemicals present in household products, pesticides, pharmaceuticals and personal care products may have adverse ecotoxicological effects once they are released to the environment. These chemicals are usually transported with the sewage to wastewater treatment facilities, where they might be attenuated depending on the degree of treatment applied prior to discharge to receiving streams. This study evaluates the removal performance of 29 trace organic compounds during two different activated sludge treatment systems. Predominant attenuation processes such as biotransformation and sorption for the target compounds were identified. Biotransformation rate constants determined in this study were used to assess removal of compounds from other treatment plants with similar operational conditions, using data gathered from the literature. The commercial software Catalogic was applied to predict environmental fate of chemicals. The software program consisted of four models able to simulate molecular transformations and to generate degradation trees. In order to assess the accuracy of this program in predicting biotransformation, one biodegradation model is used to contrast predicted degradation pathway with metabolic pathways reported in the literature. The predicted outcome was correct for more than 40 percent of the 29 targeted substances, while 38 percent of the chemicals exhibited some degree of lower agreement between predicted and observed pathways. Percent removal data determined for the two treatment facilities was compared with transformation probability output from Catalogic. About 80 percent of the 29 compounds exhibited a good correlation between probability of transformation of the parent compound and percent removal data from the two treatment plants (R2 = 0.82 and 0.9). Based upon findings for 29 trace organic chemicals regarding removal during activated sludge treatment, attacked fragments present in their structures, predicted data from

  13. Graphene–platinum nanocomposite as a sensitive and selective voltammetric sensor for trace level arsenic quantification

    Directory of Open Access Journals (Sweden)

    R. Kempegowda

    2014-01-01

    Full Text Available A simple protocol for the chemical modification of graphene with platinum nanoparticles and its subsequent electroanalytical application toward sensitive and selective determination of arsenic has been described. Chemical modification was carried out by the simultaneous and sequential chemical reduction of graphene oxide and hexachloroplatinic acid in the presence of ethylene glycol as a mild reducing agent. The synthesized graphene–platinum nanocomposite (Gr–nPt has been characterized through infrared spectroscopy, x-ray diffraction study, field emission scanning electron microscopy and cyclic voltammetry (CV techniques. CV and square-wave anodic stripping voltammetry have been used to quantify arsenic. The proposed nanostructure showed linearity in the concentration range 10–100 nM with a detection limit of 1.1 nM. The proposed sensor has been successfully applied to measure trace levels of arsenic present in natural sample matrices like borewell water, polluted lake water, agricultural soil, tomato and spinach leaves.

  14. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.; Wing, A.D.; Alidina, M.; Drewes, J.E.

    2015-01-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory

  15. a Baseline Study of Physico-Chemical Parameters and Trace Metals in Waters of Manakudy, South-West Coast of India

    Science.gov (United States)

    Subramanian, M.; Muthumanikkam, J.

    2013-05-01

    The transport of trace metals from the land to ocean has a number of different routes and efficiencies. The sources of toxic elements into the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenically from point or non-point sources, in labile form or in particulate form. However, recent studies indicate that the transport of trace elements to the aquatic environment is much more complex than what has been thought. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. Estuarine environment is characterized by a constantly changing mixture of salt and freshwater. In the present study area Manakudy estuary is situated about 8 kilometres north west of Kanyakumari (Latitude N 08 05 21.8 and Longitude E 077 29 03.7). To gain a better understanding of the geochemical behavior of physico-chemical parameters and trace elements in the estuary and to examine variations in associated chemical changes, 20 water samples were collected throughout the Manakudy estuary, a minor river in south-western India. These samples, collected in typical dry season during 2012, were analyzed for physico-chemical parameters, dissolved major and trace elements. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient. The concentration of nutrients is normal and they are due to the higher organic activity in soils as well as faster rates of chemical weathering reaction in the source region. The concentration of major ions is due to tidal influence and it increases with salinity and the nutrients do behave non-conservatively due to biogenic removal. The conservative behaviour of the trace metals with salinity has been strongly affected by the introduction of these metals by external sources. Even though the trace metals in the contaminated water have been removed and incorporated in sediments due to

  16. Measurement of Selected Organic Trace Gases During TRACE-P

    Science.gov (United States)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  17. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    Science.gov (United States)

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  18. Trace impurities in coal by wet chemical methods

    International Nuclear Information System (INIS)

    Pollock, E.N.

    1975-01-01

    In determining trace elements in coal by wet chemical methods, conventional atomic absorption spectroscopy (AAS) was used to determine Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, Ag, Cd, and Pb after dry ashing and acid dissolutions. A graphite furnace accessory was used for the flameless AAS determination of Bi, Se, Sn, Te, Be, Pb, As, Cd, Cr, Sb, and Ge. Mercury can be determined by flameless AAS after oxygen bomb combustion. Arsenic and antimony can be determined as their hydrides by AAS after low temperature ashing. Germanium, tin, bismuth, and tellurium can be determined as their hydrides by AAS after high temperature ashing. Selenium can be determined as its hydride by AAS after a special combustion procedure or after oxygen bomb combustion. Fluorine can be determined by specific ion analysis after oxygen bomb combustion. Boron can be determined colorimetrically. (U.S.)

  19. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Levels of trace metals (Cd, Pb, Co, Zn Cu and Ni) were determined in water and sediment ... mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, ... Key words: trace metals, water, sediment, farmland, Tyume River

  20. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg; Li, Dong; Regnery, Julia; Alidina, Mazahirali; Wing, Alexandredavid; Hoppe-Jones, Christiane

    2014-01-01

    removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation

  1. Low-level toxicity of chemicals: No acceptable levels?

    Directory of Open Access Journals (Sweden)

    Bruce P Lanphear

    2017-12-01

    Full Text Available Over the past 3 decades, in a series of studies on some of the most extensively studied toxic chemicals and pollutants, scientists have found that the amount of toxic chemical linked with the development of a disease or death-which is central to determining "safe" or "hazardous" levels-is proportionately greater at the lowest dose or levels of exposure. These results, which are contrary to the way the United States Environmental Protection Agency (EPA and other regulatory agencies assess the risk of chemicals, indicate that we have underestimated the impact of toxic chemicals on death and disease. If widely disseminated chemicals and pollutants-like radon, lead, airborne particles, asbestos, tobacco, and benzene-do not exhibit a threshold and are proportionately more toxic at the lowest levels of exposure, we will need to achieve near-zero exposures to protect public health.

  2. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  3. Serum Lipids and Lipoproteins Levels and Selected Trace Metals In ...

    African Journals Online (AJOL)

    This study aim to determine the serum levels of trace metals and correlate same with serum levels of lipoproteins (an established marker of HBP) in newly diagnosed hypertensives (NDH) A total of 50 NDH subjects (24 males and 26 females) attending Ladoke Akintola University of Technology Teaching Hospital, Osogbo ...

  4. Trace-element analysis of Antarctic H chondrites: Chemical weathering and comparisons with their non-Antarctic counterparts

    International Nuclear Information System (INIS)

    Kwok, J.E.

    1986-01-01

    Large numbers of meteorites have been discovered in Antarctica over the last decade (7000 fragments probably representing over 1200 separate events). They are important for their numbers and for their complement of unique or rare specimens; they also have long terrestrial ages (up to 1,000,000 years) compared to non-Antarctic falls (usually < 200 years). We report compositional data for mobile/volatile trace elements Ag, Au, Bi, Cd, Co, Cs, In, Rb, Sb, Se, Te, Ti, U, and Zn in a suite of Antarctic H chondrites. Our data show that heavily oxidized H chondrites are leached of a portion of their trace elements and, therefore, have been chemically compromised by their stay in Antarctica. The less oxidized specimens seem to have retained their chemical integrity. We suggest possibilities for using chemical data to measure the degree of a chondrite's chemical weathering. We compare our data to that obtained previously for non-Antarctic H chondrites (Linger et al., 1986), by petrologic type (H4, H5, H6, H4-6) and shock-loading (moderately shocked facies a-c, heavily shocked facies d-f). Many statistically significant differences are found between non-Antarctic and Victoria Land, Antarctica H chondrites of each petrologic type and of shock facies d-f

  5. Speciation of the plutonium at trace levels by capillary electrophoresis-ICP-MS coupling

    International Nuclear Information System (INIS)

    Ambard, Ch.

    2007-01-01

    The CE-ICP-MS coupling allowed the development of new analytical methods for the study of plutonium speciation at trace levels including complexation studies of this element by organic and inorganic ligands. First, a method, called dual detection, based on the simultaneous use of the UV-Visible spectrophotometer integrated in the capillary electrophoresis and the ICPMS was developed and validated. It allows the unambiguous determination of electrophoretic mobilities for separated chemical species and gives a powerful tool for speciation studies. Then, the influence on plutonium redox speciation of the buffer from the background electrolyte was evaluated. This study showed the implications of the electrolyte constituents' choice on plutonium redox equilibrium in the sample. Furthermore, the CE-ICP-MS coupling was used for studying the plutonium complexation at trace levels by some organic (NTA and DTPA) and inorganic ligands (carbonates). The behaviour of plutonium valence +III, +IV and +VI was studied in the presence of buffer at near neutral pH. Different species of plutonium were observed depending on the initial oxidation state of the plutonium. This study showed the potential of poly-amino-carboxylic acids, such as NTA and DTPA, for dissolving plutonium precipitates, regardless its initial speciation. Finally, the carbonation of pentavalent neptunium, as an analogue of Pu(V), was achieved at very low concentration of Np (10 -8 mol.L -1 ). The formation constant of NpO 2 (CO 3 )- at 25 deg. C and 2,5 x 10 -2 mol.L -1 ionic strength was measured by CE-ICP-MS and found to be consistent with literature data. (author)

  6. Speciation of the plutonium at trace levels by capillary electrophoresis-ICP-MS coupling

    International Nuclear Information System (INIS)

    Ambard, Ch.

    2007-01-01

    The CE-ICP-MS coupling allowed the development of new analytical methods for the study of plutonium (Pu) speciation at trace levels including complexation studies of this element by organic and inorganic ligands. First, a method, called dual detection, based on the simultaneous use of the UV-Visible spectrophotometer integrated in the capillary electrophoresis and the ICP-MS was developed and validated. It allows the unambiguous determination of electrophoretic mobilities for separated chemical species and gives a powerful tool for speciation studies. Then, the influence on Pu redox speciation of the buffer from the background electrolyte was evaluated. This study showed the implications of the electrolyte constituents' choice on Pu redox equilibrium in the sample. Furthermore, the CE-ICP-MS coupling was used for studying the Pu complexation at trace levels by some organic (NTA and DTPA) and inorganic ligands (carbonates). The behaviour of Pu valence +III, +IV and +VI was studied in the presence of buffer at near neutral pH. Different species of Pu were observed depending on the initial oxidation state of the plutonium. The study showed the potential of poly-amino-carboxylic acids, such as NTA and DTPA, for dissolving Pu precipitates, regardless its initial speciation. Finally, the carbonation of pentavalent neptunium, as an analogue of Pu(V), was achieved at very low concentration of Np (10 -8 mol.L -1 ). The formation of NpO 2 (CO 3 ) - at 25 C and 2,5*10 -2 mol.L -1 ionic strength was measured by CE-ICP-MS and found to consistent with literature data. (author)

  7. The effects of low levels of dietary trace minerals on the plasma levels, faecal excretion health and performance of pigs in a hot African climate

    Directory of Open Access Journals (Sweden)

    M.H. Boma

    2009-09-01

    Full Text Available The present study was performed in order to evaluate the effects of lower than usual industry levels of dietary trace minerals on plasma levels, faecal excretion, performance, mortality and morbidity in growing-finishing pigs in a hot African climate. Group 1 (n =100 pigs received a diet with common industry levels of trace minerals. Group 2 (n =100 pigs received reduced dietary trace mineral levels but were fed the same basic diet as Group 1. Mortality, morbidity, pig performance and carcass measurements were evaluated. Two pigs in Group 1 and three pigs in Group 2 died. Thirteen pigs in Group 1 and 27 pigs in Group 2 were medically treated (P 0.05 by the dietary levels of these trace minerals. Plasma trace mineral concentrations were not affected by the dietary treatment.

  8. Transformation processes influencing physico-chemical forms of radionuclides and trace elements in natural water systems

    International Nuclear Information System (INIS)

    Salbu, B.; Riise, G.; Oughton, D.H.

    1995-01-01

    In order to assess short and long term consequences of radionuclides and trace elements introduced to aquatic systems, knowledge on source terms, key factors and key processes influencing the speciation is essential. The mobility, bioavailability and subsequent transfer into food chains depend on the physico-chemical forms on radionuclides and trace metals. In addition, transformation processes and especially the interaction with natural organic matter (NOM) influences the distribution pattern. Furthermore, the prevailing climate conditions, e.g. episodic events and temperature are vital for fluxes and for the kinetics of the transformation processes. In the present work processes in catchments and processes associated with acidification, episodic events, climate conditions (temperature) and mixing zone phenomena influencing the speciation of radionuclides and trace metals are highlighted. These processes should be highly relevant for assessing far field consequences of radionuclides potentially released from disposal sites. (authors). 21 refs., 8 figs., 1 tab

  9. The Determination Of Trace Element Levels In Diet By Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Kukuh, Ratnawati; Djojosubroto, Harjoto

    2002-01-01

    Trace element levels in foodstuff are normally low. Although the levels are low, certain trace elements which are called essential trace elements have an important role in metabolism process. Deficiency or intoxication of essential trace elements may lead to abnormal health. In this study the levels of Zn, Fe, AI, Mn, and Co in diet samples were determined by neutron activation analysis, and then the daily intakes of these elements were estimated. The samples were prepared by duplicate diet method, representing those that were consumed by population from West, Central and East Java. Following the collection the respective samples were blended, then were freeze dried at-54 o c. The elemental quantification were performed by neutron activation analysis. The traceability of the determination was ensured using standard reference material NIST-SRM-1548a. The results show that the daily intake for Zn were 2.8-22.8 mg/day (reference value were 5- 40 mg/day), Fe were 3.1-26.5 mg/day (reference value were 6-40 mg/day), AI were 4,2-32.9 mg/day (reference value were 2-45 mg/day), Mn were 1.0-5,6 mg/day (reference value were 0.4-10,0 mg/day), and Co were 0,005-0,074 mg/day (reference value were 0.005 -1.8 mg/day

  10. Levels of aqueous humor trace elements in patients with open-angle glaucoma.

    Science.gov (United States)

    Hohberger, Bettina; Chaudhri, M Anwar; Michalke, Bernhard; Lucio, Marianna; Nowomiejska, Katarzyna; Schlötzer-Schrehardt, Ursula; Grieb, Pawel; Rejdak, Robert; Jünemann, Anselm G M

    2018-01-01

    Trace elements might play a role in the complex multifactorial pathogenesis of open-angle glaucoma. The aim of this study was to analyze concentrations of trace elements in aqueous humor samples of patients with primary open-angle glaucoma (POAG) and pseudoexfoliation glaucoma (PEXG). Thirty-three aqueous humor samples were obtained from patients undergoing cataract surgery: 12 patients with POAG (age 65.3±10.50, female 8, male 4), 10 patients with PEXG (age 65.9±11.27, female 6, male 4) and 11 patients without glaucoma (age 69.5±13.70, female 7, male 4) serving as controls. Aqueous humor levels of cadmium, iron, manganese, cobalt, copper and zinc were measured by Flow-Injection-Inductively-Coupled-Plasma-Mass-Spectrometry (FI-ICP-MS). From the statistical evaluation, we observed that patients with POAG had significantly higher aqueous humor levels of zinc (p=0.006) compared to controls. Increased aqueous humor levels of zinc were also observed in patients with PEXG in relation to control (p=0.0006). For iron we observed a significantly reduction in PEXG compared to control (p=0.002) and a significant difference between POAG and PEXG (p=0.0091). No significant differences were observed in aqueous humor levels of manganese, cobalt, copper, cadmium between glaucoma and control patients. No differences were seen for iron (POAG vs. controls). Analysis of trace element ratios was added. Significant differences in aqueous humor levels of zinc and iron between glaucoma and control patients support the hypothesis that these trace elements are involved in the pathogenesis of open-angle glaucoma. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Present and Future Challenges in Trace and Ultra-Trace Analysis

    International Nuclear Information System (INIS)

    Toulhoat, P.

    2005-01-01

    The analysis of trace and ultra-trace elements is continuously stimulating the progress in analytical chemistry. Environmental chemistry, radiochemistry, biology, health, agri-food are prescribers of trace analyses, with continuously increasing exigencies: lowering detection limits, lowering costs and analysis time, improving the quality of analytical information. Precise data about the chemical identity and chemical environment of analytes are now requested. Such pieces of information, beyond simple numerical data and confidence intervals, are necessary to understand studied systems, and to predict their evolution. From environmental contamination cases, one can envisage the various aspects of a problem, with for each of them its own exigencies and specificities in terms of analytical methods and approaches. The detection of traces and ultra-traces of actinides and fission products has been recently revisited and stimulates new technological developments (non proliferation issues, waste management). Data on their speciation in geological and biological media are essential for evaluating the safety of nuclear waste repositories. Various techniques are now used to determine speciation in liquid samples or on surfaces, with tremendous spatial resolutions or sensitivities. A new revolution in analytical chemistry is expected with the development of micro- or nano-analytical technologies. (author)

  12. Modelling the Fate of Ionizable Trace Organic Chemicals from Consumption to Food Crops

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    In this study, we developed and applied a simulation tool to comprehensively predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in wheat, following application of sewage sludge or irrigation...... with river water. Highest translocation to wheat (4.3 μg kgDW-1 in grain) was calculated for FUR, being more significant with irrigation (>45% of emission to soil) than with sludge application (

  13. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    Comparison of trace element contamination levels (Cu, Zn, Fe, Cd and Pb) in the soft tissues of the gastropods Tympanotonus fuscatus fuscatus and Tf radula collected in the Ebrié Lagoon (Côte d'Ivoire): Evidence of the risks linked to linked to lead and.

  14. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge

    KAUST Repository

    Alidina, Mazahirali; Li, Dong; Drewes, Jorg

    2014-01-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each

  15. A simple chemical method for the separation of phosphorus interfering the trace element determinations by neutron activation analysis in high doped silicon wafers

    International Nuclear Information System (INIS)

    Wagler, H.; Flachowsky, J.

    1986-01-01

    Neutron activation analysis is one of the most available method for the determination of trace elements, but in the case of P-doped silicon wafers the 32 P-activity interferes the gamma spectrometry. It is not possible to determine the trace elements without chemical manipulations. On the other hand, time consuming chemical separations should be avoided. Therefore, a simple and rapid P-separation method has to be developed, in which the following twelve trace elements should be taken into consideration: Ag, As, Au, Co, Cr, Cu, Fe, Mo, Na, Sb, W, and Zn. After acid oxidative dissolution of the activated sample, P is present as phosphate ion. The phosphate ion is removed by precipitation as BiPO 4 . (author)

  16. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali; Li, Dong; Ouf, Mohamed; Drewes, Jorg

    2014-01-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil

  17. Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Viana, Mar; Salvador, Pedro; Sánchez de la Campa, Ana; Artiñano, Begoña; de la Rosa, Jesús; Gibbons, Wes

    The majority of the Spanish urban population breathe air containing inhalable ambient airborne particles at average concentrations of 30-46 μg m -3 (PM 10) and 20-30 μg m -3 (PM 2.5). Even though the average weight of inhaled urban aerosol is commonly similar, however, there can be large chemical differences between the ambient dusts from different towns, including the more bioreactive elements such as some metals. In this context, we compare the source-apportioned trace metal content of airborne PM 10 and PM 2.5 collected daily over a 1-year period from six population centres in Spain: Barcelona, Alcobendas, Llodio, Huelva, Tarragona and Las Palmas de Gran Canaria. Total average trace metal (ΣTM) PM 10 and PM 2.5 contents vary by up to a factor of around 3, reaching a maximum of ΣTM 10 811 ng m -3 and ΣTM 2.5 503 ng m -3 at Llodio, an industrial but humid site with the lowest PM 10 mass levels but high contamination by Zn, Pb, Mn, Sn, Ni and Cr. In contrast, pollution at Huelva, although another industrially influenced site, instead emphasises Cu and As, whereas Barcelona, where traffic emissions and resuspension contribute to some of the highest average PM 10 levels in Spain, has unusually raised levels of Ti, V and Ba. Such variations in both daily and annual average PM bulk chemistry, particularly in potentially toxic trace metals concentrated in the finer aerosols (such as Cd, As, Pb, Hg and Ni), predict that PM health effects on resident populations from different towns are unlikely to be the same.

  18. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)

    International Nuclear Information System (INIS)

    Kravtsova, Alexandra V.; Milchakova, Nataliya A.; Frontasyeva, Marina V.

    2015-01-01

    Highlights: • 19 trace elements were determined in Cystoseira spp. from marine protected areas. • Levels of 10 elements were lower than reported data for Black Sea Cystoseira spp. • Concentrations of most trace elements were higher in “branches” than in “stems”. • Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities. • Al, Sc, Fe, Rb, Cs, Th, U varied depending on geological composition of the coast. - Abstract: Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in “branches” than in “stems”. Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations

  19. Chemical characteristics and trace element concentration of non ...

    African Journals Online (AJOL)

    The present study investigates the details on the aspects of Coal quality such as proximate, ultimate, calorific value and trace element concentration and its impact on human health. Trace elements are present in very low percentage in coal but their concentration increases manifold after coal combustion and utilization.

  20. Trace metals and vitamin levels in Nigerian patients with sensory ...

    African Journals Online (AJOL)

    The significance of the higher levels of magnesium in the patients is unclear and needs further investigation. Further studies with larger sample sizes are needed to confirm this observation. Keywords: ataxia, trace metals, vitamins, Nigerians Nigerian Journal of Health and Biomedical Sciences Vol. 4(2) 2005: 156–160 ...

  1. Studies of cation exchange for the isolation and concentration of trace level components of complex aqueous mixtures

    International Nuclear Information System (INIS)

    Kaczvinsky, J.R. Jr.

    1984-01-01

    Trace level organic bases are concentrated from aqueous solution by cation exchange on a column of sulfonated macroreticular XAD-4 resin. Washing of the column with organic solvents removes neutrals and acids. Ammonia gas is introduced into the column prior to elution of the basic organics with either methanol or ether containing ammonia. After solvent evaporation, the concentrated sample is analyzed by gas chromatography. Recoveries of over 85% are found with at least one of the eluents for over 50 bases tested at levels < 1 ppm. Improved recoveries and reproducibility are seen over a simple ether extraction procedure. Samples of river water, shale oil process water, and supernatant from an agricultural chemical disposal pit are analyzed. Preliminary studies of functionalized poly(styrene-divinylbenzene)s, coated exchangers, and liquid ion exchangers as possible approaches to nuclear waste decontamination are performed

  2. Comparison of serum trace element levels in patients with or without pre-eclampsia

    Directory of Open Access Journals (Sweden)

    Leila Farzin

    2012-01-01

    Full Text Available Objective: In developing countries, nutritional deficiency of essential trace elements is a common health problem, particularly among pregnant women because of increased requirements of various nutrients. Accordingly, this study was initiated to compare trace elements status in women with or without pre-eclampsia. Materials and Methods: In this study, serum trace elements including zinc (Zn, selenium (Se, copper (Cu, calcium (Ca and magnesium (Mg were determined by using atomic absorption spectrometry (AAS in 60 patients and 60 healthy subjects. Results: There was no significant difference in the values of Cu between two groups (P > 0.05. A significant difference in Zn, Se, Ca and Mg levels were observed between patients with pre-eclampsia and control group (P 0.05. Conclusion: Our findings indicate that the levels of Zn, Se, Ca and Mg are significantly altered in pregnant women with pre-eclampsia. This research shows that these deficiencies can not due to hemodilution.

  3. Trace Metal Levels in Raw and Heat Processed Nigerian Staple ...

    African Journals Online (AJOL)

    The levels of some trace metals (Fe, Zn, Cu, Ni, Cd) were quantitatively determined in raw and heat processed staple food cultivars (yam, cassava, cocoyam and maize) from oil producing areas of part of the Niger Delta and compared with a non-oil producing area of Ebonyi State as control. The survey was conducted to ...

  4. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    J.A.O. Oyekunle

    2014-01-01

    Full Text Available Bread loaves randomly sampled from nine outlets and bakeries within Ile-Ife were analysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determination was carried out via spectrophotometric method while trace metals in the digested bread samples were profiled using Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the trace metal levels were of the order: 0.03–0.10 μg/g Co = 0.03–0.10 μg/g Pb < 0.23–0.46 μg/g Cu < 2.23–6.63 μg/g Zn < 25.83–75.53 μg/g Mn. This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples contained both essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.

  5. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  6. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  7. Neural population-level memory traces in the mouse hippocampus.

    Science.gov (United States)

    Chen, Guifen; Wang, L Phillip; Tsien, Joe Z

    2009-12-16

    One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain's associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.

  8. Neural population-level memory traces in the mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Guifen Chen

    2009-12-01

    Full Text Available One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain's associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.

  9. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  10. Chronocoulometric determination of trace levels of uranium in rocks

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    The chronocoulometric method for the determination of trace levels of uranium, based on the catalytic nitrate reduction was applied with real and synthetic samples. Reference materials with complex matrices like rocks were first solubilized by hot digestion under pressure in a PTFE bomb. When necessary, an adapted liquid-liquid extraction procedure was used for previous separation of interferents. The obtained results are in good agreement with the values obtained with other techniques such as X-ray fluorescence, mass spectrometry -isotope dilution and apithermal activation analysis. (author) [pt

  11. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  12. Lagrangian Photochemical Box-Model Calculations of Asian Pacific Rim Outflow During TRACE-P

    Science.gov (United States)

    Hamlin, A.; Crawford, J.; Olson, J.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2006-12-01

    NASA's TRACE-P (TRAnsport and Chemical Evolution over the Pacific) mission was conducted over the northwestern Pacific February-April, 2001. During two transit flights across the Pacific, extensive pollution was observed from an Asian outflow event that split into two branches over the central Pacific, one subsiding and moving southward over the central Pacific and the other continuing eastward in the upper troposphere. The subsiding branch was observed as a widespread stagnant pollution layer between 2 and 4 km over the central Pacific during transit flights from Kona, HI to Guam. In this region, high levels of O3 (70 ppbv), CO (217 ppbv), and NOx (114 pptv) were well in excess of typical values observed during TRACE-P along the Asian coast. Evidence suggests that the subsiding branch experienced extensive photochemical processing compared to the branch that remained at altitude. To examine the processes controlling the chemical evolution of ozone and its precursors in this outflow event, data collected during the TRACE-P mission have been combined with lagrangian photochemical box model calculations. One of the largest sources of uncertainty in these calculations was associated with predicted water vapor levels along the transport trajectories calculated using the HYSPLIT model. Water vapor levels predicted by HYSPLIT trajectory calculations in the subsiding layer ranged from 3390 to 4880 ppm, while the median level observed in the pollution layer was only 637 ppm. Simulations of ozone production and associated radical chemistry differed dramatically when using water vapor levels based on trajectory calculations versus observed water vapor levels. Levels of PAN and HO2NO2, NOx reservoir species, are also influenced by uncertainties in temperature along the trajectories. These results highlight the importance of accurately representing the humidification and warming of subsiding air masses in 3-D chemical- transport models.

  13. Levels of essential and potentially toxic trace metals in Antarctic macro algae

    International Nuclear Information System (INIS)

    Farias, Silvia; Arisnabarreta, Sebastian Perez; Vodopivez, Cristian; Smichowski, Patricia

    2002-01-01

    Eleven species of Antarctic algae were examined for their accumulation ability in the uptake of different metals and metalloids from the Antarctic aquatic environment. Macro algae were collected during the 2000 austral summer season at Jubany Station (Argentinean base) around Potter Cove, King George Island. The elements quantified were: As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. An optimized microwave-assisted digestion procedure was used to digest the samples and the elements were determined by inductively coupled plasma optical emission spectrometry. A wide range of metal retention capacity among the different species was observed. The highest levels of trace elements were found in Monostroma hariotii and Phaeurus antarcticus, with concentrations up to 3095 μg g -1 for Fe. On the basis of the levels of trace elements observed in Monostroma hariotii and its wide distribution in the Antarctic Peninsula, this organism accomplishes a number of prerequisites to be considered as an adequate biomonitor for future studies

  14. Chemical fingerprinting and source tracing of obsidian: the central Mediterranean trade in black gold.

    Science.gov (United States)

    Tykot, Robert H

    2002-08-01

    Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.

  15. Speciation of trace elements in the environmental studies

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2012-01-01

    Elements present at trace levels, often referred as trace elements, play an important role in the environment and in the functioning of life on our planet. Trace elements in environment present as free metal ions or incorporated into colloids or attached to particulate matter or exist in different physical and chemical forms. It is well established that some elements are highly toxic and some are essential, but can become toxic at higher doses. It is also now known that the forms of elements (speciation) and their amounts are more important than the chemical dose of the elements as their interaction depends on different species. For example, Cr(VI) ions are considered far more toxic than Cr(III), whereas As(III) is more toxic than As(V). Similarly, in the case of mercury, both methylmercury and inorganic mercury are toxic but they show different levels of toxicity. Thus the adverse effects depend on the nature of species of the elements and therefore speciation studies are of paramount importance in many areas like toxicology, environmental chemistry and geochemisty. In view of this, speciation studies is a challenge to analytical chemists as the measurement methodologies have to be carefully developed, validated and applied. The grand challenge is to obtain quality data ensuring traceability, as the data obtained will be used in modeling for predicting the environmental impacts. In this talk importance of speciation and challenges to environmental analytical chemists will be discussed along with the following three speciation studies on Cr, U and Hg which were carried out in our laboratories

  16. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  17. Separation Techniques for Uranium and Plutonium at Trace Levels for the Thermal Ionization Mass Spectrometric Determination

    International Nuclear Information System (INIS)

    Suh, M. Y.; Han, S. H.; Kim, J. G.; Park, Y. J.; Kim, W. H.

    2005-12-01

    This report describes the state of the art and the progress of the chemical separation and purification techniques required for the thermal ionization mass spectrometric determination of uranium and plutonium in environmental samples at trace or ultratrace levels. Various techniques, such as precipitation, solvent extraction, extraction chromatography, and ion exchange chromatography, for separation of uranium and plutonium were evaluated. Sample preparation methods and dissolution techniques for environmental samples were also discussed. Especially, both extraction chromatographic and anion exchange chromatographic procedures for uranium and plutonium in environmental samples, such as soil, sediment, plant, seawater, urine, and bone ash were reviewed in detail in order to propose some suitable methods for the separation and purification of uranium and plutonium from the safeguards environmental or swipe samples. A survey of the IAEA strengthened safeguards system, the clean room facility of IAEA's NWAL(Network of Analytical Laboratories), and the analytical techniques for safeguards environmental samples was also discussed here

  18. Separation Techniques for Uranium and Plutonium at Trace Levels for the Thermal Ionization Mass Spectrometric Determination

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Han, S. H.; Kim, J. G.; Park, Y. J.; Kim, W. H

    2005-12-15

    This report describes the state of the art and the progress of the chemical separation and purification techniques required for the thermal ionization mass spectrometric determination of uranium and plutonium in environmental samples at trace or ultratrace levels. Various techniques, such as precipitation, solvent extraction, extraction chromatography, and ion exchange chromatography, for separation of uranium and plutonium were evaluated. Sample preparation methods and dissolution techniques for environmental samples were also discussed. Especially, both extraction chromatographic and anion exchange chromatographic procedures for uranium and plutonium in environmental samples, such as soil, sediment, plant, seawater, urine, and bone ash were reviewed in detail in order to propose some suitable methods for the separation and purification of uranium and plutonium from the safeguards environmental or swipe samples. A survey of the IAEA strengthened safeguards system, the clean room facility of IAEA's NWAL(Network of Analytical Laboratories), and the analytical techniques for safeguards environmental samples was also discussed here.

  19. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Science.gov (United States)

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  20. Trace conditioning in insects-keep the trace!

    Science.gov (United States)

    Dylla, Kristina V; Galili, Dana S; Szyszka, Paul; Lüdke, Alja

    2013-01-01

    Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination-a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.

  1. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa Rodrigues, Jairo; Lemos Batista, Bruno [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil); Fillion, Myriam [Centre interdisciplinaire de recherche sur la biologie, la sante, la societe et l' environnement (CINBIOSE), Universite du Quebec a Montreal (Canada); Passos, Carlos J.S. [Faculdade UnB Planaltina (FUP), Universidade de Brasilia, Planaltina (DF) (Brazil); Mergler, Donna [Centre interdisciplinaire de recherche sur la biologie, la sante, la societe et l' environnement (CINBIOSE), Universite du Quebec a Montreal (Canada); Barbosa, Fernando, E-mail: fbarbosa@fcfrp.usp.br [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil)

    2009-06-15

    Monitoring the nutritional status of essential elements is of critical importance in human health. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with much food diversity. Moreover, dietary habits differ from north to south. As an example, the traditional populations of the Brazilian Amazon basin are heavily dependent on fish, fruits, vegetables and manioc for their daily sustenance. However, very few studies have examined to what extent these diets reflect adequate nutritional status for essential elements. Then, in the present study we have evaluated the levels of some trace elements (Cu, Co, Zn Sr, and Rb) in the whole blood of a riparian Brazilian Amazonian population and estimated the influence of age and gender on levels and inter-element interactions in the same population. For this, 253 subjects, aged 15 to 87, from 13 communities situated on the banks of the Tapajos, one of the major tributaries of the Amazon, were randomly selected. The values found for cobalt, copper and strontium in whole blood are in the same range as in other populations. On the other hand, the levels of rubidium and zinc may be considered higher. Moreover, gender was shown to influence Zn and Cu levels while age influenced the concentrations of Sr and Rb in men and Cu in women. Given the scarcity of studies examining nutritional status in traditional communities of the Amazon, our study is the first to provide relevant insight into trace element values in this region and inter-element interactions. This paper is also of particular importance for future studies looking at the possible protective effects of traditional Amazon riparian diets against mercury intake from fish consumption.

