WorldWideScience

Sample records for tpa-optimize800 dna vaccine

  1. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  2. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated....... Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. Results When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800 μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500 μg DNA) were...

  3. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  5. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  6. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  7. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    Science.gov (United States)

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  8. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roger Le Grand

    2013-07-01

    Full Text Available HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb. We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  9. The safety and reactogenicity of a reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) booster vaccine in healthy Vietnamese children.

    Science.gov (United States)

    Anh, Dang Duc; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay

    2016-08-17

    Despite effective infant immunization against pertussis, the disease continues to circulate due to waning immunity. Booster vaccinations against pertussis beyond infancy are widely recommended. In Vietnam, however, no recommendations for pertussis boosters beyond the second year of life exist. This open-label, single-centre study was designed to assess the safety of a single booster dose of reduced-antigen-content-diphtheria-tetanus-acellular-pertussis vaccine (dTpa) in 300 healthy Vietnamese children (mean age 7.9years), who had completed primary vaccination against diphtheria, tetanus and pertussis. Solicited symptoms were recorded for 4days and unsolicited and serious adverse events (SAEs) for 31days post-vaccination. Pain and fatigue were the most common solicited local and general symptoms in 35.0% and 14.0% of children, respectively. Grade 3 swelling occurred in 3 children; no large injection site reactions or SAEs were reported. The dTpa booster vaccine was well tolerated and this study supports its administration in school age Vietnamese children. Copyright © 2016 GSK group of companies. Published by Elsevier Ltd.. All rights reserved.

  10. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Science.gov (United States)

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  12. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  13. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  14. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Science.gov (United States)

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  15. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production......Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...

  16. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  17. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    Science.gov (United States)

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  18. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  19. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    International Nuclear Information System (INIS)

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  20. Interference of an ERM-vaccine with a VHS-DNA vaccine in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    Simultaneous vaccination of fish against several diseases is often desirable in order to minimise cost and handling of the fish. Intramuscular DNA-vaccination of rainbow trout against viral haemorrhagic septicaemia virus (VHSV) has proved to provide very good protection. However, preliminary...... results showed that intraperitoneal injection of a commercial vaccine against Enteric Redmouth Disease (ERM) based on formalin-killed bacteria in oil adjuvant immediately followed by intramuscular injection of an experimental DNA-vaccine against VHSV, decreased the protective effect of the DNA......-vaccine against challenge with VHSV 11 weeks post vaccination (pv). This experiment was performed with rainbow trout of 30 g injected with 0.5 g VHS-DNA vaccine. The experiment was later repeated with smaller fish (2.5g) and using two different doses of DNA-vaccine, 1 g and 0.05 g. Both doses provided good...

  1. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  2. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Julie E Ledgerwood

    Full Text Available The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65 or phosphate buffered saline (PBS (n=66 administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI was the secondary objective.The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study.While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative.ClinicalTrials.gov NCT01498718.

  3. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination

    Science.gov (United States)

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries. PMID:28819449

  4. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  5. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    Science.gov (United States)

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  6. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  7. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    Suschak and Schmaljohn DNA Vaccine Electroporation and Molecular Adjuvants 1 Abstract To date, there is no protective vaccine for Ebola virus...the formulation of DNA launched virus-like particles (VLP). In this case, the antigen is encoded in one DNA plasmid, while structural proteins are...Virol, 2010. 155(12): p. 2083-103. 2. Feldmann, H. and T.W. Geisbert, Ebola haemorrhagic fever. Lancet, 2011. 377(9768): p. 849-62. 3. Hart, M.K

  8. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  9. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice.

    Directory of Open Access Journals (Sweden)

    Julie L Dutton

    Full Text Available While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2 challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.

  10. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  11. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  12. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and

  13. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  14. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Directory of Open Access Journals (Sweden)

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  15. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  16. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated with tradit......Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... with traditional methods of immunization, but little is known on its efficacy in fish. The luciferase and lacZ reporter genes were used to characterize expression of plasmid-encoded genes in rainbow trout and zebra fish injected intramuscularly. For a given dose of DNA, the luciferase activity was higher in fish...... than in mouse muscle. The enzyme activity in fish peaked with 1 μg of DNA and remained constant for over 12 weeks, but it was not limited to the injected muscle since luciferase activity was also detected in the gills. Thin sections of rainbow trout muscle injected with the lacZ reporter gene showed...

  17. Kinetic characterization of tissue-type plasminogen activator (t-PA) and t-PA deletion mutants

    NARCIS (Netherlands)

    de Vries, C. [=Carlie J. M.; Veerman, H.; Nesheim, M. E.; Pannekoek, H.

    1991-01-01

    The binding of t-PA to fibrin is mediated both by its "finger" (F) and its "kringle 2" (K2) domain. In addition, these domains are involved in the stimulation of t-PA activity by fibrin. We analyzed the kinetic characteristics of Glu-plasminogen activation by t-PA and a set of t-PA deletion mutants

  18. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    Science.gov (United States)

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA

  20. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    Science.gov (United States)

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  1. Immunogenicity of an HPV-16 L2 DNA vaccine

    Science.gov (United States)

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  2. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-07-01

    Full Text Available Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT. Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.

  3. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Høgh Hansen, Morten

    2015-01-01

    The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the ...

  4. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer

    Directory of Open Access Journals (Sweden)

    Søren Kristiansen

    2015-01-01

    Full Text Available The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the interrelationship between protein tumor markers, the global DNA hypomethylation, and hypermethylated genes in serum from patients with advanced disease. Twenty-nine patients with histologically proven advanced breast cancer received first-line chemotherapy with epirubicin. Samples were collected prior to each treatment and prospectively analyzed for CA 15-3, CEA, and TPA. The same samples were retrospectively analyzed for the concentration of hypermethylated RASSF1A and for global DNA hypomethylation using LINE-1. Among patients with elevated concentrations of the protein markers, concordance could be observed between serial changes of the hypermethylated RASSF1A gene and the protein markers. Among patients with lower concentrations, RASSF1A could only be detected periodically. There was discordance between changes of the hypomethylated LINE-1 as compared to the protein markers. Circulating hypermethylated RASSF1A and protein markers may have similar kinetics during monitoring of tumor burden. Further investigations are needed to determine whether any of the hypermethylated DNA genes may provide predictive information during monitoring.

  5. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer.

    Science.gov (United States)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Hansen, Morten Høgh; Nielsen, Dorte; Sölétormos, György

    2015-01-01

    The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the interrelationship between protein tumor markers, the global DNA hypomethylation, and hypermethylated genes in serum from patients with advanced disease. Twenty-nine patients with histologically proven advanced breast cancer received first-line chemotherapy with epirubicin. Samples were collected prior to each treatment and prospectively analyzed for CA 15-3, CEA, and TPA. The same samples were retrospectively analyzed for the concentration of hypermethylated RASSF1A and for global DNA hypomethylation using LINE-1. Among patients with elevated concentrations of the protein markers, concordance could be observed between serial changes of the hypermethylated RASSF1A gene and the protein markers. Among patients with lower concentrations, RASSF1A could only be detected periodically. There was discordance between changes of the hypomethylated LINE-1 as compared to the protein markers. Circulating hypermethylated RASSF1A and protein markers may have similar kinetics during monitoring of tumor burden. Further investigations are needed to determine whether any of the hypermethylated DNA genes may provide predictive information during monitoring.

  6. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  7. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    International Nuclear Information System (INIS)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  8. Construction and analysis of experimental DNA vaccines against megalocytivirus.

    Science.gov (United States)

    Zhang, Min; Hu, Yong-Hua; Xiao, Zhi-Zhong; Sun, Yun; Sun, Li

    2012-11-01

    Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-01-01

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely...... in samples, which are recovered from warm environments and are relatively old (e.g. more than 100,000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical...... polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants. Udgivelsesdato: 2007-Feb-22...

  10. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  11. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  12. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  13. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  14. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  15. Effects of garlic on cellular doubling time and DNA strand breaks caused by UV light and BPL, enhanced with catechol and TPA

    International Nuclear Information System (INIS)

    Baturay, N.Z.; Gayle, F.; Liu, S.; Kreidinger, C.

    1995-01-01

    3T3 cell cultures were exposed to UV light and Beta-Propiolactone. Neoplastic cell transformation (TF) was demonstrated after concurrent addition of catechol, or repeated addition of TPA. Addition of garlic to all fluences/concentrations of the carcinogen/cocarcinogen/promoter groups reduced the number of transformed foci/dish by at least 40%. Since the cell cycle is prolonged following exposure to carcinogens, it is likely the cell requires a longer time to repair this damage. The doubling time (DT) was extended from 12 to 36 hrs. when cells were exposed to BPL and from 12 o 28 hrs. when cells were exposed to 3.0J/M2/sec. If an anticarcinogenic compound is also added, it is reasonable to assume that the cell cycle may be further elongated. The cell cycle, denoted by DT was lengthened from 12 to 47 hrs and from 12 to 86 hrs for BPL and UVC, respectively. The extensions occurred in a dope dependent manner. The concentrations of the cocarcinogen and promoter remained constant throughout the experiment. When strand breaks were determined at the same dose sequences, by alkaline elution, more repair was seen with garlic where the lowest and middle doses of BPL were used and almost no decrease in % DNA eluted was seen with UVC exposed cells. With catechol, there was a two-fold decrease in % DNA eluted at the lowest and middle fluences. When TPA was added, all three fluences of UVC showed more than a threefold decrease in % DNA eluted. BPS with both TPA and catechol, again showed a reduction in strand breaks only low and middle doses. Both a direct-acting alkylating agent, BPL, and a physical carcinogen, UVC, were homogeneously affected, in terms of doubling time, but not when strand break repair was examined. A separate mechanism may be responsible for repair, and the mechanism associated with combinations of physical carcinogen enhancing agents combined with some non-carcinogens may be more profoundly affected by some natural products

  16. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    Science.gov (United States)

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  17. The past, current and future trends in DNA vaccine immunisations

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2015-05-01

    Full Text Available This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can result in the subsequent expression of its products and lead to the induction of an immune response within a host. This is pertinent to prophylactic and therapeutic vaccination approach when the peculiar gene produces a protective epitope from a pathogen. The recent studies demonstrated by a number of research centers showed that these immune responses evoke protective immunity against several infectious diseases and cancers, which provides adequate support for the use of this approach. We attempt in this review to provide an informative and unbiased overview of the general principles and concept of DNA vaccines technology with a summary of a novel approach to the DNA vaccine, present investigations that describe the mechanism(s of protective immunity provoked by DNA immunization and to highlight the advantages and disadvantages of DNA immunisation.

  18. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, L.; Shalini, V.K. (Department of Nutrition and Food Safety, Central Food Technological Research Institute, Mysore (India))

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  19. Production optimisation of a DNA vaccine candidate against ...

    African Journals Online (AJOL)

    Plasmid DNA (pDNA) vaccines are promising means to prevent and treat infectious diseases, such as leishmaniasis, but immunisation protocols require large amounts of supercoiled plasmid DNA (scpDNA). Although pDNA can be produced at a reasonable cost in bioreactors; this scale of production may not be the best ...

  20. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine

    2004-01-01

    the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...

  1. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    Science.gov (United States)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-02-22

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely in samples, which are recovered from warm environments and are relatively old (e.g. more than 100,000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical--one of the second round 'nested' primers falls outside the amplicon of the first round PCR. More worryingly, the binding region of one of the first round primers (Elcytb320R) falls within the short 43 base pair reported mammoth sequence, specifically covering two of the three reportedly diagnostic Elephas polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants.

  2. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  3. Optimal control for Malaria disease through vaccination

    Science.gov (United States)

    Munzir, Said; Nasir, Muhammad; Ramli, Marwan

    2018-01-01

    Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.

  4. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  5. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  6. Frequency and persistency of DNA vaccine encoding GP25 by oral on common carp

    Directory of Open Access Journals (Sweden)

    Sri Nuryati

    2015-05-01

    Full Text Available ABSTRACT Koi herpesvirus (KHV is a major viral pathogen that infects common carp and koi. KHV disease outbreak is happened in almost all centre of common carp culture in Indonesia and caused mass mortality. Deoxyribonucleic acid (DNA vaccination method is one of ways to cope with KHV infection. Vaccines were commonly given by injection. The aim of this research was to get frequency and persistency of DNA vaccine encoding GP25 given by oral delivery method in common carp. This research would like to determine dose, frequency of vaccination, persistency of DNA vaccine and culture medium for the bacterial host. DNA vaccine persistency test was done by using polymerase chain reaction (PCR method with the specific primer for GP25 gene. The results showed that level of DNA vaccine that could be detected in feed was 7.56 ng (equal to 1.598×1010 copies. Efficient culture medium for Escherichia coli DH5α carrying DNA vaccine was LB triptone. Feeding fish with diet supplemented with 1 mL E. coli DH5α containing DNA vaccine for each fish and two times a week allowed persistence of DNA vaccine in kindney and spleen. Keywords: common carp, KHV, DNA vaccine, GP25, persistance  ABSTRAK Koi herpesvirus (KHV adalah virus patogen utama yang menginfeksi ikan mas dan ikan koi. Wabah penyakit KHV terjadi di hampir semua sentra budidaya ikan mas di Indonesia dan menyebabkan kematian massal ikan. Metode vaksinasi DNA merupakan salah satu cara yang dapat dilakukan untuk menanggulangi serangan KHV. Pemberian vaksin umumnya dilakukan dengan cara injeksi. Tujuan penelitian ini adalah untuk menguji frekuensi dan persistensi vaksin DNA GP25 antivirus KHV yang diberikan melalui oral pada ikan mas. Pada penelitian ini dilakukan uji dosis, frekuensi pemberian vaksin, persistensi vaksin DNA, dan media kultur bakteri inang. Persistensi vaksin DNA dianalisis menggunakan metode PCR dengan primer spesifik gen GP25. Hasil penelitian menunjukkan bahwa dosis vaksin DNA yang

  7. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  8. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    Science.gov (United States)

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  9. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    Science.gov (United States)

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  10. Field testing of Schistosoma japonicum DNA vaccines in cattle in China.

    Science.gov (United States)

    Shi, Fuhui; Zhang, Yaobi; Lin, Jiaojiao; Zuo, Xin; Shen, Wei; Cai, Yiumin; Ye, Ping; Bickle, Quentin D; Taylor, Martin G

    2002-11-01

    Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.