  2. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon

    International Nuclear Information System (INIS)

    Lisboa Rodrigues, Jairo; Lemos Batista, Bruno; Fillion, Myriam; Passos, Carlos J.S.; Mergler, Donna; Barbosa, Fernando

    2009-01-01

    Monitoring the nutritional status of essential elements is of critical importance in human health. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with much food diversity. Moreover, dietary habits differ from north to south. As an example, the traditional populations of the Brazilian Amazon basin are heavily dependent on fish, fruits, vegetables and manioc for their daily sustenance. However, very few studies have examined to what extent these diets reflect adequate nutritional status for essential elements. Then, in the present study we have evaluated the levels of some trace elements (Cu, Co, Zn Sr, and Rb) in the whole blood of a riparian Brazilian Amazonian population and estimated the influence of age and gender on levels and inter-element interactions in the same population. For this, 253 subjects, aged 15 to 87, from 13 communities situated on the banks of the Tapajos, one of the major tributaries of the Amazon, were randomly selected. The values found for cobalt, copper and strontium in whole blood are in the same range as in other populations. On the other hand, the levels of rubidium and zinc may be considered higher. Moreover, gender was shown to influence Zn and Cu levels while age influenced the concentrations of Sr and Rb in men and Cu in women. Given the scarcity of studies examining nutritional status in traditional communities of the Amazon, our study is the first to provide relevant insight into trace element values in this region and inter-element interactions. This paper is also of particular importance for future studies looking at the possible protective effects of traditional Amazon riparian diets against mercury intake from fish consumption.

  3. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Chatt, A.

    1999-01-01

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  4. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia

    International Nuclear Information System (INIS)

    Emmanuel, R.; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S.; Prakash, P.

    2014-01-01

    Graphical abstract: Schematic representation for green synthesis of Au-NPs and its electroreduction of nitrobenzene. - Highlights: • A green synthesis of size controlled Au-NPs from plant extract. • Trace level detection of nitro benzene, a pollutant causing Methemoglobinaemia, at Au-NPs modified electrode. • Achievement of lower LOD and wider linear response. • The proposed sensor exhibits excellent practicality in various water samples. - Abstract: The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10 min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600 μM with high sensitivity of 1.01 μA μM −1 cm −2 and low limit of detection of 0.016 μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples

  5. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, R. [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Karuppiah, Chelladurai [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Palanisamy, Selvakumar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Padmavathy, S. [Department of Zoology and Microbiology, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Prakash, P., E-mail: kmpprakash@gmail.com [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India)

    2014-08-30

    Graphical abstract: Schematic representation for green synthesis of Au-NPs and its electroreduction of nitrobenzene. - Highlights: • A green synthesis of size controlled Au-NPs from plant extract. • Trace level detection of nitro benzene, a pollutant causing Methemoglobinaemia, at Au-NPs modified electrode. • Achievement of lower LOD and wider linear response. • The proposed sensor exhibits excellent practicality in various water samples. - Abstract: The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10 min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600 μM with high sensitivity of 1.01 μA μM{sup −1} cm{sup −2} and low limit of detection of 0.016 μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples.

  6. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents.

    Science.gov (United States)

    Lian, Xiao; Yan, Bing

    2018-05-02

    Organophosphorus chemical warfare agents (OPCWAs) are a group of organic pollutants characterized by high toxicity and chemical stability, and they are very difficult to be degraded. The trace quality of OPCWAs in water and food will cause great harm to the human body. Therefore, the detection of OPCWAs is a difficult challenge, which has become the research hotspot over the world. In this work, a Hf-based luminescent metal-organic framework (Eu@1) is prepared, and the reactivity of Hf 12 results in a methanephosphonic acid (MPA)-induced luminescence quenching and the charge transfer from MPA to Hf(IV) and generated exciplexes which are responsible for this quenching effect. The excellent performance of Eu@1 in the detection of MPA, with its finer selectivity, high sensitivity (LOD = 0.4 ppm), and large linear range (10 -7 to 10 -3 M), is encouraging for application in wastewater detection. Importantly, MPA is a pollutant that can be absorbed by plants and causes the bioaccumulation effect, and thus, the detection of MPA in real plant samples is a purposeful topic. Eu@1 also achieved satisfactory results in actual plant sample testing, and the bioaccumulation of MPA in onions, turnips, and cabbages is determined via our sensor. This fabricated detector provides a feasible path for the detection of ppm-level OPCWAs in a complex environment, which will help humans to avoid OPCWA-contaminated foods.

  7. Trace elements in bivalves from the Rio Cruces, Chile, trace watershed evolution after a major earthquake and challenge a postulated chemical spill from a pulp plant

    Science.gov (United States)

    Risk, M.; Burchell, M.; Nairn, R.; Tubrett, M.; Forsterra, G.

    2009-05-01

    In May, 1960, the largest recorded earthquake in the history of the planet hit southern Chile, dropping part of the course of the Rio Cruces by 2m and creating an extensive wetland. The Brazilian Waterweed Egeria densa colonised the area, and became a primary food source for large populations of the Black-necked Swan, Cygnus melancoryphus. In 2004, a large pulp mill commenced operations upstream on the river. According to local reports, immediately after the opening of the plant, the weed died and the swans left. There was public outcry, and a search for a cause or a culprit. It was postulated that some sort of chemical spill from the plant caused the weed to die, resulting in departure of the swans. In 2008, we collected specimens of the bivalve Diplodon chilensis from several locations downstream from the Plant and towards the wetland to see if there was evidence of a chemical spill recorded in the shells. We prepared thin-sections of the shells to observe growth line development and patterns. Additionally, shell samples were analysed for stable oxygen isotopes and trace elements, using LA-ICP/MS. Based on annual growth lines, some of the bivalves were long-lived, with an age of more than 50 years. These individuals settled in the river shortly after the earthquake, and have lived there continuously ever since. Annual and sub-annual banding was clear, and the annual cyclicity of the major bands was verified with oxygen isotope analysis. There are no changes in growth corresponding to 2004. Trace element scans provided a wealth of information on the evolution of this earthquake-impacted wetland. Barium, Strontium and Manganese all showed strong annual cyclicity. From the analysis of older specimens, we interpret the high peaks of the Ba signal as reflecting soil erosion-Ba peaks are large immediately after the earthquake, then they diminish through time. Sr is likely a temperature signal, and Mn reflects runoff. Minor peaks in Cu, As and Pb probably reflect

  8. Levels of some Trace Metals in Macroalgae from the Red Sea in Egypt

    International Nuclear Information System (INIS)

    Aboul-Naga, Wafiqa Mohamed

    2005-01-01

    The concentrations of iron (Fe), Zinc (Zn), manganese (Mn), Copper (Cu), chromium (Cr), nickel (Ni), and cobalt (Co) in ten macroalgae species from the Red Sea coastal water varied widely and also the trend of abundance of each metal also differed from one group to another. Concentration factors varied among species for iron (Fe) copper (Cu) manganese (Mn), but with iron (Fe) showing generally high concentration factors. Highly significant (P<0.05) relationships were found between manganese (Mn) and Nickel (Ni), and, Zinc (Zn) and copper (Cu). Moreover, moderate correlations were observed between manganese (Mn) and iron (Fe) and chromium (Cr), indicating that manganese (Mn) is the most accumulated metal in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae, dominance is moderate relative to other sea areas subjected to intensive pollution. That is, the results indicated a nonpolluted environment. (author)

  9. Trace-element speciation and partitioning in environmental geochemistry and health

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.G.; Gibson, M.J.; Lovell, M.A.

    1983-09-01

    Establishment of the chemical form and associations of trace elements is important in the scientifc and medical fields related to environmental geochemistry and health. Fundamental understanding of trace-element behavior, the realistic formulation of historical perspectives of trace-element contamination, an assessment of environmental transformation processes and a thorough appraisal of environment-related ill health and disease all depend on knowledge of the chemical speciation and partitioning of trace elements. These topics and the development of analytical speciation techniques and procedures are discussed with reference to trace-element studies in the Department of Forensic Medicine and Science, University of Glasgow, on lacustrine sediments and water, the atmosphere, soil and street dirt of an urban environment, and human biological fluids. 206 references, 4 figures.

  10. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  11. Levels of trace elements in medicinal plants with anti-diabetic potential

    International Nuclear Information System (INIS)

    Ray, D.K.; Jena, S.

    2014-01-01

    Medicinal plants with anti-diabetic potential have been characterized by Particle-Induced X-ray Emission (PIXE) technique. Trace elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb are found to be present in these studied medicinal plant samples. The concentrations of elements like K and Ca are quantified in percentage level whereas other elements are found to be in parts per million levels. Elemental analysis of ten different medicinal plant samples commonly used for management and cure of diabetes, shows variation in concentrations. These elements either directly or indirectly may play some role to control diabetes. (author)

  12. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  13. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  14. Trace elements in home-produced eggs in Belgium: Levels and spatiotemporal distribution

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Hoenig, Michel; Goeyens, Leo; De Temmerman, Ludwig

    2009-01-01

    The purpose of this study was to evaluate the levels of arsenic, cadmium, lead, copper and zinc in home-produced eggs, soils and kitchen waste samples of private chicken owners in Belgium, and to determine spatiotemporal differences in trace element contents in eggs. Eggs were sampled in all provinces of Belgium in autumn 2006 and spring 2007. A total number of 59 private chicken owners participated in the study. Trace elements were determined by inductively coupled plasma-mass spectrometry except for mercury, which was determined by atomic absorption of mercury vapour. The mean fresh weight concentrations in eggs in autumn and spring respectively were < 8.0 and < 8.0 μg/kg for arsenic, 0.5 and < 0.5 μg/kg for cadmium, 116 and 74 μg/kg for lead, 0.43 and 0.52 mg/kg for copper, 20.3 and 19.2 mg/kg for zinc, and 3.15 and 4.44 μg/kg for mercury. Analysis of variance determined significant differences in some trace element concentrations in eggs among seasons and regions in Belgium. Average concentrations of arsenic, cadmium and mercury corresponded well with values measured in other countries, while copper and zinc concentrations were within the same order of magnitude as in other countries. Average lead concentrations were high compared to concentrations in eggs from other countries and correlated well with lead concentrations in soil, indicating that the soil is an important source. Other sources of trace elements in eggs might be home-grown vegetables and forage (grass and herbs), and indirectly, air pollution.

  15. Tracers and tracing methods

    International Nuclear Information System (INIS)

    Leclerc, J.P.

    2001-01-01

    The first international congress on 'Tracers and tracing methods' took place in Nancy in May 2001. The objective of this second congress was to present the current status and trends on tracing methods and their applications. It has given the opportunity to people from different fields to exchange scientific information and knowledge about tracer methodologies and applications. The target participants were the researchers, engineers and technologists of various industrial and research sectors: chemical engineering, environment, food engineering, bio-engineering, geology, hydrology, civil engineering, iron and steel production... Two sessions have been planned to cover both fundamental and industrial aspects: 1)fundamental development (tomography, tracer camera visualization and particles tracking; validation of computational fluid dynamics simulations by tracer experiments and numerical residence time distribution; new tracers and detectors or improvement and development of existing tracing methods; data treatments and modeling; reactive tracer experiments and interpretation) 2)industrial applications (geology, hydrogeology and oil field applications; civil engineering, mineral engineering and metallurgy applications; chemical engineering; environment; food engineering and bio-engineering). The program included 5 plenary lectures, 23 oral communications and around 50 posters. Only 9 presentations are interested for the INIS database

  16. Impact of geo-chemical environment of subsurface water on the measurement of ultra trace level of uranium in ground water by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Singhal, R.K.; Preetha, J.; Karpe, Rupali; Ajay Kumar; Hegde, A.G.

    2005-01-01

    During the present work, impacts of cations (Ca 2+ , Mg 2+ , K + ,), anions (Cl -1 , F -1 , and PO 4 3- ) and DOC (Dissolved Organic Carbon) on the measurement of ultra trace level of uranium (VI) in subsurface water by adsorptive stripping voltammetry (AdSV) is studied. The concentrations of these anions, cations and DOC in subsurface water changes due to change in the geo-chemical environment at different locations. In AdSV, concentration of U was determined by forming an uranium-chloranilic acid complex (2,5-dichloro- 3,6-dihydroxy-1,4-benzoquinone). AdSV measurements were carried out in the differential pulse (DP) mode using a pulse amplitude of -50 mV, a pulse time of 30 ms and a potential step of 4 mV. The detection limit, was calculated to 2+ , Mg 2+ , K + ) and anions (Cl -1 , F -1 , and PO 4 3- ) was carried out by using Ion Chromatography. Ground water samples were spiked with varying degree of cations, anions and DOC (dissolved organic carbon). DOC in ground waters were measured by Total Organic Carbon (TOC) analyzer. Various experiments show that analysis of uranium in the concentration range of 2+ , Mg 2+ , K + , Cl -1 , F -1 , and PO 4 3- . In case of DOC there is no interference observed in the concentration range of 0.02-15 ppm but beyond 15 ppm the concentration of uranium decrease sharply. Further, if DOC exceeded 16 ppm it was not possible to do the analysis of uranium by AdSV without destruction of DOC, as DOC is surface active organic compound and accumulates on Hg electrode preferentially over uranium-chloroanailic complex. (author)

  17. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  18. Trace conditioning in insects – Keep the trace!

    Directory of Open Access Journals (Sweden)

    Kristina V Dylla

    2013-08-01

    Full Text Available Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS and an unconditioned stimulus (US following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination – a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase, which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.

  19. A New Generation of Thermal Desorption Technology Incorporating Multi Mode Sampling (NRT/DAAMS/Liquid Agent) for Both on and off Line Analysis of Trace Level Airbone Chemical Warfare Agents

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A multi functional, twin-trap, electrically-cooled thermal desorption (TD) system (TT24-7) will be discussed for the analysis of airborne trace level chemical warfare agents. This technology can operate in both military environments (CW stockpile, or destruction facilities) and civilian locations where it is used to monitor for accidental or terrorist release of acutely toxic substances. The TD system interfaces to GC, GCMS or direct MS analytical platforms and provides for on-line continuous air monitoring with no sampling time blind spots and within a near real time (NRT) context. Using this technology enables on-line sub ppt levels of agent detection from a vapour sample. In addition to continuous sampling the system has the capacity for off-line single (DAAMS) tube analysis and the ability to receive an external liquid agent injection. The multi mode sampling functionality provides considerable flexibility to the TD system, allowing continuous monitoring of an environment for toxic substances plus the ability to analyse calibration standards. A calibration solution can be introduced via a conventional sampling tube on to either cold trap or as a direct liquid injection using a conventional capillary split/splitless injection port within a gas chromatograph. Low level (linearity) data will be supplied showing the TT24-7 analyzing a variety of CW compounds including free (underivitised) VX using the three sampling modes described above. Stepwise changes in vapor generated agent concentrations will be shown, and this is cross referenced against direct liquid agent introduction, and the tube sampling modes. This technology is in use today in several geographies around the world in both static and mobile analytical laboratories. (author)

  20. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 1; DC-8

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley s Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  1. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali

    2014-04-01

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health. © 2014

  2. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Bockman, R.S.; Repo, M.A.; Warrell, R.P. Jr.; Pounds, J.G.; Schidlovsky, G.; Gordon, B.M.; Jones, K.W.

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. The authors have used synchrotron X-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental targets of gallium

  3. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin

    International Nuclear Information System (INIS)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-01

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 μg m -3 and 55 μg m -3 with a mean value of 8 μg m -3 , a standard deviation of 7 μg m -3 and a median value of 6 μg m -3 . As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ∼ Ti ∼ Zn > Cd ∼ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.

  4. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin.

    Science.gov (United States)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-15

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0mum) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3microgm(-3) and 55microgm(-3) with a mean value of 8 microg m(-3), a standard deviation of 7microgm(-3) and a median value of 6microgm(-3). As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca>Fe>Al>Na>K>Cr>Mg>Pb>Ni approximately Ti approximately Zn>Cd approximately Cu>Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Higher levels of Cd (0.038 ± 0.004 to 0.044 ± 0.003 mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, which may be detrimental to the “health” of the aquatic ecosystem and the rural communities that utilise the river water for ... Key words: trace metals, water, sediment, farmland, Tyume River

  6. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg

    2014-02-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions. © IWA Publishing 2014.

  7. Chemical characterization of materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Deb, S.B.; Nagar, B.K.; Saxena, M.K.; Ramakumar, K.L.

    2009-11-01

    An Inductively Coupled Plasma Mass Spectrometer was procured for trace elemental determination in diverse samples. Since its installation a number of analytical measurements have been carried out on different sample matrices. These include chemical quality control measurements of nuclear fuel and other materials such as uranium metal. Uranium peroxide, ADU, ThO 2 , UO 2 ; isotopic composition of B, Li; chemical characterization of simulated ThO 2 + 2%UO 2 fuel; sodium zirconium phosphate and trace metallic elements in zirconium; Antarctica rock samples and wet phosphoric acid. Necessary separation methodologies required for effective removal of matrix were indigenously developed. In addition, a rigorous analytical protocol, which includes various calibration methodologies such as mass calibration, response calibration, detector cross calibration and linearity check over the entire dynamic range of 109 required for quantitative determination of elements at trace and ultra trace level,, has been standardized. This report summarizes efforts of RACD that have been put in this direction for the application of ICP-MS for analytical measurements. (author)

  8. Management strategies for trace organic chemicals in water - A review of international approaches.

    Science.gov (United States)

    Bieber, Stefan; Snyder, Shane A; Dagnino, Sonia; Rauch-Williams, Tanja; Drewes, Jörg E

    2018-03-01

    To ensure an appropriate management of potential health risks and uncertainties from the release of trace organic chemicals (TOrCs) into the aqueous environment, many countries have evaluated and implemented strategies to manage TOrCs. The aim of this study was to evaluate existing management strategies for TOrCs in different countries to derive and compare underlying core principles and paradigms and to develop suggestions for more holistic management strategies to protect the environment and drinking water supplies from the discharge of undesired TOrCs. The strategies in different industrial countries were summarized and subsequently compared with regards to three particular questions: 1) Do the approaches different countries have implemented manage all or only specific portions of the universe of chemicals; 2) What implementation and compliance strategies are used to manage aquatic and human health risk and what are their pros and cons; and 3) How are site-specific watershed differences being addressed? While management strategies of the different countries target similar TOrCs, the programs differ in several important aspects, including underlying principles, the balance between aquatic or human health protection, implementation methods, and financing mechanisms used to fund regulatory programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. From Chemical Forces to Chemical Rates: A Historical/Philosophical Foundation for the Teaching of Chemical Equilibrium

    Science.gov (United States)

    Quilez, Juan

    2009-01-01

    With this paper, our main aim is to contribute to the realisation of the chemical reactivity concept, tracing the historical evolution of the concept of chemical affinity that eventually supported the concept of chemical equilibrium. We will concentrate on searching for the theoretical grounds of three key chemical equilibrium ideas: "incomplete…

  10. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  11. Radio-tracing 'without' radioactivity: accelerator mass spectrometry in biomedicine

    International Nuclear Information System (INIS)

    Vogel, J.S.

    2005-01-01

    Accelerator mass spectrometry (AMS) is a form of isotope-ratio mass spectrometry that quantifies concentrations of certain long-lived radioisotopes independently of their radioactive decay. AMS is primarily used in the geosciences for determining the age of a material that contains naturally occurring radioisotopes. AMS uses the same high specificity for enriched levels of these radioisotopes in tracing low chemical doses for long periods in biological systems, including humans. AMS provides the safety of low radiative exposure to experimental subjects and investigators, while obtaining attomole sensitivities that are not possible with stable isotope tracers because of their natural isotopic abundances. AMS isotope tracing was first applied to quantifying the genotoxicity of low level environmental chemicals in animals and later in humans. Physiologic concentrations of 14 C-labeled trace nutrients (folate, carotene, and tocopherol) are now measured directly in humans without concern about radiation. The radiative exposure is less than the commonly accepted risks of natural background radiation or the radiation fields found in high altitude air flights. AMS measures very small biological samples (such as 20 microliters of blood) that are easily obtained from human volunteers or model animals at frequent intervals for detailed analysis of kinetic profiles. This high data density enables the construction of compartmental models that elucidate nutrient behavior in tissues that cannot be directly sampled. The pharmaceutical industry is enthusiastic about AMS as a detector for 'micro-dosing' in which the human kinetics of an assuredly non-toxic dose of a candidate drug is tested early in a development project. Molecular tracing uses 3 H or 14 C as common isotopic labels, but AMS contributes to elemental tracing with certain radioisotopes having very long lives, such as 26 AL or 41 Ca. Calcium-41 is a particularly useful isotope in biomedical research because it is used

  12. The use of neutron activation analysis for particle size fractionation and chemical characterization of trace elements in urban air particulate matter

    International Nuclear Information System (INIS)

    Rizzio, E.; Bergamaschi, G.; Profumo, A.; Gallorini, M.

    2001-01-01

    The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni. (author)

  13. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  14. Forensic collection of trace chemicals from diverse surfaces with strippable coatings.

    Science.gov (United States)

    Jakubowski, Michael J; Beltis, Kevin J; Drennan, Paul M; Pindzola, Bradford A

    2013-11-07

    Surface sampling for chemical analysis plays a vital role in environmental monitoring, industrial hygiene, homeland security and forensics. The standard surface sampling tool, a simple cotton gauze pad, is failing to meet the needs of the community as analytical techniques become more sensitive and the variety of analytes increases. In previous work, we demonstrated the efficacy of non-destructive, conformal, spray-on strippable coatings for chemical collection from simple glass surfaces. Here we expand that work by presenting chemical collection at a low spiking level (0.1 g m(-2)) from a diverse array of common surfaces - painted metal, engineering plastics, painted wallboard and concrete - using strippable coatings. The collection efficiency of the strippable coatings is compared to and far exceeds gauze pads. Collection from concrete, a particular challenge for wipes like gauze, averaged 73% over eight chemically diverse compounds for the strippable coatings whereas gauze averaged 10%.

  15. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, Aurélie, E-mail: aurelie.goutte@ephe.sorbonne.fr [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360 Villiers-en-Bois (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Ponthus, Jean-Pierre [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Massé, Guillaume [Unité Mixte Internationale Takuvik, Pavillon Alexandre-Vachon, Université Laval, QC, Québec (Canada); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ{sup 13}C and δ{sup 15}N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ{sup 13}C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  16. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    International Nuclear Information System (INIS)

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-01-01

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ"1"3C and δ"1"5N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ"1"3C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  17. Investigation of trace level binding of PtCl6 and PtCl4 to alfalfa biomass (Medicago sativa) using Zeeman graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Parsons, J.G.; Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.

    2002-01-01

    Batch laboratory experiments were performed to investigate the effects of pH, chemical modification, time dependency, and interference studies on the binding of trace concentrations of hexachloroplatinate(IV) and tetrachloroplatinate(II) to alfalfa biomass. The pH profiles were measured between pH 2.0 and 6.0. It was found that the binding of trace concentrations of platinum(IV and II) to alfalfa biomass was dependent on pH with a maximum binding occurring at pH 3.0 and a minimum at pH 6.0. When the alfalfa biomass was chemically modified (esterified), maximum binding occurred at pH 6.0 for both oxidation states of platinum. From the batch time dependency experiments, it was found that binding took at least 20 min to level off for both platinum oxidation states. Batch experiments were performed with various concentrations of calcium, magnesium, and sodium (0.1, 1.0, 10, 100 and 1000 ppm) and it was found that calcium affected the binding of platinum(II and IV) to the alfalfa biomass. It was determined that magnesium and sodium did not interfere appreciably with the binding of platinum in either of the oxidation states studied. Finally, batch experiments were performed with Mg 2+ , Ca 2+ and Na + in solutions at various concentrations, and it was observed that the binding was affected similarly to that by calcium alone

  18. Determination of Trace Level Triclosan in Water by Online Preconcentration and HPLC-UV Diode Array

    Science.gov (United States)

    An online high performance liquid chromatography (HPLC) method for the detection and quantification of trace levels of triclosan in water is discussed. Triclosan, an anti-bacterial agent, and related compounds have been shown to reach municipal waste waters through the disposal ...

  19. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  20. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 2; P-3B

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  1. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  2. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Science.gov (United States)

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  3. The Kimball Free-Cloud Model: A Failed Innovation in Chemical Education?

    Science.gov (United States)

    Jensen, William B.

    2014-01-01

    This historical review traces the origins of the Kimball free-cloud model of the chemical bond, otherwise known as the charge-cloud or tangent-sphere model, and the central role it played in attempts to reform the introductory chemical curriculum at both the high school and college levels in the 1960s. It also critically evaluates the limitations…

  4. Effect of kombucha on some trace element levels in different organs of electromagnetic field exposed rats

    Directory of Open Access Journals (Sweden)

    Ola A. Gharib

    2014-01-01

    Full Text Available Mobile phones have increased exponentially all over the world. The present study was performed to evaluate the effect of kombucha (KT on some trace element levels of brain, spleen and intestine in male albino rats exposed to a 950 MHz electromagnetic field (EMF. Four experimental groups labelled as controls, EMF group, KT group and KT + EMF group were formed with six randomly chosen animals in each group. After EMF exposure for eight weeks and the animals were sacrificed by decapitation. Brain, spleen and intestine samples were collected for trace element analysis. The group of animals subjected to electromagnetic waves caused significant increases in iron copper levels and copper/zinc ratio accompanied with a decrease of zinc level in all studied organs. Combined treatment of kombucha with EMF resulted in a successful attenuation of these adverse effects of EMF. From present findings we can state that kombucha as a supplement has an ameliorative signs against the effects of electromagnetic radiation.

  5. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  6. Trace elements in agroecosystems and impacts on the environment.

    Science.gov (United States)

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and

  7. Minor and trace metals levels in human milk in north western cities of Libya

    International Nuclear Information System (INIS)

    Mahabbis, M. T.; Elkubat, M. S.; Kut, H. M.

    2009-01-01

    Levels of twelve minor and trace metals were determined by using (AAS, ES and ICP/MS) in breast milk obtained from 60 women living in north western cities of Libya. Samples were collected at one week up to two years after delivery. Women with age>21 years old to an age of <43 years old were investigated. (Author)

  8. Trace elements distribution in environmental compartments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P., E-mail: suelip@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  9. Trace elements distribution in environmental compartments

    International Nuclear Information System (INIS)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P.

    2017-01-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  10. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    Science.gov (United States)

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  11. Trace elements in brazilian soils

    International Nuclear Information System (INIS)

    Rocha, Geraldo Cesar

    1995-01-01

    A literature revision on trace elements (Zn, B, Mn, Mo, Cu, Fe, and Cl) in Brazilian soils was prepared, with special attention to the chemical form and range in the soil, extraction methods and correlation of the amount in soils with soil properties

  12. TraceContract: A Scala DSL for Trace Analysis

    Science.gov (United States)

    Barringer, Howard; Havelund, Klaus

    2011-01-01

    In this paper we describe TRACECONTRACT, an API for trace analysis, implemented in the SCALA programming language. We argue that for certain forms of trace analysis the best weapon is a high level programming language augmented with constructs for temporal reasoning. A trace is a sequence of events, which may for example be generated by a running program, instrumented appropriately to generate events. The API supports writing properties in a notation that combines an advanced form of data parameterized state machines with temporal logic. The implementation utilizes SCALA's support for defining internal Domain Specific Languages (DSLs). Furthermore SCALA's combination of object oriented and functional programming features, including partial functions and pattern matching, makes it an ideal host language for such an API.

  13. Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters

    Science.gov (United States)

    Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.

    2002-12-01

    As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron

  14. Use of X-Ray Fluorescence Spectrometry to Determine Trace ...

    African Journals Online (AJOL)

    This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, as function of ...

  15. Quantification of Selected Trace and Mineral Elements in Royal Jelly from Bulgaria by Icp-Oes and Etaas

    Directory of Open Access Journals (Sweden)

    Balkanska Ralitsa

    2017-12-01

    Full Text Available The objective of the present study was to investigate selected trace and mineral elements in Royal Jelly (RJ from Bulgaria. A total of 30 RJ samples were included in the study. The analytical procedure consisted of the microwave digestion of the RJ samples with nitric acid followed by instrumental measurement. Concentrations of Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, Sr and Zn were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES, while As, Cd, Co, Ni and Pb were determined by electrothermal atomic absorption spectrometry (ETAAS. Our results showed that elements K, Mg, Ca represented 96% from the total mineral content of the RJ samples from Bulgaria, while the most abundant trace element was Na, followed by Zn. The elements Ba, Cr, Cu, Fe, Mn and Sr were found in trace concentration levels and elements As, Pb, Cd, Co and Ni in microconcentration levels. Selected mineral and trace elements were found in relatively constant concentration levels in all of the analyzed RJ samples. It was concluded that chemical element content did not depend on geographical origin and was under homeostatic adjustment in RJs.

  16. Trace elements distribution in the Amazon floodplain soils

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.; Ferraz, E.S.B.; Oliveira, H.

    1994-01-01

    Neutron activation analysis was performed on aluvial soil samples from several sites on the foodplains of the Amazon River and its major tributaries for trace elements determination. The spatial and temporal variations of chemical composition of floodland sediments in the Amazon basin are discussed. No significant difference was found in trace elemental distribution in the floodland soils along the Amazon main channel, even after the source material has been progressively diluted with that from lowland draining tributaries. It was also seen that the average chemical composition of floodplain soils compares well with that of the suspended sedimets. (author) 12 refs.; 5 figs.; 2 tabs

  17. Physiological Effects of Trace Elements and Chemicals in Water

    Science.gov (United States)

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  18. Addictive drugs and their duration affecting on trace elements levels in men

    International Nuclear Information System (INIS)

    Nadeem, A.; Iqbal, K.; Shafiq, T.; Rehman, S.

    2008-01-01

    During the drug addiction the blood biochemistry particularly level of trace elements in blood is widely affected. Eighty male addicts of various age groups along with seventeen normal subjects were studied. The plasma Zinc and manganese concentration was high in addict person as compared to normal subjects. Where as a significant decrease in iron concentration was observed in addicts. The plasma copper concentration was also low in addicts as compared to normal subjects. In conclusion drug addiction leads to many biochemical changes that may have detritus effects on health status of addicts. (author)

  19. Trace element characterisation and purification of quartz powder of Indian origin

    International Nuclear Information System (INIS)

    Dash, K.; Thangavel, S.; Dhavile, S.M.; Sahayam, A.C.; Chaurasia, S.C.

    2002-11-01

    Analytical methodologies for the trace element characterisation and purification of quartz powder of Indian origin have been described. Metallic impurities (11 elements) in ∼700 quartz samples have been analysed using different instrumental techniques. The values are cross-validated by American and British analytical laboratories. A special multi channel vapour phase digestion (MCVPD) chamber has been designed to reduce the process blank levels for the determination of ultra trace impurities in high purity silicon matrix. In this vessel 21 samples can be digested at a time in a period of 8 hrs. at normal pressure and low temperature (∼ 80 degC). Analytical methodologies for the determination of non-metals (phosphorus, boron and chloride) at very low levels <1 ppm) have also been described. A highly cost effective, single step, room temperature purification procedure is developed based on chemical leaching. Around 300 raw quartz powders (3-4N) from various mines have been purified to 5N pure ( optical grade ). (author)

  20. Monsoon signatures in trace gas records from Cape Rama, India

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.; Jani, R.A.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Masarie, K.A.

    2002-01-01

    Concentrations of trace gases CO 2 , CH 4 , CO, N 2 O and H 2 , and the stable carbon and oxygen isotopic composition of CO 2 have been measured in air samples collected from Cape Rama, a coastal station on the west coast of India, since 1993. The data show clear signatures of continental and oceanic air mass resulting in complex seasonal variation of trace gas characteristics. The regional atmospheric circulation in the Indian Ocean and Arabian Sea undergoes biannual reversal in low-level winds associated with the yearly migration of the inter-tropical convergence zone (ITCZ). From June to September, the wind is from the equatorial Indian Ocean to the Indian subcontinent (southwest monsoon) and brings in pristine marine air. From December to February, dry continental winds blow from the northeast and transport continental emissions to the ocean (northeast monsoon). Detailed transport and chemical modelling will be necessary to interpret these records, however the potential to identify and constrain the regional trace gas emissions appears to be high. (author)

  1. Spoken word recognition without a TRACE

    Science.gov (United States)

    Hannagan, Thomas; Magnuson, James S.; Grainger, Jonathan

    2013-01-01

    How do we map the rapid input of spoken language onto phonological and lexical representations over time? Attempts at psychologically-tractable computational models of spoken word recognition tend either to ignore time or to transform the temporal input into a spatial representation. TRACE, a connectionist model with broad and deep coverage of speech perception and spoken word recognition phenomena, takes the latter approach, using exclusively time-specific units at every level of representation. TRACE reduplicates featural, phonemic, and lexical inputs at every time step in a large memory trace, with rich interconnections (excitatory forward and backward connections between levels and inhibitory links within levels). As the length of the memory trace is increased, or as the phoneme and lexical inventory of the model is increased to a realistic size, this reduplication of time- (temporal position) specific units leads to a dramatic proliferation of units and connections, begging the question of whether a more efficient approach is possible. Our starting point is the observation that models of visual object recognition—including visual word recognition—have grappled with the problem of spatial invariance, and arrived at solutions other than a fully-reduplicative strategy like that of TRACE. This inspires a new model of spoken word recognition that combines time-specific phoneme representations similar to those in TRACE with higher-level representations based on string kernels: temporally independent (time invariant) diphone and lexical units. This reduces the number of necessary units and connections by several orders of magnitude relative to TRACE. Critically, we compare the new model to TRACE on a set of key phenomena, demonstrating that the new model inherits much of the behavior of TRACE and that the drastic computational savings do not come at the cost of explanatory power. PMID:24058349

  2. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?

    Science.gov (United States)

    Vondráčková, Stanislava; Tlustoš, Pavel; Száková, Jiřina

    2017-08-01

    Willows (Salix spp.) are considered to be effective for the phytoremediation of trace elements from contaminated soils, but their efficiency is limited in heavily polluted soils because of poor growth. Liming can be a desirable measure to decrease the plant availability of elements, resulting in improved plant development. Notably, large root area and maximum soil penetration are basic parameters that improve the efficiency of phytoremediation. The impact of soil chemical properties on willow root anatomy and the distribution of trace elements below-ground have rarely been studied. The effect of liming on root parameters, biomass allocation and trace element distribution in non-harvestable (coarse roots, fine roots, stumps) and harvestable plant parts (twigs and leaves) of Salix × smithiana was assessed at the end of a 4-year pot experiment with two trace element-polluted soils that differed in terms of soil pH. Stump biomass predominated in weakly acidic soil. In neutral soil, the majority of biomass was located in fine roots and stumps; the difference from other plant parts was minor. Trace elements were the most concentrated in fine roots. Translocation to above-ground biomass increased as follows: Pb roots roots). Lime application decreased the concentrations of mobile Cd and Zn and related levels in plants, improved biomass production and root parameters and increased the removal of all trace elements in weakly acidic soil. None or minimum differences in the monitored parameters were recorded for dolomite treatments in both soils. The dose and source of liming had crucial effects on root anatomy. Growing willows in limed trace element-polluted soils is a suitable measure for combination of two remediation strategies, i.e. phytoextraction of Cd and Zn and assisted phytostabilization of As and Pb.

  3. use of x-ray fluorescence spectrometry to determine trace elements ...

    African Journals Online (AJOL)

    NIJOTECH

    Abstract. This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, ...

  4. Trace element analysis in soy sauce

    International Nuclear Information System (INIS)

    Haruyama, Yoichi; Saito, Manabu; Tomiya, Michio

    1993-01-01

    Trace elements in soy sauce have been measured by means of in-air PIXE. Six kinds of trace elements were detected, such as Mn, Fe, Ni, Zn, Cu and Br. Concentrations of Mn, Fe, Zn and Br which were observed in all samples, have been determined. Each analyzed sample contained considerable amount of Br about 160 ppm. Comparison of Br content of the imported raw materials with those of the domestic ones suggested that the large amount of Br was the residual fumigation chemicals in the imported raw materials. (author)

  5. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    Science.gov (United States)

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    OpenAIRE

    Pappalardo Gelsomina

    2018-01-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evo...

  7. The partition behavior and the chemical speciation of selected trace elements in a typical coal sample during pyrolysis / Tivo Bafana Hlatshwayo

    OpenAIRE

    Hlatshwayo, Tivo Bafana

    2008-01-01

    Sasol is by far the world's leading company in upgrading of low-grade coal into high value chemicals and fuels. Such plants also utilise fine particles or pulverised coal in the combustion process to generate steam and electricity for their processes. Certain trace elements released from coal during utilisation may be of environmental concern. From the literature findings it appears that the elements of interest are mercury, arsenic and selenium due to their potential health hazard and as...

  8. Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF - a comparative study

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Thulasidas, S.K.; Natarajan, V.

    2015-01-01

    A comparative study was carried out to determine Ag, Au and Pt in aqueous samples, uranium, zirconium, and thorium based nuclear fuels and associated materials by CCD based ICP-AES and EDXRF. In ICP-AES, the spectral interference of U, Th, Zr matrices on trace level determination of Ag, Au and Pt were studied for different analytical lines of these analytes. The analytical performance of different lines including detection limits, sensitivity, linear dynamic range etc were studied both by ICP-AES and EDXRF. Though EDXRF technique was known its non destructive nature, the overall analytical performance of ICP-AES technique was found to be superior to EDXRF. Based on the spectral contribution from emission rich matrix elements and the analytical performance of different analytical lines of these analytes, a method was developed for direct determination of these analytes by ICP-AES without chemical separation. The method was validated with synthetic samples and compared with EDXRF technique and conventional ICP-AES technique where the major matrix was chemically separated using suitable organic phase containing selective ligands. The ICP-AES method for direct determination of analytes without chemical separation was found to be simple, less time consuming, without generation of organic waste with acceptable analytical performance

  9. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France); Sobanska, Sophie [LASIR, (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq CEDEX (France); Martins, Jean M.F., E-mail: jean.martins@yujf-grenoble.fr [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France)

    2015-12-30

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  10. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    International Nuclear Information System (INIS)

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo; Sobanska, Sophie; Martins, Jean M.F.

    2015-01-01

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  11. Determination of base-line levels of trace amounts in pulses and spices using neutron activation technique

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I.; Qureshi, I.H.

    1993-01-01

    It has been established that essential trace elements are vitally important for biochemical systems, whereas toxic elements if present in relatively higher amounts adversely affect these systems. Trace elements reach the human body mainly through foodstuffs. The different articles contain varying amount of toxic and essential elements. It is therefore necessary to asses the adequacy and safety of the diet by determining the base-line levels of these elements. In continuation of our previous work, some varieties of pulses and spices were analyzed using neutron activation technique. Among the four varieties of pulses lentil (lens esculenta) was found to contain higher amounts of essential elements and lower amounts of toxic elements. The daily intake of essential and toxic elements through pulses was estimated and compared with the suggested values. The estimated intake of essential elements is adequate and that of toxic elements is well below the tolerance limit. In spices cumin and caraway seeds were found to contain relatively higher amounts of essential as well as toxic elements. The studies showed that food spices were additional source of trace element intake. (author)

  12. Assessment of dietary intake of trace elements through Pakistani integrated diets

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Mannan, A.; Waheed, S.; Rehman, S.; Ahmad, S.

    1994-01-01

    A research study related to the determination and assessment of essential and potentially toxic trace elements in Pakistani integrated diets was undertaken at PINSTECH from 1986-90 under the International Atomic Energy Agency (IAEA) Co-ordinated Research Programme (CRP). During this period eight different integrated human diets of the residents of the Islamabad and Gujranwala were prepared by taking into consideration their respective food habits in summer and winter seasons. Instrumental as well as radiochemical neutron activation analyses in combination with the atomic absorption spectrometry were utilized for the precise and accurate determination of up to 23 elements in the diet samples. This work has helped us obtain the base line values for studying trace elements nutrition, inadequacy, imbalances and toxicity. Further, this would help, in future, to monitor the degree of contamination from foreign chemicals. The weekly dietary intake values were calculated which showed that our foods contain fairly adequate quantity of essential trace elements. The diet samples analyzed showed no contamination level to an extent to cause an adverse impact on human health. (author). 23 refs, 5 figs, 21 tabs

  13. Selected trace metal levels in common vegetables grown in NWFP, Pakistan

    International Nuclear Information System (INIS)

    Masud, K.; Jaffar, M.

    1998-01-01

    Seventeen vegetables procured from local markets of Peshawar and its suburbs were analyzed using wet digestion atomic absorption method for Fe, Pb, As, Hg, Cd, Cr, and Ni. The families investigated were: Cucurbitaceae, Solanaceae, Cruciferae, Liliaceae, Araceae, Leguminosae, Malvaceae, Umbelliferae and Zingiberaceae. The heavy metal data are reported at 99%(- + 2S) confidence level for triplicate measurements on sub samples of a given sample with an overall reproducibility of 2% compared with standard material samples. Comparison of averages through t-test indicates that each vegetable group is distinctly different from the other in terms of metal content. Maximum iron was present in garlic, at 4.585 mu g/g, dry weight (edible part-stem) of the Liliacease family. Arsenic was found to be below detection limit in all the vegetable groups. Lead levels were quite low, maximum concentration (0.0200 mu g/g, dry weight) was found in karaila (edible part-fruit). Mercury levels were relatively higher, with maximum concentration (2.590 mu g/g, dry weight) in gem (edible part-stem). The levels of nickel were moderately higher, being maximum (2.375 mu g/g dry weight) in karaila. The overall content of trace metals appeared to be within laid down internationally for safe human consumption, with only a few exceptions. (author)

  14. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Hayzoun, H. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Garnier, C., E-mail: cgarnier@univ-tln.fr [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Durrieu, G.; Lenoble, V.; Le Poupon, C. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Angeletti, B. [Centre Européen de Recherche et d' Enseignement de Géosciences de l' Environnement UMR 6635 CNRS — Aix-Marseille Université, FR ECCOREV, Europôle Méditerranéen de l' Arbois, 13545 Aix-en-Provence (France); Ouammou, A. [LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Mounier, S. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France)

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  15. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    International Nuclear Information System (INIS)

    Hayzoun, H.; Garnier, C.; Durrieu, G.; Lenoble, V.; Le Poupon, C.; Angeletti, B.; Ouammou, A.; Mounier, S.

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  16. Trace element concentrations in the fruit peels and trunks of Musa paradisiaca.

    Science.gov (United States)

    Selema, M D; Farago, M E

    1996-08-01

    Chemical analyses for the elementary compositions of the ashes of the fruit peels and trunks of the tropical plantain Musa paradisiaca have been undertaken. The elements, categorized as trace elements, generally are found to have higher mean concentrations in the fruit peels than in the trunks (except in the case of Zn). Their peel-trunk uptake ratios have been calculated and range between 1 and 4, showing normal levels of accumulations in the fruit peels over the trunks.

  17. Contamination from an affluent of Furnas reservoir by trace metals

    Directory of Open Access Journals (Sweden)

    PP Cavalcanti

    Full Text Available This study aims to determine concentrations and characterize trace metals distribution in an affluent of Furnas reservoir, Alfenas-MG. Water and sediment samples were taken monthly, 2010/10-2011/07 in five sites of Córrego do Pântano for subsequent determination of Pb, Cd and Zn levels by chemical analysis. The stream studied is in disagreement with Brazilian legislation for Class II water bodies (CONAMA 357. The highlights are the unsuitable concentrations of Pb for human consumption, according to Ministry of Health 2914 decree, providing risk for population.

  18. Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast.

    Science.gov (United States)

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tércia G; Fillmann, Gilberto

    2015-07-15

    Magellanic penguins have been reported as good biomonitors for several types of pollutants, including trace-elements. In this context, selenium (Se), total mercury, methylmercury, inorganic mercury (Hg(inorg)), cadmium (Cd) and lead (Pb), as well as metallothionein (MT) levels, were evaluated in the feathers, liver and kidney of juvenile Magellanic penguins found stranded along the coast of Southern Brazil. The highest concentrations of all trace-elements and methylmercury were found in internal organs. Concentrations of Cd and Se in feathers were extremely low in comparison with their concentrations in soft tissues. The results showed that both Se and MT are involved in the detoxification of trace-elements (Cd, Pb and Hg(inorg)) since statistically significant relationships were found in liver. Conversely, hepatic Se was shown to be the only detoxifying agent for methylmercury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Science.gov (United States)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  20. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiming; Qian, Xin, E-mail: xqian@nju.edu.cn; Hu, Wei; Wang, Yulei; Gao, Hailong

    2013-07-01

    The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied for partitioning and evaluating the mobility, availability and persistence of trace metals (Al, Cd, Co, Cr, Cu, Ni, Pb, Sr, V and Zn) in urban street dusts collected from different areas of Nanjing, China. The mobility sequence based on the sum of the BCR sequential extraction stages was: Sr (91.65%) > Pb (79.16%) > Zn (74.26%) > Cu (68.53%) > Co (45.98%) > Al (40.01%) ≈ V (38.45%) ≈ Ni (37.88%) > Cr (29.35%) > Cd (22.68%). Almost every trace metal had its highest total concentrations in the industrial area, except for Sr which had its highest concentration in the commercial area. Contamination factors (Cf), risk assessment code (RAC) and enrichment factor (Ef) were then calculated to further assess the environmental risk and provide a preliminary estimate of the main sources of trace metals in street dusts. Non-carcinogenic effects and carcinogenic effects due to exposure to urban street dusts were assessed for both children and adults. For non-carcinogenic effects, ingestion was the main route of exposure to street dusts for these metals, followed by dermal contact and inhalation. Hazard index values for all studied metals were lower than the safe level of 1, and Pb exhibited the highest risk value (0.125) in the case of children. The carcinogenic risk for Cd, Co, Cr and Ni were all below the acceptable level (< 10{sup −6}). - Highlights: • This study assesses a comprehensive environmental risk of urban trace metal pollution. • This study evaluates human health risk combined with the speciation of trace metals. • This study points the critical contaminated metals that need to be paid special attention. • This study supplies useful information and reference on the application of BCR SPE method.

  1. Quantification of trace-level DNA by real-time whole genome amplification.

    Science.gov (United States)

    Kang, Min-Jung; Yu, Hannah; Kim, Sook-Kyung; Park, Sang-Ryoul; Yang, Inchul

    2011-01-01

    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.

  2. Trace elements in oral health and disease: An updated review

    Directory of Open Access Journals (Sweden)

    Noopur Kulkarni

    2014-01-01

    Full Text Available Enzymes of trace elements are an important part of certain biological and chemical reactions. They work in harmony with proteins and often with certain other co enzymes. They attract substrate molecules and enable their conversion to a specific end product. Some trace elements are involved in redox reactions. Modern day diet, comprising of refined foods is a cause of concern, as it may not have a sufficient amount of these trace elements. Dietary supplements may be of required to combat this shortage. The present paper has thoroughly discussed trace elements, as this area of research has not received the deserved attention. Thus, a comprehensive understanding of these trace elements is essential and significant for disease control and for maintaining optimal health.

  3. Effect of fouling on removal of trace organic compounds by nanofiltration

    Directory of Open Access Journals (Sweden)

    S. Hajibabania

    2011-12-01

    Full Text Available The fate of chemical of concern is not yet fully understood during treatment of impaired waters. The aim of this paper is to assess the impact of different organic-based fouling layers on the removal of a large range of trace organics. Both model and real water samples (mixed with trace organic contaminants at environmental concentration of 2 μg l−1 were used to simulate fouling in nanofiltration under controlled environment. The new and fouled membranes were systematically characterised for surface charge, hydrophobicity and roughness. It was observed that fouling generally reduced the membrane surface charge; however, the alterations of the membrane hydrophobicity and surface roughness were dependent on the foulants composition. The rejection of charged trace organics was observed to be improved due to the increased electrostatic repulsion by fouled membranes and the adsorption of the trace organic chemicals onto organic matters. On the other hand, the removal of nonionic compounds decreased when fouling occurred, due to the presence of cake enhanced concentration polarization. The fouling layer structure was found to play an important role in the rejection of the trace organic compounds.

  4. A hard tissue cephalometric comparative study between hand tracing and computerized tracing

    Directory of Open Access Journals (Sweden)

    Ramachandra Prabhakar

    2014-01-01

    Full Text Available Aims: To analyze and compare the angular and linear hard tissue cephalometric measurements using hand-tracing and computerized tracings with Nemoceph and Dolphin software systems. Subjects and Methods: A total of 30 cephalograms were randomly chosen for study with the following criteria, cephalograms of patients with good contrast, no distortion, and minimal radiographic artifacts were considered using the digital method (Kodak 8000 C with 12 angular and nine linear parameters selected for the study. Comparisons were determined by post-hoc test using Tukey HSD method. The N-Par tests were performed using Kruskal-Walli′s method. Statistical Analysis Used: ANOVA and post-hoc. Results: The results of this study show that there is no significant difference in the angular and linear measurements recorded. The P values were significant at 0.05 levels for two parameters, Co-A and Co-Gn with the hand-tracing method. This was significant in ANOVA and post-hoc test by Tukey HSD method. Conclusions: This study of comparison provides support for transition from digital hand to computerized tracing methodology. In fact, digital computerized tracings were easier and less time consuming, with the same reliability irrespective of each method of tracing.

  5. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Directory of Open Access Journals (Sweden)

    Pappalardo Gelsomina

    2018-01-01

    Full Text Available The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  6. Energy efficient trace removal by extractive distillation

    NARCIS (Netherlands)

    Jongmans, M.T.G.

    2012-01-01

    Separation processes contribute for about 40–70 % to the total energy requirements of the chemical process industry. Especially when trace removal is required to manufacture high purity products, traditional separation technologies become extremely expensive and are not providing satisfying

  7. Mass-produced lonophore-based fluorescent microspheres for trace level determination of lead ions.

    Science.gov (United States)

    Telting-Diaz, Martin; Bakker, Eric

    2002-10-15

    The development and characterization of small, uniform, and mass-produced plasticized PVC-based sensing microspheres in view of rapid trace level analysis of lead ions is reported. Micrometer-sized particles obtained via an automated casting process were rendered selective for lead ions by doping them with highly selective components in a manner analogous to traditional optode sensing films. Single particles that contained the lipophilic ionophore N,N,N',N'-tetradodecyl-3-6-dioxaoctane-1-thio-8-oxodiamide (ETH 5493), the chromoionophore ETH 5418 together with a lipophilized indocarbocyanine derivative as internal reference dye (DiIC18), and lipophilic ion-exchanger sites sodium tetrakis[3,5-bistrifluoromethylphenyl]borate, yielded measurable lead responses at the low nanomolar level in pH buffered solutions. The detection limit for single particles was 3 x 10(-9) M at pH 5.7. The microspheres were fabricated via a reproducible formation of polymer droplets within a flowing aqueous phase followed by collection of spherical particles of approximately 13 microm in size. The particles were immobilized and assayed individually in a microflow cell via fluorescence microscopy. Selectivity patterns found were in agreement with those reported earlier for the lead-selective ligand ETH 5493, and all response functions were fully described by theory. In contrast to optode films that necessitated very long equilibration times and large sample volumes in diluted samples of analyte, particles exhibited extremely enhanced equilibrium response times. Thus, for lead sample concentrations at and above 5 x 10(-8) M, response times were approximately 3 min, whereas at the detection limit, complete equilibrium was recorded after just 15 min, with required sample volumes on the order of 1 mL This new class of microspheres appears to be suitable for rapid and sensitive ion detection at trace levels in environmental and biological applications.

  8. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    Science.gov (United States)

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  10. Improved inhalation technology for setting safe exposure levels for workplace chemicals

    Science.gov (United States)

    Stuart, Bruce O.

    1993-01-01

    Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.

  11. Understanding the triple nature of the chemical bond on submicroscopic level

    OpenAIRE

    Klun, Tina

    2017-01-01

    The master’s thesis addresses three definitions of chemical bond with particular emphasis on the sub-microscopic level in a comprehensive manner. Slovenian pupils are taught about chemical bond for the first time in the eighth grade of primary school as part of learning about the connection between particles. Due to the abstract nature of the notion chemical bond, it is essential that pupils are encouraged to learn about the topic on the macroscopic, sub microscopic and symbolic level as this...

  12. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Adén, D.; Asplund, M.; Meléndez, J.; Gal-Yam, A.; Lucatello, S.; Sana, H.; Sumi, T.; Miyake, N.; Suzuki, D.; Han, C.; Bond, I.; Udalski, A.

    2010-01-01

    Context. The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a

  13. the effect of rubber effluent on some chemical properties of soil and ...

    African Journals Online (AJOL)

    DR. AMINU

    levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was arranged ... addition to traces of various processing chemicals. The amount of ... The aim of this trial was to examine the influence of rubber effluent on ...

  14. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS

    International Nuclear Information System (INIS)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo; Resano, Martín; Vanhaecke, Frank

    2014-01-01

    Graphical abstract: -- Highlights: •Novel method for determination of Ti at ultra-trace levels in clinical samples (serum). •Novel method based on Ti(NH 3 ) 6 + reaction product ion formation and double mass selection using recently introduced ICP-QQQ instrumentation. •Lowest limits of detection ever obtained using quadrupole-based instrumentation for Ti. •Accurate determination of basal levels of Ti in blood serum. -- Abstract: Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O 2 and NH 3 /He have been compared as reaction gases. While the use of O 2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti + ions into Ti(NH 3 ) 6 + cluster ions by using NH 3 /He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L −1 (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF

  15. The Effect of Helicobacter pylori Eradication on the Levels of Essential Trace Elements

    Directory of Open Access Journals (Sweden)

    Meng-Chieh Wu

    2014-01-01

    Full Text Available Objective. This study was designed to compare the effect of Helicobacter pylori (H. pylori infection treatment on serum zinc, copper, and selenium levels. Patients and Methods. We measured the serum zinc, copper, and selenium levels in H. pylori-positive and H. pylori-negative patients. We also evaluated the serum levels of these trace elements after H. pylori eradication. These serum copper, zinc, and selenium levels were determined by inductively coupled plasma mass spectrometry. Results. Sixty-three H. pylori-positive patients and thirty H. pylori-negative patients were studied. Serum copper, zinc, and selenium levels had no significant difference between H. pylori-positive and H. pylori-negative groups. There were 49 patients with successful H. pylori eradication. The serum selenium levels were lower after successful H. pylori eradication, but not significantly (P=0.06. There were 14 patients with failed H. pylori eradication. In this failed group, the serum selenium level after H. pylori eradication therapy was significantly lower than that before H. pylori eradication therapy (P<0.05. The serum zinc and copper levels had no significant difference between before and after H. pylori eradication therapies. Conclusion. H pylori eradication regimen appears to influence the serum selenium concentration (IRB number: KMUH-IRB-20120327.

  16. Sample handling and chemical procedures for efficacious trace analysis of urine by neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Roman, F.R.

    1988-01-01

    Important for the determination of trace elements, ions, or compounds in urine by chemical neutron activation analysis is the optimization of sample handling, preirradiation chemistry, and radioassay procedures necessary for viable analysis. Each element, because of its natural abundance in the earth's crust and, hence, its potential for reagent and environmental contamination, requires specific procedures for storage, handling, and preirradiation chemistry. Radioassay techniques for radionuclides vary depending on their half-lives and decay characteristics. Described in this paper are optimized procedures for aluminum and selenium. While 28 Al (T 1/2 = 2.24 min) and 77m Se(T 1/2 = 17.4s) have short half-lives, their gamma-ray spectra are quite different. Aluminum-28 decays by a 1779-keV gamma and 77m Se by a 162-keV gamma. Unlike selenium, aluminum is a ubiquitous element in the environment requiring special handling to minimize contamination in all phases of its analytical determination

  17. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  18. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  19. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  20. Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Dragoe, Diana; Spataru, Nicolae; Kawasaki, Ryuji; Manivannan, Ayyakkannu; Spataru, Tanta; Tryk, Donald A.; Fujishima, Akira

    2006-01-01

    Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting trace levels of lead by linear-sweep anodic stripping voltammetry. The low limit of detection (2 nM) is an advantage compared to other electrode materials, and it was found that at low pH values, copper concentrations that are usually present in drinking water do not affect to a large extent the detection of lead. These findings recommend anodic stripping voltammetry at the BDD electrodes as a suitable mercury-free method for the determination of trace levels of lead in drinking water. The results obtained for the lead detection in tap water real samples are in excellent agreement with those found by inductively coupled plasma-mass spectrometry (ICP-MS), demonstrating the practical analytical utility of the method

  1. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  2. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    Science.gov (United States)

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  3. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    International Nuclear Information System (INIS)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction. A significant correlation between the chemical composition of foliage and soil is not a sufficient condition for using the chemical composition of foliage as a biomonitor for the quality of the soil. The chemical composition of foliage can, however, provide additional information to the traditional soil samples. The phytoextraction potential of a plant species cannot solely be evaluated on the basis of the trace metal concentrations in the plant and soil tissue. Data on the depth of the rooting zone, the density of the soil and the harvestable biomass should also be taken into account. Although plant tissue analysis is a useful tool in a wide range of studies and applications, trace metal concentrations in plant tissue cannot be viewed in isolation. Instead it should be analysed and interpreted in relation to other information such as soil concentrations, rooted zone, biomass production, etc. - Plants that accumulate soil metals in their aboveground biomass are often incorrectly considered to be suitable for monitoring soil pollution or for phytoextraction purposes

  4. Understanding the physical and chemical changes on the three levels of the presentation of chemical concepts in students primary education

    OpenAIRE

    Bregar, Anja

    2017-01-01

    Physical and chemical changes are learning contents that address the essential chemical concepts in processes at particle level. When explaining chemical concepts at particle level, it is necessary to use various and appropriate visualization elements, such as (1) pictures, (2) photographs, (3) film excerpts (4) 2D or 3D stationary submicroscopic representations, (5) 2D and 3D dynamic contamination schemes, etc. This way, teachers can explain and interpret a chemical concept on three presenta...

  5. The importance of radiochemistry and indicator methods for the chemistry of traces

    International Nuclear Information System (INIS)

    Benes, P.; Majer, V.

    1980-01-01

    Sensitivity is compared for common chemical methods with respect to nonradioactive materials and methods for determining trace amounts of radioactive substances. The concept of trace amounts is explained and some other notions and terms are discussed from the point of view of chemistry and radiochemistry. The problem of radiation effect is briefly assessed on a sample of material containing trace amounts of a radionuclide and the isotopic effect problem in hydrogen is treated. (M.S.)

  6. Lake Orta chemical status 25 years after liming: problems solved and emerging critical issues

    Directory of Open Access Journals (Sweden)

    Michela Rogora

    2016-04-01

    Full Text Available Lake Orta, located in Piedmont, northwestern Italy, has been severely affected by industrial pollution since the 1930s. A successful liming intervention, performed in 1988-1990, returned pH levels in the lake to neutrality, and accelerated the reduction of aqueous trace metal concentrations. In this paper, we present an update knowledge of the chemical status of Lake Orta, focusing on the data collected from 1990 to 2014. In this period we sampled the lake at its deepest point (Qualba station, on a monthly (1990-2000 or seasonal (since 2001 basis. Samples were collected at nine depths through the water column, and analyzed for pH, conductivity, alkalinity, major ions, nutrients, and trace metals. Collectively, these data allowed us to evaluate the long-term response of the lake to the restoration treatment, with particular regard to its acid-base status; they also provided insights into emerging or potential critical issues, including eutrophication and re-suspension of trace metals that still linger in the lake. Furthermore, the evaluation of the present chemical condition of the lake is a precondition for any successive restoration measure, such as fish introduction. The recent data confirmed the lake’s water quality has recovered, i.e. returned to a pre-pollution chemical state. Lake water values of pH and concentrations of ammonium, sulphate and base cations have stabilized. Alkalinity and nitrate concentrations are also expected to reach stable level in the next few years. Levels of nitrate, reactive silica, and phosphorus compounds are now regulated by algal uptake, providing indirect evidence of a partial biological recovery. For instance, both the inter-annual average decline and the reappearance of a seasonal signal in silica confirmed the presence of a stable diatom community. The lake is presently oligotrophic, and concentrations of both N and P compounds are steady and low throughout the year. However, a monthly check of nutrient

  7. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  8. Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ryabukhin, Yu S [ed.

    1976-10-01

    The burning of fossil fuel, discharges from metallurgical and chemical plants, the wide use of chemicals, and other human activities, result in releasing into the biosphere large quantities of elements which are found in relatively low concentrations in the human organism. The pollution of the biosphere by such trace elements, and in particular heavy metals, has reached such proportions that on the scale of significance of the factors causing the 'stressed' state of the environment of heavy metals occupy the second place and, according to forecasts, may in the future move on to the first. In the problem of pollution of the biosphere, man himself undoubtedly occupies the central position as a target. The pollution of air, soil and water, the contamination of micro-organisms, plants and animals are certainly growing into a serious threat and leading to heavy losses. However, it would be a real disaster if man himself became contaminated to levels giving rise to large scale harmful somatic or genetic effects. It is therefore an urgent problem today to determine the initial levels of trace elements in man and the extent of his contamination in areas where these elements are expected to show anomalous concentrations. Attention should be paid in the first place to those trace elements which probably play no physiological role, are particularly abundant in the environment, and have high toxicity (arsenic, mercury, lead, cadmium, etc.). Moreover, it should be born in mind that in anomalously high concentrations even the physiologically necessary trace elements (copper, zinc, manganese, fluorine, etc.) cause harmful effects. This paper justifies the use of hair samples as a biological indicator of environmental pollutants from physiological and morphological aspect and recommends on sample preparation and analysis methods.

  9. Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants

    International Nuclear Information System (INIS)

    Ryabukhin, Yu.S.

    1976-10-01

    The burning of fossil fuel, discharges from metallurgical and chemical plants, the wide use of chemicals, and other human activities, result in releasing into the biosphere large quantities of elements which are found in relatively low concentrations in the human organism. The pollution of the biosphere by such trace elements, and in particular heavy metals, has reached such proportions that on the scale of significance of the factors causing the 'stressed' state of the environment of heavy metals occupy the second place and, according to forecasts, may in the future move on to the first. In the problem of pollution of the biosphere, man himself undoubtedly occupies the central position as a target. The pollution of air, soil and water, the contamination of micro-organisms, plants and animals are certainly growing into a serious threat and leading to heavy losses. However, it would be a real disaster if man himself became contaminated to levels giving rise to large scale harmful somatic or genetic effects. It is therefore an urgent problem today to determine the initial levels of trace elements in man and the extent of his contamination in areas where these elements are expected to show anomalous concentrations. Attention should be paid in the first place to those trace elements which probably play no physiological role, are particularly abundant in the environment, and have high toxicity (arsenic, mercury, lead, cadmium, etc.). Moreover, it should be born in mind that in anomalously high concentrations even the physiologically necessary trace elements (copper, zinc, manganese, fluorine, etc.) cause harmful effects. This paper justifies the use of hair samples as a biological indicator of environmental pollutants from physiological and morphological aspect and recommends on sample preparation and analysis methods

  10. Resolving and modelling trace metal partitioning in a freshwater sediment

    International Nuclear Information System (INIS)

    Devallois, V.; Boyer, P.; Coulomb, B.; Boudenne, J. L.

    2009-01-01

    Elevated concentrations of trace metals in sediments pose toxicological risks to biota and may impair water quality. the sediment-water interface is the site where gradients in physical, chemical and biological properties are the greatest. Both chemical and microbiological transformation processes are responsible for cycling elements between water and sediments. (Author)

  11. Epidemic contact tracing via communication traces.

    Directory of Open Access Journals (Sweden)

    Katayoun Farrahi

    Full Text Available Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  12. Epidemic contact tracing via communication traces.

    Science.gov (United States)

    Farrahi, Katayoun; Emonet, Rémi; Cebrian, Manuel

    2014-01-01

    Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  13. Trace levels of innate immune response modulating impurities (IIRMIs synergize to break tolerance to therapeutic proteins.

    Directory of Open Access Journals (Sweden)

    Daniela Verthelyi

    Full Text Available Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  14. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins.

    Science.gov (United States)

    Verthelyi, Daniela; Wang, Vivian

    2010-12-22

    Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st) dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  15. Chemical structure and dynamics. Annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  16. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    Science.gov (United States)

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  17. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  18. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    International Nuclear Information System (INIS)

    Jin, C.; Li, Y.; Li, Y.L.; Zou, Y.; Zhang, G.L.; Normura, M.; Zhu, G.Y.

    2008-01-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 A and the Fe-Np bond length slightly increases, but the Fe-N ε bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases

  19. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  20. Chemical sensors fabricated by a photonic integrated circuit foundry

    Science.gov (United States)

    Stievater, Todd H.; Koo, Kee; Tyndall, Nathan F.; Holmstrom, Scott A.; Kozak, Dmitry A.; Goetz, Peter G.; McGill, R. Andrew; Pruessner, Marcel W.

    2018-02-01

    We describe the detection of trace concentrations of chemical agents using waveguide-enhanced Raman spectroscopy in a photonic integrated circuit fabricated by AIM Photonics. The photonic integrated circuit is based on a five-centimeter long silicon nitride waveguide with a trench etched in the top cladding to allow access to the evanescent field of the propagating mode by analyte molecules. This waveguide transducer is coated with a sorbent polymer to enhance detection sensitivity and placed between low-loss edge couplers. The photonic integrated circuit is laid-out using the AIM Photonics Process Design Kit and fabricated on a Multi-Project Wafer. We detect chemical warfare agent simulants at sub parts-per-million levels in times of less than a minute. We also discuss anticipated improvements in the level of integration for photonic chemical sensors, as well as existing challenges.

  1. Mapping students' ideas about chemical reactions at different educational levels

    Science.gov (United States)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  2. Groundwater monitoring in the Savannah River Plant low-level waste burial ground: a summary and interpretation of the analytical data

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1983-01-01

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace-level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated, but most of these were shown to be incapable of mobilizing more than trace quantities of plutonium. The parameters of greatest importance were oxidation-reduction potential, pH, dissolved organic carbon, phosphate and carbonate. Of these, organic and phosphate complexation had the greatest potential for mobilizing plutonium in the SRP groundwater. In the absence of such complexants, plutonium would be essentially immobile in the soil/water system of the SRP burial ground. 50 references, 8 figures, 2 tables

  3. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  4. Trace contaminant control simulation computer program, version 8.1

    Science.gov (United States)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.