  11. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    Science.gov (United States)

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  12. Activation of carbon monoxide by (Me3tpa)Rh and (Me3tpa)Ir

    NARCIS (Netherlands)

    Dzik, W.I.; Smits, J.M.M.; Reek, J.N.H.; de Bruin, B.

    2009-01-01

    Cationic iridium and rhodium carbonyl complexes supported with the tetradentate N-donor ligand Me(3)tpa (Me(3)tPa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine) were synthesized. Their structures were investigated using X-ray diffraction, NMR, and IR, and their redox properties were probed using cyclic

  13. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  14. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  15. Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani.

    Science.gov (United States)

    Gamboa-León, R; Paraguai de Souza, E; Borja-Cabrera, G P; Santos, F N; Myashiro, L M; Pinheiro, R O; Dumonteil, E; Palatnik-de-Sousa, C B

    2006-05-29

    The nucleoside hydrolase (NH36) of Leishmania (L.) donovani is a vital enzyme which releases purines or pyrimidines of foreign DNA to be used in the synthesis of parasite DNA. As a bivalent DNA vaccine, the VR1012-NH36 was immunoprotective against visceral and cutaneous murine leishmaniasis. In this work we tested the immunotherapy against Leishmania (L.) chagasi infection, using two doses of 100 or 20 microg VR1012-NH36 vaccine (i.m. route), and, as a possible immunomodulator, aqueous garlic extract (8 mg/kg/day by the i.p. route), which was effective in immunotherapy of cutaneous murine leishmaniasis. Liver parasitic load was significantly reduced following treatment with 100 microg (91%) and 20 microg (77%) of the DNA vaccine, and by 20 microg DNA vaccine and garlic extract (76%) (p=0.023). Survival was 33% for saline controls, 100% for the 100 microg vaccine, and 83 and 67% for the 20 microg vaccine with and without garlic extract addition, respectively. Garlic treatment alone did not reduce parasite load (p>0.05), but increased survival (100%). The NH36-DNA vaccine was highly effective as a new tool for the therapy and control of visceral leishmaniasis, while the mild protective effect of garlic might be related to an unspecific enhancement of IFN-gamma secretion.

  16. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  17. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  18. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  19. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus Cholera Toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity

    OpenAIRE

    Maeto, Cynthia Alejandra; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, Maria Magdalena

    2017-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after thei...

  20. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  1. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  2. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  3. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  4. Penyisihan Limbah Organik Air Lindi TPA Jatibarang Menggunakan Koagulasi-Flokulasi Kimia

    Directory of Open Access Journals (Sweden)

    Arya Rezagama

    2016-12-01

    Full Text Available Air lindi yang meresap ke dalam tanah yang berpotensi bercampur dengan air tanah sehingga menimbulkan pencemaran tanah, air tanah dan air permukaan. Komposisi limbah lindi dari berbagai TPA berbeda-beda bergantung pada musim, jenis limbah, umur TPA. Proses dalam TPA menghasilkan molekul organik recalcitrant yang ditunjukkan dengan rendahnya rasio BOD/COD dan tingginya nilai NH3-N. Belum optimalnya pengolahan air lindi di Jatibarang membutuhkan pretreatment sebagai bentuk upaya alternatif dalam proses pengolahan air lindi sebelum masuk ke dalam proses aerated lagun. Penelitian ini bertujuan untuk menganalisa pengaruh koagulan kimia pada penyisihan bahan organik air lindi TPA Jatibarang. Penelitian dilakukan pada bulan April- Agustus 2016. Karaktersitik air lindi TPA Jatibarang termasuk dalam kategori "moderately stable" dan lindi muda. Penyisihan bahan organik dengan menggunakan kuagulan kimia FeCl3 dan Al2SO4 menunjukkan nilai yang cukup signifikan untuk parameter COD, BOD, TSS. Penggunaan dosis optimal terjadi pada 16 g/L FeCl3 serta 16 g/L Al2SO4 dapat menurunkan nilai COD sebesar 51% dan 65%, BOD sebesar 50% dan 56%, dan TSS sebesar 24% dan 21%. Perubahan nilai pH akibat penambahan koagulan berpengaruh positif terhadap tingkat penyisihan, namun memberikan dampak negatif yaitu buih yang cukup banyak. Penurunan beban organik menguntungkan bagi sistem pengolahan lindi eksisting TPA Jatibarang.  [Title: Removal of Lindi Water Organic Waste of TPA Jatibarang using Chemical Coagulation- Floculation] Leachate grounding into the soil that potentially could mix with the groundwater caused contamination of soil, groundwater and surface water. The composition of waste landfill leachate from the various location is depending on the season, the type of waste, and landfill age. Process in the TPA produces recalcitrant organic molecules as indicated by the low ratio of BOD/COD and NH3-N high value. The ineffective treatment of leachate at Jatibarang

  5. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    Science.gov (United States)

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-11-17

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  6. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults.

    Directory of Open Access Journals (Sweden)

    Spyros A Kalams

    Full Text Available DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37 DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug IL-12 DNA. However, after three doses, 44.4% (4/9 of vaccinees receiving gag DNA and intermediate dose (500 ug of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605.

  7. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    Science.gov (United States)

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (PSaccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  8. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    Science.gov (United States)

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  9. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    International Nuclear Information System (INIS)

    Rong, Yefei; Jin, Dayong; Wu, Wenchuan; Lou, Wenhui; Wang, Danshong; Kuang, Tiantao; Ni, Xiaoling; Qin, Xinyu

    2009-01-01

    Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene into the pcDNA3.1. In the preventive group, female C57BL/6 mice were immunized with the vaccine, pcDNA3.1 or PBS; and challenged with panc02-MUC1 or panc02 cell. In the therapeutic group the mice were challenged with panc02-MUC1 or panc02 cell, and then immunized with the vaccine, pcDNA3.1 or PBS. The tumor size and the survival time of the animals were compared between these groups. The DNA vaccine pcDNA3.1-VNTR could raise cytotoxic T lymphocyte (CTL) activity specific for MUC1. In the preventive experiment, the mice survival time was significantly longer in the vaccine group than in the control groups (P < 0.05). In the therapeutic experiment, the DNA vaccine prolonged the survival time of the panc02-MUC1-bearing mice (P < 0.05). In both the preventive and therapeutic experiments, the tumor size was significantly less in the vaccine group than in the control groups (P < 0.05). This pcDNA3.1-VNTR vaccine, however, could not prevent the mice attacked by panc02 cells and had no therapeutic effect on the mice attacked by panc02 cells. The MUC1 DNA vaccine pcDNA3.1-VNTR could induce a significant MUC1-specific CTL response; and had both prophylactic and therapeutic effect on panc02-MUC1 tumors. This vaccine might be used as a new adjuvant strategy against pancreatic cancer

  10. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 78 FR 29698 - Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA

    Science.gov (United States)

    2013-05-21

    ...] Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA AGENCY: Animal and... Canine Lymphoma Vaccine, DNA. The environmental assessment, which is based on a risk analysis prepared to... biological product: Requester: Merial, Inc. Product: Canine Lymphoma Vaccine, DNA. Possible Field Test...

  12. Optimization of HPV DNA detection in urine by improving collection, storage, and extraction.

    Science.gov (United States)

    Vorsters, A; Van den Bergh, J; Micalessi, I; Biesmans, S; Bogers, J; Hens, A; De Coster, I; Ieven, M; Van Damme, P

    2014-11-01

    The benefits of using urine for the detection of human papillomavirus (HPV) DNA have been evaluated in disease surveillance, epidemiological studies, and screening for cervical cancers in specific subgroups. HPV DNA testing in urine is being considered for important purposes, notably the monitoring of HPV vaccination in adolescent girls and young women who do not wish to have a vaginal examination. The need to optimize and standardize sampling, storage, and processing has been reported.In this paper, we examined the impact of a DNA-conservation buffer, the extraction method, and urine sampling on the detection of HPV DNA and human DNA in urine provided by 44 women with a cytologically normal but HPV DNA-positive cervical sample. Ten women provided first-void and midstream urine samples. DNA analysis was performed using real-time PCR to allow quantification of HPV and human DNA.The results showed that an optimized method for HPV DNA detection in urine should (a) prevent DNA degradation during extraction and storage, (b) recover cell-free HPV DNA in addition to cell-associated DNA, (c) process a sufficient volume of urine, and (d) use a first-void sample.In addition, we found that detectable human DNA in urine may not be a good internal control for sample validity. HPV prevalence data that are based on urine samples collected, stored, and/or processed under suboptimal conditions may underestimate infection rates.

  13. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  14. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    Science.gov (United States)

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  15. Optimal serotype compositions for Pneumococcal conjugate vaccination under serotype replacement.

    Science.gov (United States)

    Nurhonen, Markku; Auranen, Kari

    2014-02-01

    Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children replacement through herd effects, the decrease among the older population is predicted to be much less (20-40%). We introduce a sequential algorithm for the search of optimal serotype compositions and assess the robustness of inferences to uncertainties in data and assumptions about carriage and IPD. The optimal serotype composition depends on the age group of interest and some serotypes may be highly beneficial vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including

  16. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  18. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    DEFF Research Database (Denmark)

    Embregts, Carmen W. E.; Rigaudeau, Dimitri; Veselý, Tomas

    2017-01-01

    Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 μg...... DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using...... this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described...

  19. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    Science.gov (United States)

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  20. Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses.

    Directory of Open Access Journals (Sweden)

    Callie E Bounds

    Full Text Available DNA vaccination of transchromosomal bovines (TcBs with DNA vaccines expressing the codon-optimized (co glycoprotein (GP genes of Ebola virus (EBOV and Sudan virus (SUDV produce fully human polyclonal antibodies (pAbs that recognize both viruses and demonstrate robust neutralizing activity. Each TcB was vaccinated by intramuscular electroporation (IM-EP a total of four times and at each administration received 10 mg of the EBOV-GPco DNA vaccine and 10 mg of the SUDV-GPco DNA vaccine at two sites on the left and right sides, respectively. After two vaccinations, robust antibody responses (titers > 1000 were detected by ELISA against whole irradiated EBOV or SUDV and recombinant EBOV-GP or SUDV-GP (rGP antigens, with higher titers observed for the rGP antigens. Strong, virus neutralizing antibody responses (titers >1000 were detected after three vaccinations when measured by vesicular stomatitis virus-based pseudovirion neutralization assay (PsVNA. Maximal neutralizing antibody responses were identified by traditional plaque reduction neutralization tests (PRNT after four vaccinations. Neutralizing activity of human immunoglobulins (IgG purified from TcB plasma collected after three vaccinations and injected intraperitoneally (IP into mice at a 100 mg/kg dose was detected in the serum by PsVNA up to 14 days after administration. Passive transfer by IP injection of the purified IgG (100 mg/kg to groups of BALB/c mice one day after IP challenge with mouse adapted (ma EBOV resulted in 80% protection while all mice treated with non-specific pAbs succumbed. Similarly, interferon receptor 1 knockout (IFNAR(-/- mice receiving the purified IgG (100 mg/kg by IP injection one day after IP challenge with wild type SUDV resulted in 89% survival. These results are the first to demonstrate that filovirus GP DNA vaccines administered to TcBs by IM-EP can elicit neutralizing antibodies that provide post-exposure protection. Additionally, these data describe

  1. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  3. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  4. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of Radiation-Attenuated Vaccine or Thyme Oil Treatment on Controlling DNA Damage and Nitric Oxide Synthesis in Brain of Rat Infected with Toxocara canis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.; Abd Raboo, M.A.

    2016-01-01

    Toxocara canis is a worldwide zoonotic roundworm that infects a number of hosts including humans. It exhibits marked affinity to the nervous tissues. This study deals with the changes in the brain of Toxocara canis infected rats regarding parasitological, nitric oxide (NO) level and DNA damage compared to the effect of vaccination with gamma radiation-attenuated embryonated egg or thyme oil treatment. Eighty rats were classified into four groups (twenty each): GI (normal control); GII infected with 2500 T. canis infective eggs/ml/rat (infected control); GIII vaccinated with 800 Gy gamma-attenuated embryonated eggs (vaccinated group) and GIV infected with 2500 T. canis eggs and treated with thyme oil (thyme treated group). At the 14th day post-infection, ten rats from each group were sacrificed and the remaining were re-infected (challenged) with the same number of eggs. At the 14th days post challenge, brain tissues were taken for larval recovery, nitric oxide level evaluation and DNA damage using fragmentation and comet assay. The results exhibited a significant decrease in larval count and nitric oxide level with less damage in brain cells in thyme treated and gamma radiation-attenuated vaccinated groups compared to control infected group. It is also, concluded that vaccination using γ- rays is more effective in protection compared to using thyme oil.

  6. Efficacy of DNA vaccine encoding koi herpesvirus glycoprotein GP-25in common carp juvenile by immersion

    Directory of Open Access Journals (Sweden)

    Soko Nuswantoro

    2013-11-01

    Full Text Available Koi herpesvirus (KHV is a herpesvirus that particularly infects and causes mass mortality to koi and common carp. Therefore, the protection of common carp from KHV infection is urgently needed. In this study, we developed an application of DNA vaccine encoding KHV glycoprotein-25 by immersion method to increase survival of common carp against KHV infection. A total of 400 common carp juveniles at 30-day-old were immersed in 1-L water containing 1.3×108CFU/mL of the killed Escherichia coli cells carrying DNA vaccine. Three frequencies and three duration of fish immersion were tested, namely: 1×30 minutes, 1×60 minutes, 1× 90 minutes, 2×90 minutes and 3×90 minutes by interval of 24 hours. Reversetranscription polymerase chain reaction analysis showed that DNA vaccine was successfully expressed in the vaccinated fish. Fish at twenty eight days post vaccination were challenged by injecting 10-4 mL of KHV per fish. The result showed that vaccination by 1×30 minutes immersion allowed 61% of fish survived, and this was significantly higher (p<0.05 compared to control (without vaccination, but it was similar among vaccination treatments (p>0.05. The relative percent survival of vaccinated fish were also similar among treatments (p>0.05. DNA vaccination has increased fish survival about two fold higher compared to unvaccinated fish control (26.67%. Thus, DNA vaccination was effectively delivered by immersion for 1×30 minutes, and this technique can be useful to level up the resistance of common carp juveniles against KHV infection. Keywords: DNA vaccine, KHV, glycoprotein, immersion, common carp

  7. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress

    NARCIS (Netherlands)

    L. Jabaaij (Lea); J. van Hattum (Jan); A.J.J.M. Vingerhoets (Ad); F.G. Oostveen (Frank); H.J. Duivenvoorden (Hugo); R.E. Ballieux (Rudy)

    1996-01-01

    textabstractIn a previous study it was shown that antibody formation after vaccination with a low-dose recombinant DNA (rDNA) hepatitis B vaccine was negatively influenced by psychological stress. The present study was designed to assess whether the same inverse relation between HBs-antibody levels

  8. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    Science.gov (United States)

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  9. Technical Transformation of Biodefense Vaccines

    Science.gov (United States)

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  10. An endogenous immune adjuvant released by necrotic cells for enhancement of DNA vaccine potency.