  5. Trace metal speciation: Finally, correctly addressing trace metal issues

    International Nuclear Information System (INIS)

    Donard, O.F.X.

    2001-01-01

    The history of the development of trace metal speciation was discussed and the reasons behind the relatively slow widespread acceptance of its importance were presented. Partially, this was due to the lack of availability of commercial instrumentation and partly to the drive towards improving sensitivity in analytical chemistry which had focused attention on total concentration determinations. The sophistication and control of analytical instrumentation is now such that the spotlight must be turned onto the chemical species of an element present in a sample since this is what governs its behaviour in the biosphere. Indeed, several companies are currently considering the introduction of instrumentation specifically designed for metal species determination

  6. Global chemical pollution

    International Nuclear Information System (INIS)

    Travis, C.C.; Hester, S.T.

    1991-01-01

    Over the past decade, public and governmental awareness of environmental problems has grown steadily, with an accompanying increase in the regulation of point sources of pollution. As a result, great strides have been made in cleaning polluted rivers and decreasing air pollution near factories. However, traditional regulatory approaches to environmental pollution have focused primarily on protecting the maximally exposed individual located in the immediate vicinity of the pollution source. Little attention has been given to the global implications of human production and use of synthetic chemicals. A consensus is emerging that even trace levels of environmental contamination can have potentially devastating environmental consequences. The authors maintain that ambient levels of pollution have risen to the point where human health is being affected on a global scale. Atmospheric transport is recognized as the primary mode of global distribution and entry into the food chain for organic chemicals. The following are examples of global chemical pollutants that result in human exposure of significant proportions: PCBs, dioxins, benzene, mercury and lead. Current regulatory approaches for environmental pollution do not incorporate ways of dealing with global pollution. Instead the major focus has been on protecting the maximally exposed individual. If we do not want to change our standard of living, the only way to reduce global chemical pollution is to make production and consumption processes more efficient and to lower the levels of production of these toxic chemicals. Thus the only reasonable solution to global pollution is not increased regulation of isolated point sources, but rather an increased emphasis on waste reduction and materials recycling. Until we focus on these issues, we will continue to experience background cancer risk in the 10 -3 range

  7. trace metal level of human blood from dareta village, anka, nigeria

    African Journals Online (AJOL)

    BARTH EKWUEME

    either (or both) as essential or toxic or show a high ... Death from Lead poisoning has occurred in children at blood Lead levels of 1.25 mg/L or ... intake of Lead: adults, 3 mg per person or 50 µg/kg ... U.U. Udiba, National Research Institute for Chemical Technology, P.M.B 1052, Zaria, .... workers exposed to this metal.

  8. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2015-03-01

    This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4. °C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30. °C to 4. °C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (. ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10. °C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems.

  9. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems.

    Science.gov (United States)

    Alidina, Mazahirali; Shewchuk, Justin; Drewes, Jörg E

    2015-03-01

    This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4°C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30°C to 4°C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10°C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Assessment of Trace Element Levels in Muscle Tissues of Fish Species Collected from a River, Stream, Lake, and Sea in Sakarya, Turkey

    Directory of Open Access Journals (Sweden)

    Tülay Küpeli

    2014-01-01

    Full Text Available Levels of some trace and essential elements, including Al, B, Ba, Cr, Cu, Fe, Mn, Ni, Sr, and Zn, were determined in 17 different fish species from Sakarya River, Çark Stream, Sapanca Lake, and Western Black Sea using ICP-OES after microwave (MW digestion procedure. During preparation of samples for analysis, wet and MW digestion methods were also compared. Accuracy of the digestion methods was checked by the analysis of DORM-3 reference material (Fish Protein Certified Reference Material for Trace Metals. Concentrations of trace elements were found as Al: 6.5–48.5, B: 0.06–3.30, Ba: 0.09–2.92, Cr: 0.02–1.64, Cu: 0.13–2.28, Fe: 7.28–39.9, Mn: 0.08–11.4, Ni: 0.01–26.1, Sr: 0.17–13.5, and Zn: 11.5–52.9 µg g−1. The obtained results were compared with other studies published in the literature. Trace element levels in various fish species collected from waters in Sakarya region were found to be below limit values provided by Turkish Food Codex (TFC, Food and Agriculture Organization (FAO, and World Health Organization (WHO.

  11. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    Science.gov (United States)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and

  12. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  13. Sorbent control of trace metals in sewage sludge combustion and incineration

    Science.gov (United States)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  14. Chemical structure and dynamics: Annual report 1996

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species

  15. Chemical structure and dynamics: Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  16. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce

    Science.gov (United States)

    An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...

  17. Trace metal physiology in normal and pathological tissues

    International Nuclear Information System (INIS)

    Hamer, C.J.A. van den; Nooijen, J.L.

    1979-01-01

    Many of the ionic tumour seeking radiopharmaceuticals consist of a metal ion combined with an anion. The choice of metal depends on the existence of radionuclides with suitable radiological properties, and on their availability. Because several of the metal complexes used in nuclear medicine are of rather recent interest, information about their metabolism is scarce. Although nuclear medicine is limited to those metals which radiochemists can produce, we can manipulate the chemical form in which the metals are introduced into the organism to some extent. The relation between chemical form and biological pathway, e.g., the extent of accumulation in certain tissues, is subject of study related to trace metal physiology. It is the purpose of this paper to try and bridge the gap between nuclear medicine and trace metal physiology by showing the progress made by the latter in the study of the metabolism of copper and zinc. Few trace metals have been studied as thoroughly as these, although iron could have been chosen just as well. This presentation is limited to a study of the fate of a metal derivative after its intravenous injection. Where possible the results obtained are related to the behaviour of metals presently of interest to nuclear medicine. (Auth.)

  18. DETERMINATION of the TRACE ELEMENT LEVELS in HAIR of SMOKERS and NON-SMOKERS by ICP-MS

    Directory of Open Access Journals (Sweden)

    Elif Varhan Oral

    2016-09-01

    Full Text Available For at least 50 years, determination of the trace element levels in human hair has been used to assess environmental and vocational exposure to toxic elements . As compared to other biological matrices (e.g. blood, urine, human hair is stable and therefore useful as a matrice. In this study, analyses of toxic and essential trace elements, such as Cd, Pb, Cu and Fe, were done in hair samples which we collected from male smokers (10 people and non-smokers (10 people who live in Diyarbakır, Turkey and concentrations in hair samples were compared. Hair samples were washed by a standard procedure proposed by the International Atomic Energy Agency. Then the samples were dried for 16 h at 110°C in an oven. Solubilization procedure was carried out by nitric acid hydrogen peroxide mixture (3:1 in closed vessels in a microwave oven. Trace element analyses were carried out by using inductively coupled plasma-mass spectrometry (ICP-MS  technique. In our study, while concentrations of Cd, Pb, and Fe elements were found to be considerably higher in smokers than non-smokers, similar results were observed in Cu concentrations. The precision and accuracy of the method was evaluated by applying spike method to samples. Analytical recovery results were found between 91.2% and 104.6%.

  19. Identification of trace levels of selenomethionine and related organic selenium species in high-ionic-strength waters.

    Science.gov (United States)

    LeBlanc, Kelly L; Ruzicka, Josef; Wallschläger, Dirk

    2016-02-01

    A new anion-exchange chromatographic separation method was used for the simultaneous speciation analysis of selenoamino acids and the more ubiquitous inorganic selenium oxyanions, selenite and selenate. For quantification, this separation was coupled to inductively coupled plasma-mass spectrometry to achieve an instrumental detection limit of 5 ng Se L(-1) for all species. This chromatographic method was also coupled to electrospray tandem mass spectrometry to observe the negative ion mode fragmentation of selenomethionine and one of its oxidation products. Low detection limits were achieved, which were similar to those obtained using inductively coupled plasma-mass spectrometry. An extensive preconcentration and cleanup procedure using cation-exchange solid-phase extraction was developed for the identification and quantification of trace levels of selenomethionine in environmental samples. Preconcentration factors of up to five were observed for selenomethionine, which in addition to the removal of high concentrations of sulphate and chloride from industrial process waters, allowed for an unambiguous analysis that would have been impossible otherwise. Following these methods, selenomethionine was identified at an original concentration of 3.2 ng Se L(-1) in samples of effluent collected at a coal-fired power plant's biological remediation site. It is the first time that this species has been identified in the environment, outside of a biological entity. Additionally, oxidation products of selenomethionine were identified in river water and laboratory algal culture samples. High-resolution mass spectrometry was employed to postulate the chemical structures of these species.

  20. Hyperspectral imaging for non-contact analysis of forensic traces

    NARCIS (Netherlands)

    Edelman, G. J.; Gaston, E.; van Leeuwen, T. G.; Cullen, P. J.; Aalders, M. C. G.

    2012-01-01

    Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers

  1. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    Science.gov (United States)

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Trace gases over Northern Eurasia: background level and disturbing factors

    Science.gov (United States)

    Skorokhod, A.; Shumsky, R.; Pankratova, N.; Moiseenko, K.; Vasileva, A.; Berezina, E.; Elansky, N.

    2012-04-01

    not exceed 1 ppb that is typical for background areas but may vary by order and some more in few hours. Higher surface NOx(=NO+NO2) concentrations during day time generally correspond to higher ozone when NO/NO2 ratio indicates on clean or slightly polluted conditions. If there are carbonaceous admixtures (, methane, VOC, etc.) in atmospheric air during the daytime, the NO level more than 10 - 20 ppb is enough for organic matter chain reactions, which lead to ozone accumulation in the atmosphere, to occur. There are almost no such conditions in the rural Siberia. Despite the prevailing western transport higher ozone (as well as other trace gases) concentrations are correlated with air of southern origin. Anthropogenic pollutants like NOx and CO come to Central Siberia mostly from industrial regions of Southern Siberia. Intrusions from China are not typical because of blocking Asian anticyclone. After analysis of surface ozone concentrations one may conclude that climatic conditions (light, temperature, wind conditions, etc.) and chemical composition of the main polluting components (NO, NO2, CO, methane, etc.) do not help (with rare exceptions) the active generation of ozone in the atmospheric air over Siberia. Nocturnal O3 dry deposition and soil emissions of CO2, CH4 were estimated for different parts of Siberia from radon measurements in TROICA experiments. The impact of wildfires on surface air composition over central Siberia is investigated based on near-surface carbon monoxide (CO) measurements conducted at ZOTTO during 2007 and 2008 warm seasons. Seasonal variations of intensity and spatial distribution of wildfires in south of western and eastern Siberia are found to be important factors contributing a substantial part of synoptic and year-to-year variability of background CO levels in the region. The estimated relative CO enhancement in fire plumes with transport times up to 2 days is about 5-25 ppb in springs 2007 and 2008, and 50 ppb in summer 2008, based

  3. Inorganic and organic trace mineral supplementation in weanling pig diets

    Directory of Open Access Journals (Sweden)

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  4. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    Science.gov (United States)

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.

  5. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  6. Rice flakes produced from commercial wild rice: Chemical compositions, vitamin B compounds, mineral and trace element contents and their dietary intake evaluation.

    Science.gov (United States)

    Sumczynski, Daniela; Koubová, Eva; Šenkárová, Lenka; Orsavová, Jana

    2018-10-30

    Non-traditional wild rice flakes were analysed for chemical composition, vitamin B compounds, α-tocopherol, mineral and trace elements. Dietary intakes of vitamins, minerals and trace elements were evaluated using FAO/WHO and Institute of Medicine regulations. Wild rice flakes proved to be significant contributors of pyridoxine, pantothenic and folic acids, niacin, thiamine, chromium, magnesium, manganese, phosphorus, zinc, copper, molybdenum and iron to essential dietary intakes values. Toxic dietary intake values for aluminium, cadmium, tin and mercury were less than 33%, which complies the limits for adults set by FAO/WHO for toxic elements intake related to the body weight of 65 kg for females and 80 kg for males taking 100 g of flakes as a portion. However, concentrations of Hg reaching between 3.67 and 12.20 µg/100 g in flakes exceeded the average Hg value of 0.27-1.90 μg/100 g in cereals consumed in the EU. It has to be respected in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Partitioning of trace metals in the chemical fractions of bed-load sediments of Nahr-Ibrahim river, Lebanon

    International Nuclear Information System (INIS)

    Korfali, Samira I.; Davies, Brian E.

    1999-01-01

    Full text.Sediments are the ultimate sink of trace elements. The total metal analysis may only give information concerning possible enrichment of metals. The analysis of metal partitioning in the different chemical components of sediments (exchangeable, carbonate, easily reducible, moderately reducible, organic and residual); give a detailed information on the way in which these metals are bound to sediments, their mobilization capacity and their ability to affect water quality under different environmental conditions. The studied river basin is dominated by limestone formation, the enrichment of metals in the carbonate sediment fraction is a high probability. The objective of the study was to determine the percentage of the total metal content (Fe, Mn, Zn, Cu and Pb) in the six chemical fractions of the bed load sediments of Nahr-Ibrahim river during the dry season and verify the role of carbonate for metal sediment deposition. Bed load sediments were sampled at five locations 13Km stretch, upstream from river mouth at two dates, August and October 1996. the dried samples were sieved into three mechanical fractions (1180-250 μm, 250-75 μm and <75 μm). A sequential chemical extraction was carried on each sized sample sediment, Fe, Mn, Zn, Cu and Pb were determined on the extracts by AAS. The reported data showed that Fe in mainly in the residual fraction, Mn in the residual and carbonate fraction, Zn in the residual, carbonate and Fe oxide fraction, Cu in the residual, carbonate and organic fraction, Pb in the carbonate fraction. The carbonate fraction in sediments played the major common role for metal sediment deposition

  8. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS

    Science.gov (United States)

    Jenner, Frances E.; Arevalo, Ricardo D., Jr.

    2016-01-01

    Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).

  10. Comparative study on TSPM levels, anions and trace metal concentrations at BARC during the years 2000-2002

    International Nuclear Information System (INIS)

    Saradhi, I.V.; Prathibha, P.; Kothai, G.; Mahadevan, T.N.; Venkat Raj, V.; Kumar, Shaji C.

    2003-01-01

    Both total and respirable suspended particulate matter in the ambient air of Mumbai have been identified as the single largest pollutant associated with the health impacts in the community. This study deals with the extensive monitoring work carried out at BARC, Trombay during the period 2000-2002. The paper also deals with the comparative status of the TSPM levels and select trace metal and anion concentrations. While Pb levels have stabilized over the years following the introduction of unleaded gasoline, sulphate as a major contributor in the fine fraction of SPM assumes importance. The possible source profiles are presented and discussed. (author)

  11. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    CPUT

    trace metals from wastewater treatment plant effluents in Cape Town and .... Geographical locations and design .... The new. Bellville plant uses University of Cape Town design (UCT) ...... batteries, paints, fungicides, textiles, cosmetics, pulp,.

  12. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  13. Radioisotope studies of some effects and interactions of trace contaminants

    International Nuclear Information System (INIS)

    1976-01-01

    The coordinated programme of ''isotopic tracer-aided studies of the biological side-effects of foreign chemical residues in food and agriculture'', initiated in 1973, had involved the participation of 12 scientists from 10 countries. Pesticide residues, toxic metals, atmospheric sulphur dioxide were studied, and the use of radiotracer techniques as monitoring tools for existing contaminant levels or for their biological effects. The programme had been successful in the development and application of selected labelled substrate techniques. Specific aspects studied were the effects of environmental contaminants at the molecular level of the cell nucleus, the development and significance of radioimmunoassay procedure for trace contaminants, action and joint action of toxic elements, and the radiometric analysis of cholinesterase as an index of exposure to organophosphorus and carbamate pesticides. Ten papers were presented and 12 coordinated investigations discussed. A number of recommendations were made

  14. Assessment of pesticide residues and trace element contamination ...

    African Journals Online (AJOL)

    ajl10

    It was based on the chemical analyses of soil, water and vegetable samples. ... of the fine fraction (under 2 mm) were conserved away from light for ... To assess the migration and accumulation of trace elements ..... metals from sewage sludge in an agricultural soil. ... Pesticides and heavy metals in drinking water, soils.

  15. Role of nuclear analytical probe techniques in biological trace element research

    International Nuclear Information System (INIS)

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab

  16. Trace Elements and Physico-Chemical Quality of the Well Waters in Mahitsy, Province of Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasolofonirina, M.; Randriamanivo, L.V.; Andrianarilala, M.T.; Raoelina Andriambololona

    2004-01-01

    The proposed study area of Mahitsy is located in the province of Antananarivo. Only 14.38% of the population in the rural zone has access to safe drinking water. Most of human population use wells or springs as the main source of drinking water. Wells are generally less than 20 meters deep and they are not properly sealed. Well waters investigated in January 2004 have a very large range of trace constituent and chemical composition in the zone of interest. Manganese concentrations range is 8μg.L -1 -1115 μg.L -1 and concentrations of barium vary in the range of 55μg.L -1 - 4967 μg.L -1 . 67% of monitored well waters are of manganese concentration higher than 50μg.L -1 and 44% contain barium with a concentration higher than 700μg.L -1 . Total dissolved solids vary between 8 mg.L -1 and 881 mg.L -1 and well water pHs are acidic (4.28 - 5.94). Nitrate concentrations monitored in Mahitsy groundwaters show that, 54% of the well water samples exceed 50 mg.L -1 (WHO guidelines value) and 84% exceed 13.5 mg.L -1 (indicative value of human activities). The nitrate content ranges from 4 to 489 mg.L -1 . Groundwater nitrate correlates positively with chloride and potassium. That would suggest that the high content of nitrate may result from the septic tank, the cesspool and the animal wastes storage, located next to the well. However, people draw water from groundwater for domestic purposes, as the water infrastructure remains undeveloped in the studied area. The measurement of trace constituents are performed using Total Relflection X-ray Fluorescence (TXRF) analytical method and the major ions are determined by Ion Chromatograph (IC) system.

  17. Scandium - problem of ultra-trace-element essentiality

    International Nuclear Information System (INIS)

    Kist, A.A.; Zkuk, L.I.; Danilova, E.A.; Makhmudov, E.A.

    2006-01-01

    manifestations of the dysfunction after addition of deficient element. This is very convincing criterion but hardly acceptable for ultra trace elements as follows from the model given in the present paper. It is very simple to prepare diet with decreased level for constitutional essential and some trace-elements according to this criterion. It is enough to reduce some constitutional elements uptake for 50% to observe the organism dysfunction. For such trace elements like Mn, Cu, Zn it is enough to reduce its intake 1.5 - 5 times to reach the same effect. For Sc the factor of removal for humans should be about 500-1000. It is clear that preparation of nutrition which removal of ultra-trace elements with a purification factor of hundreds and thousands is practically impossible and there is a necessity to elaborate additional criteria for ultra-trace elements. (author)

  18. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  19. Effect of sulfur-containing spices on the bioaccessibility of trace minerals from selected cereals and pulses.

    Science.gov (United States)

    Kumari, Meena; Platel, Kalpana

    2017-07-01

    Garlic and onion, which are rich in organo-sulfur compounds, are reported to enhance the bioaccessibility of Ca, Mg, Fe and Zn; however, there is a lack of similar information on the bioaccessibility of copper, manganese and chromium. Therefore, the present study aimed to determine the effect of exogenous garlic and onion on the bioaccessibility of these trace minerals from selected food grains. The effect of two levels of garlic (0.25 and 0.5 g/10 g grain -1 ) and onion (1.5 and 3 g/10 g grain -1 ) on the bioaccessibility of these trace minerals from two representative cereals and pulses was determined by employing an in vitro dialysability procedure. Both garlic and onion significantly improved the bioaccessibility of Cu, especially when added at the higher level, in most of the foods examined. The enhancing effect of garlic on Mn bioaccessibility was found in cooked sorghum and chickpea, whereas onion significantly improved Mn bioaccessibility in cooked rice and chickpea. The addition of both spices did not exert any enhancing effect on Cr bioaccessibility from the cereals and pulses. The bioaccessibility of Cu, as well as Mn to a lesser extent, from vegetarian diets can be significantly improved by incorporating garlic and onion in the diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    Science.gov (United States)

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Role of Trace Elements in Tinnitus.

    Science.gov (United States)

    Yaşar, Mehmet; Şahin, Mehmet İlhan; Karakükçü, Çiğdem; Güneri, Erhan; Doğan, Murat; Sağıt, Mustafa

    2017-03-01

    In this study, we aimed to investigate the role of three trace elements, namely, zinc, copper, and lead, in tinnitus by analyzing the serum level of copper and lead and both the serum and tissue level of zinc. Eighty patients, who applied to outpatient otolaryngology clinic with the complaints of having tinnitus, and 28 healthy volunteers were included. High-frequency audiometry was performed, and participants who had hearing loss according to the pure tone average were excluded; tinnitus frequency and loudness were determined and tinnitus reaction questionnaire scores were obtained from the patients. Of all the participants, serum zinc, copper, and lead values were measured; moreover, zinc levels were examined in hair samples. The levels of trace elements were compared between tinnitus and control groups. The level of copper was found to be significantly lower in the tinnitus group (p = 0.02), but there was no significant difference between the groups in terms of the levels of zinc, neither in serum nor in hair, and lead in serum (p > 0.05). The lack of trace elements, especially that of "zinc," have been doubted for the etiopathogenesis of tinnitus in the literature; however, we only found copper levels to be low in patients having tinnitus.

  2. Management of low and intermediate level radioactive wastes with regard to their chemical toxicity

    International Nuclear Information System (INIS)

    2002-12-01

    A preliminary overview is provided of management options for low and intermediate level radioactive waste (LILW) with regard to its chemical toxicity. In particular, the following issues are identified and described associated with the management and safe disposal of chemically toxic materials in LILW: the origin and characteristics; the regulatory approaches; the pre-disposal management; the disposal; the safety assessment. Also included are: regulatory framework for chemically toxic low level wastes in the USA; pre-disposal processing options for LILW containing chemically toxic components; example treatment technologies for LILW containing chemically toxic components and safety assessment case studies for Germany, Belgium, France and Sweden

  3. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee on Acute Exposure Guideline Levels

    2001-01-01

    Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals contains a detailed and comprehensive methodology for developing acute exposure guideline levels (AEGLs...

  4. Multivariate cluster analysis of some major and trace elements ...

    African Journals Online (AJOL)

    UFUOMA

    The chemical composition of water infiltrating ... Major and trace metals determined in soil and water from a ... The soil samples were air-dried at 29°C in a dust-free place for ... compact 3K5 X-ray generator (Ital IS Structures, Italy) was used for.

  5. A mass spectrometer based explosives trace detector

    Science.gov (United States)

    Vilkov, Andrey; Jorabchi, Kaveh; Hanold, Karl; Syage, Jack A.

    2011-05-01

    In this paper we describe the application of mass spectrometry (MS) to the detection of trace explosives. We begin by reviewing the issue of explosives trace detection (ETD) and describe the method of mass spectrometry (MS) as an alternative to existing technologies. Effective security screening devices must be accurate (high detection and low false positive rate), fast and cost effective (upfront and operating costs). Ion mobility spectrometry (IMS) is the most commonly deployed method for ETD devices. Its advantages are compact size and relatively low price. For applications requiring a handheld detector, IMS is an excellent choice. For applications that are more stationary (e.g., checkpoint and alternatives to IMS are available. MS is recognized for its superior performance with regard to sensitivity and specificity, which translate to lower false negative and false positive rates. In almost all applications outside of security where accurate chemical analysis is needed, MS is usually the method of choice and is often referred to as the gold standard for chemical analysis. There are many review articles and proceedings that describe detection technologies for explosives. 1,2,3,4 Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Mass spectrometry (MS): MS offers high levels of sensitivity and specificity compared to other technologies for chemical detection. Its traditional disadvantages have been high cost and complexity. Over the last few years, however, the economics have greatly improved and MS is now capable of routine and automated operation. Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Ion mobility spectrometry (IMS): 5 MS-ETD Screening System IMS is similar in concept to MS except that the ions are dispersed by gas-phase viscosity and not by molecular weight. The main advantage of IMS is that it does not use a vacuum system, which greatly reduces the size, cost, and complexity

  6. Proceedings of the 6. International Conference on the Biogeochemistry of Trace Elements. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This international conference provided a forum for researchers from around the world to exchange research notes of subjects dealing with the biogeochemistry of trace elements. The conference proceedings included 456 papers, of which 34 have been indexed separately for inclusion in the database. Each presentation included an introduction to a study, materials and methods, results and discussion and a conclusion. The conference was divided into special oral symposia (SO), general oral sessions (GO), a special poster session (SP) and a general poster session (GP). A wide range of topics were presented including: biosorption of trace elements and the bioavailability of metals for uptake and effects; chemical remediation; adsorption reactions on soils and sediments; fractionation of metals in soils; diagenetic transformations; arsenic content and distribution; metal speciation; the role of metal-organic interactions; phytoremediation; contents and distribution in soils and waters; soil amendments; mercury and human and animal health; mercury in the environment; aqueous speciation; phyto-, microbial and chemical remediation tools for metal contaminated soils and groundwater; geochemical surface controls on trace element fate; temporal trends of trace metals in biota; biomonitoring; transport in soils and waters; analytical techniques; metal/mineral interactions with microorganisms; the chemistry of trace elements in fly ash; ecotoxicology; groundwater; and, soil amendments. refs., tabs., figs.

  7. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    Science.gov (United States)

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide

    International Nuclear Information System (INIS)

    Kim, Young Sang; In, Gyo; Choi, Jong Moon

    2003-01-01

    Equilibria and applications of a synergistic extraction were studied for the determination of a trace lithium by using thenoyltrifluoroacetone (TTA) and trioctylphosphine oxide (TOPO) as ligands. Several equations were derived for the extraction of lithium into m-xylene as a phase of Li-TTA·mTOPO adduct. Distribution coefficients and extraction constant were determined together with a stability constant of the adduct. The adduct was quantitatively extracted from the basic solution of higher than pH 9 by shaking for 30 minutes. m- Xylene was selected as an optimum solvent by comparing the extraction efficiency among several kinds of organic solvents. The stability constant (β 2 ) for Li-TTA/2TOPO was 150 times higher than Li-TTA/TOPO. The distribution coefficient of Li-TTA/2TOPO into m-xylene was 9.12 and the logarithmic extraction constant (log Kex) was 6.76. Trace lithium of sub-ppm level in seawater samples could be determined under modified conditions and a detection limit equivalent to 3 times standard deviation for background absorption was 0.42 ng/mL

  9. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  10. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  11. Serum Trace Element Presentation in Female Wistar Rats ...

    African Journals Online (AJOL)

    Serum Trace Element Presentation in Female Wistar Rats administered with Paracetamol & Paracetamol/Methionine. AA Iyanda, FAA Adeniyi. Abstract. A number of therapeutic agents are known to alter serum trace element levels with dangerous consequences. An earlier study had demonstrated significant alteration in the ...

  12. Resonant laser mass spectrometry for environmental and industrial chemical trace analysis

    International Nuclear Information System (INIS)

    Boesl, Ulrich; Rink, Joerg; Distelrath, Volker; Pueffel, Peter

    2001-01-01

    A promising new method for pollutant trace analysis is resonant laser mass spectrometry. It combines selectivity, sensitivity, and speed of measurement. In this paper, two examples of application are presented: exhaust analysis of combustion engines and analysis of polycylcic aromatic compounds in soil samples. The sensitivity of small, mobile instruments is discussed as well as alternative laser-based techniques in the case formation of cations by nanosecond lasers is improbable

  13. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  14. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  15. Trace gas measurements in coastal Hong Kong during the PEM-West B

    Science.gov (United States)

    Wang, T.; Lam, K. S.; Chan, L. Y.; Lee, A. S. Y.; Carroll, M. A.

    1997-12-01

    O3, CO, NOy, and SO2 were measured at a coastal site in Hong Kong (22°13'N, 114°15'E, 60 m MSL) during the Pacific Exploratory Mission-West B (PEM-West B) in February and March 1994. Average concentrations determined in this study were 34±14 ppbv for O3, 458±130 ppbv for CO, 9.33±7.84 ppbv for NOy, and 1.31±1.46 ppbv for SO2. Their high and variable levels suggest that the study site was often under the impact of fresh continental emissions (including urban Hong Kong) during the season of continental outflow. Concentrations of these species were strongly influenced by the passage of cold fronts and troughs which periodically brought high levels of pollutants from the north. Outflow of continental air was indicated by dramatic changes in meteorological parameters and in the levels of trace gas species. CO appeared to be a good chemical indicator of changes of air mass type, and its variability may be attributed to the relative strength of the outflow and to the transport of urban plumes. Variations of NOy and SO2 appeared to be mainly dominated by local sources. O3 was poorly and often negatively correlated with CO and NOy, suggesting that air masses sampled in the study period were highly inhomogenous with respect to the chemical signatures and that O3 was chemically titrated by anthropogenic pollutants during the early stages of continental outflow. Calculated isentropic trajectories captured large-scale changes of air masses, indicated also by surface meteorological and chemical data. Trajectory results offering finer resolutions would yield more insight into the histories of smaller-scale air masses. Finally, the reasons for apparent disagreement between trajectory results, surface winds, and sometimes chemical data require further investigation.

  16. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele

    2009-01-01

    for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions...... was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some....... Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V...

  17. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  18. Trace elements in brazilian soils; Micronutrientes nos solos do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Geraldo Cesar [Juiz de Fora Univ., MG (Brazil). Dept. de Geociencias

    1995-03-01

    A literature revision on trace elements (Zn, B, Mn, Mo, Cu, Fe, and Cl) in Brazilian soils was prepared, with special attention to the chemical form and range in the soil, extraction methods and correlation of the amount in soils with soil properties. 76 refs.

  19. Application of chemical fractionation for monitoring some trace elements in street and industrial dust from Wadmedani, Sudan

    International Nuclear Information System (INIS)

    Mohamed, Ibtihag El hassan

    2000-09-01

    This study monitors some trace elements concentration in street and industrial dust from Wad Medani city, Gezira State in central Sudan. A total of 20 samples of dust were collected from crowded and non-crowded streets, material processing workshop and a tannery. Samples were treated by sequential chemical extraction in five fractions, which termed as exchangeable fraction, carbonate fraction, Fe-Mn oxides fraction, organic matter fraction and residual fraction. The same samples were digested by wet method. The obtained solutions were analyzed for Cr, Fe, Ni, Cu, Zn, and Pb content using Atomic Absorption Spectrometer (AAS) and for Na and K content using Flame Emission Spectrometer (FES). X-Ray Fluorescence Spectrometer (XRF) was used to determine the total content of Na, K, Cr, Fe, Ni, Cu, Zn and Pb in the bulk sample. Results of total content, which obtained by AAS, FES and XRF spectrometry, were compared with each other and with total content for the fractionated samples. Certified reference materials from IAEA were analyzed to make sure of the data obtained. The ranges of concentrations obtained are 113-3900 μg/g for Cr, 0.3-110.4 mg/g for Fe, 27-500 μg/g for Ni, 34.7-4390 μ/g for Cu, 62-1320 μg/g for Zn and 40-1250 μg/g for Pb dry weight. The obtained results were analyzed statistically using multivariate methods that include Correlation Matrices, Principal Component Analysis (PCA) and cluster analysis. The concentrations of trace elements in street and industrial dust of Wad Medani were compared with those values in literature. It has been observed that the dust from street and industrial area of wad Medani is slightly affected by anthropogenic sources.(Author)

  20. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-06-01

    Full Text Available Cadmium(II is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr/l-cysteine/gold electrode to detect trace levels of cadmium (Cd by differential pulse stripping voltammetry (DPSV. The influence of hydrogen overflow was decreased and the current response was enhanced because the modified graphene extended the potential range of the electrode. The Gr/l-cysteine/gold electrode showed high electrochemical conductivity, producing a marked increase in anodic peak currents (vs. the glass carbon electrode (GCE and boron-doped diamond (BDD electrode. The calculated detection limits are 1.15, 0.30, and 1.42 µg/L, and the sensitivities go up to 0.18, 21.69, and 152.0 nA·mm−2·µg−1·L for, respectively, the BDD electrode, the GCE, and the Gr/l-cysteine/gold electrode. It was shown that the Gr/l-cysteine/gold-modified electrode is an effective means for obtaining highly selective and sensitive electrodes to detect trace levels of cadmium.

  1. Practical applications of trace minerals for dairy cattle.

    Science.gov (United States)

    Overton, T R; Yasui, T

    2014-02-01

    Trace minerals have critical roles in the key interrelated systems of immune function, oxidative metabolism, and energy metabolism in ruminants. To date, the primary trace elements of interest in diets for dairy cattle have included Zn, Cu, Mn, and Se although data also support potentially important roles of Cr, Co, and Fe in diets. Trace minerals such as Zn, Cu, Mn, and Se are essential with classically defined roles as components of key antioxidant enzymes and proteins. Available evidence indicates that these trace minerals can modulate aspects of oxidative metabolism and immune function in dairy cattle, particularly during the transition period and early lactation. Chromium has been shown to influence both immune function and energy metabolism of cattle; dairy cows fed Cr during the transition period and early lactation have evidence of improved immune function, increased milk production, and decreased cytological endometritis. Factors that complicate trace mineral nutrition at the farm level include the existence of a large number of antagonisms affecting bioavailability of individual trace minerals and uncertainty in terms of requirements under all physiological and management conditions; therefore, determining the optimum level and source of trace minerals under each specific situation continues to be a challenge. Typical factorial approaches to determine requirements for dairy cattle do not account for nuances in biological function observed with supplementation with various forms and amounts of trace minerals. Trace mineral nutrition modulates production, health, and reproduction in cattle although both formal meta-analysis and informal survey of the literature reveal substantial heterogeneity of response in these outcome variables. The industry has largely moved away from oxide-based programs toward sulfate-based programs; however, some evidence favors shifting supplementation strategies further toward more bioavailable forms of inorganic and organic trace

  2. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  3. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    Science.gov (United States)

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  4. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana

    International Nuclear Information System (INIS)

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke

    2012-01-01

    To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. - Highlights: ► Exposure status of trace elements in e-waste recycling workers was assessed in Ghana. ► Concentrations of Fe, Sb, and Pb in urine of e-waste workers were significantly higher than those of the reference subjects. ► This study is the first to investigate human contamination arising from primitive recycling of e-waste arguably from Africa.

  5. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Asante, Kwadwo Ansong [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Agusa, Tetsuro [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Biney, Charles Augustus [Volta Basin Authority (VBA), 10 P. O. Box 13621, Ouagadougou 10 (Burkina Faso); Agyekum, William Atuobi; Bello, Mohammed [CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Otsuka, Masanari [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama 790-0003 (Japan); Itai, Takaaki; Takahashi, Shin [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanabe, Shinsuke, E-mail: shinsuke@agr.ehime-u.ac.jp [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)

    2012-05-01

    To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. - Highlights: Black-Right-Pointing-Pointer Exposure status of trace elements in e-waste recycling workers was assessed in Ghana. Black-Right-Pointing-Pointer Concentrations of Fe, Sb, and Pb in urine of e-waste workers were significantly higher than those of the reference subjects. Black-Right-Pointing-Pointer This study is the first to investigate human contamination arising from primitive recycling of e-waste arguably from Africa.

  6. Highly sensitive sorption-luminescence determination of trace europium with preconcentration on silica chemically modified with iminodiacetic acid

    International Nuclear Information System (INIS)

    Voronina, R.D.; Zorov, N.B.

    2007-01-01

    Features of a sorption-luminescence method for the determination of trace europium were studied. The method includes the preliminary sorption of europium at pH 7.1 from solutions with silica chemically modified with iminodiacetic acid, the subsequent treatment of the sorbent with 2-thenoyltrifluoroacetone at pH 8.0, and the measurement of the intensity of luminescence of the surface three-component europium complex at 613 nm. The effect of moisture as the quencher of luminescence of the surface europium complex was studied, and techniques for its removal were proposed. Sorption in the static mode provides the detection limit of europium of 7 x 10 -5 g/ml. The calibration plot is linear in the range of two orders of magnitude of europium concentration in solutions. The relative standard deviation in the determination of 1.5 x 10 -2 μg/ml europium is 5%. In the dynamic mode of sorption from 1000 ml of an analyzed solution with the use of sorption-desorption, the detection limit of europium of 8 x 10 -7 μg/ml was attained [ru

  7. Trace elements in the human endometrium and decidua

    International Nuclear Information System (INIS)

    Hagenfeldt, K.; Landgren, B.-M.; Plantin, L.-O.; Diczfalusy, E.

    1977-01-01

    By means of neutron activation analysis, 25 trace elements, which are usually present in biological material, were estimated in 31 specimens of human endometrial tissue obtained at various phases of the menstrual cycle and in 14 specimens of decidua from the 12th to 18th week of pregnancy. Among the 13 trace elements invariably found in all specimens, the levels of copper, potassium, rubidium, antimony and zinc were significantly higher and those of bromine, selenium and sodium significantly lower in the endometrium than in the decidua. No difference was found in the levels of gold, calcium, cobalt, cesiuj and iron. Among the 12 trace elements which were found only occasionally, chromium, mercury, silver and cadmium were detected in approximately half and cerium and scandium in approximately one-fourth of the 45 samples studied. Arsenic, barium, lanthanum, molybdenum, samarium and strontium were detected only rarely. The cyclic variations in the endometrial levels of calcium, rubidium and copper were highly significant and those in the levels of gold, cesium, iron, potassium and zinc probably significant. (author)

  8. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  9. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water sources in Sokoto metropolis in North-western Nigeria. ... Tap water samples had similar conductivity values (180 -190μS/m), sachet water samples had conductivity values ranging from 80μS/m to 260μS/m while well water samples had highest ...

  10. Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    R. Pommrich

    2014-12-01

    Full Text Available Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11, CCl2F2 (CFC-12, and CO2 in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv. Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling

  11. Biomonitoring of chemicals in biota of two wetland protected areas exposed to different levels of environmental impact: results of the "PREVIENI" project.

    Science.gov (United States)

    Guerranti, Cristiana; Perra, Guido; Alessi, Eva; Baroni, Davide; Caserta, Dante; Caserta, Donatella; De Sanctis, Augusto; Fanello, Emiliano Leonida; La Rocca, Cinzia; Mariottini, Michela; Renzi, Monia; Tait, Sabrina; Zaghi, Carlo; Mantovani, Alberto; Focardi, Silvano Ettore

    2017-08-18

    The PREVIENI project (funded by the Ministry of Environment) investigated the exposure to endocrine disrupters in samples of human population and environmental biota in Italy. The environmental biomonitoring considered two Italian WWF Oasis, with the aim to compare the presence and effects of endocrine disruptors in organisms from two protected natural areas, respectively, upstream and downstream a chemical emission site. Chemical analysis of pollutants' tissue levels was made on tissues from earthworm, barbell, trout, and coot, selected as bioindicator organisms. The contaminants considered were as follows: the perfluorinated compounds perfuoroctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), polychlorinated biphenyls (PCBs 58 congeners), polybrominated diphenyl ethers (PBDEs, 13 congeners), polycyclic aromatic hydrocarbons (PAHs, 16 compounds), toxic trace elements, the phthalate di-2-ethylexyl phthalate (DEHP) and its primary metabolite, bisphenol A, synthetic musk compounds (musk xylene, musk ketone, tonalide, and galaxolide), and p-nonylphenol. The analyses showed low concentrations of most pollutants in all species from both areas, compared to available literature; noticeable exceptions were the increases of DEHP's primary metabolite, PBDE, PAHs, Hg, and Pb in barbells, and of PCB and Cd in earthworms from the downstream area. The results showed the presence of endocrine disruptors, including those considered as "non-persistent," in bioindicators from protected areas, albeit at low levels. The results provide a contribution to the evaluation of reference values in biota from Mediterranean Europe and support the relevance of monitoring exposure to pollutants, in particular for freshwater environment, also in protected areas.

  12. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  13. Determination of trace elements in bottled water in Greece by instrumental and radiochemical neutron activation analyses

    International Nuclear Information System (INIS)

    Soupioni, M.J.; Symeopoulos, B.D.; Papaefthymiou, H.V.

    2006-01-01

    Four different bottled water brands sold in Greece in the winter of 2001-2002 were analyzed for a wide range of chemical elements, using neutron activation analysis (NAA). The elements Na and Br were determined instrumentally (INAA), whereas the other metals and trace elements radiochemically (RNAA). The results indicated that the mean level of all the elements determined in the samples were well within the European Union (EU) directive on drinking water and accomplish the drinking water standards of the World Health Organisation (WHO) as well as of the Food and Drug Administration (FDA). (author)

  14. Trace metals behaviour during salt and fresh water mixing in the Venice Lagoon

    International Nuclear Information System (INIS)

    Ghermandi, G.; Campolieti, D.; Cecchi, R.; Costa, F.; Zaggia, L.; Zonta, R.

    1993-01-01

    Preliminary results of an investigation on trace metals behaviour in the estuarine system of the Dese River (Venice Lagoon) are described. Hydrodynamical and water chemical-physical measurements and PIXE concentrations analysis on size-fractionated samples emphasize the complexity of the processes occurring in the area of salt and fresh water mixing. Suspended load variations in the bottom layer of the water column, which may be mostly ascribed to resuspension, regulate the trace metal concentrations and seem to play a fundamental role in the transport of pollutants in shallow water areas of the estuary. The behaviour of dissolved metals is masked by the presence of suspended matter, but some relationships with chemical-physical variables are distinguishable, furnishing information on the processes affecting their concentration in the system. (orig.)

  15. The EU network on trace element speciation in full swing

    DEFF Research Database (Denmark)

    Cornelis, R.; Camara, C.; Ebdon, L.

    2000-01-01

    health and hygiene. The network covers a number of important issues including organotin compounds, chromium and nickel species, chemical characterisation of environmental and industrial particulate samples, risk assessment, selenium and a series of other essential and toxic elements in food, as well......The EC-funded thematic network 'Speciation 21' links scientists in analytical chemistry working in method development for the chemical speciation of trace elements, and potential users from industry and representatives of legislative agencies, in the field of environment, food and occupational...

  16. A review of Human Biomonitoring studies of trace elements in Pakistan.

    Science.gov (United States)

    Waseem, Amir; Arshad, Jahanzaib

    2016-11-01

    Human biomonitoring (HBM) measures the concentration levels of substances or their metabolites in human body fluids and tissues. HBM of dose and biochemical effect monitoring is an effective way of measuring human exposure to chemical substances. Many countries have conducted HBM studies to develop a data base for many chemicals including trace metals of health concern for their risk assessment and risk management. However, in Pakistan, HBM program on large scale for general population does not exist at present or in the past has been reported. Various individual HBM studies have been reported on the assessment of trace elements (usually heavy metals) from Pakistan; most of them are epidemiological cross sectional surveys. In this current review we tried to develop a data base of HBM studies of trace elements namely arsenic, cadmium, copper, chromium, iron, lead, manganese, nickel, and zinc in biological fluids (blood, urine) and tissues (hair, nails) in general population of Pakistan. Studies from all available sources have been explored, discussed and presented in the form of tables and figures. The results of these studies were critically compared with large scale HBM programs of other countries, (US & European communities etc). It was observed from the present study that the most of the toxic metals in biological fluids/tissues in general population of Pakistan, have higher background values comparatively. For example the mean values of toxic metals like As, Cd, Cr, Ni, and Pb in blood of general population were found as 2.08 μg/L, 4.24 μg/L, 60.5 μg/L, 1.95 μg/L, 198 μg/L respectively. Similarly, the urine mean values of 67.6 μg/L, 3.2 μg/L, 16.4 μg/L, 6.2 μg/L and 86.5 μg/L were observed for As, Cd, Cr, Ni, and Pb respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  18. Determination of some trace elements in biological samples using XRF and TXRF techniques

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M. K.

    2006-07-01

    XRF and TXRF techniques were successfully used for the multi-element determination of trace elements in whole blood and human head hair samples. This was achieved by the direct analysis using XRF technique with different collimation units and by the optimized chemical procedures for TXRF analysis. Light element of S and P were preferably determined by XRF with primary x-ray excitation, while, elements of K, Ca, Fe, and Br were determined with a very good accuracy and precision using XRF with Cu- and Mo-secondary targets. The chemical procedure dependent on the preconcentration of trace elements by APDC was superiorly used for the determination of traces of Ni and Pb in the range of 1.0-1.7 μg/dl and 11-23 μg/dl, respectively, in whole blood samples by TXRF technique; determination of other elements as Cu and Zn was also achievable using this approach. Rb in whole blood samples was determined directly after the digestion of samples using PTFE-bomb for TXRF analysis. (author)

  19. Trace elements detection in whole food samples by Neutron Activation Analysis, k0-method

    International Nuclear Information System (INIS)

    Sathler, Márcia Maia; Menezes, Maria Ângela de Barros Correia; Salles, Paula Maria Borges de

    2017-01-01

    Inorganic elements, from natural and anthropogenic sources are present in foods in different concentrations. With the increase in anthropogenic activities, there was also a considerable increase in the emission of these elements in the environment, leading to the need of monitoring the elemental composition of foods available for consumption. Numerous techniques have been used to detect inorganic elements in biological and environmental matrices, always aiming at reaching lower detection limits in order to evaluate the trace element content in the sample. Neutron activation analysis (INAA), applying the k 0 -method, produces accurate and precise results without the need of chemical preparation of the samples – that could cause their contamination. This study evaluated the presence of inorganic elements in whole foods samples, mainly elements on trace levels. For this purpose, seven samples of different types of whole foods were irradiated in the TRIGA MARK I IPR-R1 research reactor - located at CDTN/CNEN, in Belo Horizonte, MG. It was possible to detect twenty two elements above the limit of detection in, at least, one of the samples analyzed. This study reaffirms the INAA, k 0 - method, as a safe and efficient technique for detecting trace elements in food samples. (author)

  20. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Budeir, Y.

    2001-11-01

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137 Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210 Po, 210 Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  1. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    Science.gov (United States)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  2. Simultaneous speciation of trace elements using chemical separation and neutron activation

    International Nuclear Information System (INIS)

    Chatt, A.

    2003-01-01

    Speciation neutron activation analysis (SNAA) is a sophisticated analytical technique which can be developed for studying the simultaneous speciation of a number of elements in a variety of matrices. The advantages of SNAA are demonstrated with typical examples such as (i) arsenic speciation in sea foods and water, and simultaneous speciation of (ii) arsenic, antimony and selenium in water, (iii) chlorine, bromine and iodine in fish, (iv) lanthanides in simulated vitrified waste, and (v) trace elements bound to proteins. (author)

  3. Equilibration-Based Preconcentrating Minicolumn Sensors for Trace Level Monitoring of Radionuclides and Metal Ions in Water without Consumable Reagents

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.

    2006-01-01

    A sensor technique is described that captures analyte species on a preconcentrating minicolumn containing a selective solid phase sorbent. In this approach, the sample is pumped through the column until the sorbent phase is fully equilibrated with the sample concentration, and the exit concentration equals the inlet concentration. On-column detection of the captured analytes using radiometric and spectroscopic methods are demonstrated. In trace level detection applications, this sensor provides a steady state signal that is proportional to sample analyte concentration and is reversible. The method is demonstrated for the detection of Tc-99 using anion exchange beads mixed with scintillating beads and light detection; Sr-90 using SuperLig 620 beads mixed with scintillating beads and light detection; and hexavalent chromium detection using anion exchange beads with spectroscopic detection. Theory has been developed to describe the signal at equilibration, and to describe analyte uptake as a function of volume and concentration, using parameters and concepts from frontal chromatography. It is shown that experimental sensor behavior closely matches theoretical predictions and that effective sensors can be prepared using low plate number columns. This sensor modality has many desirable characteristics for in situ sensors for trace-level contaminant long-term monitoring where the use of consumable reagents for sensor regeneration would be undesirable. Initial experiments in groundwater matrixes demonstrated the detection of Tc-99 at drinking water level standards (activity of 0.033 Bq/mL) and detection of hexavalent chromium to levels below drinking water standards of 50 ppb

  4. Influence of Hudiara Drain Water Irrigation on Trace Elements Load ...

    African Journals Online (AJOL)

    ... Drain Water Irrigation on Trace Elements Load In Soil And Uptake By Vegetables. ... This polluted water not only contains organic matter and crop nutrients but also ... Plant samples were collected at maturity from all the monitoring points. ... (DO), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) ...

  5. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  6. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  7. Trace elements in the atmosphere over South Africa

    International Nuclear Information System (INIS)

    Wells, R.B.; Van As, D.

    1976-01-01

    Natural sources of trace elements in the atmosphere are suspended soil particles, the evaporation of sea spray and smoke from veld fires. In urban and industrialised areas the main sources are fossil-fuel power plants, metallurgical smelters, blast furnaces, incinerators, automobiles, fossil-fueled locomotives and open fires in the Black townships. Often a source can be recognised by the relative concentrations of particular trace elements. A monitoring programme was established in 1974 by the Air Pollution Research Group of the CSIR and the Isotope and Radiation Division of the Atomic Energy Board in order to study the levels of trace elements in urban areas such as Johannesburg, Cape Town, and Durban, to measure the effects of industrialisation on trace elements levels in developing areas such as Richards Bay and Saldanha Bay and also to determine baseline values in rural areas. Extremely sensitive analytical techniques, e.g. neutron activation and atomic absorption were used for the analyses of filter samples. Methods of sampling and analysis are discussed and the preliminary results of this programme are presented

  8. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates.

    Science.gov (United States)

    Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew

    2018-02-01

    In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10  mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10  mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10  mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10  mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and

  9. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    OpenAIRE

    Yu Song; Chao Bian; Jianhua Tong; Yang Li; Shanghong Xia

    2016-01-01

    Cadmium(II) is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr)/l-cysteine/gold electrode to detect trace levels of cadmium (Cd) by differential pulse stripping voltammetry (DPSV). The influence of hydrogen overflow was decreased and the curr...

  10. Trace elements in human milk. Part of a coordinated programme on comparative methods for the study of trace elements in human nutrition

    International Nuclear Information System (INIS)

    Kosta, L.

    1981-01-01

    New analytical methods based on radiochemical neutron activation analysis were developed for the determination of Sn, V, I and Se at nanogram levels in biological materials, particularly in milk and other foodstuffs. By the application of these and similar methods, results for trace elements in human and cow's milk were collected from which the normal concentration ranges of up to 12 trace elements were established. Significant data on vanadium levels were also collected allowing assessment of the dietary intake and body pool of this element and a reappraisal of its significance in nutrition. Similar data on a smaller scale were also collected for tin. Results were also obtained for several different trace elements in a range of biological reference materials

  11. Method to determine trace elements in water samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Kueppers, G.; Erdtmann, G.

    1981-05-01

    For the determination of trace elements in water by neutron activation analysis irradiation porcedures and chemical separation procedures have been developed. Irradiation in melted quarz glass ampoules in the presence of a platinum wire (for recombination of the oxyhydrogen gas produced by radiolysis) proved successfull with different variants of the irradiation methods, as long irradiation periods without pressure build-up could be achieved. Possible falsifications of the analysis results were investigated in detail (losses by absorption on vessel walls etc.). The irradiated samples can be measured directly with a gamma ray spectrometer and from the radionuclides found the trace element contents may be calculated. More sensitive determinations are possible if the radionuclides are chemically separated. Procedures for removing the matrix activities, for the separation of the radionuclides in groups of elements and for the isolation of single elements have been developed. For especially sensitive determination of some elements selective separation procedures for antimony, cadmium, selenium, mercury and uranium have been developed. The analytical procedures described have been applied to trace element determinations in river water, glacier ice and water solutions from technical processes. (orig./RB) [de

  12. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones

    Science.gov (United States)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.

    2006-12-01

    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  13. Radionuclides and trace elements in middle Chesapeake Bay sediments

    International Nuclear Information System (INIS)

    Gavrilas, M.

    1988-01-01

    Sediments play an important role in aquatic ecology by serving as a repository for radioactive substances and for soluble chemical pollutants that they may transport over considerable distances and may pass to a higher trophic level by way of bottom-feeding biota. The Chesapeake Bay is a moderately stratified, drowned river valley estuary. The oscillatory flood and ebb of the tidal currents are the most obvious motions in the bay and its tributary estuaries. It is considered that the distribution of most of the pollutants, once diluted by the mixing action of the tidal flow, remains relatively constant for many miles up and down the bay. This paper documents the present status of the radioactivity and of trace elements in sediment samples collected in March 1986 from and extended area around the Calvert Cliffs Nuclear Power Plant

  14. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  15. Study on trace elements in gangue in Huainan mining area

    Energy Technology Data Exchange (ETDEWEB)

    Cai, F.; Liu, Z.; Lin, B.; Li, W.; Lu, Z. [Anhui University of Science and Technology, Huainan (China)

    2008-08-15

    46 samples were gathered from coal seams and rocks of various lithological types. In these samples, trace elements were analyzed by inductively coupled plasma-mass spectrometry (IAP-MS)and instrumental neutron activation analysis (IAA). Hg was analyzed by cold-vapor atomic absorption spectrometry (KVASS), F by ion-selective electrode (IS) and major elements by chemical methods. Eleven trace elements (Cd, Cu, Ni, Sn, Hg, Mn, As, Cr, Pb, Zn, F) were selected for study, and five of them, Cd, Cu, Ni, Sn, Hg, were above the background soil level (B.L.) of Huainan City, China and world averages. Respectively: Cd is 40 and 7 times the B.L. of Huainan City and the world; Cu is about 2 and 1.5 times the B.L. of Huainan City and the world; Ni is 8 and 7 times the B.L. of Huainan City and the world; Sn is 3 and 2 times the B.L. of Huainan City and the world; and Hg is 3,602 and 1,381 times the B.L. of Huainan City and the world. Their hazards caused to the environment of the mining area are explored primarily. It is thought that their hazards may be cumulative. 15 refs., 1 fig., 3 tabs.

  16. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    International Nuclear Information System (INIS)

    West, K.A.; Wilson, T.P.

    1992-01-01

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  17. Concentration levels of endocrine disrupting chemicals in environmental media of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Junheon; Choi, Kyunghee; Kim, Sangdon; Kim, Eunji; Kim, Eunkyoung; Jeon, Sung-Hwan; Na, Jin-Gyun [National Institute of Environmental Research, Incheon (Korea)

    2004-09-15

    Introduction As the public is more concerned about endocrine disrupting chemicals (EDCs), the Ministry of Environment in Korea has designed and established a mid- and long-term research plan on EDCs. Since 1999, the National Institute of Environmental Research has investigated the impact of EDCs on the natural ecosystem and carried out the field test for environmental monitoring. The goal of this study was to measure the contamination level of EDCs in a variety of environmental media, such as water, sediment, soil and air and to provide a basis for the sound management of EDCs and policy-making for the control of EDCs in Korea. Environmental monitoring sites were selected at representative sites through the nation. In 2002, 310 samples were collected from 122 sites of water, sediment, soil and air. The target EDCs examined were 93 chemicals in 45 chemical groups including Dioxin, coplanar PCBs, PCBs. Results show that 46 chemicals (31 chemical groups) including dioxins were detected in at least one environmental medium, while 47 chemicals including aldrin were not detected in any environmental media. In this study, the results of the fourth year of environmental monitoring are reported.

  18. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  19. Hyperspectral to multispectral imaging for detection of tree nuts and peanut traces in wheat flour

    Directory of Open Access Journals (Sweden)

    Puneet Mishra

    2015-06-01

    Full Text Available In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and compared with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.

  20. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    Science.gov (United States)

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  1. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  2. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  3. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  4. EGG QUALITY AND PRODUCTIVE PERFORMANCE OF LAYING HENS IN SECOND CYCLE OF POSTURE FED WITH AMINOACID CHELATED TRACE MINERALS

    OpenAIRE

    Leticia Souza Silva Carvalho; Daniela Reis Vilela; Naiara Simarro Fagundes; Yara Lucia Silva Souza; Evandro de Abreu Fernandes

    2016-01-01

    Abstract The goal of this research was to evaluate egg quality and performance of laying hens at the second laying cycle, fed with minerals from an organic source. The  control treatment consisted of  basal diet with inorganic trace minerals, whereas the other treatments consisted of organic copper, iron, manganese, and zinc at levels of 100%, 90%, 80%, and 70%. Physical and chemical analyses were performed to evaluate egg quality. The average egg weight reduced in the test diet; however, ...

  5. An automatic micro-sequential injection bead injection lab-on-valve (muSI-BI-LOV) assembly for speciation analysis of ultra trace levels of Cr(III) and Cr(VI) incorporating on-line chemical reduction and employing detection by electrothermal atomic absorption spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2005-01-01

    and determination of trace levels of Cr(III) and Cr(VI) in environmental samples. The method was validated by determination of chromium species in CRM and NIST standard reference materials, and by spike recoveries of surface waters. Statistical comparison of means between experimental results and the total chromium...... certified values for the CRM and NIST materials revealed the non-existence of significant differences at a 95% confidence level....

  6. Determination of Tetracycline and Fluoroquinolone Antibiotics at Trace Levels in Sludge and Soil

    Directory of Open Access Journals (Sweden)

    Marie-Virginie Salvia

    2015-01-01

    Full Text Available This work describes the development of a sensitive analytical method to determine simultaneously traces of tetracycline and fluoroquinolone antibiotics in sludge and soil, based on PLE extraction, followed by SPE purification and finally an analysis by LC-MS/MS. Recoveries were greater than 87% in the case of fluoroquinolones and between 25.4 and 41.7% for tetracyclines. Low relative standard deviations (<15% were obtained in both matrices. The limits of quantification were comprised between 1.1 and 4.6 ng/g and between 5 and 20 ng/g in soil and sludge, respectively. The method was then successfully applied to the analysis of the target antibiotics in sludge as well as soil that received spreading. The substances most frequently found and with the highest levels were fluoroquinolones with concentrations exceeding 1,000 ng/g in several samples of sludge and up to 16 ng/g in soil.

  7. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China

    International Nuclear Information System (INIS)

    Ip, Carman C.M.; Li Xiangdong; Zhang Gan; Wai, Onyx W.H.; Li, Y.-S.

    2007-01-01

    Surface sediments and sediment cores collected at the Pearl River Estuary (PRE) and its surrounding coastal area were analysed for total metal concentrations, chemical partitioning, and Pb isotopic compositions. The distribution of Cu, Cr, Pb, and Zn demonstrated a typical diffusion pattern from the land to the direction of the sea. Two hotspots of trace metal contamination were located at the mixed zone between freshwater and marine waters. The enrichment of metals in the sediments could be attributed to the deposition of the dissolved and particulate trace metals in the water column at the estuarine area. The similar Pb isotopic signatures of the sediments at the PRE and its surrounding coastal area offered strong evidence that the PRE was a major source of trace metals to the adjacent coastal area. Slightly lower 206 Pb/ 207 Pb ratios in the coastal sediments may indicate other inputs of Pb in addition to the PRE sources, including the inputs from Hong Kong and other parts of the region. - The distribution of trace metals in sediments reflected contaminant sources, physical and chemical deposition processes

  8. 5th colloquium on atomic spectrometric trace analysis

    International Nuclear Information System (INIS)

    Welz, B.

    1989-01-01

    This book deals with apparatus, use-oriented and theoretical aspects of trace analysis and spectroscopy. General articles are concerned with the analysis of environmentally relevant samples; a comparison of modern spectroscopic techniques, the coupling of hydride production, chromatography and spectrometry; chemical modifiers for graphite tube furnace atomic absorption spectroscopy (AAS), and possible applications of flow injection to atomic spectrometric trace analysis - one of the outstanding subjects of the colloquium. About one quarter of the 85 contributions deals with new techniques including flow injection. Other priority subjects are the theory and application of graphite tube furnace AAS, and a comparison between different dissolution methods and direct solid analysis. Medicine and toxicology, analysis of biological materials and environmentally relevant samples are in the foreground of use-oriented papers. (orig./BBR) [de

  9. Trace aluminium determination and sampling problems of archeological bone employing destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Recker, R.R.; Leffler, J.A.; Teitelbaum, S.

    1978-01-01

    A destructive neutron activation analysis procedure was developed for determining trace aluminium content in bone. The method is based on a carefully planned sample preparation, irradiation at a neutron flux for 3.1x10 11 nxcm -2 xs -1 for 5 minutes, and chemical separation based on ion exchange. It was found that bone samples soaked in aluminium containing soil gave highly elevated aluminium values as a result of the aluminium adsorption into the bone matrix. The maximum aluminium content values for prehistoric bones are larger than those of modern bones and comparable to aluminium levels present in bone from renal patients. (T.G.)

  10. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee on Acute Exposure Guideline Levels

    2001-01-01

    ... Exposure Guideline Levels for Hazardous Chemicals Subcommittee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C. i Copyrightthe cannot be not from book, paper however, version for formatting, origina...

  11. Trace elements detection in whole food samples by Neutron Activation Analysis, k{sub 0}-method

    Energy Technology Data Exchange (ETDEWEB)

    Sathler, Márcia Maia; Menezes, Maria Ângela de Barros Correia, E-mail: maia.sathler@gmail.com, E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Salles, Paula Maria Borges de, E-mail: pauladesalles@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Inorganic elements, from natural and anthropogenic sources are present in foods in different concentrations. With the increase in anthropogenic activities, there was also a considerable increase in the emission of these elements in the environment, leading to the need of monitoring the elemental composition of foods available for consumption. Numerous techniques have been used to detect inorganic elements in biological and environmental matrices, always aiming at reaching lower detection limits in order to evaluate the trace element content in the sample. Neutron activation analysis (INAA), applying the k{sub 0}-method, produces accurate and precise results without the need of chemical preparation of the samples – that could cause their contamination. This study evaluated the presence of inorganic elements in whole foods samples, mainly elements on trace levels. For this purpose, seven samples of different types of whole foods were irradiated in the TRIGA MARK I IPR-R1 research reactor - located at CDTN/CNEN, in Belo Horizonte, MG. It was possible to detect twenty two elements above the limit of detection in, at least, one of the samples analyzed. This study reaffirms the INAA, k{sub 0} - method, as a safe and efficient technique for detecting trace elements in food samples. (author)

  12. CHEMICAL WEAPONS: DoD Does Not Have a Strategy to Address Low-Level Exposures

    National Research Council Canada - National Science Library

    1998-01-01

    The possible exposure of U.S. troops to low levels of chemical warfare agents in Iraq in the weeks after the Gulf War ceasefire, along with chemical warfare prophylaxis, vaccines, oil well fire emissions, and other battlefield...

  13. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

    Science.gov (United States)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.

    2016-07-01

    Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims: We aim to study the inner-wind structure (RVY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods: We analyse high spatial resolution (~0.̋24×0.̋13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results: For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this

  14. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  15. TraceContract

    Science.gov (United States)

    Kavelund, Klaus; Barringer, Howard

    2012-01-01

    TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.

  16. Effect of a three-month football training program on trace element ...

    African Journals Online (AJOL)

    Yomi

    2012-01-03

    Jan 3, 2012 ... physical exercise and trace element metabolism (Marrella et al., 1993; McDonald ..... induced stress and immune function. Exerc Immunol Rev. ... aerobic exercise upon the trace element levels in blood. Neuro. Endocrinol.

  17. Characterization and mass balance of trace elements in an iron ore sinter plant

    Directory of Open Access Journals (Sweden)

    Lucas Ladeira Lau

    2016-04-01

    Full Text Available Environmental legislation is becoming more restrictive in several industrial sectors, especially in the steel industry, which is well known for its large pollution potential. With the recent growth of interest in effects of trace elements on the environment and health, the inclusion of emission limits on these elements in this legislation has become increasingly popular. This article aims to describe the partitioning of trace elements between the products (sinter and plant emissions in an iron ore sinter plant, aiming to better understand the behavior of these elements in the sintering process to eventually support interventions to modify these partitions. Chemical characterization of several sintering inputs was initially performed, revealing that the steel-making residues contained large concentrations of trace elements, whereas low concentrations were observed in the flux. Based on the trace element concentrations, we analyzed the injection of trace elements in a sintering pilot using a sintering mixture. Mass balance was then used to determine the theoretical partitioning of trace elements in the sinter and emissions; cadmium, nickel, lead, mercury, and copper exhibited greater tendencies to concentrate in atmospheric emissions.

  18. Radiolabelled substrates for studying biological effects of trace contaminants

    International Nuclear Information System (INIS)

    1975-01-01

    A programme of coordinated isotopic tracer-aided investigations of the biological side-effects of foreign chemical residues in food and agriculture, initiated in 1973, was reviewed. The current status of representative investigations from the point of view of techniques and priorities was assessed. Such investigations involved radioactive substrates for studying DNA injury and its repair; 14 C-labelled acetylcholine as substrate for measuring enzyme inhibition due to the presence of, or exposure to, anticholinesteratic contaminants; radioactive substrates as indication of side-effects in non-target organisms and of their comparative susceptibilities; radioactive substrates as indicators of persistence or biodegradability of trace contaminants of soil or water; and labelled pools for studying the biological side-effects of trace contaminants. Priorities were identified

  19. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    Science.gov (United States)

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Use of trace elements as indicators for underground fluid circulations in karstic environment; Utilisation des elements en trace comme traceurs des circulations souterraines en milieu karstique (site du Lamalou, Herault)

    Energy Technology Data Exchange (ETDEWEB)

    Pane-Escribe, M B

    1995-06-29

    The geochemical study of the trace element behaviour in karstic groundwaters has been carried out over the experimental site of Lamalou (Herault, France). Routine measurements of the physico-chemical parameters and of the dissolved elements concentrations have been achieved during two hydrological cycles. Radon has been monitored by passive detectors and by automatic electronic probes. Trace elements (Sc, Ti, V, Cr, Ni, Cu, Zn, As Rb, Sr, Mo, Cd, Sb, Cs, Ba, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The first part of this work presents the methodologies employed with in particular the improvement of the analytical performances of ICP-MS for water samples analysis. The detection limit for each considered element has been determined. The short and long term reproducibility for the samples analysis has also been tested. The second part of this study presents the treatment and interpretation of the results. This analysis has pointed our the influence of the aquifer structure on the chemical elements distribution. The trace and major elements concentrations are effectively related to the fracturing state of the reservoir and allow to individualize the high transmissivity zones from zones with a lower transmissivity in this mono-lithological context, trace elements appear to be particularly efficient tracers for determining the water origin and circulation their spatial and temporal behaviour leads to identify three different origins for the water mineralization over the studied area: limestones, clays and external sources (rainfalls and occasional pollutions). (author). 154 refs.

  1. Spectrochemical carriers and the matrix effect: contribution to the spectrographic analysis study of general impurities at trace level in nuclearly pure thorium compounds

    International Nuclear Information System (INIS)

    Lordello, A.R.