    Science.gov (United States)

    Dorostkar, Rohollah; Bamdad, Taravat; Parsania, Masoud; Pouriayevali, Hassan

    2012-12-01

    Improving vaccine potency in the induction of a strong cell-mediated cytotoxicity can enhance the efficacy of vaccines. Necrotic cells and the supernatant of necrotic tumor cells are attractive adjuvants, on account of their ability to recruit antigen-presenting cells to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells. To evaluate the utility of supernatant of necrotic tumor cells as a DNA vaccine adjuvant in a murine model. The supernatant of EL4 necrotic cells was co-administered with a DNA vaccine expressing the glycoprotein B of Herpes simplex virus-1 as an antigen model under the control of Cytomegalovirus promoter. C57BL/6 mice were vaccinated three times at two weeks intervals with glycoprotein B DNA vaccine and supernatant of necrotic EL4 cells. Five days after the last immunization, cell cytotoxicity, IFN-γ and IL-4 were evaluated. The obtained data showed that the production of IFN-γ from the splenocytes after antigenic stimulation in the presence of the supernatant of necrotic EL4 cells was significantly higher than the other groups (pEL4 cells in the mice immunized with DNA vaccine and supernatant of necrotic EL4 cells comparing to the other groups (p<0.001). The supernatant of necrotic cells contains adjuvant properties that can be considered as a candidate for tumor vaccination.

  11. Hitting the Optimal Vaccination Percentage and the Risks of Error: Why to Miss Right.

    Science.gov (United States)

    Harvey, Michael J; Prosser, Lisa A; Messonnier, Mark L; Hutton, David W

    2016-01-01

    To determine the optimal level of vaccination coverage defined as the level that minimizes total costs and explore how economic results change with marginal changes to this level of coverage. A susceptible-infected-recovered-vaccinated model designed to represent theoretical infectious diseases was created to simulate disease spread. Parameter inputs were defined to include ranges that could represent a variety of possible vaccine-preventable conditions. Costs included vaccine costs and disease costs. Health benefits were quantified as monetized quality adjusted life years lost from disease. Primary outcomes were the number of infected people and the total costs of vaccination. Optimization methods were used to determine population vaccination coverage that achieved a minimum cost given disease and vaccine characteristics. Sensitivity analyses explored the effects of changes in reproductive rates, costs and vaccine efficacies on primary outcomes. Further analysis examined the additional cost incurred if the optimal coverage levels were not achieved. Results indicate that the relationship between vaccine and disease cost is the main driver of the optimal vaccination level. Under a wide range of assumptions, vaccination beyond the optimal level is less expensive compared to vaccination below the optimal level. This observation did not hold when the cost of the vaccine cost becomes approximately equal to the cost of disease. These results suggest that vaccination below the optimal level of coverage is more costly than vaccinating beyond the optimal level. This work helps provide information for assessing the impact of changes in vaccination coverage at a societal level.

  12. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    Science.gov (United States)

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  13. Rational design of gene-based vaccines.

    Science.gov (United States)

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  15. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Directory of Open Access Journals (Sweden)

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  16. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Science.gov (United States)

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  17. Increased humoral immunity by DNA vaccination using an alpha-tocopherol-based adjuvant

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Nielsen, Jens

    2017-01-01

    approaches. We tested whether the emulsion-based and alpha-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin......) and an internal non-glycosylated nucleoprotein in the Th1/Th2 balanced CB6F1 mouse model. The naked DNA (50 µg) was premixed at a 1:1 volume/volume ratio with Diluvac Forte®, an emulsion containing different concentrations of alpha-tocopherol, the emulsion alone or endotoxin-free phosphate-buffered saline (PBS......). The animals received two intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing alpha-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced...

  18. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  19. On the robust optimization to the uncertain vaccination strategy problem

    International Nuclear Information System (INIS)

    Chaerani, D.; Anggriani, N.; Firdaniza

    2014-01-01

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented

  20. On the robust optimization to the uncertain vaccination strategy problem

    Energy Technology Data Exchange (ETDEWEB)

    Chaerani, D., E-mail: d.chaerani@unpad.ac.id; Anggriani, N., E-mail: d.chaerani@unpad.ac.id; Firdaniza, E-mail: d.chaerani@unpad.ac.id [Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Padjadjaran Indonesia, Jalan Raya Bandung Sumedang KM 21 Jatinangor Sumedang 45363 (Indonesia)

    2014-02-21

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.

  1. IMPACTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (TPA ON NEURONAL SURVIVAL

    Directory of Open Access Journals (Sweden)

    Arnaud eChevilley

    2015-10-01

    Full Text Available Tissue-type plasminogen activator (tPA a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous or of its form (single chain tPA versus two chain tPA. In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.

  2. Designing and modeling of complex DNA vaccine based on tropomyosin protein of Boophilus genus tick.

    Science.gov (United States)

    Ranjbar, Mohamamd Mahdi; Gupta, Shishir K; Ghorban, Khodayar; Nabian, Sedigheh; Sazmand, Alireza; Taheri, Mohammad; Esfandyari, Sahar; Taheri, Maryam

    2015-01-01

    Boophilus tick is a bloodsucking ectoparasite that transfers some pathogens, reducing production and thus leading to economical losses in the cattle industry. Tropomyosin (TPM) protein is a salivary protein, has actin regulator activity, and plays an important role in immune reactions against parasites. In the current study, besides developing a safe, effective, and broad spectrum protective measure against Boophilus genus tick based on TPM protein, we attempted to minimize possible problems occurring in the design of polytopic vaccines. Briefly, the steps that were followed in the present study were as follows: retrieving sequences and finding the mutational/conservative regions, selecting consensus and high immunogenic epitopes of B and CD4(+) T cells by different approaches, three-dimensional structure (3D structure) prediction and representation of epitopes and highly variable/conserve regions, designing vaccinal construct by fusion of B and T cell epitopes by special patterns and improving immunogenicity, evaluation of the constructs' primary structure and posttranslational modification, calculation of hydrophobic regions, reverse translation, codon optimization, open reading frame checking, insertion of start/end codon, Kozak sequence, and finally constructing the DNA vaccine. Variation plot showed some shared epitopes among the ticks' and mites' species that some might be effective only in some species. Finally, by following the steps mentioned above, two constructs for B and T cells were achieved. Checking constructs revealed their reliability and efficacy for in vitro production and utilization. Successful in silico modeling is an essential step of designing vigorous vaccines. We developed a novel protective and therapeutic vaccine against Boophilus genus (based on TPM protein). At the next step, constructed DNA vaccine would be produced in vitro and administrated to cattle, and its potency to induction of immune response and protection against Boophilus

  3. Fetal DNA: strategies for optimal recovery

    NARCIS (Netherlands)

    Legler, Tobias J.; Heermann, Klaus-Hinrich; Liu, Zhong; Soussan, Aicha Ait; van der Schoot, C. Ellen

    2008-01-01

    For fetal DNA extraction, in principle each DNA extraction method can be used; however, because most methods have been optimized for genomic DNA from leucocytes, we describe here the methods that have been optimized for the extraction of fetal DNA from maternal plasma and validated for this purpose

  4. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  5. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

    NARCIS (Netherlands)

    Wagemakers, A.; Mason, L. M. K.; Oei, A.; de Wever, B.; van der Poll, T.; Bins, A. D.; Hovius, J. W. R.

    2014-01-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method

  6. Complementing nuclear techniques with DNA vaccine technologies for improving animal health

    International Nuclear Information System (INIS)

    Relucio, J.L.V.; Dacanay, M.E.K.; Maligalig, A.C.S.; Ramos, E.A.; Santos, A.D.; Torres-Villanueva, C.A.T.; Osorio, R.G.; Deocaris, C.C.

    2005-01-01

    The use of nuclear methods can enhance several features of DNA vaccines in protecting livestock against pathogens. While DNA vaccines already have several advantages over their traditional predecessors (e.g. cheap production, stability over a wide range of temperature, amenability to genetic manipulation, and no risk of reversion to pathogenicity), conventional gene delivery systems make immunization of livestock and aquaculture populations tedious. For this reason, we are developing radiation-synthesized intelligent delivery systems for DNA vaccines. We encapsulated a reporter construct pCMV·SPORT-β-gal in radiation-synthesized κ-carrageenan-polyvinylpyrrolidone microspheres IP20 (for stomach release) and IP18 (for intestinal release). The DNA-loaded polymers were orally administered to Oreochromis niloticus (black Nile tilapia), and whole organs were stained with X-gal to observe β-galactosidase activity. Intense staining was observed in the stomach regions with IP20, while minimal staining was observed with IP18. The gills, in contrast, did not express β-galactosidase activity. Our results show evidence of the successful gene delivery capabilities of radiation-synthesized microspheres. When monitoring the progress of an animal's immune response after DNA immunization, non-invasive and sensitive methods are preferred. We also evaluated chicken egg-yolk polyclonal antibody response (chIgY) after direct intramuscular inoculation of the Hepatitis B Surface antigen expression vector pRc/CMV-HBs(S). Radioimmunoassay (RIA) was done to maximize sensitivity for determining antibody levels. Polyclonal antibody titres were observed to have increased after six weeks. Results of the RIA using the chIgY were comparable to that of immunized sera. Our findings indicate that chIgY could offer a cheaper and more animal-friendly antibody source and could be derived with the advantage of epitope specificity through DNA vaccination. (author)

  7. Tissue Plasminogen Activator (tPA) Mediates Neurotoxin-Induced Cell Death and Microglial Activation

    National Research Council Canada - National Science Library

    Tsirka, Styliani-Anna

    2000-01-01

    .... In mice lacking tPA (tPA-/-), neurons are resistant to neurotoxic death. Delivery of tPA into tPA mice restores susceptibility to neuronal death, indicating that tPA is neurotoxic in the context of excitotoxic injury...

  8. Tissue Plasminogen Activator (tPA) Mediates Neurotoxin-Induced Cell Death and Microglial Activation

    National Research Council Canada - National Science Library

    Tsirka, Styliani-Anna

    2001-01-01

    .... In mice lacking tPA (tPA-/1), neurons are resistant to neurotoxic death. Delivery of tPA into tpA-/- mice restores susceptibility to neuronal death, indicating that tPA is neurotoxic in the context of excitotoxic injury...

  9. Optimal frequency of rabies vaccination campaigns in Sub-Saharan Africa.

    Science.gov (United States)

    Bilinski, Alyssa M; Fitzpatrick, Meagan C; Rupprecht, Charles E; Paltiel, A David; Galvani, Alison P

    2016-11-16

    Rabies causes more than 24 000 human deaths annually in Sub-Saharan Africa. The World Health Organization recommends annual canine vaccination campaigns with at least 70% coverage to control the disease. While previous studies have considered optimal coverage of animal rabies vaccination, variation in the frequency of vaccination campaigns has not been explored. To evaluate the cost-effectiveness of rabies canine vaccination campaigns at varying coverage and frequency, we parametrized a rabies virus transmission model to two districts of northwest Tanzania, Ngorongoro (pastoral) and Serengeti (agro-pastoral). We found that optimal vaccination strategies were every 2 years, at 80% coverage in Ngorongoro and annually at 70% coverage in Serengeti. We further found that the optimality of these strategies was sensitive to the rate of rabies reintroduction from outside the district. Specifically, if a geographically coordinated campaign could reduce reintroduction, vaccination campaigns every 2 years could effectively manage rabies in both districts. Thus, coordinated campaigns may provide monetary savings in addition to public health benefits. Our results indicate that frequency and coverage of canine vaccination campaigns should be evaluated simultaneously and tailored to local canine ecology as well as to the risk of disease reintroduction from surrounding regions. © 2016 The Author(s).

  10. Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model.

    Directory of Open Access Journals (Sweden)

    Chantal Nguyen

    Full Text Available Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs.

  11. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  12. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  13. Retinaldehyde dehydrogenase 2 as a molecular adjuvant for enhancement of mucosal immunity during DNA vaccination.

    Science.gov (United States)

    Holechek, Susan A; McAfee, Megan S; Nieves, Lizbeth M; Guzman, Vanessa P; Manhas, Kavita; Fouts, Timothy; Bagley, Kenneth; Blattman, Joseph N

    2016-11-04

    In order for vaccines to induce efficacious immune responses against mucosally transmitted pathogens, such as HIV-1, activated lymphocytes must efficiently migrate to and enter targeted mucosal sites. We have previously shown that all-trans retinoic acid (ATRA) can be used as a vaccine adjuvant to enhance mucosal CD8 + T cell responses during vaccination and improve protection against mucosal viral challenge. However, the ATRA formulation is incompatible with most recombinant vaccines, and the teratogenic potential of ATRA at high doses limits its usage in many clinical settings. We hypothesized that increasing in vivo production of retinoic acid (RA) during vaccination with a DNA vector expressing retinaldehyde dehydrogenase 2 (RALDH2), the rate-limiting enzyme in RA biosynthesis, could similarly provide enhanced programming of mucosal homing to T cell responses while avoiding teratogenic effects. Administration of a RALDH2- expressing plasmid during immunization with a HIVgag DNA vaccine resulted in increased systemic and mucosal CD8 + T cell numbers with an increase in both effector and central memory T cells. Moreover, mice that received RALDH2 plasmid during DNA vaccination were more resistant to intravaginal challenge with a recombinant vaccinia virus expressing the same HIVgag antigen (VACVgag). Thus, RALDH2 can be used as an alternative adjuvant to ATRA during DNA vaccination leading to an increase in both systemic and mucosal T cell immunity and better protection from viral infection at mucosal sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection.

    Directory of Open Access Journals (Sweden)

    Natan Raimundo Gonçalves de Assis

    Full Text Available Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2 are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed.

  15. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection

    Science.gov (United States)

    Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636

  16. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Science.gov (United States)

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  17. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  18. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  19. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants.