    1979-01-01

    The relative effectiveness of twenty spectrochemical carriers related to the volatilization behavior of twenty seven general impurities from thorium oxide matrices was studied by means of the moving plate technique. Each carrier was employed in three different concentrations, 2%, 4% and 6%. The relative areas of the volatilization curves have been used for comparing the results. Many experiments were also done to demonstrate the 'matrix effect' in samples having the same chemical composition. The importance of chemical and physical treatments, prior and during the preparation of the thorium oxide, was investigated through a large number of samples by submitting them to spectrochemical analysis. Thorium nitrate and two different thorium oxalate samples, one of which dried in a medium of pH 10, were ignited to ThO 2 according to a temperature versus time program. The presence of nitric acid in thorium nitrate solutions was also studied in connection with the matrix effect. A carrier-distillation method for the determination of twenty five trace elements in thorium compounds was also suggested. Several types of standards had been investigated but the best results were achieved with those prepared from thorium nitrate solutions. Some elements can be determined only by standards synthesized by the dry-mixing technique. The suggested carriers are: 2% NaF (for Ba, Cr, Mg, Sn, V, Cu, Ti, Sr, Mn, Al, Pb, Bi, Ca, Ag, Be, Sb, As, Si, and B), 4% NaCl (for Cd, Co, Fe, Zn and Ni) and 4% KCi (for Na). The method fulfils the requirements of sensitivity for the analysis of trace elements in nuclear grade thorium compounds. (Author) [pt

  2. Chemical analysis report 2014

    International Nuclear Information System (INIS)

    Elbouzidi, Saliha; Elyahyaoui, Adil; Ghassan, Acil; Marah, Hamid

    2014-01-01

    This report highlights the results of chemical analyzes related to Major elements, traces and heavy metals carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  3. Assessment of trace element stabilization in soil

    OpenAIRE

    Kumpiene, Jurate

    2005-01-01

    The thesis deals with the remediation of trace element contaminated soil by the chemical stabilization technique. The objective is to complement the knowledge about possibilities of applying the stabilization either (1) as an alternate soil remediation method to excavation and landfilling or (2) for a pre-treatment of contaminated soil before landfilling. The work is based on two case studies of the stabilization of 1) Cr, Cu, As, and Zn contaminated soil using metallic iron and 2) Pb and Cu ...

  4. MIRAGE: Model description and evaluation of aerosols and trace gases

    Science.gov (United States)

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, L. Ruby; Bian, Xindi; Zaveri, Rahul A.

    2004-10-01

    The Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled online with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass (sulfate, methane sulfonic acid (MSA), organic matter, black carbon (BC), sea salt, and mineral dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on Community Climate Model, Version 2 (CCM2), has physically based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in North American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in North American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur given in 2001 by S. J. Ghan and

  5. Essential and trace elements in differential pulses, spices and vegetables

    International Nuclear Information System (INIS)

    Chowdhury, M.Z.A.

    2004-01-01

    The amounts of bio-chemically important elements for human bodies such as Na, K, Ca, P, Mg, Fe and Cu in some widely used pulses and spices in Chittagong were determined by using flame photometry and UV-Visible spectrophotometry. Similarly, the amounts of Mg, Fe and Cu in some leafy and non-leafy vegetable in Chittagong were determined by the UV-Visible spectrophotometric method. The essential elements such as Na, K, Ca and P were found in mg/kg levels. The amounts of trace metal such as Mg, Fe and Cu in pulses and species were just within the range of human necessity. However, the amounts of Mg, Fe and Cu in leafy and non-leafy vegetables were so negligible that they can not be considered as adequate for health, except their food-values constituted by the higher contents of starch. (author)

  6. Bioavailability of metals-trace in sediments: a review

    International Nuclear Information System (INIS)

    Rodrigues, Rafaela E. de A.V.; Souza, Vivianne Lucia Bormann; Lima, Vanessa Lemos de; Hazin, Clovis Abrahao

    2014-01-01

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl 2 (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution

  7. Considerations on aims and approaches of the study on the transport of trace elements in a river watershed

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi

    2002-10-01

    Concerning the study subject on the transport of trace, toxic chemicals and radioactive elements in a river watershed, that has been developed in the Research Group for Terrestrial Environment, its aims and methodological approaches have been discussed in the light of related social and technological aspects of today. It is stressed that a study of the transport of radionuclides originated from a nuclear installation is needed to assess the physiological impact and to provide appropriate countermeasures in case of an accident. A numerical model is prerequisite for these objectives and to be keenly developed. The outcome of the modeling will be also important for a quantitative analysis of cycling of trace toxic elements in the atmosphere- lithosphere-hydrosphere, and also of the mechanisms of contamination of the surface aquatic environment. Accordingly, the study will contribute to the key issues stated in the national programs of science and technologies such as conservation of the natural and living environment. The present large consumption of metals and metalloids may cause an extensive contamination in the future. The study can provide solutions to the problems associated with metals and metalloids, because their environmental behavior resembles to that of radionuclides. From a methodological aspect, an importance of a direct investigation of physicochemical forms of trace, toxic elements must be stressed. A simultaneous use of experimental methods and chemical modeling to study the physico-chemical forms will be a good exemption to be realized hereafter. Experimentally, partitioning between solid and liquid phases using radioisotopes, and identification of solid species using various X-ray spectrometric techniques, for example, have been recognized very promising to investigate physico-chemical form of trace elements. These techniques are much ought to the nuclear sciences, suggesting further possible contribution of the nuclear sciences to the questions of

  8. Electric discharge for treatment of trace contaminants

    Science.gov (United States)

    Flamm, D. L.; Wydeven, T. J. (Inventor)

    1978-01-01

    A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.

  9. Migration of trace heavy metals at the sea water/sediment interface

    International Nuclear Information System (INIS)

    Terada, Kikuo; Tomiyama, Chisato

    1984-01-01

    Migration behavior of some trace heavy metals such as Co(II), Cu(II), Mn(II) and Zn(II) at the sea water/sediment interface was investigated by tank experiments. The sea water which was doped with these metal ions (ppb to ppm levels) allowed to contact with the raw-, ignited- and autoclaved-marine sediments and the change of the concentration of each metal was traced at definite time intervals. At the end of the experiments, a core sample of the sediment was taken and analyzed for each metal in every 1 mm thick segment. On the other hand, the surface sediment was submitted to partial extraction with various kinds of reagents to estimate the chemical species of the metals captured in the sediment. While every metal ion was quickly adsorbed on surface of the raw sediment, a concentration gradient from surface to bottom of the water phase occurred in the ignited sediment system. The migration of manganese to the sediment phase was assumed to be concerned with bacterial activity in the sediment. Copper and zinc seemed to be adsorbed very quickly onto some fine sediment particles by the formation of organometallic complexes with some organic materials existing in the sediments. Cobalt migrated relatively fast downward within the sediment phase after its deposition. (author)

  10. Quantitative analysis of chemical elements in single cells using nuclear microprobe and nano-probe

    International Nuclear Information System (INIS)

    Deves, Guillaume

    2010-01-01

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (μg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng. The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment. Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. (author)

  11. [Sleep quality and hormone levels in the morning and evening hours under chemical pollution].

    Science.gov (United States)

    Budkevich, R O; Budkevich, E V

    To evaluate self-assessment of sleep and the level of hormones in the morning and evening in chemical pollution conditions. Three hundred adolescent and adult men living in the regions with low and high levels of chemical pollution were examined using questionnaires for self-assessment of quality of sleep, sleep hygiene, daytime sleepiness. Levels of cortisol and testosterone in the saliva were determined in the morning and evening hours by ELISA. In areas with low pollution level, there were normal changes in hormone levels with an increase in the morning and decrease in the evening. In high pollution conditions, the average levels of hormones increased, the morning-evening gradient disappeared. These conditions were also associated with an increase in daytime sleepiness and disturbances in the sleep-wake cycle and the endocrine regulation system that indicate the possibility of the development of internal desynchronosis.

  12. Use of trace elements as indicators for underground fluid circulations in karstic environment

    International Nuclear Information System (INIS)

    Pane-Escribe, M.B.

    1995-01-01

    The geochemical study of the trace element behaviour in karstic groundwaters has been carried out over the experimental site of Lamalou (Herault, France). Routine measurements of the physico-chemical parameters and of the dissolved elements concentrations have been achieved during two hydrological cycles. Radon has been monitored by passive detectors and by automatic electronic probes. Trace elements (Sc, Ti, V, Cr, Ni, Cu, Zn, As Rb, Sr, Mo, Cd, Sb, Cs, Ba, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The first part of this work presents the methodologies employed with in particular the improvement of the analytical performances of ICP-MS for water samples analysis. The detection limit for each considered element has been determined. The short and long term reproducibility for the samples analysis has also been tested. The second part of this study presents the treatment and interpretation of the results. This analysis has pointed our the influence of the aquifer structure on the chemical elements distribution. The trace and major elements concentrations are effectively related to the fracturing state of the reservoir and allow to individualize the high transmissivity zones from zones with a lower transmissivity in this mono-lithological context, trace elements appear to be particularly efficient tracers for determining the water origin and circulation their spatial and temporal behaviour leads to identify three different origins for the water mineralization over the studied area: limestones, clays and external sources (rainfalls and occasional pollutions). (author)

  13. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  14. Determination of toxic trace elements in body fluid reference samples

    International Nuclear Information System (INIS)

    Gills, T.E.; McClendon, L.T.; Maienthal, E.J.; Becker, D.A.; Durst, R.A.; LaFleur, P.D.

    1974-01-01

    The measurement of elemental concentration in body fluids has been widely used to give indication of exposures to certain toxic materials and/or a measure of body burden. To understand fully the toxicological effect of these trace elements on our physiological system, meaningful analytical data are required along with accurate standards or reference samples. The National Bureau of Standards has prepared for the National Institute for Occupational Safety and Health (NIOSH) a number of reference samples containing selected toxic trace elements in body fluids. The reference samples produced include mercury in urine at three concentration levels, five elements (Se, Cu, As, Ni and Cr) in freeze-dried urine at two levels, fluorine in freeze-dried urine at two levels and lead in blood at two concentration levels. These reference samples have been found to be extremely useful for the evaluation of field and laboratory analytical methods for the analysis of toxic trace elements. In particular the use of at least two calibration points (i.e., ''normal'' and ''elevated'' levels) for a given matrix provides a more positive calibration for most analytical techniques over the range of interest for occupational toxicological levels of exposure. (U.S.)

  15. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  16. High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Badjagbo, Koffi; Sauvé, Sébastien

    2012-07-03

    Harmful explosives can accumulate in natural waters in the long term during their testing, usage, storage, and dumping and can pose a health risk to humans and the environment. For the first time, attachment of small anions to neutral molecules in laser diode thermal desorption/atmospheric pressure chemical ionization was systematically investigated for the direct determination of trace nitroaromatics, nitrate esters, and nitramine explosives in water. Using ammonium chloride as an additive improved the instrument response for all the explosives tested and promoted the formation of several characteristic adduct ions. The method performs well achieving good linearity over at least 2 orders of magnitude, with coefficients of determination greater than 0.995. The resulting limits of detection are in the range of 0.009-0.092 μg/L. River water samples were successfully analyzed by the proposed method with accuracy in the range of 96-98% and a response time of 15 s, without any further pretreatment or chromatographic separation.

  17. Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW; TOPICAL

    International Nuclear Information System (INIS)

    SINGH, ANUP K.; GUPTA, ALOK; MULCHANDANI, ASHOK; CHEN, WILFRED; BHATIA, RIMPLE B.; SCHOENIGER, JOSEPH S.; ASHLEY, CAROL S.; BRINKER, C. JEFFREY; HANCE, BRADLEY G.; SCHMITT, RANDAL L.; JOHNSON, MARK S.; HARGIS JR. PHILIP J.; SIMONSON, ROBERT J.

    2001-01-01

    This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT

  18. Optimum off-line trace synchronization of computer clusters

    International Nuclear Information System (INIS)

    Jabbarifar, Masoume; Dagenais, Michel; Roy, Robert; Sendi, Alireza Shameli

    2012-01-01

    A tracing and monitoring framework produces detailed execution trace files for a system. Each trace file contains events with associated timestamps based on the local clock of their respective system, which are not perfectly synchronized. To monitor all behavior in multi-core distributed systems, a global time reference is required, thus the need for traces synchronization techniques. The synchronization is time consuming when there is a cluster of many computers. In this paper we propose an optimized technique to reduce the total synchronization time. Compared with related techniques that have been used on kernel level traces, this method improves the performance while maintaining a high accuracy. It uses the packet rate and the hop count as two major criteria to focus the computation on more accurate network links during synchronization. These criteria, tested in real-word experiments, were identified as most important features of a network. Furthermore, we present numerical and analytical evaluation results, and compare these with previous methods demonstrating the accuracy and the performance of the method.

  19. Behavior of radon, chemical compounds and stable elements in underground water

    International Nuclear Information System (INIS)

    Lopez R, N.; Segovia, N.; Lopez, M.B.E.; Pena, P.; Armienta, M.A.; Godinez, L.; Seidel, J.L.

    2001-01-01

    The radon behavior, chemical compounds, major and trace elements in water samples of four springs and three wells of urban and agricultural zones around the Jocotitlan volcano and El Oro region was determined, both of them located in the medium part of the Mexican neo-volcanic axis. The 222 Rn was measured by the liquid scintillation method, the analysis of major components was realized with conventional chemical techniques, while the trace elements were quantified using an Icp-Ms. The average values of the radon concentrations obtained during one year were constant relatively, in an interval from 0.97 to 4.99 Bq/lt indicating a fast transport from the reload area toward the sampling points. the compounds, major and trace elements showed differences which indicate distinct origins of water from the site studies. (Author)

  20. The use of lycopodium and funaria as bio indicators for some trace elements and radionuclides

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, M. S.; Al-Shmali, K.; Abdul Haleem, M.

    2004-02-01

    Two plants (L. cernuum and F. hygromatrica) distributed in some Syrian coastal mountains towns and Al G aab have been studied for their accumulating properties. Chemical and radiochemical analysis results have shown that these plants contain high levels of 210 Pb, 210 Po, 137 Cs and trace elements (Cu, Zn and Pb). The highest 210 Pb, 210 Po and 137 Cs concentrations were found to be 1450, 1322 and 110 BqKg -1 .dry.wt in L. Cernuum respectively, while F. Hygromatrica was found to have much higher values where 210 Pb and 210 Po concentrations have reached 2392 and 2119 Bq.Kg -1 dry.wt respectively. This indicates that these plants have the ability to accumulate these elements from the surrounding atmosphere. In addition, lead concentration in L. Cernuum varies between 5 ppm and 86.6 ppm while F. Hygromatrica samples were found to contain around 58 ppm. Moreover, analysis results of L. Cernuum samples distributed at four locations in Damascus city and its suburb have indicated the difficulties of using this plant to determine the trace element fallout. (author)

  1. Determination of trace levels of iodine in table salt by ICP-TOF MS

    International Nuclear Information System (INIS)

    Waqar, F.; Muhammad, B.; Hakim, M.; Jan, S.

    2012-01-01

    An ion exchange method was established for the effective removal of sodium matrix for iodine determination by ICP-TOF-MS technique. Since the direct determination of trace level analytes in the presence of heavy matrix is not recommended by this technique. Therefore, the removal of matrix is essentially required to achieve better detection limits and to avoid memory effects. The extraction system was designed for the removal of matrix prior to the analysis by ICP-MS, various parameters were optimized to achieve efficient removal of matrix. The accuracy of the method was evaluated by spiking salt samples with known amount of iodine (50 mu g/g) and % recoveries were calculated. The recoveries obtained were > 98% with relative standard deviation (RSD) < 5%. The established method was applied for the analysis of commercially available iodized table salt samples. The results and % recoveries are given. The most commonly used iodo metric titration method is not satisfactory as it has 5-10 % quantitative error. Our method is reliable and could be conveniently applied for the determination of iodine in table salt samples. (Orig./A.B.)

  2. Determination of the levels of trace elements in ten years old children from Antofagasta city, Chile by neutron activation analysis

    International Nuclear Information System (INIS)

    Gras, N.; Munoz, A.L.; Jamett J, A.; Pena C, L.; Santander M, M.

    1988-01-01

    The levels of trace elements in scalp hair of ten years old children of Antofagasta city were determined. For this study, the city was divided in convenient areas. Comparisons between levels of concentrations considering residential areas, sex, values obtained for children of Santiago, and the ranges given in the literature were established. Fifty samples of hair were analyzed by instrumental neutron activation analisis. The elements selected were: As, Br, Co, Cr, Cu, Fe, Hg, K, Na. Sb, and Zn. The effectiveness of wash procedure before irradiation was studied. Ten samples were taken with sufficient amount of hair and each was divided into two, only one of them was washed and both were analyzed. The levels of concentrations were compared. (author)

  3. Toxic and trace elements in foodstuffs in Japan

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Sumiya, M.; Ohmomo, Y.

    1988-01-01

    From the viewpoint of environmental safety assessment it is important to have information on the levels of toxic and trace elements in foodstuffs. It is also essential to develop suitable analytical methods for these elements in order to obtain accurate analytical data. In this paper, two analytical methods were used, inductively-coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation analysis (NAA), for analysing toxic and trace elements in several food samples. 3 tabs

  4. Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    Science.gov (United States)

    Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-03-01

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  5. From the Beginning: The "Journal of Chemical Education" and Secondary School Chemistry

    Science.gov (United States)

    Lagowski, Joseph J.

    2014-01-01

    The people, events, and issues that were involved in the beginning and the evolution of the "Journal of Chemical Education" and the Division of Chemical Education (DivCHED) are traced and discussed. The constitution of the American Chemical Society incorporates the roots of chemical education as an area of interest to the Society. Both…

  6. Thyroid functions and trace elements in pediatric patients with exogenous obesity.

    Science.gov (United States)

    Cayir, Atilla; Doneray, Hakan; Kurt, Nezahat; Orbak, Zerrin; Kaya, Avni; Turan, Mehmet Ibrahim; Yildirim, Abdulkadir

    2014-02-01

    Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p = 0.006). Zn levels in the patient group were significantly low compared to the control group (p = 0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p = 0.001, p = 0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.

  7. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  8. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  9. Trace mineral interactions during elevated calcium consumption

    International Nuclear Information System (INIS)

    Smith, K.T.; Luhrsen, K.R.

    1986-01-01

    Elevated calcium consumption is reported to affect trace mineral bioavailability. The authors examined this phenomenon in both single dose radio-label test meals and an eight week feeding trial in rats. In the single dose studies, human milk, cows milk, and various calcium sources were examined in relation to radio-iron and radio-zinc retention. 59 Fe retention was greater from human milk than cows milk. However, when the calcium content of human milk was adjusted (with CaHPO 4 or CaCO 3 ) to equal the level in cows milk, iron retention was depressed. Similarly, when calcium sources (CaCO 3 , CaHPO 4 , hydroxy-apatite, bone meal) were examined at different calcium:metal molar ratios, the degree of inhibition on metal retention varied. In general, phosphate salts were more inhibiting than carbonates. In the feeding trial, calcium was fed in diets at normal (0.5%) or elevated (1.5%) levels. Serum, liver, kidney, and bone trace mineral profiles were obtained. In general, most trace elements showed decreased levels in the tissues. Zinc and iron were most striking, followed by magnesium with minor changes in copper. A high calcium:high mineral supplemented group was also fed. Mixed mineral supplementation prevented all calcium interactions. These data indicate the importance of calcium mineral interactions in bioavailability considerations in both milk sources and in mineral supplementation

  10. Comparative Study of Trace Metrics between Bibliometrics and Patentometrics

    Directory of Open Access Journals (Sweden)

    Fred Y. Ye

    2016-06-01

    Full Text Available Purpose: To comprehensively evaluate the overall performance of a group or an individual in both bibliometrics and patentometrics. Design/methodology/approach: Trace metrics were applied to the top 30 universities in the 2014 Academic Ranking of World Universities (ARWU — computer sciences, the top 30 ESI highly cited papers in the computer sciences field in 2014, as well as the top 30 assignees and the top 30 most cited patents in the National Bureau of Economic Research (NBER computer hardware and software category. Findings: We found that, by applying trace metrics, the research or marketing impact efficiency, at both group and individual levels, was clearly observed. Furthermore, trace metrics were more sensitive to the different publication-citation distributions than the average citation and h-index were. Research limitations: Trace metrics considered publications with zero citations as negative contributions. One should clarify how he/she evaluates a zero-citation paper or patent before applying trace metrics. Practical implications: Decision makers could regularly examinine the performance of their university/company by applying trace metrics and adjust their policies accordingly. Originality/value: Trace metrics could be applied both in bibliometrics and patentometrics and provide a comprehensive view. Moreover, the high sensitivity and unique impact efficiency view provided by trace metrics can facilitate decision makers in examining and adjusting their policies.

  11. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

    DEFF Research Database (Denmark)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen

    2017-01-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants...... in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition...... under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration...

  12. Storage and pre-neutron-activation-analysis treatment for trace-element analysis in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1985-01-01

    The problems regarding storage and pre-neutron-activation-analysis treatment for the elements aluminum, calcium, vanadium, selenium, copper, iodine, zinc, manganese, and magnesium in a urine matrix are reviewed. The type of collection and storage procedure and pre-neutron activation analysis treatment of urine depend on the specific trace element; that is, its inherent physical and chemical properties. Specifically polyethylene in teflon containers are the most suitable for general determinations. Whether any preservative is added would depend upon the stability of the trace element and its tendency for surface adsorption. Preferably, preservatives should contain no radioactivatable elements for maximum efficacy. Freeze drying or packing urine shipments under dry ice needs to be explored on an individual basis. Each pre- or post-neutron activation analysis treatment is specific and optimized for the trace element analyzed

  13. An image analyzer system for the analysis of nuclear traces

    International Nuclear Information System (INIS)

    Cuapio O, A.

    1990-10-01

    Inside the project of nuclear traces and its application techniques to be applied in the detection of nuclear reactions of low section (non detectable by conventional methods), in the study of accidental and personal neutron dosemeters, and other but, are developed. All these studies are based on the fact that the charged particles leave latent traces of dielectric that if its are engraved with appropriate chemical solutions its are revealed until becoming visible to the optical microscope. From the analysis of the different trace forms, it is possible to obtain information of the characteristic parameters of the incident particles (charge, mass and energy). Of the density of traces it is possible to obtain information of the flow of the incident radiation and consequently of the received dose. For carry out this analysis has been designed and coupled different systems, that it has allowed the solution of diverse outlined problems. Notwithstanding it has been detected that to make but versatile this activity is necessary to have an Image Analyzer System that allow us to digitize, to process and to display the images with more rapidity. The present document, presents the proposal to carry out the acquisition of the necessary components for to assembling an Image Analyzing System, like support to the mentioned project. (Author)

  14. Feedback interactions between trace metal nutrients and phytoplankton in the ocean

    Directory of Open Access Journals (Sweden)

    William eSunda

    2012-06-01

    Full Text Available In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon the productivity and species composition of marine phytoplankton communities are affected by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium. Of these, iron exerts the greatest limiting influence on carbon fixation rates and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2 fixation rates, and thus exerts an important influence on ocean inventories of biologically available fixed nitrogen. Because of these effects, iron is thought to play a key role in controlling the biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 levels and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese have a lesser effect on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among algal species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals affect the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and regeneration processes, downward flux of biogenic particles, cellular release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution marine and terrestrial biology over geologic history.

  15. Chemical Structure and Dynamics annual report 1997

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous

  16. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  17. A Web System Trace Model and Its Application to Web Design

    OpenAIRE

    Kong, Xiaoying; Liu, Li; Lowe, David

    2007-01-01

    Traceability analysis is crucial to the development of web-centric systems, particularly those with frequent system changes, fine-grained evolution and maintenance, and high level of requirements uncertainty. A trace model at the level of the web system architecture is presented in this paper to address the specific challenges of developing web-centric systems. The trace model separates the concerns of different stakeholders in the web development life cycle into viewpoints; and c...

  18. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  19. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  20. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  1. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011.

    Science.gov (United States)

    Shao, Wentao; Liu, Qian; He, Xiaowei; Liu, Hui; Gu, Aihua; Jiang, Zhaoyan

    2017-04-01

    Global prevalence of obesity has been increasing dramatically in all ages. Although traditional causes for obesity development have been studied widely, it is unclear whether environmental exposure of substances such as trace heavy metals affects obesity development among children and adolescents so far. Data from the National Health and Nutrition Examination Survey (1999-2011) were retrieved, and 6602 US children were analyzed in this study. Urinary level of nine trace heavy metals, including barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten, was analyzed for their association with the prevalence of obesity among children aged 6-19 years. Multiple logistic regression was performed to assess the associations adjusted for age, race/ethnicity, gender, urinary creatinine, PIR, serum cotinine, and television, video game, and computer usage. A remarkable association was found between barium exposure (OR 1.43; 95% CI 1.09-1.88; P obesity in children aged 6-19 years. Negative association was observed between cadmium (OR 0.46; 95% CI 0.33-0.64; P obesity. All the negative associations were stronger in the 6-12 years group than in the 13-19 years group. The present study demonstrated that barium might increase the occurrence of obesity, but cadmium, cobalt, and lead caused weight loss among children. The results imply that trace heavy metals may represent critical risk factors for the development of obesity, especially in the area that the state of metal contamination is serious.

  2. Polarographic validation of chemical speciation models

    International Nuclear Information System (INIS)

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  3. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs.

  4. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    International Nuclear Information System (INIS)

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs

  5. Trace analysis of loss of feedwater flow event in Lungmen ABWR

    International Nuclear Information System (INIS)

    Wang Jongrong; Lin Haotzu; Wang Weichen; Yang Shuming; Shih Chunkuan

    2009-01-01

    TRACE (TRAC/RELAP Advanced Computational Engine) model of Lungmen Nuclear Power Plant was used to analyze the Loss of Feedwater Flow transient as defined in Lungmen FSAR Chapter 15. The results were compared with those from FSAR and RETRAN02. Lungmen TRACE model will have two models: In model A, vessel is divided into 11 axial levels, 4 radial rings and 1 azimuthal sectors; In model B, vessel is divided into 11 axial levels, 4 radial rings, and 6 azimuthal sectors. The above models include feedwater control system, narrow range water level control system, and wide range water level control system. The loss of feedwater flow (LOFW) transient began with the trip of two operating feedwater pumps either from the pump mechanical/electric failure, or the operator human error, or high water level signal. Feedwater flow was assumed to descend to 0 in 5 seconds and led to the decrease of reactor water level. At L3 low water level setpoint, the system actuated reactor scram signal and RIP trip signal for RIPs not connected to the M/G set. At L2 low-low water level setpoint, the system would trip the other six RIPs. This paper compares those important thermal parameters at steady state, such as the dome pressure and temperature of reactor vessel, steam flow, feedwater flow, core flow, and RIP flow, etc.. It also compares system parameters under transient conditions, such as core thermal power, core flow, steam flow, feedwater flow, Narrow Range Water Level (NRWL), Wide Range Water Level (WRWL) and RIP flow, etc.. It was concluded that the steady state and transient results of TRACE calculations are in good agreement with those from RETRAN02. In summary, our studies concluded that Lungmen TRACE model is correct and accurate enough for future safety analysis applications. (author)

  6. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation

    International Nuclear Information System (INIS)

    Madejon, Engracia; Perez de Mora, Alfredo; Felipe, Efrain; Burgos, Pilar; Cabrera, Francisco

    2006-01-01

    We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl 2 -soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain. - Soil amendments affect soil chemistry and allow revegetation of soils contaminated by trace elements

  7. Trace elements in fish from the Savannah River near Savannah River Nuclear Plant

    International Nuclear Information System (INIS)

    Koli, A.K.; Whitmore, R.

    1983-01-01

    A survey of trace element residues in fish from the Savannah River near Savannah River Nuclear Plant was undertaken in 1982. Fish muscle tissue was incubated by the wet digestion method. Fifteen trace elements were determined by flame atomic absorption spectrophotometry analysis of the digests. It was found that As, Se, Mg, Hg, Ca, Zn, and Fe levels were relatively higher than Pb, Cd, Ni, Co, Cr, and Mn in all fish species. In addition, in all fish species it seems that Pb, Cd, Ni, Co, Cr, and Mn levels were relatively higher than Cs and Cu. Cs and Cu levels were negligible in all fish species analyzed. Trace element levels found in these fish species were not high enough to render them dangerous for human consumption. (author)

  8. LASER SPECTROSCOPY AND TRACE ELEMENT ANALYSIS Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Various, Authors

    1981-05-01

    In order to control pollutants resulting from energy production and utilization, adequate methods are required for monitoring the level of various substances often present at low concentrations. The Energy and Environment Division Applied Research in Laser Spectroscopy & Analytical Techniques Program is directed toward meeting these needs, Emphasis is on the development of physical methods, as opposed to conventional chemical analysis techniques. The advantages, now widely recognized, include ultra-high sensitivity coupled with minimal sample preparation. In some instances physical methods provide multi-parameter measurements which often provide the only means of achiev·ing the sensitivity necessary for the detection of trace contaminants. Work is reported in these areas: APPLIED PHYSICS AND LASER SPECTROSCOPY RESEARCH; MICROPROCESSOR CONTROLLER ANODIC STRIPPING VOLTAMETER FOR TRACE METALS ANALYSIS IN WATER; THE SURVEY OF INSTRUMENTATION FOR ENVIRONMENTAL MONITORING; THE POSSIBLE CHRONDRITIC NATURE OF THE DANISH CRETACEOUS~TERTIARY BOUNDARY; IMPROVEMENT OF THE SENSITIVITY AND PRECISION OF NEUTRON ACTIVATION ANALYSIS OF SOME ELEMENTS IN PLANKTON AND PLANKTONIC FISH; and SOURCES OF SOME SECONDARILY WORKED OBSIDIAN ARTIFACTS FROM TIKAL, GUATEMALA.

  9. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    Science.gov (United States)

    Trocellier, P.; Djanarthany, S.; Chêne, J.; Haddi, A.; Brass, A. M.; Poissonnet, S.; Farges, F.

    2005-10-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 °C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium.

  10. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    International Nuclear Information System (INIS)

    Trocellier, P.; Djanarthany, S.; Chene, J.; Haddi, A.; Brass, A.M.; Poissonnet, S.; Farges, F.

    2005-01-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 deg. C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium

  11. Determination of heavy metals at traces level in leached samples by energy dispersive x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Simabuco, Silvana M.; Nascimento Filho, Virgilio F. do; Inacio, Graziela R.; Navarro, Angela N.

    1996-01-01

    In landfill solid residues are disposed in the soil. When made based on technical criteria and specifically operation patterns a safe confinement is warranted according to environmental and public health protection. However, when the disposal is made by a random and unsuitable way serious problems can be caused as groundwater and superficial water contamination through leach action, indicating the usefulness of monitoring landfills. In this way energy dispersive X-ray fluorescence analysis with radioisotopic excitation was applied to evaluate the concentrations of heavy metals at trace levels in leached samples from the Americana City Landfill with pre-concentration of the elements by a non-specific precipitating agent, called ammonium pyrrolidine dithiocarbamate (APDC). (author)

  12. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  13. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    Science.gov (United States)

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Knowledge Tracing and Prediction of Future Trainee Performance

    National Research Council Canada - National Science Library

    Jastrzembski, Tiffany S; Gluck, Kevin A; Gunzelmann, Glenn

    2006-01-01

    ...). This model represents the system's estimate of the student's current knowledge or skill level, established from a performance history. Knowledge tracing (Aleven & Koedinger, 2002; Anderson, Conrad, & Corbett, 1989...

  15. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  16. Determination of trace element level in different tissues of the leaping mullet (Liza saliens, Mugilidae) collected from Caspian Sea.

    Science.gov (United States)

    Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2011-12-01

    The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.

  17. The determination of low level trace elements in coals by laser ablation-inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.A.; Spears, D.A.; Krause, P.; Cox, A.G. [University of Sheffield, Sheffield (United Kingdom). Dept. of Earth Sciences

    1999-11-01

    The rapid determination of elements present in low level concentrations in bituminous coals is possible using laser abalation-inductively coupled plasma-mass spectrometry (l.a.-i.c.p.-m.s.). A wide range of trace elements can routinely be determined using this technique but it is for environmentally sensitive elements, such as As, Cd, Mo, Sb, Se and Hg, that it is of most use due to the low levels of detection. Calibration of the i.c.p.-m.s. was achieved using a series of uncertified coals and the method evaluated using the South African certified coals, Sarm 18, 19 and 20. A critical evaluation of the data obtained shows that for many of the elements studied the results obtained are both accurate and precise, even at very low concentrations, with the limits of detection for all of the elements being in the {mu}g/kg (parts per billion) range. 6 refs., 3 figs., 9 tabs.

  18. Vitamin, Trace Element, and Fatty Acid Levels of Vitex agnus-castus L., Juniperus oxycedrus L., and Papaver somniferum L. Plant Seeds

    Directory of Open Access Journals (Sweden)

    Ahmet Ozkaya

    2013-01-01

    Full Text Available The levels of fat-soluble vitamin, trace element and fatty acid of Vitex agnus-castus L., Juniperus oxycedrus L., and Papaver somniferum L. seeds in Turkey were determined by using HPLC, ICP-OES, and GC, respectively. In the Vitex agnus-castus L., Juniperus oxycedrus L., and Papaver somniferum L. seeds, linoleic acid (18 : 2 was determined with the highest level rates (%54.11, %28.03, and %72.14, resp.. In the Vitex agnus-castus L. seeds, R-tocopherol, α-tocopherol, and K1 levels were determined as 9.70 μg/g, 18.20 μg/g, and 24.79 μg/g, respectively; In the Juniperus oxycedrus L. seeds, R-tocopherol, α-tocopherol, and K1 were determined as 18.50 μg/g, 0.84 μg/g, and 5.00 μg/g, respectively, and in the Papaver somniferum L. seeds, R-tocopherol, α-tocopherol, K1, and D2 levels were determined as 43.25 μg/g, 122.05 μg/g, 12.01 μg/g, and 0.62 μg/g, respectively. In the Vitex agnus-castus L., Juniperus oxycedrus L., and Papaver somniferum L. seeds, nickel (Ni, zinc (Zn, and iron (Fe were determined with the trace element level rates (4.42 mg/kg, 10.43 mg/kg, 3.71 mg/kg for Ni, 7.00 mg/kg, 7.70 mg/kg, and 24 mg/kg for Zn and 93.73 mg/kg, 187.95 mg/kg, and 149.64 mg/kg for Fe, resp.. These parameters in seeds are very important for human life.

  19. Neutron activation analysis of neonate and maternal hair sampled in areas with different levels of pollution

    International Nuclear Information System (INIS)

    Obrusnik, I.; Skrivanek, O.; Umlaufova, M.; Hovorka, V.

    1985-01-01

    Instrumental neutron activation analysis was performed on human head hair of newborns and mothers sampled in two areas with different levels of environmental exposure. The group of neonates from the exposed area (polluted by thermal power plants burning brown coal and by chemical industry) exhibited higher levels of several trace elements in hair, e.g. Se, Zn, Hg and Sb in comparison with the control group. Moreover, the mean concentrations of Se, Hg, Zn and Br in neonate hair were found to be higher than in mothers' hair. Although the study revealed statistically significant differences in the composition of neonate hair samples in areas with different levels of environmental exposure, the differences are relatively small. Only a thorough long-term study both with environmental and medical observations can prove a direct connection of the elevated levels of some trace elements in neonate hair with the higher incidence of mental diseaes of children living in the exposed area. (author)

  20. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  1. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development

  2. Trace impurity analyzer

    International Nuclear Information System (INIS)

    Schneider, W.J.; Edwards, D. Jr.

    1979-01-01

    The desirability for long-term reliability of large scale helium refrigerator systems used on superconducting accelerator magnets has necessitated detection of impurities to levels of a few ppM. An analyzer that measures trace impurity levels of condensable contaminants in concentrations of less than a ppM in 15 atm of He is described. The instrument makes use of the desorption temperature at an indicated pressure of the various impurities to determine the type of contaminant. The pressure rise at that temperature yields a measure of the contaminant level of the impurity. A LN 2 cryogenic charcoal trap is also employed to measure air impurities (nitrogen and oxygen) to obtain the full range of contaminant possibilities. The results of this detector which will be in use on the research and development helium refrigerator of the ISABELLE First-Cell is described

  3. Determination of trace elements: Neutron-activation analysis in geochemistry and cosmochemistry

    International Nuclear Information System (INIS)

    Kolesov, G.M.

    1994-01-01

    Geochemistry, like cosmochemistry, open-quotes studies chemical elements hor-ellipsis of the crust and hor-ellipsis the Earth hor-ellipsis their history, their distribution hor-ellipsis their genetic hor-ellipsis connectionsclose quotes and is based on data on the abundance and distribution of elements obtained by various analytical methods. Neutron-activation analysis (NAA) plays a particular role in this respect. This is due to its high sensitivity (detection limit as small as 10 -14 g), which makes possible the use of samples of arbitrary mass, and also due to the possibility of obtaining information about composition without destruction of the object, conserving, if required, the unique material under investigation. Of the most interest are the data on the contents for a number of trace elements (at a level of 10 -7 - 10 -4 %), among which are rare-earth elements (REE), U, Th, Zr, Hf, Ta, W, Ga, Ni, Rb, Cs, platinum-group metals, Ag, Au, etc. These elements are considered as indicators of geochemical processes associated with the genesis and evolution of solar system bodies in early and more recent stages of evolution; they are also used to study processes and phenomena at zone boundaries: river-sea, ocean-atmosphere, and so on. The aim of this work is to show the capabilities of NAA in the determination of trace elements

  4. A strategy of chemical control of Apera spica-venti L. resistant to sulfonylureas traced on the molecular level

    Directory of Open Access Journals (Sweden)

    Stankiewicz-Kosyl Marta

    2017-06-01

    Full Text Available Three populations of silky bent grass (Apera spica-venti L. were tested – one that is susceptible and two that are resistant to sulfonylureas. This study assessed the efficacy of control by different herbicides in a pot experiment and estimated the molecular status of resistance to sulfonylureas in analysed populations and its effect on the efficacy of different chemical treatments. The three most effective herbicide rotation schemes were: 1 chlorsulfuron + isoproturon, ethametsulfuron + metazachlor + quinmerac, chlorsulfuron + isoproturon; 2 prosulfocarb + diflufenican, ethametsulfuron + quizalofop-p-ethyl, prosulfocarb + diflufenican; 3 diflufenican + flufenacet, quizalofop-p-ethyl, diflufenican + flufenacet. In most cases it was more difficult to destroy 100% of the resistant population from Modgarby where the majority of plants had no mutation in the als gene. In the resistant population from Babin there were significantly more individuals with mutation in the als gene, therefore exhibiting target-site resistance.

  5. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    Science.gov (United States)

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  6. Contribution of neutron activation analysis and radioanalytical techniques to trace element speciation in environmental analysis

    International Nuclear Information System (INIS)

    Gallorini, M.; Orvini, E.; Sabbioni, E.; Pietra, R.

    1984-01-01

    The feasibility of the NAA in contributing to trace element speciation in environmental and biological samples is shown by a few selected applications. They are: (i) the determination of different species of vanadium, arsenic and selenium in freshwater. The pre-irradiation treatments in which the different chemical species are selectively isolated are critically evaluated. Problems arising from possible contaminations or losses and from blanks are discussed; (ii) the use of NAA in metallobiochemical speciation once biochemical methods of cellular fractionation for the isolation of metallobiocomplexes are developed. Examples concern the biochemical speciation of vanadium in human blood and the development of a method for speciation of inorganic and organic arsenic compounds in biological samples. The use of radioanalytical techniques in developing the separation procedures of different trace metal chemical and biochemical species is also briefly discussed. 24 references, 5 figures, 4 tables

  7. A dynamic gravimetric standard for trace water.

    Science.gov (United States)

    Brewer, P J; Goody, B A; Woods, P T; Milton, M J T

    2011-10-01

    A system for generating traceable reference standards of water vapor at trace levels between 5 and 2000 nmol/mol has been developed. It can provide different amount fractions of trace water vapor by using continuous accurate measurements of mass loss from a permeation device coupled with a dilution system based on an array of critical flow orifices. An estimated relative expanded uncertainty of ±2% has been achieved for most amount fractions generated. The system has been used in an international comparison and demonstrates excellent comparability with National Metrology Institutes maintaining standards of water vapor in this range using other methods.

  8. Trace elements record complex histories in diogenites

    Science.gov (United States)

    Balta, J. B.; Beck, A. W.; McSween, H. Y.

    2012-12-01

    Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major

  9. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  10. Plasma trace metals during total parenteral alimentation.

    Science.gov (United States)

    Solomons, N W; Layden, T J; Rosenberg, I H; Vo-Khactu, K; Sandstead, H H

    1976-06-01

    The plasma concentrations of the trace metals zinc and copper were studied prospectively in 13 patients with gastrointestinal diseases treated with parenteral alimentation (TPA) for periods of from 8 days to 7 1/2 weeks. Plasma copper levels fell rapidly and consistently in all patients, with an overall rate of - 11 mug per 100 ml per week. Zinc concentrations declined in 10 of 13 patients at a more gradual rate. Analysis of the standard parenteral alimentation fluids revealed zinc content equivalent to 50% of the daily requirement and a negligible content of copper. From combined analysis of plasma zinc, hair zinc, and taste acuity, there is evidence that increased utilization or redistribution within the body may effect plasma concentrations in some patients. Neither an increase in urinary excretion nor a primary decrease in plasma binding proteins appeared to be a major factor in lowering plasma trace metal concentrations. These findings indicate that a marked decrease in plasma copper is regular and a decline in plasma zinc is common during TPA using fluids unsupplemented with trace metals. Supplementation of parenteral alimentation fluids with the trace metals zinc and copper is recommended.

  11. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge

    KAUST Repository

    Alidina, Mazahirali

    2014-06-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each receiving a different primary substrate, were utilized to simulate the dominant bulk organic carbon present in MAR systems receiving wastewater effluent of varying quality and having undergone different degrees of pre-treatment, as well as organic carbon prevalent at different stages of subsurface travel. Each pair of columns consisted of duplicate set-ups receiving the same feed solution with only one pre-exposed to a suite of eight TOrCs for approximately ten months. Following the pre-exposure period, a spiking experiment was conducted in which the non-exposed columns also received the same suite of TOrCs. TOrC attenuation was quantified for the pre- and non-exposed columns of each pair during the spiking experiment. The microbial community structure and function of these systems were characterized by pyrosequencing of 16S rRNA gene and metagenomics, respectively. Biotransformation rather than sorption was identified as the dominant removal mechanism for almost all the TOrCs (except triclocarban). Similar removal efficiencies were observed between pre-exposed and non-exposed columns for most TOrCs. No obvious differences in microbial community structure were revealed between pre- and non-exposed columns. Using metagenomics, biotransformation capacity potentials of the microbial community present were also similar between pre- and non-exposed columns of each pair. Overall, the pre-exposure of MAR systems to TOrCs at ng/L levels did not affect their attenuation and had no obvious influence on the resulting microbial community structure and function. Thus, other factors such as bioavailability of the primary substrate play a greater role regarding biotransformation of TOrCs. These results indicate that MAR systems adapted to a

  12. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge.

    Science.gov (United States)

    Alidina, Mazahirali; Li, Dong; Drewes, Jörg E

    2014-06-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each receiving a different primary substrate, were utilized to simulate the dominant bulk organic carbon present in MAR systems receiving wastewater effluent of varying quality and having undergone different degrees of pre-treatment, as well as organic carbon prevalent at different stages of subsurface travel. Each pair of columns consisted of duplicate set-ups receiving the same feed solution with only one pre-exposed to a suite of eight TOrCs for approximately ten months. Following the pre-exposure period, a spiking experiment was conducted in which the non-exposed columns also received the same suite of TOrCs. TOrC attenuation was quantified for the pre- and non-exposed columns of each pair during the spiking experiment. The microbial community structure and function of these systems were characterized by pyrosequencing of 16S rRNA gene and metagenomics, respectively. Biotransformation rather than sorption was identified as the dominant removal mechanism for almost all the TOrCs (except triclocarban). Similar removal efficiencies were observed between pre-exposed and non-exposed columns for most TOrCs. No obvious differences in microbial community structure were revealed between pre- and non-exposed columns. Using metagenomics, biotransformation capacity potentials of the microbial community present were also similar between pre- and non-exposed columns of each pair. Overall, the pre-exposure of MAR systems to TOrCs at ng/L levels did not affect their attenuation and had no obvious influence on the resulting microbial community structure and function. Thus, other factors such as bioavailability of the primary substrate play a greater role regarding biotransformation of TOrCs. These results indicate that MAR systems adapted to a

  13. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  14. Trace elements (Rb, Cs, Sr, Pb, Th, U) bioavailability potential and speciation in the Piracicaba river bottom sediments, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Fernandes, Alexandre Martins; Mortatti, Jefferson; Oliveira, Helder de; Bibian, Joao Paulo Rambelli; Moraes, Graziela Meneghel de; Probst, Jean-Luc

    2007-01-01

    It was studied the bioavailability potential of Rb, Cs, Sr, Pb, Th and U and their chemical speciation in Piracicaba river bottom sediments. This river system crosses important agricultural and urban areas of Sao Paulo state, which groups about 3 million people and receives a large load of agricultural, industrial and domestic wastes. The procedure used to estimate trace elements bioavailability potential was related to a 7-step sequential chemical extraction. This scheme was designed to dissolved and separate sample chemical phases, which can be affected by changes in physical-chemical conditions; in the following order: water soluble, exchangeable, bound to carbonates or acid fraction, bound to Mn-oxides, bound to Fe-oxides and bound to organic matter. Trace element concentrations were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) after each extraction step. With the used extraction procedure, it was possible to identify the fraction where some trace elements could be found in order to evaluate their bioavailability potential. Rb and Cs were particularly involved with the organic fraction, while Sr revealed to be associated mainly to the exchangeable fraction (clay minerals). Pb, Th and U were mainly bound to the residual and Fe-oxide fractions. (author)

  15. Trace elements in human, cattle and swine teeth, measured by external beam PIXE-PIGE setup

    International Nuclear Information System (INIS)

    Tabacniks, M.H.; Rizzutto, M.A.; Added, N.; Liguori Neto, R.; Acquadro, J.C.; Vilela, M.; Oliveira, T.R.C.F.; Markarian, R.A.; Mori, M.

    2001-01-01

    The use of animal teeth to replace human teeth in dentistry school classes and to test chemicals and fillings, motivated for a better characterization of the elementary composition of their enamel, since some of the chemical properties, adhesion and chemical compatibility may depend on these parameters. Cattle, swine and human teeth were collected by dentists of the University of Sao Paulo. These teeth came primarily from Sao Paulo region and were analyzed for trace elements at the Open Nuclear Physics Laboratory, using a high energy external proton beam, PIXE-PIGE setup

  16. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  17. Development of chemical profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.

    1995-01-01

    Chemical and radiological profiles of waste streams from US Department of Energy (DOE) low-level mixed wastes (LLMWs) have been developed by Argonne National Laboratory (ANL) to provide technical support information for evaluating waste management alternatives in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The chemical profiles were developed for LLMW generated from both Waste Management (WM) operations and from Environmental Restoration (ER) activities at DOE facilities. Information summarized in the 1994 DOE Mixed Waste Inventory Report (MWIR-2), the Pacific Northwest Laboratory (PNL) Automated Remedial Assessment Methodology (ARAM), and associated PNL supporting data on ER secondary waste streams that will be treated in WM treatment facilities were used as the sources for developing chemical profiles. The methodology for developing the LLMW chemical profiles is discussed, and the chemical profiles developed from data for contact-handled (CH) non-alpha LLMW are presented in this paper. The hazardous chemical composition of remote-handled (RH) LLMW and alpha LLMW follow the chemical profiles developed for CH non-alpha LLMW

  18. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  19. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    Science.gov (United States)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  20. Evaluation of physico-chemical parameters of agricultural soils ...

    African Journals Online (AJOL)

    Evaluation of physico-chemical parameters of agricultural soils irrigated by the waters of the hydrolic basin of Sebou River and their influences on the transfer of trace elements into sugar crops (the case of sugar cane)

  1. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Immunohistopathology in the Guinea Pig Following Chronic Low-Level Exposure to Chemical Warfare Agents

    Science.gov (United States)

    2005-11-01

    U.S. Army Medical Research Institute of Chemical Defense USAMRICD-TR-05-09 Immunohistopathology in the Guinea Pig Following Chronic Low...2005 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) May 2003 to April 2005 4. TITLE AND SUBTITLE Immunohistopathology in the Guinea Pig Following...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Guinea pigs exposed repeatedly to low levels of chemical warfare nerve agents

  3. Application of micro-PIXE analysis to investigate trace elements in deciduous teeth enamel

    International Nuclear Information System (INIS)

    Igari, K.; Takahashi, A.; Ando, H.

    2010-01-01

    The early life environment has widespread consequences for later health and disease. To prevent the disease in later life, the assessment of fetal environment is very important. In Japan, birthweight has fallen rapidly during recent two decades. The reduction of birthweight represents reduced fetal nutrition. Deciduous tooth enamel contains pre- and postnatal enamel and its chemical composition reflects the status of metabolism of trace elements during formation period. Deciduous tooth enamel is considered to be a suitable indicator of trace elements exposure in utero. We applied micro-PIXE analysis to investigate the trace elemental content in deciduous tooth enamel. Two deciduous canines from one healthy Japanese boy were used for this study. The enamel section including pre- and postnatal enamel was prepared for micro-PIXE analysis. Five trace elements (Na, Mg, Cl, Zn, and Sr) were detected in the scanning area of tooth. The distribution profiles of 5 elements were obtained as X-ray maps. The distribution profiles of zinc and chlorine were specific, and showed higher concentration in surface enamel. No elements showed different profiles of X-ray maps between pre- and postnatal enamel in this sample. The results of this study suggested that micro-PIXE analysis would be able to estimate the trace elements in prenatal and postnatal enamel, respectively. (author)

  4. The Effect of Smoking on the Serum Level of Some Trace Elements in Pregnant Women

    International Nuclear Information System (INIS)

    El-Ghetany, SH.M.; Ahmad, M.H.; Marei, E.S.; Ashrey, H. A.

    2005-01-01

    Maternal smoking during pregnancy is a cause of many adverse outcomes, not only during fetal life, but may also extend to childhood and even early adulthood. This study was designed to evaluate the effect of tobacco smoking on some trace elements on pregnant mothers who smoke and their newborns. The study was carried out on 150 pregnant women and their newborns; fifty smokers (group I), fifty passive smoker subjects (group II) and 50 non-smokers served as controls (group III). Their neonates were also categorized into three groups accordingly. Maternal urine cotinine was determined by radioimmunoassay as an indicator for the degree of influence of smoking, it confirmed a significant elevation among groups I and II. The serum levels of zinc (Zn), selenium (Se), copper (Cu), cadmium (Cd), manganese (Mn) and magnesium (Mg) were measured in the serum of pregnant mothers and the cord serum of their newborns by atomic absorption spectrophotometer. This study demonstrated significant lower concentrations of serum Zn and Se in group I and II and their newborns when compared to the control group and control newborns. Significant increases in serum Cd and Cu were observed in-group I and II and their neonates versus the controls. As regards Mn and Mg no significant difference was established between the three studied groups. Our results suggested that tobacco smoking had definite effect on some trace elements that absolutely had drawbacks on both pregnant mothers and their babies. Tobacco smoke contains many toxic, mutagenic and teratogenic substances. Several epidemiological studies illustrated that cigarette smoking among females during the reproductive period have a direct insult on the nutritional and health status of their babies (Jauniaux et al, 1999). Cigarette smoking

  5. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    Science.gov (United States)

    Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.

    1992-12-01

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those

  6. Trace elements in wild and orchard honeys

    Energy Technology Data Exchange (ETDEWEB)

    Almeida-Silva, M.; Canha, N.; Galinha, C.; Dung, H.M. [Instituto Tecnologico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnologico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Sitoe, T. [Instituto Tecnologico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal)

    2011-11-15

    The present study aims the identification and quantification of trace elements in two types of honey samples: Orchard honey and Wild honey from mainland Portugal. Chemical elements content was assessed by Instrumental Neutron Activation Analysis (INAA). Concentrations were determinated for Ag, As, Br, Ca, Cl, Cs, Cu, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc, U, V and Zn. The nutritional values of both honey types were evaluated since this product contains some elements that are essential dietary nutrients for humans. Physical properties of the honey samples, such as electrical conductivy and pH, were assessed as well.

  7. Environmental chemicals in human milk: a review of levels, infant exposures and health, and guidance for future research

    International Nuclear Information System (INIS)

    LaKind, Judy S.; Amina Wilkins, A.; Berlin, Cheston M.

    2004-01-01

    The aim of this review is to introduce the reader to various science and policy aspects of the topic of environmental chemicals in human milk. Although information on environmental chemicals in human milk has been available since the 1950s, it is only relatively recently that public awareness of the issue has grown. This review on environmental chemicals in human milk provides a resource summarizing what is currently known about levels and trends of environmental chemicals in human milk, potential infant exposures, and benefits of breast-feeding relative to the risks of exposures to environmental chemicals. The term 'environmental chemicals', as it pertains to human milk, refers to many classes of exogenous chemicals that may be detected in human milk. For example, pharmaceutical agents and alcohol are environmental chemicals that have been found in human milk. Other chemicals, such as heavy metals and volatile organic compounds, have also been detected in human milk. Most research on environmental chemicals in human milk has concentrated on persistent, bioaccumulative, and toxic (PBT) chemicals. In this review, a description of human milk is provided, including a brief review of endogenous substances in human milk. Determinants of levels of PBTs are discussed, as are models that have been developed to predict levels of PBTs in human milk and associated body burdens in breast-feeding infants. Methodologies for human milk sampling and analysis, and concepts for consideration in interpretation and communication of study results, as developed by the Technical Workshop on Human Milk Surveillance and Research for Environmental Chemicals in the United States are described. Studies which have compared the health risks and benefits associated with breast-feeding and formula-feeding are discussed

  8. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution

    International Nuclear Information System (INIS)

    Finger, Annett; Lavers, Jennifer L.; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D.; Robertson, Bruce; Scarpaci, Carol

    2015-01-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. - Highlights: • Trace metals measured in blood and feathers. • Arsenic, Mercury and Lead significantly higher at urban colony. • Correlations found between trace metals in feathers and blood. • Little Penguins are suitable bioindicators for coastal metal pollution. - This study confirms the suitability of the Little Penguin as a bioindicator of coastal metal pollution in coastal areas using non-destructive sampling methods

  9. Online monitoring of N-nitrosodimethylamine rejection as a performance indicator of trace organic chemical removal by reverse osmosis.

    Science.gov (United States)

    Fujioka, Takahiro; Takeuchi, Haruka; Tanaka, Hiroaki; Kodamatani, Hitoshi

    2018-06-01

    The security of recycled water quality in potable reuse can be enhanced by improving the credibility of reverse osmosis (RO) treatment for the removal of trace organic chemicals (TOrCs). This study evaluated the potential of online monitoring of N-nitrosodimethylamine (NDMA) before and after RO treatment as a surrogate indicator for TOrC removal by RO. This pilot-scale study monitored NDMA concentrations in RO feedwater (ultrafiltration-treated wastewater) and RO permeate every 22 min using novel online NDMA analyzers-high-performance liquid chromatography followed by photochemical reaction and chemiluminescence detection. NDMA rejection by RO varied considerably in response to changes in operating conditions (permeate flux and feedwater temperature). A high linear correlation between NDMA rejection and the rejection of six other TOrCs was observed. The linear correlation was also identified for an RO membrane damaged with chlorine. The correlation between another potential surrogate indicator (conductivity rejection) and TOrC rejection was relatively low. NDMA, which is the smallest compound among regulated TOrCs, revealed rejections lower than the other TOrCs, indicating that NDMA rejection can be a conservative surrogate indicator capable of predicting changes in TOrC removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Mobility of nutrients and trace metals during weathering in the late Archean

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  11. Chemical regulation on fire: rapid policy advances on flame retardants.

    Science.gov (United States)

    Cordner, Alissa; Mulcahy, Margaret; Brown, Phil

    2013-07-02

    Chemicals that are widely used in consumer products offer challenges to product manufacturers, risk managers, environmental regulators, environmental scientists, and the interested public. However, the factors that cause specific chemicals to rise to the level of regulatory, scientific, and social movement concern and scrutiny are not well documented, and scientists are frequently unclear about exactly how their research impacts policy. Through a case study of advocacy around flame retardant chemicals, this paper traces the pathways through which scientific evidence and concern is marshaled by both advocacy groups and media sources to affect policy change. We focus our analysis around a broad coalition of environmental and public health advocacy organizations and an investigative journalism series published in 2012 in the Chicago Tribune. We demonstrate that the Tribune series both brought the issue to a wider public audience and precipitated government action, including state policy revisions and federal Senate hearings. We also show how a broad and successful flame retardant coalition developed, leveraged a media event, and influenced policy at multiple institutional levels. The analysis draws on over 110 in-depth interviews, literature and Web site reviews, and observations at a flame retardant manufacturing company, government offices, and scientific and advocacy conferences.

  12. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    Science.gov (United States)

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  13. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    Science.gov (United States)

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  14. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering

  15. Report on the consultants' meeting to: Outline a co-ordinated research project on trace element speciation to enhance technology transfer in this field by the development of suitable methodologies and/or the production of suitably characterised reference materials

    International Nuclear Information System (INIS)

    2001-01-01

    In the environment and in man, the total concentration of a given element in a sample is almost always comprised of two or more discrete chemical forms. The toxicological or nutritive impact of the element in the sample in the environment or when ingested by man will be dependent upon the properties of its individual components. Therefore, in order to make meaningful benefit or risk assessment statements, it is essential to have a knowledge of the forms and relative amounts of an element in a given matrix. When the analyte in question is only present at total concentrations at the trace level (mg.kg -1 ) or below, the problems involved in obtaining this information become much more complex. The term trace metal speciation has been coined to refer to the determination of the chemical forms and quantities of an analyte present in a sample at the trace (and ultra trace) level. Even at such relatively low levels, the presence or absence of specific forms of an analyte can have serious consequences in terms of trade, health and environmental management. In light of the PPAS External Reviewers' Report of the Consultants' Meeting on Analytical Quality Control Services (October 1997, Vienna) which recommended that characterisation of chemical species should be undertaken in AQCS reference materials, the Agency decided to convene a consultants' meeting specifically to advise it on the importance of trace metal speciation, the state of the art and the value of a CRP to address aspects of speciation in order to facilitate technology transfer and equip member states with appropriate tools to meet the challenges posed. Five scientists, recognised as experts in the field of trace metal speciation were identified and invited to the Agency's headquarters to act as consultants. The meeting was held at the Vienna International Centre from 23rd to 26th November 1998. The first day of the meeting was given over to presentations from the consultants on various aspects of trace element

  16. Trace analysis

    International Nuclear Information System (INIS)

    Warner, M.

    1987-01-01

    What is the current state of quantitative trace analytical chemistry? What are today's research efforts? And what challenges does the future hold? These are some of the questions addressed at a recent four-day symposium sponsored by the National Bureau of Standards (NBS) entitled Accuracy in Trace Analysis - Accomplishments, Goals, Challenges. The two plenary sessions held on the first day of the symposium reviewed the history of quantitative trace analysis, discussed the present situation from academic and industrial perspectives, and summarized future needs. The remaining three days of the symposium consisted of parallel sessions dealing with the measurement process; quantitation in materials; environmental, clinical, and nutrient analysis; and advances in analytical techniques

  17. 6 CFR 27.205 - Determination that a chemical facility “presents a high level of security risk.”

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Determination that a chemical facility âpresents... SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.205 Determination that a chemical facility “presents a high level of security risk.” (a...

  18. The pivotal role of mass spectrometry in determining the presence of chemical contaminants in food raw materials.

    Science.gov (United States)

    Mohamed, Rayane; Guy, Philippe A

    2011-01-01

    During recent years, a rising interest from consumers and various governmental organizations towards the quality of food has continuously been observed. Human intervention across the different stages of the food supply chain can lead to the presence of several types of chemical contaminants in food-based products. On a normal daily consumption basis, some of these chemicals are not harmful; however, for those that present a risk to consumers, legislation rules were established to specify tolerance levels or in some cases the total forbiddance of these specific contaminants. Hence, the use of appropriate analytical tools is recommended to properly identify chemical contaminants. In that context, mass spectrometry (MS)-based techniques coupled or not to chromatography offer a vast panel of features such as sensitivity, selectivity, quantification at trace levels, and/or structural elucidation. Because of the complexity of food-based matrices, sample preparation is a crucial step before final detection. In the present manuscript, we review the contribution and the potentialities of MS-based techniques to ensure the absence of chemical contaminants in food-based products. Copyright © 2011 Wiley Periodicals, Inc.

  19. Metal accumulation by stream bryophytes, related to chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: et@ceh.ac.uk; Vincent, C.D.; Lawlor, A.J.; Lofts, S. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2008-12-15

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co. - Speciation modelling can be used to interpret the accumulation of Ni, Cu, Zn, Cd and Pb by bryophytes, supporting its use to quantify trace metal bioavailability in the field.

  20. Trace element content of precipitation in a remote area

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-01-01

    Rain and snow, sampled over a period of 18 months at Chalk River Nuclear Laboratories, were analysed for 40 elements by thermal neutron activation analysis. Correlation analysis revealed that the elements detected could be divided into groups of similar behaviour. Storm tracks for the events sampled were obtained, but only generalizations as to the probable origin of the trace elements could be made. Deuterium content of the samples was not correlated with levels of trace elements. (author)

  1. Mobilisation of toxic trace elements under various beach nourishments

    International Nuclear Information System (INIS)

    Pit, Iris R.; Dekker, Stefan C.; Kanters, Tobias J.; Wassen, Martin J.; Griffioen, Jasper

    2017-01-01

    To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 μm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of

  2. Chemical Education in India: Addressing Current Challenges and Optimizing Opportunities

    Science.gov (United States)

    Krishnan, Mangala Sunder; Brakaspathy, R.; Arunan, E.

    2016-01-01

    This article gives a brief introduction to the structure of higher education programs in chemical and general sciences in India. The lack of high-quality chemical education in India in the past is traced back to the economic and social developments of the past. Remedial measures undertaken recently to improve the overall quality of chemical…

  3. Seasonal comparison of trace metal residues in white-footed mice and soil from colliery stripmines

    International Nuclear Information System (INIS)

    Hausbeck, J.S.; Husby, M.P.; McBee, K.

    1994-01-01

    Mine tailings of abandoned coal stripmines in Oklahoma and other regions of the US have been shown to contain slightly elevated levels of copper (Cu) and zinc (Zn). Metalliferous stripmine spoil has been found to contain much higher levels of Cu and Zn than colliery stripmines, and many other trace metals including cadmium (Cd) and lead (Pb) among others. Although levels of trace metal contamination were lower for coal stripmines, research has shown small mammals exposed to low levels of trace metals may bioaccumulate trace metals. This study intended to determine the levels of Cd, Cu, Pb, and Zn in liver, kidney, and bone tissues of white-footed mice (Peromyscus leucopus) and examine the variance of these levels among sites and seasons. Preliminary results of soil analysis have indicated that mice collected from stripmine sites were exposed to slightly elevated levels of Zn and Cd in stripmine spoil collected from Okmulgee Co., OK. Kidney and liver tissues from mice collected at stripmine sites within this county have shown significantly greater levels of Cd and Zn than tissues collected from reference mice. Significant seasonal variation in renal and hepatic Zn concentrations was observed and possibly was related to a change in diet or reproductive activity

  4. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam)

    Science.gov (United States)

    Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.

    2017-11-01

    Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.

  5. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  6. Annual Report 1998: Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  7. Chemical composition of wildland fire emissions

    Science.gov (United States)

    Shawn P. Urbanski; Wei Min Hao; Stephen Baker

    2009-01-01

    Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through...

  8. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  9. Trace metal analysis in sea grasses from Mexican Caribbean Coast by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Solis, C.; Issac O, K.; Martinez, A.; Lavoisier, E.; Martinez, M. A.

    2008-01-01

    The growing urban and tourist activity in the Mexican Caribbean coasts has resulted in an increase of chemical substances, metals in particular, discharged to the coastal waters. In order to reach an adequate management and conservation of these marine ecosystems it is necessary to perform an inventory of the actual conditions that reflect the vulnerability and the level of damage. Sea-grasses are considered good biological indicators of heavy metal contamination in marine systems. The goal of this preliminary work is to evaluate the concentrations of trace metals such as Cr, Mn, Fe, Co, Cu, Zn, and Pb in Thalassia testudinum, a very common sea-grass in the Mexican Caribbean Sea. Samples were collected from several locations in the coasts of the Yucatan Peninsula: Holbox, Blanquizal and Punta Allen, areas virtually uninfluenced by anthropogenic activities. Trace elements in different part plants were determined by particle induced X-ray emission (PIXE). This is a very suitable technique since it offers a fast, accurate and multi-element analysis. Also, the analysis by PIXE can be performed directly on powdered leaves without a laborious sample preparation. The trace metal concentration determined in sea-grasses growing in Caribbean generally fall in the range of the lowest valuables reported for sea grasses from the Gulf of Mexico. The results indicate that the studied areas do not present contamination by heavy metals. (Author)

  10. The Ring of Five follows the traces

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    The Ring of Five is an informal network of European experts in radioactivity detection belonging to public bodies such as the IRSN. After having evoked different cases of detection (detection of unusual traces of iodine 131 in the region of Stockholm in 2015, detection of high levels of traces of caesium 137 in Switzerland in 1968) which leaded to the identification of the origin of these traces, this article briefly recalls the history of the creation of this network which extended with the occurrence of the Chernobyl accident, describes how the information is transmitted, the use of modelling tools, and outlines that the detection of some species can be associated either to a nuclear accident or to an atmospheric nuclear bomb test, and indicates how new sensors, not sensitive to humidity, have been developed after a lack of detection of iodine 131. In a brief interview, the future of the Ring of Five, topics to be studied and current projects are briefly evoked

  11. Determination of the concentration profile of chemical elements in superheater pipes

    International Nuclear Information System (INIS)

    Aldape U, F.; Aspiazu F, J.

    1986-05-01

    This work has for object to determine the profile of concentration of chemical elements at trace level in a superheater pipe of Thermoelectric Plants using the X-ray emission spectroscopy technique induced by protons coming from the Accelerator of the Nuclear Center. In the X-ray detection, a Si Li detector was used. The technique was chosen because it allows a multielemental analysis, of high sensitivity and precision. The results can help to understand the problems that are had in the change of flexibility or of corrosion. This will be from utility to the Federal Electricity Commission (CFE). (Author)

  12. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Lebedev, Albert T.