    Science.gov (United States)

    Calarota, Sandra A; Weiner, David B

    2004-06-01

    It is clear that the development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) remains a crucial goal for controlling the acquired immunodeficiency syndrome epidemic. At present, it is not clear what arm of the immune response correlates with protection from HIV-1 infection or disease. Therefore, a strong cellular and humoral immune response will likely be needed to control this infection. Among different vaccine alternatives, DNA vaccines appeared more than a decade ago, demonstrating important qualities of inducing both humoral and cellular immune responses in animal models. However, after several years and various clinical studies in humans, supporting the safety of the HIV-DNA vaccine strategies, it has become clear that their potency should be improved. One way to modulate and enhance the immune responses induced by a DNA vaccine is by including genetic adjuvants such as cytokines, chemokines, or T-cell costimulatory molecules as part of the vaccine itself. Particularly, vaccine immunogenicity can be modulated by factors that attract professional antigen-presenting cells, provide additional costimulation, or enhance the uptake of plasmid DNA. This review focuses on developments in the coadministration of molecular adjuvants for the enhancement of HIV-1 DNA-vaccine potency.

  20. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice.

    Science.gov (United States)

    Wang, Fei; Chen, Quanjiao; Li, Shuntang; Zhang, Chenyao; Li, Shanshan; Liu, Min; Mei, Kun; Li, Chunhua; Ma, Lixin; Yu, Xiaolan

    2017-06-01

    Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  2. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency.

    Science.gov (United States)

    Garrod, Tamsin; Grubor-Bauk, Branka; Yu, Stanley; Gargett, Tessa; Gowans, Eric J

    2014-01-01

    In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.

  4. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    DEFF Research Database (Denmark)

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15 degreesC. Nearly complete protection was also observed at late......-protection against IHNV challenge for a transient period of time, whereas a rabies virus DNA vaccine was not protective. This indication of distinct early and late protective mechanisms was not dependent on DNA vaccine doses from 0.1 to 2.5 mug....

  5. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    Science.gov (United States)

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  6. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  7. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  8. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  9. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Matthias Tenbusch

    Full Text Available BACKGROUND: Targeting antigens encoded by DNA vaccines to dendritic cells (DCs in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE: The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.

  10. Decennial administration in young adults of a reduced-antigen content diphtheria, tetanus, acellular pertussis vaccine containing two different concentrations of aluminium.

    Science.gov (United States)

    Vandermeulen, Corinne; Theeten, Heidi; Rathi, Niraj; Kuriyakose, Sherine; Han, Htay Htay; Sokal, Etienne; Hoppenbrouwers, Karel; Van Damme, Pierre

    2015-06-12

    Regular booster vaccination might be necessary throughout life to protect against pertussis infection. Nevertheless the duration of protection after booster vaccination remains unclear. In this study, antibody persistence up to 10 years after previous vaccination of adolescents (N=478) with combined reduced-antigen-content diphtheria-tetanus-acellular pertussis vaccine (dTpa, Boostrix™, GlaxoSmithKline Belgium) containing 0.5mg, 0.3mg or 0.133mg of aluminium was assessed. The immunogenicity, reactogenicity and safety of a decennial booster dTpa dose were also investigated. Young adults vaccinated as adolescents in the initial booster study were invited to participate in an assessment of antibody persistence at years 8.5 and 10, and to receive a dTpa booster dose at year 10 with immunogenicity assessment one month later. Those who originally received the 0.5mg or 0.3mg formulations received the same vaccine at year 10. Those in the 0.133mg group received the 0.5mg formulation. Reactogenicity and safety endpoints were captured until 30 days after booster vaccination. Prior to the decennial booster at year 8.5 and year 10, all participants had seroprotective antibodies for diphtheria (ELISA or neutralisation assay) and tetanus. At least 77.8% were seropositive for anti-pertussis toxin (PT) antibodies at year 8.5 and 82.8% at year 10. All participants were seropositive for antibodies for filamentous haemagglutinin and pertactin at both time points. The decennial booster dose induced robust increases in antibody GMCs to all antigens. The post-booster anti-PT geometric mean concentration was 82.5EL.U/ml (95%CI 67.0-101.6) and 124.0 (103.5-148.5) in the 0.3mg and 0.5mg groups, respectively. The reactogenicity and safety profile of the decennial booster dose was consistent with the known safety profile of dTpa. No serious adverse events were reported. Decennial booster vaccination with either of the two licensed formulations of dTpa was highly immunogenic and well

  11. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    Science.gov (United States)

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  12. Initial experience with TPA as a tumour marker in ovarian malignancy

    International Nuclear Information System (INIS)

    Dalen, A. van; Favier, J.; Eastham, W.N.

    1984-01-01

    The Tissue Polypeptide Antigen (TPA) and Carcinoembryonic Antigen (CEA) content of serum were estimated in samples taken from 21 patients with malignant ovarian tumours. The patients were followed for variable period ranging from 6 to 22 months and the TPA and CEA levels were estimated after debulking operations and courses of CHAP-5 therapy. The relative success of the operation and/or treatment was reflected in an appropriate alteration of the serum TPA level. CEA levels remained more or less stationary. The serum TPA levels of 13 of the 21 patients, irrespective of the tumour type, differentiation or stage of tumour growth, exhibited a good concordance with the clinical observations at second look operations. The one patient with a disseminated form of adenoacanthoma failed to show an elevation of the TPA levels and 7 patients continue to have a constantly elevated TPA levels but as yet no clinical evidence of recurrent or metastatic disease. (orig.) [de

  13. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  14. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  15. Parameter optimization toward optimal microneedle-based dermal vaccination.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  17. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  18. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  19. Vaginal DNA vaccination against infectious diseases transmitted through the vagina.

    Science.gov (United States)

    Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki

    2012-06-01

    There is an urgent need for the development of vaccines against genital virus infections that are transmitted through heterosexual intercourse, including the HIV and HPV. In general, the surface of female genital mucosa, including vaginal mucosa, is the most common site of initiation of these infections. Thus, it is becoming clear that successful vaccines must induce both cellular and humoral immune responses in both the local genital tract and systemically. We believe that a strong vaginal immune response could be obtained by inducing strong gene expression of antigen-coding DNA in the local targeted tissue. In order to improve transfection efficiency in the vagina, it is important that methods allowing breakthrough of the various barriers, such as the epithelial layer, cellular and nuclear membrane, are developed. Therefore, systems providing less invasive and more effective delivery into the subepithelial layer are required. In this review, we will introduce our studies into efficient vaginal DNA vaccination methods, focusing on the effects of the menstrual cycle, utilization of the combination of functional peptides, and use of a needle-free injector.

  20. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Neelakandan, S.; Kanagaraj, P. [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India); Sabarathinam, R.M. [Functional Material Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Nagendran, A., E-mail: nagimmm@yahoo.com [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India)

    2015-12-30

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm{sup 3} s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10{sup −7} cm{sup 2} s{sup −1}, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10{sup 4} S cm{sup −3} s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  1. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Neelakandan, S.; Kanagaraj, P.; Sabarathinam, R.M.; Nagendran, A.

    2015-01-01

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm"3 s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10"−"7 cm"2 s"−"1, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10"4 S cm"−"3 s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  2. DNA technology for diagnosis and vaccines for infectious diseases

    International Nuclear Information System (INIS)

    Notani, N.K.

    1992-01-01

    Three or four general strategies are adopted for the control of infectious diseases. Early diagnosis, vaccination and chemotherapy. In the situations where there is transfer through mosquitoes or ticks from alternate hosts, control of the vector and of the infection in the alternate host are additional measures to be taken. This Chapter looks at the problems of disease control from the perspective of genetics, since molecular genetics now provides powerful tools in the form of radiolabelled DNA probes and clones of selected segments, useful for diagnosis as well as for vaccine design

  3. DNA technology for diagnosis and vaccines for infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Notani, N K

    1993-12-31

    Three or four general strategies are adopted for the control of infectious diseases. Early diagnosis, vaccination and chemotherapy. In the situations where there is transfer through mosquitoes or ticks from alternate hosts, control of the vector and of the infection in the alternate host are additional measures to be taken. This Chapter looks at the problems of disease control from the perspective of genetics, since molecular genetics now provides powerful tools in the form of radiolabelled DNA probes and clones of selected segments, useful for diagnosis as well as for vaccine design

  4. ESTIMASI ALIRAN AIR LINDI TPA BANTAR GEBANG BEKASI MENGGUNAKAN METODA SP

    Directory of Open Access Journals (Sweden)

    Syamsu Rosid

    2012-02-01

    Full Text Available Air lindi merupakan limbah sampah organik yang biasanya diproduksi dari sampah rumah tangga. Pencemaran air tanah (groundwater oleh air lindi menjadi ancaman yang serius bagi masyarakat. Penduduk Bantar Gebang, Bekasi merasa terancam kehidupannya dengan adanya tempat pembuangan akhir (TPA sampah yang dikirim dari DKI Jakarta. Beberapa penduduk di sekitar TPA mengeluhkan bahwa air sumurnya agak bau dan tidak lagi terasa segar. Untuk mengetahui seperti apa polusi air lindi yang terjadi, ke arah mana dan sudah sejauh mana sebarannya, dan memetakan daerah resiko tinggi terkena polusi maka telah dilakukan pengukuran geolistrik metoda self potential (SP di sebelah Tenggara dan Selatan daerah TPA Bantar Gebang, Bekasi. Dari data SP diketahui bahwa aliran air tanah bawah permukaan di daerah tersebut berarah Selatan ke Utara. Meskipun lokasi TPA berada di Utara daerah penelitian, limbah air lindi diduga telah mencemari air tanah bawah permukaan hingga radius ratusan meter dari lokasi TPA. Penyebaran air limbah ini  diperkirakan melalui proses osmosis, mekanisme kapilaritas dan proses elektrokinetik.   Kata kunci: air lindi, metoda SP, TPA Bantar Gebang.

  5. SOSIAL EKONOMI KOMUNITAS PEMULUNG DI TPA LUBUK MINTURUN

    Directory of Open Access Journals (Sweden)

    sumarni

    2012-10-01

    Full Text Available This research aims to expose the social economic of Pemulung community in TPA Lubuk Minturun. This research applies qualitative research. The informan of this research are Pemulung in TPA Air Dingin Kelurahan Balai Gadang, Kecamatan Koto Tangah Kota Padang by using snowball sampling. The datas are gathered by observing, interviewing, and documenting. In purpose of keeping the data authenticity, it is needed the explanations from the credible information (credible and realiable from the selected items (Mestika Zed, 1999. The research show that the low level of education of Pemulung does not affect toward their income in TPA Air Dingin because what they do, does not need certain skills and education. Their strategies to gather things are to search them form early morning and they involve all of family members in term of “Maraok”. While in marketing strategy, they sell the thing they have got to the collector (Lapak owner who wants to buy more expensive or they sell whenever the price is higher. Pemulung in TPA Air Dingin have never got direct financial security from the government of Padang, so that it affects to the structural poverty. The way of live they have cause such a structural poverty. They are used to be relax and feel comfort with their work system. Pemulung in TPA Air Dingin do not want to change the system that they have made, so that still live in the circle of cultural poverty.

  6. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke

    DEFF Research Database (Denmark)

    Saver, Jeffrey L; Goyal, Mayank; Bonafe, Alain

    2015-01-01

    BACKGROUND: Among patients with acute ischemic stroke due to occlusions in the proximal anterior intracranial circulation, less than 40% regain functional independence when treated with intravenous tissue plasminogen activator (t-PA) alone. Thrombectomy with the use of a stent retriever, in addit...

  7. DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: A dose-response and time-course study

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Martinussen, T.

    2000-01-01

    Viral hemorrhagic septicemia (VHS) in rainbow trout Oncorhynchus mykiss is caused by VHS virus (VHSV), which belongs to the rhabdovirus family. Among the different strategies for immunizing fish with a recombinant vaccine, genetic immunization has recently proven to be highly effective. To further...... investigate the potential for protecting fish against VHS by DNA vaccination, experiments were conducted to determine the amount of plasmid DNA needed for induction of protective immunity. The time to onset of immunity and the duration of protection following administration of a protective vaccine dose were...... serologically different from the isolate used for vaccine development. Following administration of 1 mug of a DNA vaccine, significant protection against VHS was observed in the fish as early as 8 d postvaccination. At 168 d postvaccination, the fish had increased in size by a factor of 10 and protection...

  8. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine - Preliminary Report.

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma L; Kudchodkar, Sagar B; Zaidi, Faraz I; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Boyer, Jean; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Spruill, Susan E; Bagarazzi, Mark; Kobinger, Gary P; Weiner, David B; Maslow, Joel N

    2017-10-04

    Background Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. Methods In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. Results The median age of the participants was 38 years, and 60% were women; 78% were white, and 22% black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. Conclusions In this phase 1, open-label clinical

  9. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  10. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  11. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  12. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  13. Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nano materials

    International Nuclear Information System (INIS)

    Flores, K.J.; Craig, M.; Smith, J.J.; DeLong, R.K.; Wanekaya, A.; Dong, L.

    2012-01-01

    Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nano materials may hold the key to successful gene-based vaccines for prevention and treatment of disease

  14. Optimized production technology (OPT), theory of constraints (TOC) og den dertil hørende økonomistyringstankegang 'Throughput Accounting (TPA)'

    DEFF Research Database (Denmark)

    Nielsen, Steen; Hansen, Tom Albæk

    2005-01-01

    Kombinationen af økonomistyring med forskellige andre funktionsområder, f.eks., indkøb, produktion, afsætning, adfærd etc., er et vigtigt område, og udgør efterhånden en del af det pensum, som repræsenteres i diverse lærebøger indenfor cost management accounting. OPT, TOC, TPA, samt også modeller...... som Just-In-Time (JIT) og Life-Cycle-Costing (LCC) vil fremover kunne give inspiration til nye måder at anskue økonomistyringen på. TOC, JIT og LCC kombineres ofte, både i relation til de mere operative beslutninger, men også i relation til virksomhedens strategiledelse. Ideen er, at også de...... separat eller i kombination. På denne måde bør de kunne støtte virksomhedens strategi og dermed den samlede lønsomhed. Hvor OPT sætter fokus på at optimere produktionen, sætter TOC og TPA fokus på udnyttelse af produktionsapparatet og på likviditeten. TPA minder på mange måder om bidragsmodellen og den...

  15. Inflammation, oxidative DNA damage, and carcinogenesis

    International Nuclear Information System (INIS)

    Lewis, J.G.; Adams, D.O.

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H 2 O 2 and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H 2 O 2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis

  16. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  17. Cost-Effectiveness of Cervical Cancer Screening With Human Papillomavirus DNA Testing and HPV-16,18 Vaccination

    Science.gov (United States)

    Goldhaber-Fiebert, Jeremy D.; Stout, Natasha K.; Salomon, Joshua A.; Kuntz, Karen M.; Goldie, Sue J.

    2011-01-01

    Background The availability of human papillomavirus (HPV) DNA testing and vaccination against HPV types 16 and 18 (HPV-16,18) motivates questions about the cost-effectiveness of cervical cancer prevention in the United States for unvaccinated older women and for girls eligible for vaccination. Methods An empirically calibrated model was used to assess the quality-adjusted life years (QALYs), lifetime costs, and incremental cost-effectiveness ratios (2004 US dollars per QALY) of screening, vaccination of preadolescent girls, and vaccination combined with screening. Screening varied by initiation age (18, 21, or 25 years), interval (every 1, 2, 3, or 5 years), and test (HPV DNA testing of cervical specimens or cytologic evaluation of cervical cells with a Pap test). Testing strategies included: 1) cytology followed by HPV DNA testing for equivocal cytologic results (cytology with HPV test triage); 2) HPV DNA testing followed by cytology for positive HPV DNA results (HPV test with cytology triage); and 3) combined HPV DNA testing and cytology. Strategies were permitted to switch once at age 25, 30, or 35 years. Results For unvaccinated women, triennial cytology with HPV test triage, beginning by age 21 years and switching to HPV testing with cytology triage at age 30 years, cost $78 000 per QALY compared with the next best strategy. For girls vaccinated before age 12 years, this same strategy, beginning at age 25 years and switching at age 35 years, cost $41 000 per QALY with screening every 5 years and $188 000 per QALY screening triennially, each compared with the next best strategy. These strategies were more effective and cost-effective than screening women of all ages with cytology alone or cytology with HPV triage annually or biennially. Conclusions For both vaccinated and unvaccinated women, age-based screening by use of HPV DNA testing as a triage test for equivocal results in younger women and as a primary screening test in older women is expected to be more

  18. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  19. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne, E-mail: bjarne.bogen@medisin.uio.no [Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo (Norway)

    2012-10-30

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id{sup +} tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id{sup +} single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id{sup +} fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id{sup +} tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id{sup +} scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  20. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  1. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    Science.gov (United States)

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    Science.gov (United States)

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  3. Effect of Vaccination with Irradiated Tachyzoites on Histopathological Changes and DNA Damage in Hepatocytes of Experimental Toxoplasmosis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.

    2015-01-01

    Current strategies for the control of toxoplasmosis are based on chemotherapy, however successful vaccine has also been demonstrated. The present study aims to assess the effect of the vaccination with radiation-attenuated tachyzoites in challenged mice regarding histopathological alteration and DNA damage of hepatocytes. Sixty mice were equally divided as follow: Group I left as a normal control group II was infected with 2x10 3 RH virulent tachyzoite s (infected control). Groups III and IV were subdivided into two subgroups a and b where subgroups III a and IV a were vaccinate d with 2.47 mw-min/cm 2 UV and 0.3 KGy gamma radiation – attenuate d tachyzoites respectively without challenge (as vaccine control). Subgroups III b and IV b were vaccinate d with UV and gamma radiation - attenuated tachyzoites and challenged after three weeks with 2x10 3 RH virulent tachyzoites. Livers were examined for histopathological changes and DNA comet assay. It was observed that acute infection with Toxoplasma tachyzoites produced toxic effects which lead to severe damage in liver tissues and DNA of hepatocytes. Meanwhile, the protective effect of UV or gamma radiation-attenuated tachyzoites vaccine resulted in the maintenance of normal histopathological characteristics and DNA of hepatocyte s and UV irradiation is better in its protective capacity

  4. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    Science.gov (United States)

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  5. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  6. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag elements (CE induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.

  7. The story of an exceptional serine protease, tissue-type plasminogen activator (tPA).

    Science.gov (United States)

    Hébert, M; Lesept, F; Vivien, D; Macrez, R

    2016-03-01

    The only acute treatment of ischemic stroke approved by the health authorities is tissue recombinant plasminogen activator (tPA)-induced thrombolysis. Under physiological conditions, tPA, belonging to the serine protease family, is secreted by endothelial and brain cells (neurons, astrocytes, microglia, oligodendrocytes). Although revascularisation induced by tPA is beneficial during a stroke, research over the past 20 years shows that tPA can also be deleterious for the brain parenchyma. Thus, in this review of the literature, after a brief history on the discovery of tPA, we reviewed current knowledge of mechanisms by which tPA can influence brain function in physiological and pathological conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome.

    Science.gov (United States)

    Chao, Ya-Hsuan; Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells.

  9. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  10. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    International Nuclear Information System (INIS)

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8 + T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8 + T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  11. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Rebecca Brocato

    Full Text Available Andes virus (ANDV is the predominant cause of hantavirus pulmonary syndrome (HPS in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35-40%. Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos. The natural "despeciation" of the duck IgY (i.e., Fc removed results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥ 5,000 neutralizing antibody units (NAU/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT. Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This

  12. The chain of care enabling tPA treatment in acute ischemic stroke : a comprehensive review of organisational models

    NARCIS (Netherlands)

    Lahr, Maarten M. H.; Luijckx, Gert-Jan; Vroomen, Patrick; van der Zee, D.J.; Buskens, Erik

    Protracted and partial implementation of treatment with intravenous tissue plasminogen activator (tPA) within 4.5 h after acute stroke onset results in potentially eligible patients not receiving optimal treatment. The goal of this study was to review the performance of various organisational models

  13. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    International Nuclear Information System (INIS)

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  14. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  15. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  16. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  17. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  18. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  19. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  20. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  1. Approaches towards DNA vaccination against a skin ciliate parasite in fish.

    Directory of Open Access Journals (Sweden)

    Louise von Gersdorff Jørgensen

    Full Text Available Rainbow trout (Oncorhynchus mykiss were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(Gprotein (VHSV G were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens

  2. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  3. A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response

    Directory of Open Access Journals (Sweden)

    Yao Ma

    2018-01-01

    Full Text Available Human respiratory syncytial virus (RSV is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.

  4. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  5. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    Science.gov (United States)

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  6. REVITALISASI TPA PEH KABUPATEN JEMBRANA SEBAGAI TEMPAT PENGOLAHAN SAMPAH TERPADU

    Directory of Open Access Journals (Sweden)

    Angelina Puspita Sandy

    2015-06-01

    Full Text Available Waste management in Jembrana District, had been handled by the Environmental Sanitation Department, which in 2012 the amount of garbage in Jembrana District it’s about 684.80 m3. The amount of garbage was large and continues to grow up every day, thus feared that TPA Peh will overload. This problem encourages the needed for Integrated Waste Sites Planning in TPA Peh, where it will accept the loads of Jembrana garbage. The Integrated Waste Site Planning in TPA Peh requires some studies, such as study of the technical aspects, financial aspects and environmental aspects. Based on technical analysis it was known that the garbage of Jembrana district in TPA Peh amounted to 150.56 m3/day. Recovery factor value was 80.33% with 19.87% residue. If this large amount of garbage is not processed, then TPA Peh predicted will be overloud in November 2015. By Integrated Waste Site Planning which is only the residue that wasted on landfill, then it could be extended the lifespan of the landfill until 9 (nine years and 3 (three month. Required area in the application of Integrated Waste Site Planning in TPA Peh is 13.701 m2. The total cost of investment in the implementation of the Integrated Waste Site in TPA Peh is Rp. 12.331.282.000.00. Total operational cost is Rp. 5.811.760.000, while the revenue potential of recycling such as composting and stalls selling stuff in 2022 is Rp. 18.390.154.291.56. Net Present Value (NPV obtained positive value of Rp. 13.933.193.788 with a value of IRR is 45,23% and B / C ratio is 1,159. Environmental analysis on TPA Peh Jembrana by analysis of well water quality around the landfill, is known that most of the physical and chemical parameters are still under the quality standard. Biological parameters are still above the water quality standards based on Permenkes No. 416.Menkes/Per/IX/1990. From the analysis of landfill leachate water quality parameters known for Total Suspended Solids (TSS, Ammonium-free, BOD, COD and

  7. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2001-01-01

    -vaccination respectively, revealed that a highly protective and lasting immunity was established shortly after vaccination, in accordance with earlier experiments with larger fish. The defence mechanisms activated by the DNA vaccine are thus functional at an early life-stage in rainbow trout....

  8. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.

    Science.gov (United States)

    Abdul-Wahid, Aws; Faubert, Gaétan

    2007-12-05

    In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.

  9. Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Carolina R. Oliveira

    2012-01-01

    Full Text Available The development of a vaccine would be essential for the control of schistosomiasis, which is recognized as the most important human helminth infection in terms of morbidity and mortality. A new approach of oral vaccination with DNA-chitosan nanoparticles appears interesting because of their great stability and the ease of target accessibility, besides chitosan immunostimulatory properties. Here we described that chitosan nanoparticles loaded with plasmid DNA encoding Rho1-GTPase protein of Schistosoma mansoni, prepared at different molar ratios of primary amines to DNA phosphate anion (N/P, were able to complex electrostatically with DNA and condense it into positively charged nanostructures. Nanoparticles were able to maintain zeta potential and size characteristics in media that simulate gastric (SGF and intestinal fluids (SIF. Further in vivo studies showed that oral immunization was not able to induce high levels of specific antibodies but induced high levels of the modulatory cytokine IL-10. This resulted in a significative reduce of liver pathology, although it could not protect mice of infection challenge with S. mansoni worms. Mice immunized only with chitosan nanoparticles presented 47% of protection against parasite infection, suggesting an important role of chitosan in inducing a protective immune response against schistosomiasis, which will be more explored in further studies.

  10. Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan

    2013-01-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×104 sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control. PMID:23710081

  11. Updates on the web-based VIOLIN vaccine database and analysis system.

    Science.gov (United States)

    He, Yongqun; Racz, Rebecca; Sayers, Samantha; Lin, Yu; Todd, Thomas; Hur, Junguk; Li, Xinna; Patel, Mukti; Zhao, Boyang; Chung, Monica; Ostrow, Joseph; Sylora, Andrew; Dungarani, Priya; Ulysse, Guerlain; Kochhar, Kanika; Vidri, Boris; Strait, Kelsey; Jourdian, George W; Xiang, Zuoshuang

    2014-01-01

    The integrative Vaccine Investigation and Online Information Network (VIOLIN) vaccine research database and analysis system (http://www.violinet.org) curates, stores, analyses and integrates various vaccine-associated research data. Since its first publication in NAR in 2008, significant updates have been made. Starting from 211 vaccines annotated at the end of 2007, VIOLIN now includes over 3240 vaccines for 192 infectious diseases and eight noninfectious diseases (e.g. cancers and allergies). Under the umbrella of VIOLIN, >10 relatively independent programs are developed. For example, Protegen stores over 800 protective antigens experimentally proven valid for vaccine development. VirmugenDB annotated over 200 'virmugens', a term coined by us to represent those virulence factor genes that can be mutated to generate successful live attenuated vaccines. Specific patterns were identified from the genes collected in Protegen and VirmugenDB. VIOLIN also includes Vaxign, the first web-based vaccine candidate prediction program based on reverse vaccinology. VIOLIN collects and analyzes different vaccine components including vaccine adjuvants (Vaxjo) and DNA vaccine plasmids (DNAVaxDB). VIOLIN includes licensed human vaccines (Huvax) and veterinary vaccines (Vevax). The Vaccine Ontology is applied to standardize and integrate various data in VIOLIN. VIOLIN also hosts the Ontology of Vaccine Adverse Events (OVAE) that logically represents adverse events associated with licensed human vaccines.

  12. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i.......d.) injection of plasmid DNA. This indicates, that the ear is an attractive site for gene gun vaccination of pigs....

  13. Modified TPA-supported removable pontic

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Jain

    2014-01-01

    Full Text Available Missing posterior teeth or necessary asymmetric orthodontic extraction may lead to migration, tilting of the adjacent teeth, and supra-eruption of the opposing teeth along with compromised esthetics. The modified TPA supported removable pontic acts as an esthetic pontic during orthodontic space closure.

  14. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    Science.gov (United States)

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  15. For t 2 DNA vaccine prevents Forcipomyia taiwana (biting midge) allergy in a mouse model.

    Science.gov (United States)

    Lee, M-F; Song, P-P; Lin, T-M; Chiu, Y-T; Chen, Y-H

    2016-04-01

    Forcipomyia taiwana (biting midge) is the most prevalent allergenic biting insect in Taiwan, and 60% of the exposed subjects develop allergic reactions. Subjects with insect allergy frequently limit their outdoor activities to avoid the annoyingly intense itchy allergic reactions, leading to significant worsening of their quality of life. Allergen-specific immunotherapy is the only known therapy that provides long-term host immune tolerance to the allergen, but is time-consuming and cumbersome. This study tested whether the For t 2 DNA vaccine can prevent allergic symptoms in For t 2-sensitized mice. Two consecutive shots of For t 2 DNA vaccine were given to mice with a 7-day interval before sensitization with recombinant For t 2 proteins, using the two-step sensitization protocol reported previously. The For t 2 DNA vaccine at 50 μg prevented the production of For t 2-specific IgE (P allergy in the future. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners.

    Science.gov (United States)

    Cappello, Paola; Curcio, Claudia; Mandili, Giorgia; Roux, Cecilia; Bulfamante, Sara; Novelli, Francesco

    2018-02-16

    Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.

  17. Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform

    Directory of Open Access Journals (Sweden)

    Made Hendra Yudha Saputra

    2017-01-01

    Full Text Available Abstrak---Penelitian ini bertujuan untuk : (1 menghasilkan rancang bangun dan implementasi Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform, (2 Mengetahui respon dari Pengguna terhadap Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform. Dalam perancangannya, aplikasi ini akan menggunakan arsitektur client-server untuk melakukan proses pertukaran data. Perancangan dilakukan dengan menggunakan model fungsional berupa UML. Model fungsional berupa UML tersebut diimplementasikan dalam sebuah framework yaitu Phonegap dengan bahasa pemrograman HTML5. Untuk mengetahui respon terhadap Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform ini diperoleh dengan menggunakan metode angket. Hasil akhirnya yaitu berupa Aplikasi Simatik berbasis Multi Platform yang dapat diinstall pada perangkat mobile untuk digunakan dalam latihan soal-soal yang terkait dengan Tes Potensi Akademik (TPA. Berdasarkan hasil uji usability, aplikasi Simatik berbasis Multi Platform ini mendapatkan persentase hasil sebesar 95,6 % dengan kategori sangat baik yang berarti dalam pengoperasiannya aplikasi ini mudah untuk digunakan dan dapat berfungsi sesuai dengan fungsi seharusnya. Kata Kunci : Phonegap, Multi Platform, Client Server, Mobile, Tes Potensi Akademik (TPA, Simatik   Abstract--- This research is purpose to : (1 produce generate design and implementation Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform (2 To knowing the response of users to Simatik : Aplikasi Simulasi Bank Soal Tes Potensi Akademik (TPA Berbasis Multi Platform. In its design, this application will use the client-server architecture to make the exchange process of data. The design were done by using a functional model UML form. The functional model UML form is implemented within a framework that is phonegap with HTML 5 programming languages. To determine the

  18. PENGEMBANGAN WEB TPA MIFTAHUL JANNAH MENUJU TPA YANG MANDIRI DAN SEJAHTERA

    Directory of Open Access Journals (Sweden)

    Hidayatulah Himawan

    2015-04-01

    Full Text Available Growth and development of young children should be guided from the beginning . Education is carried out continuously should be directed to a positive destination . Garden Education Al - Quran ( TPA is one means of education that provides the fundamentals of the science of understanding the religion ( Islam . Jannah is a landfill Miftahul education institutions , from time to time with the level of activity that the higher activity , requires a medium for the board to be able to provide opportunities for the students to improve the ability and quality of human resources, especially in the management of information systems towards a more independent and TPA prosperous , using IT as a tool to help increase performance . The process of quality improvement and the ability to lead an independent and prosperous landfill , by submitting any reports and conditions in the landfill Miftahul Jannah quickly and easily accessible by anyone . Report and the information addressed to the board and donors involved directly or indirectly . Conducted an online web system development to lay any existing reports . In addition , an increase in capacity through training to use online web administrators or managers of the system at the landfill Miftahul Jannah . This is done so that the ability of life skills can be used as a tool for the managers in the landfill Miftahul Jannah for entrepreneurship can be independently and enhance confidence .

  19. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    Science.gov (United States)

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  20. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  1. Topical Administration Is a Promising Inoculating Route versus Intramuscular Inoculation for the Nanoparticle-Carried DNA Vaccine to Prevent Corneal Infections.

    Science.gov (United States)

    Hu, Kai; Malla, Tejsu; Zhai, Yujia; Dong, Lili; Tang, Ru

    2015-01-01

    To evaluate the comparative effect of topical versus intramuscular administration of nanoparticle-carried DNA vaccine in preventing corneal herpes simplex virus type 1 (HSV-1) infection. Nanoparticle [polyethylenimine (PEI)-Fe3O4]-carried DNA vaccine (PEI-Fe3O4-pRSC-gD-IL-21) or DNA vaccine (pRSC-gD-IL-21) alone were topically versus intramuscularly inoculated into one eye each of mice on days 0, 14 and 28. Three weeks after the final immunization, the specific immune responses and clinical degrees of primary herpes simplex keratitis were evaluated. Topical inoculation of nanoparticle-carried DNA vaccine induced mice to generate similar levels of specific HSV-1-neutralizing antibody, IFN-γ and IL-4 in serum and specific killing (cytotoxicity) and proliferative activities of the splenic lymphocytes, but a significantly higher level of secretory IgA in tears compared to those of intramuscular inoculation. More importantly, the mice inoculated topically showed a significantly decreased herpes simplex keratitis severity than the mice inoculated intramuscularly after HSV-1 challenge on the corneas of the mice. Topical inoculation of nanoparticle-carried DNA vaccine elicits a stronger specific local immune response and more effectively inhibits herpes simplex keratitis as compared to intramuscular inoculation in an HSV-1 ocular challenge mouse model. Thus, topical administration may be a promising inoculating route for the nanoparticle-carried DNA vaccine to prevent corneal infections. © 2015 S. Karger AG, Basel.

  2. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  3. Optimal vaccine stockpile design for an eradicated disease: application to polio.

    Science.gov (United States)

    Tebbens, Radboud J Duintjer; Pallansch, Mark A; Alexander, James P; Thompson, Kimberly M

    2010-06-11

    Eradication of a disease promises significant health and financial benefits. Preserving those benefits, hopefully in perpetuity, requires preparing for the possibility that the causal agent could re-emerge (unintentionally or intentionally). In the case of a vaccine-preventable disease, creation and planning for the use of a vaccine stockpile becomes a primary concern. Doing so requires consideration of the dynamics at different levels, including the stockpile supply chain and transmission of the causal agent. This paper develops a mathematical framework for determining the optimal management of a vaccine stockpile over time. We apply the framework to the polio vaccine stockpile for the post-eradication era and present examples of solutions to one possible framing of the optimization problem. We use the framework to discuss issues relevant to the development and use of the polio vaccine stockpile, including capacity constraints, production and filling delays, risks associated with the stockpile, dynamics and uncertainty of vaccine needs, issues of funding, location, and serotype dependent behavior, and the implications of likely changes over time that might occur. This framework serves as a helpful context for discussions and analyses related to the process of designing and maintaining a stockpile for an eradicated disease. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Transmission characteristics and optimal diagnostic samples to detect an FMDV infection in vaccinated and non-vaccinated sheep

    NARCIS (Netherlands)

    Eble, P.L.; Orsel, K.; Kluitenberg-van Hemert, F.; Dekker, A.

    2015-01-01

    We wanted to quantify transmission of FMDV Asia-1 in sheep and to evaluate which samples would be optimal for detection of an FMDV infection in sheep. For this, we used 6 groups of 4 non-vaccinated and 6 groups of 4 vaccinated sheep. In each group 2 sheep were inoculated and contact exposed to 2

  5. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    International Nuclear Information System (INIS)

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-01-01

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  6. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  7. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice.

    Science.gov (United States)

    Sánchez, G M; Re, L; Giuliani, A; Núñez-Sellés, A J; Davison, G P; León-Fernández, O S

    2000-12-01

    We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo. Copyright 2000 Academic Press.

  8. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    International Nuclear Information System (INIS)

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-01-01

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low (≤1.5 dyn/cm 2 ) or high (25 dyn/cm 2 ) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  9. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    International Nuclear Information System (INIS)

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  10. DNA vaccines: general concerns and its applications in human and veterinary medicine/ Vacina de DNA: aspectos gerais e sua aplicação na medicina humana e veterinária

    Directory of Open Access Journals (Sweden)

    Marilda Carlos Vidotto

    2007-08-01

    Full Text Available The vaccination with DNA is one of the most promising immunization techniques against a pathogens variety and tumors, for which the conventional methods have not been efficient. DNA vaccines are capable to induce immune humoral and cellular response, directed to lymphocytes CD4+ and CD8+, without the necessity of live microorganisms. In spite of the great potential of inducing protective immunity, the DNA vaccine not always has success. The immunity depends on several factors such as the selection of the target gene, construction of the expression vector, frequency and via of administration of the vaccine, amount of DNA, location of the antigen codified by the plasmid and age, health and species of vaccinated animals. This revision shows the development of some vaccines of DNA for diseases of interest in the veterinary and human medicine.A vacinação com DNA é uma das mais promissoras técnicas de imunização contra uma variedade de patógenos e tumores, para os quais os métodos convencionais não tem sido eficientes. Vacinas de DNA são capazes de induzir resposta imune humoral e celular, tanto para resposta de linfócitos CD4+ quanto CD8+, sem a necessidade de microrganismos vivos. Apesar do grande potencial de induzir imunidade protetora, a vacina de DNA nem sempre apresenta bons resultados. A imunidade depende de vários fatores como a seleção do gene alvo, construção do vetor de expressão, freqüência e via de administração da vacina, quantidade de DNA, localização do antígeno codificado pelo plasmídio e idade, saúde e espécies de animais vacinados. Esta revisão relata o desenvolvimento de algumas vacinas de DNA para doenças de interesse na medicina veterinária e humana.

  11. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  12. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  13. Antiviral immunity in fish – functional analysis using DNA vaccination as a tool

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2013-01-01

    fingerlings. Vaccination of fish at an early stage appears advantageous, since larger fish require higher doses of vaccine to be protected. Even in fish with an average size of 0.5 g at the time of vaccination, good protection can be obtained. Interestingly, immunity is established already a few days after...... and cellular components both play a role in the long lasting protection. The similarity of the functional immune response profile to that induced by a natural virus infection is striking and is most likely one of the major reasons for the efficacy of the rhabdovirus DNA vaccines. Although other elements like...... protein gene suggest that the structural requirements for antigenicity are different from the requirements for immunogenicity....

  14. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    Science.gov (United States)

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-07

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Dendritic cell targeted liposomes–protamine–DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    International Nuclear Information System (INIS)

    Li Pan; Chen Simu; Jiang Yuhong; Jiang Jiayu; Zhang Zhirong; Sun Xun

    2013-01-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine. (paper)

  16. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. On the optimal production capacity for influenza vaccine.

    Science.gov (United States)

    Forslid, Rikard; Herzing, Mathias

    2015-06-01

    This paper analyzes the profit maximizing capacity choice of a monopolistic vaccine producer facing the uncertain event of a pandemic in a homogenous population of forward-looking individuals. For any capacity level, the monopolist solves the intertemporal price discrimination problem within the dynamic setting generated by the standard mathematical epidemiological model of infectious diseases. Even though consumers are assumed to be identical, the monopolist will be able to exploit the ex post heterogeneity between infected and susceptible individuals by raising the price of vaccine in response to the increasing hazard rate. The monopolist thus bases its investment decision on the expected profits from the optimal price path given the infection dynamics. It is shown that the monopolist will always choose to invest in a lower production capacity than the social planner. Through numerical simulation, it is demonstrated how the loss to society of having a monopoly producer decreases with the speed of infection transmission. Moreover, it is illustrated how the monopolist's optimal vaccination rate increases as its discount rate rises for cost parameters based on Swedish data. However, the effect of the firm discount rate on its investment decision is sensitive to assumptions regarding the cost of production capacity. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  19. Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners

    Directory of Open Access Journals (Sweden)

    Paola Cappello

    2018-02-01

    Full Text Available Pancreatic Ductal Adenocarcinoma (PDA is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC. Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1, a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells, which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors that could be effective in amplifying the response induced by the immune vaccination in PDA.

  20. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  1. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response.

    Science.gov (United States)

    Pereira, V B; da Cunha, V P; Preisser, T M; Souza, B M; Turk, M Z; De Castro, C P; Azevedo, M S P; Miyoshi, A

    2017-06-01

    A regimen utilizing Bacille Calmette-Guerin (BCG) and another vaccine system as a booster may represent a promising strategy for the development of an efficient tuberculosis vaccine for adults. In a previous work, we confirmed the ability of Lactococcus lactis fibronectin-binding protein A (FnBPA+) (pValac:ESAT-6), a live mucosal DNA vaccine, to produce a specific immune response in mice after oral immunization. In this study, we examined the immunogenicity of this strain as a booster for the BCG vaccine in mice. After immunization, cytokine and immunoglobulin profiles were measured. The BCG prime L. lactis FnBPA+ (pValac:ESAT-6) boost group was the most responsive group, with a significant increase in splenic pro-inflammatory cytokines IL-17, IFN-γ, IL-6 and TNF-α compared with the negative control. Based on the results obtained here, we demonstrated that L. lactis FnBPA+ (pValac:ESAT-6) was able to increase the BCG vaccine general immune response. This work is of great scientific and social importance because it represents the first step towards the development of a booster to the BCG vaccine using L. lactis as a DNA delivery system. © 2017 The Society for Applied Microbiology.

  2. I Failed the edTPA

    Science.gov (United States)

    Kuranishi, Adam; Oyler, Celia

    2017-01-01

    In this article, co-written by a teacher and a professor, the authors examine possible explanations for why Adam (first author), a New York City public school special educator, failed the edTPA, a teacher performance assessment required by all candidates for state certification. Adam completed a yearlong teaching residency where he was the special…

  3. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial

    Directory of Open Access Journals (Sweden)

    Michele Gerber

    2013-09-01

    Full Text Available 2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB and phosphoprotein 65 (pp65 formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK delivery system designed to enhance plasmid expression. The vaccine’s planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV+ recipients of an allogeneic hematopoietic stem cell transplant (HCT. A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV+ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  4. Beginning Teachers' Perceptions of the California Teaching Performance Assessment (TPA)

    Science.gov (United States)

    Campbell, Conni; Ayala, Carlos Cuauhtémoc; Railsback, Gary; Freking, Frederick W.; McKenna, Corey; Lausch, David

    2016-01-01

    The teaching performance assessment (TPA) seeks to measure the knowledge, skills, and competencies of teachers during the credential phase of their training. The TPA was introduced in California in 2004 with programs piloting it and then became mandatory for candidates enrolling in preliminary programs in 2008. Although California has multiple…

  5. Programme for the simulation of the TPA-i 1001 computer on the CDC-1604-A computer

    International Nuclear Information System (INIS)

    Belyaev, A.V.

    1976-01-01

    The basic features and capacities of the program simulating the 1001 TPA-i computer with the help of CDC-1604-A are described. The program is essentially aimed at translation of programs in the SLAHG language for the TPA-type computers. The basic part of the program simulates the work of the central TPA processor. This subprogram consequently performs the actions changing in the necessary manner the registers and memory states of the TPA computer. The simulated TPA computer has subprograms-analogous of external devices, i.e. the ASR-33 teletype, the FS 1501 tape reader, and the FACIT perforator. Work according to the program takes 1.65 - 2 times less time as against the work with TPA with the minimum set of external equipment [ru

  6. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates.

    Directory of Open Access Journals (Sweden)

    Peter T Loudon

    2010-06-01

    Full Text Available The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99 HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun was analyzed in rhesus macaques.Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine.These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.

  7. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Science.gov (United States)

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  8. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    ). The fish were challenged by immersion at different times post vaccination. Protective immunity was induced in both sizes of fish, but whereas clear-cut specific protection was evident in the fish vaccinated at 0.5g, the results suggested that the protection in the fish vaccinated at 0.25 g was mainly due......Vaccine producers often recommend a minimum size of 5g for vaccination of rainbow trout, but implementation of prophylactic vaccination in smaller sized fish would be an advantage for several infectious diseases. To implement a cost efficient vaccination strategy, it is important to know...... the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...

  9. Co-administration of the polysaccharide of Lycium barbarum with DNA vaccine of Chlamydophila abortus augments protection.

    Science.gov (United States)

    Ling, Yong; Li, Shaowen; Yang, Junjing; Yuan, Jilei; He, Cheng

    2011-01-01

    Lycium barbarum polysaccharides (LBP) can stimulate moderate immune responses therefore could potentially be used as a substitute for oil adjuvants in veterinary vaccines. In the present study, it was shown that the isolated active component of LBP3a, combined with a DNA vaccine encoding the major outer membrane protein (MOMP) of Chlamydophila abortus, induced protection in mice against challenge. Sixty BALB/c mice were randomly assigned to 5 groups. Sub-fractions of polysaccharide LBP3a, at 12.5, 25 and 50 mg/kg concentrations, respectively, were mixed with a pCI-neo::MOMP (pMOMP) vaccine. Mice administrated with pCI-neo + LBP3a were served as a control. All mice were inoculated at day 0, 14, and 28, and challenged on day 44. The effects of LBp3a on serum antibody levels, in vitro lymphocyte proliferation, the activity of interleaukin-2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor α(TNF-α)and chlamydia clearance were determined. A combination of DNA vaccine and LBP3a induced significantly higher antibody levels in mice, higher T cell proliferation and higher levels of IFN-γ and IL-2. Mice immunized with DNA and LBP3a also showed significantly higher levels of chlamydia clearance in mice spleens and a greater Th1 immune response. The immunoenhancement induced by 25 mg/kg LBP3a is more effective than that induced by a 12.5 and 50 mg/kg. This implies that LBP3a at 25 mg/kg has a high potential to be used as an effective adjuvant with a DNA vaccine against swine Chlamydophila abortus.

  10. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  11. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  12. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  13. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  14. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin.

    Science.gov (United States)

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E; Smith, Trevor R F

    2017-01-03

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif

    2013-01-01

    seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs...... intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA...... of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve....

  16. Effect of TPA and HTLV-1 Tax on BRCA1 and ERE controlled genes expression.

    Science.gov (United States)

    Jabareen, Azhar; Abu-Jaafar, Aya; Abou-Kandil, Ammar; Huleihel, Mahmoud

    2017-07-18

    Interference with the expression and/or functions of the multifunctional tumor suppressor BRCA1 leads to a high risk of breast and ovarian cancers. BRCA1 expression is usually activated by the estrogen (E2) liganded ERα receptor. Activated ERα is considered as a potent transcription factor which activates various genes expression by 2 pathways. A classical pathway, ERα binds directly to E2-responsive elements (EREs) in the promoters of the responsive genes and a non-classical pathway where ERα indirectly binds with the appropriate gene promoter. In our previous study, HTLV-1Tax was found to strongly inhibit ERα induced BRCA1 expression while stimulating ERα induced ERE dependent genes. TPA is a strong PKC activator which found to induce the expression of HTLV-1. Here we examined the effect of TPA on the expression of BRCA1 and genes controlled by ERE region in MCF-7 cells and on Tax activity on these genes. Our results showed strong stimulatory effect of TPA on both BRCA1 and ERE expression without treatment with E2. Tax did not show any significant effect on these TPA activities. It seems that TPA activation of BRCA1 and ERE expression is dependent on PKC activity but not through the NFκB pathway. However, 53BP1 may be involved in this TPA activity because its overexpression significantly reduced the TPA stimulatory effect on BRCA1 and ERE expression. Additionally, our Chip assay results probably exclude possible involvement of ERα pathway in this TPA activity because TPA did not interfere with the binding of ERα to both BRCA1 promoter and ERE region.

  17. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X.

    Science.gov (United States)

    Illiano, Elena; Bissa, Massimiliano; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2016-10-02

    The therapeutic antitumor potency of a prime-boost vaccination strategy was explored, based on the mutated, nontransforming forms of the E6 (E6 F47R ) and E7 (E7 GGG ) oncogenes of Human Papilloma Virus type 16 (HPV16), fused to the Potato virus X (PVX) coat protein (CP) sequence. Previous data showed that CP fusion improves the immunogenicity of tumor-associated antigens and may thus increase their efficacy. After verifying the correct expression of E6 F47R CP and E7 GGG CP inserted into DNA and Fowlpox virus recombinants by Western blotting and immunofluorescence, their combined use was evaluated for therapy in a pre-clinical mouse model of HPV16-related tumorigenicity. Immunization protocols were applied using homologous (DNA/DNA) or heterologous (DNA/Fowlpox) prime-boost vaccine regimens. The humoral immune responses were determined by ELISA, and the therapeutic efficacy evaluated by the delay in tumor appearance and reduced tumor volume after inoculation of syngeneic TC-1* tumor cells. Homologous DNA/DNA genetic vaccines were able to better delay tumor appearance and inhibit tumor growth when DNAE6 F47R CP and DNAE7 GGG CP were administered in combination. However, the heterologous DNA/Fowlpox vaccination strategy was able to delay tumor appearance in a higher number of animals when E6 F47R CP and in particular E7 GGG CP were administered alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  19. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Xiao, Zhao; Juan, Long; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P 0.05), with the exception of Treg cells, which were significantly

  20. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  1. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  2. Assessment of a DNA vaccine encoding an anchored-glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis

    Directory of Open Access Journals (Sweden)

    Eduardo JM Nascimento

    2007-02-01

    Full Text Available Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a. Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a was observed.

  3. Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets.

    Science.gov (United States)

    Ou, Changbo; Tian, Deyu; Ling, Yong; Pan, Qing; He, Qing; Eko, Francis O; He, Cheng

    2013-08-01

    Chlamydia abortus (C. abortus) is an obligate intracellular pathogen that causes abortion in pigs and poses a zoonotic risk in pregnant women. Although attenuated and inactivated vaccines are available, they do not provide complete protection in animals underlining the need to develop new vaccines. In this study, we tested the hypothesis that intramuscular immunization with an ompA-based phage-mediated DNA chlamydial vaccine candidate will induce significant antigen-specific cellular and humoral immune responses. Thus, groups of piglets (five per group) were immunized intramuscularly with the phage-MOMP vaccine (λ-MOMP) or a commercial live-attenuated vaccine (1B vaccine) or a GFP-expressing phage (λ-GFP) or phosphate buffered saline (PBS) (control) and antigen-specific cell-mediated and humoral immune responses were evaluated. By day 63 post-immunization, the λ-MOMP vaccine elicited significantly higher (Pabortus. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Optimizing the Diffusion Welding Process for Alloy 800H: Thermodynamic, Diffusion Modeling, and Experimental Work

    International Nuclear Information System (INIS)

    Mizia, R.E.; Clark, D.E.; Glazoff, M.V.; Lister, Tedd E.; Trowbridge, T.L.

    2011-01-01

    A research effort was made to evaluate the usefulness of modern thermodynamic and diffusion computational tools, Thermo-Calc(copyright) and Dictra(copyright), in optimizing the parameters for diffusion welding of Alloy 800H. This would achieve a substantial reduction in the overall number of experiments required to achieve optimal welding and post-weld heat treatment conditions. This problem is important because diffusion welded components of Alloy 800H are being evaluated for use in assembling compact, micro-channel heat exchangers that are being proposed in the design of a high temperature gas-cooled reactor by the US Department of Energy. The modeling was done in close contact with experimental work. The latter included using the Gleeble 3500 System(reg sign) for welding simulation, mechanical property measurement, and light optical and Scanning Electron Microscopy. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using a 15 μm Ni foil as a joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved, and model refinements to account for the complexity of actual alloy materials are suggested.

  5. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...

  6. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoti...

  7. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  8. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    Science.gov (United States)

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can

  9. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    Science.gov (United States)

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  10. Stroke, tPA, and Physician Decision-Making

    Science.gov (United States)

    ... MD Steven Karceski, MD Stroke, tPA, and physician decision-making Dominic Hovsepian, BS Steven Karceski, MD WHAT DID ... has not been carefully studied is the physician ’ s decision-making process. It was because of this that Dr. ...

  11. Abalone Muscle Texture Evaluation and Prediction Based on TPA Experiment

    Directory of Open Access Journals (Sweden)

    Jiaxu Dong

    2017-01-01

    Full Text Available The effects of different heat treatments on abalones’ texture properties and sensory characteristics were studied. Thermal processing of abalone muscle was analyzed to determine the optimal heat treatment condition based on fuzzy evaluation. The results showed that heat treatment at 85°C for 1 hour had certain desirable effects on the properties of the abalone meat. Specifically, a back propagation (BP neural network was introduced to predict the equations of statistically significant sensory hardness, springiness, and smell using the texture data gained through TPA (texture profile analysis experiments as input and sensory evaluation data as the desired output. The final outcome was that the predictability was proved to be satisfactory, with an average error of 6.93%.

  12. Effect of West Nile virus DNA-plasmid vaccination on response to live virus challenge in red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Redig, Patrick T; Tully, Thomas N; Ritchie, Branson W; Roy, Alma F; Baudena, M Alexandra; Chang, Gwong-Jen J

    2011-08-01

    To evaluate the safety and efficacy of an experimental adjuvanted DNA-plasmid vaccine against West Nile virus (WNV) in red-tailed hawks (Buteo jamaicensis). 19 permanently disabled but otherwise healthy red-tailed hawks of mixed ages and both sexes without detectable serum antibodies against WNV. Hawks were injected IM with an experimental WNV DNA-plasmid vaccine in an aluminum-phosphate adjuvant (n = 14) or with the adjuvant only (control group; 5). All birds received 2 injections at a 3-week interval. Blood samples for serologic evaluation were collected before the first injection and 4 weeks after the second injection (day 0). At day 0, hawks were injected SC with live WNV. Pre- and postchallenge blood samples were collected at intervals for 14 days for assessment of viremia and antibody determination; oropharyngeal and cloacal swabs were collected for assessment of viral shedding. Vaccination was not associated with morbidity or deaths. Three of the vaccinated birds seroconverted after the second vaccine injection; all other birds seroconverted following the live virus injection. Vaccinated birds had significantly less severe viremia and shorter and less-intense shedding periods, compared with the control birds. Use of the WNV DNA-plasmid vaccine in red-tailed hawks was safe, and vaccination attenuated but did not eliminate both the viremia and the intensity of postchallenge shedding following live virus exposure. Further research is warranted to conclusively determine the efficacy of this vaccine preparation for protection of red-tailed hawks and other avian species against WNV-induced disease.

  13. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  14. HIV-1 p24(gag derived conserved element DNA vaccine increases the breadth of immune response in mice.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag region according to two principles: the immunogen must (i include strictly conserved elements of the virus that cannot mutate readily, and (ii exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag DNA immunogens that express 7 highly Conserved Elements (CE of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site', together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag DNA induced poor, CD4(+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+ and CD8(+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag, which recognize the virus encoded p24(gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+ and CD8(+ T cells to additional regions of Gag compared to vaccination with p55(gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.

  15. The University Supervisor, edTPA, and the New Making of the Teacher

    Science.gov (United States)

    Donovan, Martha K.; Cannon, Susan O.

    2018-01-01

    As university supervisors at a large, urban university in the southern US, we examined the ways that the Education Teacher Performance Assessment (edTPA) shaped the pedagogic relationships and decision-making processes of our students and ourselves during the spring of 2016. We situated this study of edTPA within the framework of critical policy…

  16. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    Science.gov (United States)

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  17. An Oral DNA Vaccine Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply

    National Research Council Canada - National Science Library

    Reisfeld, Ralph A

    2007-01-01

    In an effort to meet the urgent need for the development of novel and effective treatments for metastatic breast cancer, we developed and evaluated a novel, oral DNA vaccine targeting endoglin (CD105...

  18. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    International Nuclear Information System (INIS)

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of 32 P-cAMP formed from 32 P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G s -catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range

  19. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  20. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer.

    Science.gov (United States)

    Tiriveedhi, Venkataswarup; Tucker, Natalia; Herndon, John; Li, Lijin; Sturmoski, Mark; Ellis, Matthew; Ma, Cynthia; Naughton, Michael; Lockhart, A Craig; Gao, Feng; Fleming, Timothy; Goedegebuure, Peter; Mohanakumar, Thalachallour; Gillanders, William E

    2014-12-01

    Mammaglobin-A (MAM-A) is overexpressed in 40% to 80% of primary breast cancers. We initiated a phase I clinical trial of a MAM-A DNA vaccine to evaluate its safety and biologic efficacy. Patients with breast cancer with stable metastatic disease were eligible for enrollment. Safety was monitored with clinical and laboratory assessments. The CD8 T-cell response was measured by ELISPOT, flow cytometry, and cytotoxicity assays. Progression-free survival (PFS) was described using the Kaplan-Meier product limit estimator. Fourteen subjects have been treated with the MAM-A DNA vaccine and no significant adverse events have been observed. Eight of 14 subjects were HLA-A2(+), and the CD8 T-cell response to vaccination was studied in detail. Flow cytometry demonstrated a significant increase in the frequency of MAM-A-specific CD8 T cells after vaccination (0.9% ± 0.5% vs. 3.8% ± 1.2%; P cells (41 ± 32 vs. 215 ± 67 spm; P cell responses, and preliminary evidence suggests improved PFS. Additional studies are required to define the potential of the MAM-A DNA vaccine for breast cancer prevention and/or therapy. ©2014 American Association for Cancer Research.

  1. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  2. Shock Hugoniot measurements on Ta to 0.78 TPa

    International Nuclear Information System (INIS)

    Froeschner, K.E.; Lee, R.S.; Chau, H.H.; Weingart, R.C.

    1983-01-01

    Symmetric impact shock Hugoniot measurements have been made on Ta with an electrically exploded foil gun system. The results obtained to date for the Hugoniot of Ta cover the range 0.19 to 0.78 TPa (impact velocities from 4.0 to 9.7 km/s) and agree with data obtained by other researchers to within 2.7% rms. Recent improvements in the system include electromagnetic shielding of impactor and target, continuous measurement of impactor velocity with a Fabry-Perot interferometer and computer-aided analysis of shot film. Conservative extrapolation from current operating conditions indicate that pressures of 1.1 to 1.5 TPa could be achieved with little difficulty

  3. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Ganzhu Feng

    Full Text Available Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e and fms-like tyrosine kinase 3 ligand (FL genes (termed Esat-6/3e-FL, and was enveloped with chitosan (CS nanoparticles (nano-chitosan. The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.

  4. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. DESIGN OF ELECTROPHORESIS DEVICE FOR OPTIMATION OF DNA VISUALIZATION AND DNA CONCENTRATION USING SOFTWARE

    Directory of Open Access Journals (Sweden)

    H.P. Kusumaningrum

    2014-07-01

    Full Text Available Molekul DNA menunjukkan polarisasi yang kuat sehingga memungkinkan baik gerak elektroforesis berdasarkan muatan negatifnya maupun gerak dielektroforesis berdasarkan induksi polarisasi. Perancangan alat menggunakan kombinasi prinsip elektroforesis dan dielektroforesis dilengkapi perangkat lunak untuk mengukur konsentrasinya sangat diperlukan. Utamanya mengingat uji kualitatif DNA berbasis visualisasi pada gel elektroforesis bersifat sangat subyektif dan kurang terukur. Pengukuran konsentrasi DNA menggunakan spektrofotometer UV/VIS sangat tergantung oleh ketersediaannya di laboratorium. Penelitian bertujuan untuk mendesain piranti untuk mengukur konsentrasi DNA berdasarkan visualisasinya pada gel elektroforesis menggunakan perangkat lunak berbasis MatLab. Pengukuran konsentrasi DNA didasarkan visualisasinya pada gel elektroforesis lalu dibandingkan dengan hasil penghitungan spektrofotometer UV/VIS. Hasil penelitian menggunakan piranti tersebut memperlihatkan visualisasi DNA yang lebih optimal. Hasil pengukuran jumlah DNA menggunakan spektrofotometer memiliki kecenderungan yang sama dengan hasil pengukuran menggunakan perangkat lunak berbasis MatLab meskipun terdapat perbedaan nilai kuantitatif.ABSTRACTMolecules of deoxyribo nucleic acid (DNA show a strong polarization allowing for both motions of the dielectrophoresis induced by polarization and electrophoresis based on its negative charge. Considering high subjective and less quantifiable result of the visualization based qualitative test of DNA on gel electrophoresis, designing the tool using a combination of the principles of electrophoresis and dielectrophoresis completed with a software for optimization of DNA visualization and to measure the concentration of small and large–sized DNA fragment is very needed. Accuracy of measurement of DNA concentration using a spectrophotometer UV /VIS is depend on its availability in the laboratory. The aim of this study was to design device for

  6. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever.

    Science.gov (United States)

    Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W

    2016-01-20

    Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the

  7. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    DEFF Research Database (Denmark)

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    might explain the recruitment of immune cells to the site of DNA injection. Our results suggest that B cells are involved in the initial phase of the immune response to intramuscular DNA vaccination against VHSV. This appears to be a major difference to what we know from mammalian models where T cells...

  9. Isolation and characterization of human glycophorin A cDNAs using a synthetic oligonucleotide approach: nucleotide sequence, mRNA structure and regulation by 12-O-tetradecanoylphorbol 13-acetate (TPA)

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1986-01-01

    The authors have previously shown that treatment of human erythroleukemic K562 cells with the tumor-promoting phorbol ester, TPA, results in a diminished expression of glycophorin A at the level of protein biosynthesis and in vitro mRNA translation activity. To further examine the structure, relationships and expression of human glycophorins they have successfully isolated and sequenced several glycophorin A specific cDNA clones derived from K562 cells, by making extensive use of mixed and exact synthetic oligonucleotides as primers and radioactively labeled probes. The nucleotide sequence obtained from the largest glycophorin A cDNA suggests the presence of a hydrophobic leader-like peptide of at least 19 amino acids. Northern gel analysis using both whole cDNA-plasmid and synthetic oligonucleotide probes revealed the existence of multiple mRNAs, three of which they believe to be glycophorin A-specific, whereas a fourth and smaller mRNA appears to be glycophorin B-specific. Furthermore, the abundance of all four glycophorin mRNAs were found to be extensively reduced following treatment of K562 cells with TPA suggesting coordinate regulation, possibly at the level of gene transcription

  10. The Accelerated Procedure for Electrical Work (TPA)

    CERN Document Server

    Coelingh, G J

    2000-01-01

    The accelerated procedure for electrical work [in French: Travaux électriques selon Procédure Accélérée (TPA)] was introduced in October 1996. It allows the contractor to carry out minor electrical installation jobs (about 350 a year) independently. The special features of the TPA are that the number of hours to be worked is limited to 16 and the cost to less than 1000 CHF. This procedure has substantial advantages for both the requesters and ST division. Firstly, the requester benefits from direct contact with the contractor, prompt action and simplified invoicing. In addition, ST division, relieved of ordinary minor work, can concentrate on larger-scale projects and can take advantage of a simplified system of administration. The author sets out the course of the procedure, its advantages and drawbacks, the statistics and the results of a satisfaction questionnaire. This procedure could be adapted and extended to other operations linked to future contracts.

  11. Insight into the potential for DNA idiotypic fusion vaccines designed for patients by analysing xenogeneic anti-idiotypic antibody responses

    Science.gov (United States)

    Forconi, Francesco; King, Catherine A; Sahota, Surinder S; Kennaway, Christopher K; Russell, Nigel H; Stevenson, Freda K

    2002-01-01

    DNA vaccines induce immune responses against encoded proteins, and have clear potential for cancer vaccines. For B-cell tumours, idiotypic (Id) immunoglobulin encoded by the variable region genes provides a target antigen. When assembled as single chain Fv (scFv), and fused to an immunoenhancing sequence from tetanus toxin (TT), DNA fusion vaccines induce anti-Id antibodies. In lymphoma models, these antibodies have a critical role in mediating protection. For application to patients with lymphoma, two questions arise: first, whether pre-existing antibody against TT affects induction of anti-scFv antibodies; second, whether individual human scFv fusion sequences are able to fold consistently to generate antibodies able to recognize private conformational Id determinants expressed by tumour cells. Using xenogeneic vaccination with scFv sequences from four patients, we have shown that pre-existing anti-TT immunity slows, but does not prevent, anti-Id antibody responses. To determine folding, we have monitored the ability of nine DNAscFv–FrC patients' vaccines to induce xenogeneic anti-Id antibodies. Antibodies were induced in all cases, and were strikingly specific for each patient's immunoglobulin with little cross-reactivity between patients, even when similar VH or VL genes were involved. Blocking experiments with human serum confirmed reactivity against private determinants in 26–97% of total antibody. Both immunoglobulin G1 (IgG1) and IgG2a subclasses were present at 1·3 : 1–15 : 1 consistent with a T helper 2-dominated response. Xenogeneic vaccination provides a simple route for testing individual patients' DNAscFv–FrC fusion vaccines, and offers a strategy for production of anti-Id antibodies. The findings underpin the approach of DNA idiotypic fusion vaccination for patients with B-cell tumours. PMID:12225361

  12. Mexico introduces pentavalent vaccine.

    Science.gov (United States)

    1999-08-01

    Combination vaccines have been introduced in Mexico. The national immunization program has incorporated the measles-mumps-rubella (MMR) vaccines in 1998, and the pentavalent vaccine in 1999. The two categories of antigen composition in combination vaccines are: 1) multiple different antigenic types of a single pathogen, such as the 23 valent pneumococcal polysaccharide vaccine, and 2) antigens from different pathogens causing different diseases, such as the DPT and MMR vaccines. Pentavalent vaccines are included in the second category. The vaccine protects against diphtheria, tetanus, pertussis, hepatitis B, and other diseases produced by Haemophilus influenzae type b (Hib). Combined diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenza type b (DTP-HB/Hib) vaccine has been distributed to 87% of Mexican children under 1 year of age. Over 800,000 doses of pentavalent vaccine have been administered.

  13. Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation

    Directory of Open Access Journals (Sweden)

    Wicker Louise

    2008-02-01

    Full Text Available Abstract Background This study tested the ability of a characterized extract of Polygonum cuspidatum (PCE to inhibit mouse ear inflammation in response to topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA. Methods A 50% (wt:vol ethanolic solution of commercial 200:1 PCE was applied to both ears of female Swiss mice (n = 8 at 0.075, 0.15, 0.3, 1.25 and 2.5 mg/ear 30 min after TPA administration (2 μg/ear. For comparison, 3 other groups were treated with TPA and either 1 the vehicle (50% ethanol alone, 2 indomethacin (0.5 mg/ear, or 3 trans-resveratrol (0.62 mg/ear. Ear thickness was measured before TPA and at 4 and 24 h post-TPA administration to assess ear edema. Ear punch biopsies were collected at 24 h and weighed as a second index of edema. Myeloperoxidase activity was measured in each ear punch biopsy to assess neutrophil infiltration. Results PCE treatment at all doses significantly reduced ear edema compared to the TPA control. The PCE response was dose-dependent and 2.5 mg PCE significantly inhibited all markers of inflammation to a greater extent than indomethacin (0.5 mg. MPO activity was inhibited at PCE doses ≥ 1.25 mg/ear. Trans-resveratrol inhibited inflammation at comparable doses. Conclusion PCE inhibits development of edema and neutrophil infiltration in the TPA-treated mouse ear model of topical inflammation.

  14. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice.

    Science.gov (United States)

    Qu, Daofeng; Han, Jianzhong; Du, Aifang

    2013-07-01

    The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.

  15. MANAJEMEN RISIKO OPERASIONAL DAN PEMELIHARAAN TEMPAT PEMBUANGAN AKHIR (TPA REGIONAL BANGLI DI KABUPATEN BANGLI

    Directory of Open Access Journals (Sweden)

    I W Wedana Yasa

    2013-07-01

    Full Text Available To obtain the maximum and sustainable advantage it needs to carry out the operational and maintenance (OP activities of TPA. It is necessary to maintain the Bangli Regional TPA so that it will give maximum and sustainable advantages. This study was aimed at identifying various major risks which may interfere with the TPA operating and maintenance so that mitigation can be done and to determine the risk ownership. The collected data were analyzed using descriptive qualitative method through the following stages: the risks were identified, the risks were evaluated, the risks were coped with, and the risk ownership could be identified. The risks identified totaled 72 consisting of: 9 (12.5% risks which were under the unacceptable category, 16 (22.22% risks which were under the acceptable category, and 1 (1.39% risk which was under the negligible category. The major risks amounted to 55 risks (76.39%, included the obstacle to establishing the institution which was fully responsible for the operating and maintenance of the Bangli Regional TPA, the limited amounts of funds allocated by the central government, the provincial government, and the regency governments which were integrated into the Regional TPA, the obstacle to creating an affiliation between the government and the private institutions, and other risks. The risk mitigation was done by avoiding risks, reducing risks, and transferring risks starting from the institutional, regulation and financial aspects, and technical and non technical problems. Most risk ownerships were the responsibility of the Bangli Regional TPA management.

  16. MDA5 can be exploited as efficacious genetic adjuvant for DNA vaccination against lethal H5N1 influenza virus infection in chickens.

    Directory of Open Access Journals (Sweden)

    Matthias Liniger

    Full Text Available Chickens lack the retinoic acid-inducible gene I (RIG-I and sense avian influenza virus (AIV infections by means of the melanoma differentiation-associated gene 5 product (chMDA5. Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483] triggers interferon-β responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483 expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483 were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483 expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.

  17. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  18. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  19. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    International Nuclear Information System (INIS)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-01-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  20. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

    DEFF Research Database (Denmark)

    Pappalardo, F.; Halling-Brown, M. D.; Rapin, Nicolas

    2009-01-01

    conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies......Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines...

  1. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  2. [Serologic response to a DNA recombinant vaccine against hepatitis B in natives of the Peruvian Amazonian jungle].

    Science.gov (United States)

    Colichón, A; Vildósola, H; Sjogren, M; Cantella, R; Rojas, C

    1990-01-01

    Large areas of the Amazon basin in Brazil, Colombia, Ecuador, and in the nonoriental region of the peruvian jungle have been found to be hyperendemic to Hepatitis B with high prevalence of asymptomatic carriers (11 to 25%) and, in more selected areas, Hepatitis Delta has been also reported. In the present report, we have studied 108 volunteers from six different Jivaroes communities living in a hyperendemic Hepatitis B area. They received 2 doses of DNA recombinant yeast derivated HBV vaccine. All the selected persons were HBsAb negatives, but many (80%) had antibodies to HBc. Following immunization schedule, 80% responded with the formation of HBsAb; a better seroconversion was achieved in those negatives to anticore IgG compared with those having HBcAb. We obtained 90% of seroconversion in spite of the fact that our vaccination schedule was prolonged up to 10 months from the one recommended by the manufacturer. The vaccination schedule 0,4, 14 months, and the schedule 0,4 months, had 76 and 29% of seroconversion, respectively. We want to point out three observations: 1) It is quite possible that many of the Anti-core positives, that did not respond to vaccination were carriers of HBsAg undetectable by the conventional EIA test carried out; 2) The seroconversion rate in these natives was low (up to six months after the vaccination schedule); and 3) Many of the HBcAb were false positives and many of them were recently infected. We conclude: A) It is highly important to assess the anti-HBs hyperendemic areas before attempting vaccinations; B) All persons negative to anti-HBs should be vaccinated in spite to anticore antibodies; C) Areas with difficult access could be vaccinated even until 10 months without affecting good results, and D) DNA recombinant vaccine (ENGERIX B) was well tolerated. No side effects were observed.

  3. An enzyme-immunobinding assay for fast screening of expression of tissue plasminogen activator cDNA in E. coli

    International Nuclear Information System (INIS)

    Tang, J.C.T.; Li, S.H.

    1984-01-01

    Tissue plasminogen activator (TPA) has been isolated from normal human tissues and certain human cell lines in culture. The enzyme is a serine protease which converts an inactive zymogen, plasminogen to plasmin, and causes lysis of fibrin clots. The high affinity of TPA for fibrin indicates that it is a potential thrombolytic agent and is superior to urokinase-like plasminogen activators. Recently, TPA has been cloned and expressed in E. coli. Using TPA as a model protein, the authors report here the development of a direct, sensitive enzyme-immunoassay for the screening of a cDNA expression library using specific antibodies and peroxidase-labeled second antibody

  4. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  5. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Directory of Open Access Journals (Sweden)

    Matthew R. Sandbulte

    2015-01-01

    Full Text Available Influenza A virus in swine (IAV-S