    2005-01-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10 -21 ), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents

  13. Trace Contaminant Control for the International Space Station's Node 1- Analysis, Design, and Verification

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Trace chemical contaminant generation inside crewed spacecraft cabins is a technical and medical problem that must be continuously evaluated. Although passive control through materials selection and active control by adsorption and catalytic oxidation devices is employed during normal operations of a spacecraft, contaminant buildup can still become a problem. Buildup is particularly troublesome during the stages between the final closure of a spacecraft during ground processing and the time that a crewmember enters for the first time during the mission. Typically, the elapsed time between preflight closure and first entry on orbit for spacecraft such as Spacelab modules was 30 days. During that time, the active contamination control systems are not activated and contaminants can potentially build up to levels which exceed the spacecraft maximum allowable concentrations (SMACs) specified by NASA toxicology experts. To prevent excessively high contamination levels at crew entry, the Spacelab active contamination control system was operated for 53 hours just before launch.

  14. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Science.gov (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  15. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  16. Traces of Drosophila Memory

    Science.gov (United States)

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352

  17. Trace Elements in the Sea Surface Microlayer: Results from a Two Year Study in the Florida Keys

    Science.gov (United States)

    Ebling, A. M.; Westrich, J. R.; Lipp, E. K.; Mellett, T.; Buck, K. N.; Landing, W. M.

    2016-02-01

    Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. Opportunistic bacteria have been shown to experience rapid growth during deposition events. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. It has been hypothesized that dust particles would be retained in the sea surface microlayer long enough to undergo chemical and physical changes that would affect the bioavailability of trace elements. In this study, aerosols, sea surface microlayer, and underlying water column samples were collected in the Florida Keys in July 2014 and May 2015 at various locations and analyzed for a suite of dissolved and particulate trace elements. Sea surface microlayer samples ( 50 μm) were collected using a cylinder of ultra-pure quartz glass; a novel adaptation of the glass plate technique. Sampling sites ranged from a more pristine environment approximately ten kilometers offshore to a more anthropogenic environment within a shallow bay a few hundred meters offshore. While it was clear from the results that dust deposition events played a large role in the chemical composition of the sea surface microlayer (elevated concentrations in dissolved and particulate trace elements associated with dust deposition), the location where the samples were collected also had a large impact on the sea surface microlayer as well as the underlying water column. The results were compared with other parameters analyzed such as Vibrio cultures as well as iron speciation, providing an important step towards our goal of understanding of the fate of trace elements in the sea surface microlayer as well as the specific effects of aeolian dust deposition on heterotrophic microbes in the upper ocean.

  18. Flowsheet development studies for the decontamination of high-activity-level water at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Collins, E.D.; Bigelow, J.E.; Campbell, D.O.; King, L.J.; Knauer, J.B.

    1980-01-01

    Several chemical processing flowsheets were considered for the decontamination of high-activity-level water at the Three Mile Island (TMI) Unit 2. A zeolite ion exchange process was evaluated and recommended for absorption of the bulk of the highly radioactive cesium and strontium. Standard organic ion-exchange resins were selected to remove the remaining traces of radioactive nuclides (except tritium which cannot be removed by any practical process). Process conditions were evaluated using both synthetic, tracer-level solutions and samples of actual, high-activity level water from TMI Unit 2

  19. Development of a mass spectrometrical isotope dilution analysis for determination of trace iodine levels and its application for food samples

    International Nuclear Information System (INIS)

    Schindlmeier, W.

    1984-01-01

    A mass spectrometrical isotope dilution procedure for the determination of trace amounts of iodine in various materials was developed using 129 I as indicator isotope, based on the determination of the 129 I/ 127 I isotope relationship. Negative thermionization was used as ionization method. The analysis procedure, which worked with a standard deviation of between 0,1 and 10% (depending on material tested), was used to determine the iodine level of table salt - both iodized and normal salt (3-6 ppm and less than 0,006 ppm respectively), and food samples with an organic matrix. For comparison the iodine levels were also measured with an iodine-selective electrode. Special preparation and separation procedures were done to suit the sample material. A comparison of the levels of iodine concentration in various powdered milks which were measured by international collaborators using varying methods shows the superior reproducibility of the MS-IDA. (RB) [de

  20. Determination of trace level anions in reactor cooling water by ion chromatography using a resin of low capacity

    International Nuclear Information System (INIS)

    1988-01-01

    In the field of nuclear technology, IC has been found to be one of the most versatile and efficient analytical technique because of its ability to provide a fast and sensitive analysis of anions. In this work, a separater column packed with a resin of very low capacity was used with a concentration column for the determination of low level of anions present as traces in reactor cooling water. The results of retention times and detection limits were determined using 2.4 mM Na2CO3 / 3mM NaHCO3 mixture as eluent. The interferences of cations and anions such as (Ca)2+, (UO2)2+, (SO4)2+, have been investigated

  1. Preparation of tracing source layer in simulation test of nuclide migration

    International Nuclear Information System (INIS)

    Zhao Yingjie; Ni Shiwei; Li Weijuan; Yamamoto, T.; Tanaka, T.; Komiya, T.

    1993-01-01

    In cooperative research between CIRP and JAERI on safety assessment for shallow land disposal of low level radioactive waste, a laboratory simulation test of nuclide migration was carried out, in which the undisturbed loess soil column sampled from CIRP' s field test site was used as testing material, three nuclides, Sr-85, Cs-137 and Co-60 were used as tracers. Special experiment on tracing method was carried out, which included measuring pH value of quartz sand in HCl solution, determining the eligible water content of quartz sand as tracer carrier, measuring distribution uniformity of nuclides in the tracing quartz sand, determining elution rate of nuclides from the tracing quartz sand and detecting activity uniformity of tracing source layer. The experiment results showed that the tracing source layer, in which fine quartz sand was used as tracer carrier, satisfied expected requirement. (1 fig.)

  2. Metrology of trace radionuclides in environment. Standardization and traceability

    International Nuclear Information System (INIS)

    Calmet, D.

    1999-01-01

    Widespread concern over radioactive substances in the environment regularly requires environmental and public health assessments. The credibility of an assessment will depend on the quality and reliability on measurement results that often are of paramount significance in the environmental domain. Those man made radionuclides present in the various environmental components of the French territory are however found at trace, even ultra-trace levels. This article gives an overview of standardization work and required reference materials and rules for measuring radionuclides in environmental matrices as well as the international and national systems to manage standardization and traceability. Some achievements as well as the many difficulties that the metrologist must overcome when using nuclear techniques to measure trace quantities of radionuclides are presented. (author)

  3. Atmosphere-Ocean Coupling through Trace Gases

    Science.gov (United States)

    Tegtmeier, S.; Atlas, E. L.; Krüger, K.; Lennartz, S. T.; Marandino, C. A.; Patra, P. K.; Quack, B.; Schlundt, C.

    2017-12-01

    Halogen- and sulfur-containing trace gases, as well as other volatile organic compounds (VOCs, such as isoprene) from biogeochemical marine sources are important constituents of the ocean and the atmosphere. These compounds exert wide-ranging influence on atmospheric chemical processes and climate interactions, as well as on human health in coastal regions. In their reactive form, they can affect the oxidizing capacity of the air and lead to the formation of new particles or the growth of existing ones. In this contribution, marine derived halogen-, sulfur-, and oxygen-containing compounds will be discussed. Their net flux into the atmosphere and their impact on atmospheric processes is analyzed based on observations and model simulations.

  4. Trace level liquid chromatography tandem mass spectrometry quantification of the mutagenic impurity 2-hydroxypyridine N-oxide as its dansyl derivative.

    Science.gov (United States)

    Ding, Wei; Huang, Yande; Miller, Scott A; Bolgar, Mark S

    2015-03-20

    A derivatization LC-MS/MS method was developed and qualified for the trace level quantification of 2-hydroxypyridine N-oxide (HOPO). HOPO is a coupling reagent used in the syntheses of active pharmaceutical ingredients (APIs) to form amide bonds. HOPO was recently confirmed to generate a positive response in a GLP Ames bacterial-reverse-mutation test, classifying it as a mutagenic impurity and as such requiring its control in APIs to the threshold of toxicological concern (TTC). The derivatization reagent 5-dimethylamino-1-naphthalenesulfonyl chloride (dansyl chloride) was used in a basic solution to convert HOPO into the corresponding dansyl-derivative. The derivative was separated from different APIs and reagents by liquid chromatography. The detection of the HOPO dansyl-derivative was achieved by mass spectrometry in selected reaction monitoring (SRM) mode. The LC-MS/MS method had a reporting limit of 0.1ng/mL HOPO, which corresponds to 0.1ppm HOPO relative to an API at 1mg/mL, and a linearity range of 0.1-25ng/mL HOPO analyte. Recoveries of HOPO standards spiked into three different API matrices at 0.2, 1.2, and 20ppm levels were all within 90-100%. An SRM-based confirmatory methodology using the ratios of two fragment ions at three CID energies was developed to verify the identity of HOPO when present at ≥0.6ppm. This identity confirmation can be employed to prevent potential false positive detection of mutagenic impurities at trace level. It can be broadly applicable for the confirmation of analytes when the analytes generate at least two major fragments in tandem mass spectrometry experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Trace elements in glucometabolic disorders: an update

    Directory of Open Access Journals (Sweden)

    Wiernsperger Nicolas

    2010-12-01

    Full Text Available Abstract Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed.

  6. Trace element concentrations in higher fungi

    International Nuclear Information System (INIS)

    Byrne, A.R.; Ravnik, V.; Kosta, L.

    1976-01-01

    The concentrations of ten trace elements, As, Br, Cd, Cu, Hg, I, Mn, Se, Zn and V, have been determined in up to 27 species of higher fungi from several sites in Slovenia, Yugoslavia. Analyses were based on destructive neutron activation techniques. Data are presented and compared with the concentrations found in soils. Previously values were non-existent or scanty for these elements, so that the data represent typical levels for basidiomycetes. In addition to confirming high levels of mercury in many species, the survey also found that cadmium is accumulated to a surprising extent by most fungi, the average value being 5 ppm. Among other accumulations found was bromine by the genus Amanita, and selenium by edible Boletus. Correlation analysis between all pairs of trace elements gave values for r of from 0.75 to 0.43 for 7 pairs (Cu and Hg, 0.75; Se and As, 0.69). As well as these features of biochemical interest, the values found and the pattern of accumulation suggest potential uses of fungi in environmental studies

  7. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    International Nuclear Information System (INIS)

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels

  8. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines.

    Science.gov (United States)

    Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui

    2017-07-01

    A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30   min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The reliability of radiochemical and chemical trace analyses in environmental materials

    International Nuclear Information System (INIS)

    Heinonen, Jorma.

    1977-12-01

    After theoretically exploring the factors which influence the quality of analytical data as well as the means by which a sufficient quality can be assured and controlled, schemes of different kinds have been developed and applied in order to demonstrate the analytical quality assurance and control in practice. Methods have been developed for the determination of cesium, bromine and arsenic by neutron activation analysis at the natural ''background'' concentration level in environmental materials. The calibration of methods is described. The methods were also applied on practical routine analysis, the results of which are briefly reviewed. In the case of Ce the precision of a comprehensive calibration was found to vary between 5.2-9.2% as a relative standard deviation, which agrees well with the calculated statistical random error 5.7-8.7%. In the case of Br the method showed a reasonable precision, about 11% on the average, and accuracy. In employing the method to analyze died samples containing Br from 3 to 12 ppm a continuous control of precison was performed. The analysis of As demonstrates the many problems and difficulties associated with environmental analysis. In developing the final method four former intercomparison materials of IAEA were utilized in the calibration. The tests performed revealed a systematic error. In this case a scheme was developed for the continuous control of both precision and accuracy. The results of radiochemical analyses in environmental materials show a reliability somewhat better than that occuring in the determination of stable trace elements. According to a rough classification, 15% of the results of radiochemical analysis show excellent reliability, whereas 60% show a reliability adequate for certain purposes. The remaining 15% are excellent, 60% adequate for some purposes and 30% good-for-nothing. The reasons for often insufficient reliability of results are both organizational and technical. With reasonable effort and

  10. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  11. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  12. Assessment of soil pollution through trace element contamination in a coal mine environment of Jharia

    International Nuclear Information System (INIS)

    Singh, Gurdeep; Shrivastava, B.K.

    1997-01-01

    Coal mining environment is associated with liberation of several trace elements. Soils in such regions particularly have been polluted with these trace elements from a wide range of sources. Trace elements such as lead, copper, iron, zinc, chromium, manganese, cobalt, nickel, cadmium, etc. have caused major human health problems in several parts of the world. Concern over such incidents has prompted numerous investigations into the metabolism and toxic effects of these elements. The trace element contamination of soils (e.g. roadside, overburden dump, residential area etc.) in a part of the Jharia coal field running through a large industrial zone was studied. Representative soil samples from several highly polluted spots of the mining areas were collected and analysed. Results of the investigation revealed that the soils are polluted with trace elements to an appreciable level. Pollution index for soil was developed on the basis of observed concentration levels of trace elements of the study area which may help in better understanding of pollution analysis in coal mining areas. (author)

  13. Potential of IRMS technology for tracing gamma-butyrolactone (GBL).

    Science.gov (United States)

    Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe

    2010-05-20

    Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SDIRMS for discriminating between seizures of GBL and for source determination.

  14. Effects of dietary trace mineral sources and levels fed to layers in their second laying cycle on the quality of eggs stored at different temperatures and for different periods

    Directory of Open Access Journals (Sweden)

    ESPB Saldanha

    2010-12-01

    Full Text Available This study aimed at evaluating the effects of trace mineral levels and sources supplemented to diets fed to semi-heavy layers in their second laying cycle on the quality of eggs stored for 14 days at different temperatures. The experimental diets consisted of the inclusion of inorganic trace minerals (T1 - control: 100% ITM and five supplementation levels of organic trace minerals (carboaminophopho chelates (110, 100, 90, 80, and 70% OTM. Trace mineral inclusion levels (mg/kg feed were: T1: control - 100% ITM: Zn (54, Fe (54, Mn (72, Cu (10, I (0.61 Se (0.3; T2 - 110% OTM: Zn (59.4, Fe (59.4, Mn (79.2, Cu (11.88, I (1.21 Se (0.59; T3 - 100%: OTM: Zn (54, Fe (54, Mn (72, Cu (10.8, I (1.10 Se (0.54; T4 - 90% OTM: Zn (48.6, Fe (48.6, Mn (64.8, Cu (9.72, I (0.99 Se (0.49; T5 - 80% OTM: Zn (43.2, Fe (43.2, Mn (57.6, Cu (8.64, I (0.88, Se (0.43; T6 - 70% OTM: Zn (37.8, Fe (37.8, Mn (50.4, Cu (7.56, I (0.77 Se (0.38. A completely randomized experimental design in a split-plot arrangement with 60 treatments of four replicates each was applied. The combination of six diets versus storage temperature (room or under refrigeration was randomized in plots, whereas the sub-plots consisted of storage times (0, 3, 7, 10, and 14 days. Data were submitted to analysis of variance of a model in slip-plots in time using the software package SAS (2000 at 5% probability level. It was concluded that 70% OTM supplementation can be used with no damage to egg quality, independently from storage temperature or time. The quality of refrigerated eggs stored up to 14 days is better than those stored at room temperature.

  15. The physical and chemical environment and radionuclide migration in a low level radioactive waste repository

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.

    1988-01-01

    The expected physical and chemical environment within the low-level radioactive waste repository to be sited at Chalk River is being studied to establish the rate of radionuclide migration. Chemical conditions in the repository are being assessed for their effect on buffer performance and the degradiation of the concrete structure. Experimental programs include the effect of changes in solution chemistry on radionuclide distribution between buffer/backfill materials and the aqueous phase; the chemical stability of the buffer materials and the determination of the controlling mechanism for radionuclide transport during infiltration

  16. Muscarinic receptors in amygdala control trace fear conditioning.

    Directory of Open Access Journals (Sweden)

    Amber N Baysinger

    Full Text Available Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA. The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  17. Muscarinic receptors in amygdala control trace fear conditioning.

    Science.gov (United States)

    Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  18. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  19. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    International Nuclear Information System (INIS)

    Fekiacova, Z.; Cornu, S.; Pichat, S.

    2015-01-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ 65 Cu values vary from − 0.15 to 0.44‰ and the δ 66 Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ 65 Cu and from − 0.53 to 0.64‰ for δ 66 Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing of the metal

  20. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  1. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  2. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    Science.gov (United States)

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  3. Adsorption of trace metals to plastic resin pellets in the marine environment

    International Nuclear Information System (INIS)

    Holmes, Luke A.; Turner, Andrew; Thompson, Richard C.

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L −1 of trace metals to 10 g L −1 pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g −1 that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. - Highlights: ► Beached plastic production pellets contain considerable concentrations of trace metals. ► In laboratory experiments trace metals are shown to adsorb to both virgin and beached pellets. ► Metal adsorption is greater on aged pellets. ► Pellets may represent an important vehicle for metal transport in the marine environment. - Trace metals accumulate on plastic resin pellets in the marine environment through adsorption to the polymer and to chemical and biological attritions thereon.

  4. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    Science.gov (United States)

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level

    International Nuclear Information System (INIS)

    Sahoo, P.; Ananthanarayanan, R.; Malathi, N.; Rajiniganth, M.P.; Murali, N.; Swaminathan, P.

    2010-01-01

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 μg L -1 levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L -1 levels, with modification in methodology for accurate detection of end point even at 10.0 μg L -1 levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 μg L -1 O 2 . Finally, several water samples containing dissolved oxygen from mg L -1 to μg L -1 levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 μg L -1 O 2 level is 0.14 (n = 5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 μg L -1 levels.

  6. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  7. Concentration of trace elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Suzuki, Hamaji; Iimura, Mitsue; Koyanagi, Taku

    1976-01-01

    Information on the quality and quantity of stable trace elements in marine environments is frequently required to analyze the radioecological behavior of radionuclides released from nuclear facilities into the sea. In the present work, special attention was concentrated in determination of stable Mn, Fe, Co, Zn, Rb and Cs in marine organisms to estimate the concentration factors for these elements and corresponding radionuclides. Marine organisms (fishes, marine invertebrates and seaweeds) were collected at the seashore of Ibaragi prefecture and provided for chemical analysis after dry-ashing and wet-ashing. Atomic absorption spectrophotometry and neutron activation analysis were applied to determine the concentration of elements. The concentration of stable elements in fish muscle was independent on species of the fishes though slightly higher trends were observed in ''Usumebaru'', Sebastes nivosus for Cs, ''Ishimochi'', Nibea mitsukurii for Zn and Fe compared with other species. The concentration of Co, Zn and Fe in muscle of marine invertebrates was one order of magnitude higher than fish muscles especially in shellfishes for Co. Seaweeds showed peculiar species specificity for the concentration of stable trace elements and remarkable differences was observed between the species even among the same genus. (auth.)

  8. Tracing students' attention through the Neurosky MindWave headset

    DEFF Research Database (Denmark)

    Ringtved, Ulla Lunde; Larsen, Torben; Toftegaard, Lars Landberg

    This poster explores how students` attention levels can be traced through recordings of their electroencephalography (EEG) signals. The EEG signals are recorded through the Neurosky MindWave headset during lectures in the classroom. We configured and aggregated the recordings searching for simila......This poster explores how students` attention levels can be traced through recordings of their electroencephalography (EEG) signals. The EEG signals are recorded through the Neurosky MindWave headset during lectures in the classroom. We configured and aggregated the recordings searching...... for similarity in the signals throughout the group of students to create a dashboard and use them as pedagogical neurofeedback to increase the students` capabilities in controlling their attention and concentration in learning situations. Furthermore, learning analytics methods are deployed to create a prototype...

  9. Highly sensitive fiber grating chemical sensors: An effective alternative to atomic absorption spectroscopy

    Science.gov (United States)

    Laxmeshwar, Lata. S.; Jadhav, Mangesh S.; Akki, Jyoti. F.; Raikar, Prasad; Kumar, Jitendra; prakash, Om; Raikar, U. S.

    2017-06-01

    Accuracy in quantitative determination of trace elements like Zinc, present in drinking water in ppm level, is a big challenge and optical fiber gratings as chemical sensors may provide a promising solution to overcome the same. This paper presents design of two simple chemical sensors based on the principle of shift in characteristic wavelength of gratings with change in their effective refractive index, to measure the concentration of Zinc in drinking water using etched short period grating (FBG) and Long period grating (LPG) respectively. Three samples of drinking water from different places have been examined for presence of Zinc. Further, the results obtained by our sensors have also been verified with the results obtained by a standard method, Atomic absorption spectroscopy (AAS). The whole experiment has been performed by fixing the fibers in a horizontal position with the sensor regions at the center of the fibers, making it less prone to disturbance and breaking. The sensitivity of LPG sensor is about 205 times that of the FBG sensor. A few advantages of Fiber grating sensors, besides their regular features, over AAS have also been discussed, that make our sensors potential alternatives for existing techniques in determination of trace elements in drinking water.

  10. Simultaneous Determination of 30 Trace Elements in Cancerous and Noncancerous Human Tissue Samples with Gamma-ray Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K; Brune, D; Wester, P O

    1963-10-15

    The following trace elements were quantitatively determined by gamma-ray spectrometry in T samples of non-cancerous and 5 samples of cancerous human tissue: P, Ca, Cr, Fe, Co, Cu, Zn, As, Se, Br, Rb, Mo, Ag, Cd, Sb, Cs, La, Au, and Hg. In some of the samples the following elements were qualitatively determined: Ti+Sc, Ga, Sr, In, Ba, Ce, Hf, Os, Pt, and U. Most of the trace elements were found to be present in much higher concentrations in the non-cancerous than in the corresponding cancerous liver samples. In a typical run one sample each of cancerous and non-cancerous tissue was irradiated together with standards of the elements to be determined in a thermal flux of 2.10{sup 13} n/cm{sup 2}/sec. for 24 hours. The radioactive trace elements were separated into 16, and in some cases 18, groups by means of a chemical group separation method. Subsequently, the gamma spectrometric measurements were performed. Two persons can manage the chemical separations and measure the different activities from a run in 1,5 days. A new method of comparing unknown samples with standards was developed.

  11. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  12. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  13. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation.

    Science.gov (United States)

    Kurtz, S M; Dumbleton, J; Siskey, R S; Wang, A; Manley, M

    2009-08-01

    The effect of very low concentrations of Vitamin E on the stability and mechanical behavior of UHMWPE remains unknown. We tested the hypothesis that the oxidation resistance of Vitamin E-blended UHMWPE would be influenced by trace doses of antioxidant, resin, and radiation treatment. Trace concentrations (Vitamin E) were blended separately with GUR 1020 and 1050 resins and molded into disks. From each disk, three groups of 10 mm thick blocks were machined: (1) no irradiation (control); (2) 30 kGy of gamma irradiation in nitrogen; and (3) 75 kGy of gamma irradiation in air. Specimens were subjected to three aging protocols: (a) no aging (control); (b) two weeks and (c) four weeks of accelerated aging in accordance with ASTM F 2003 (i.e., 70 degrees C and 5 atm oxygen). The minimum concentration of Vitamin E needed to stabilize UHMWPE during our accelerated tests depended upon the method of radiation processing. For the 30 and 75 kGy irradiated materials, the addition of 125 ppm or more Vitamin E was sufficient to maintain baseline mechanical and chemical properties through two weeks of accelerated aging. For these groups, the addition of 375 ppm or 500 ppm, respectively, was necessary to maintain baseline mechanical and chemical properties throughout the four-week accelerated aging period. UHMWPE resin molecular weight did not have an effect on oxidation behavior. The results of this experiment therefore supported our hypotheses that trace concentrations of Vitamin E, coupled with radiation treatment-but not resin grade-influence the mechanical and oxidative degradation behavior of UHMWPE.

  14. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    International Nuclear Information System (INIS)

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C.; Liu, Xiaoxiao; Niedermann, Silvana

    2014-01-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  15. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Biao, E-mail: bhuang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Wenyou [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Weindorf, David C.; Liu, Xiaoxiao [Department of Plant and Soil Science, Texas Tech University, Lubbock, TX (United States); Niedermann, Silvana [Department of Environmental Systems Science, Institute of Agricultural Science, ETH Zurich, 8092 Zurich (Switzerland)

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  16. Development of Tsunami Trace Database with reliability evaluation on Japan coasts

    International Nuclear Information System (INIS)

    Iwabuchi, Yoko; Sugino, Hideharu; Imamura, Fumihiko; Imai, Kentaro; Tsuji, Yoshinobu; Matsuoka, Yuya; Shuto, Nobuo

    2012-01-01

    The purpose of this research is to develop a Tsunami Trace Database by collecting historical materials as well as documents concerning tsunamis which had hit Japan and, of which the reliability of tsunami run-up and related data is taken into account. Based on acquisition and surveying of references, tsunami trace data over past 400 years of Japan has collected into a database, and reliability of each trace data was evaluated according to categorization of Japan Society of Civil Engineers (2002). As a result, trace data can now be searched and filtered with reliability levels accordingly whilst utilizing it for verification of tsunami numerical analysis and estimation of tsunami sources. By analyzing this database, we have quantitatively revealed the fact that the amount of reliable data tends to diminish as it goes older. (author)

  17. Scalar and configuration traces of operators in large spectroscopic spaces

    International Nuclear Information System (INIS)

    Chang, B.D.; Wong, S.S.M.

    1978-01-01

    In statistical spectroscopic calculations, the primary input is the trace of products of powers of Hamiltonian and excitation operators. The lack of a systematic approach to trace evaluation has been in the past one of the major difficulties in the applications of statistical spectroscopic methods. A general method with a simple derivation is described here to evaluate the scalar and configuration traces for operators expressed either in the m-scheme or fully coupled JT scheme. It is shown to be an effective method by actually programming it on a computer. Implications on the future applications of statistical spectroscopy in the area of level density, strength function and perturbation theory are also briefly discussed. (Auth.)

  18. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  19. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping: Scoping Report

    International Nuclear Information System (INIS)

    Looney, B.B.

    2000-01-01

    Data collected during the first stage of a Savannah River Technology Center (SRTC) Strategic Research and Development Project confirmed the efficacy of chemical reduction and air stripping/sparging as an ultralow level mercury treatment concept for waters containing Hg(II). The process consists of dosing the water with low levels of stannous chloride to convert the mercury to Hg. This form of mercury can easily be removed from the water by air stripping or sparging. Samples of Savannah River Site (SRS) groundwater containing approximately 130 ng/L of total mercury (as Hg(II)) were used for the study. In undosed samples, sparging removed 0 percent of the initial mercury. In the dosed samples, all of the removals were greater than 94 percent, except in one water type at one dose. This sample, which was saturated with dissolved oxygen, showed a 63 percent reduction in mercury following treatment at the lowest dose. Following dosing at minimally effective levels and sparging, treated water contained less than 10 ng/L total mercury. In general, the data indicate that the reduction of mercury is highly favored and that stannous chloride reagent efficiently targets the Hg(II) contaminant in the presence of competing reactions. Based on the results, the authors estimated that the costs of implementing and operating an ultralow level mercury treatment process based on chemical reduction and stripping/sparging are 10 percent to 20 percent of traditional treatment technologies

  20. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).

    Science.gov (United States)

    Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas

    2014-10-15

    During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A survey on trace organic chemicals in a German water protection area and the proposal of relevant indicators for anthropogenic influences.

    Science.gov (United States)

    Seitz, Wolfram; Winzenbacher, Rudi

    2017-06-01

    A comprehensive monitoring programme of trace organic chemicals (TOrC) was conducted for a German water protection area in karstic ground. The aim of this survey was to detect the potential anthropogenic influences of point sources such as wastewater treatment plants and diffuse pollution such as runoff water from roads on the raw water used for drinking water treatment. The programme comprised seven sampling campaigns within 2 years each with up to 20 sampling sites. In total, the programme included 84 anthropogenic compounds from pharmaceuticals, iodinated X-ray contrast media, sweeteners, industrial chemicals (benzotriazoles, melamines and benzothiazoles) and pesticide metabolites. Cyclamate occurred with the highest median concentration of 44 μg l -1 in untreated wastewater and acesulfame occurred with a concentration of 20 μg l -1 in treated wastewater. In runoff water from roads, the most relevant compounds were tolyltriazole with 2.3 μg l -1 and the desphenyl-chloridazon with 1.2 μg l -1 . In the stream waters, the highest median concentrations were found for melamine and acesulfame both at 0.61 μg l -1 . High elimination during conventional wastewater treatment was observed for 5 out of 49 compounds. These are acetyl-sulfamethoxazole, aciclovir, cyclamate, ibuprofen and saccharin. Based on the survey results, we propose a set of nine compounds to be used as indicators for wastewater, untreated wastewater and runoff water from roads for an efficient surveillance. The indicators are intended to detect anthropogenic influences in surface, ground and drinking water.

  2. Trace Metals Bioaccumulation Potentials of Three Indigenous ...

    African Journals Online (AJOL)

    The rapid increase in the number of industries may have increased the levels of trace metals in the soil. Phytoremediation of these polluted soils using indigenous grasses is now considered an alternative method in remediating these polluted soils. The present study investigated and compared the ability of three ...

  3. Low level exposure to chemicals and immune system

    International Nuclear Information System (INIS)

    Colosio, C.; Birindelli, S.; Corsini, E.; Galli, C.L.; Maroni, M.

    2005-01-01

    Industrialized countries are facing an increase of diseases attributable to an alteration of the immune system function, and concern is growing that this trend could be at least partially attributable to new and modified patterns of exposure to chemicals. Among chemicals matter of concern, pesticides can be included. The Authors have reviewed the existing evidence of pesticide immunotoxicity in humans, showing that existing data are inadequate to raise conclusions on the immunotoxic risk related to these compounds. The limits of existing studies are: poor knowledge on exposure levels, heterogeneity of the approach, and difficulty in giving a prognostic significance to the slight changes often observed. To overcome these limits, the Authors have proposed a tier approach, based on three steps: the first, addressed at pointing out a possible immunomodulation; the second, at refining the results and the third one, when needed, to finalize the study and to point out concordance with previous results. Studies should preferably be carried out through comparison of pre- and post-exposure findings in the same groups of subjects to be examined immediately after the end of the exposure. A simplification of the first step approach can be used by the occupational health physician and the occupational toxicologist. Conclusions on the prognostic significance of the slight changes often observed will be reached only by validating the hypothesis generated by field studies with an epidemiological approach. In this field, the most useful option is represented by longitudinal perspective studies

  4. SRXRF study of trace elements in hippocampus of pup rats after prenatal and postnatal exposure to low-level mercury

    International Nuclear Information System (INIS)

    Zhang Fang; Feng Weiyue; Chai Zhifang; Wang Meng; Shi Junwen; Huang Yuying; He Wei

    2005-01-01

    Since the pollution of mercury in the environment still keeps high, more and more concerns over mercury toxicity are focused on the potential risk associated with relatively low-dose and long-term mercury exposure in the environment. It is well known that fetus and developing children are the susceptive victims of mercury damage. Therefore, high attention is focused on whether the prenatal and postnatal exposure to relatively low level of mercury will be harmful to children development. Some epidemiological studies reported that the methylmercury-related neuropsychological deficits were mainly found in the domains of cognitional parts, such as language, attention, memory, and so forth, Our previous study found out that high level of mercury was accumulated in the pup hippocampus after their prenatal and postnatal exposure to low dose of inorganic mercury. Synchrotron radiation X-ray fluorescence technique (SRXRF) is characterized of its simultaneous determination of multi-elements, high sensitivity, small sampling amount and microanalysis. SRXRF does not cause the damage of irradiated samples. Thus, it makes possible to measure the distributions of trace elements in a selected area. In this study, in order to study the effects of low-level mercury exposure to pup rat brain, some oxidation-related elements, e.g. Cu, Fe and Mn in pup hippocampus after in utero and weaning exposure to low-level inorganic mercury were determined by SRXRF. The experiment was performed at a synchrotron radiation facility at Institute of High Energy Physics. And the spot size of the beam irradiating on the sample was adjusted to about 100 x 200 μm 2 , Each spot was irradiated for about 100 s. The spectra were analyzed by the AXIL program. Additionally, the activities of some important antioxidant enzymes, such as GSH-Px, SOD, CAT, were also measured together with the content of malondialdehyde (MDA). The results showed that mercury exposure could lead to significant increase of both

  5. Simulation of the turbine discharge transient with the code Trace; Simulacion del transitorio disparo de turbina con el codigo TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Mejia S, D. M.; Filio L, C., E-mail: dulcemaria.mejia@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2014-10-15

    In this paper the results of the simulation of the turbine discharge transient are shown, occurred in Unit 1 of nuclear power plant of Laguna Verde (NPP-L V), carried out with the model of this unit for the best estimate code Trace. The results obtained by the code Trace are compared with those obtained from the Process Information Integral System (PIIS) of the NPP-L V. The reactor pressure, level behavior in the down-comer, steam flow and flow rate through the recirculation circuits are compared. The results of the simulation for the operation power of 2027 MWt, show concordance with the system PIIS. (Author)

  6. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    Science.gov (United States)

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The major and trace element chemistry of fish and lake water within ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... and Abanoz (2011), De La Calle et al. (2012) and Sannac et al. (2012) of the same reference material. Dilution factors were cho- sen to include both major and trace elements in the same analy- ses, which implies that the method was not sensitive enough to analyse some elements at ultra-trace levels.

  8. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    Science.gov (United States)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental

  9. Trace elements in groundwater used for water supply in Latvia

    Science.gov (United States)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  10. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrat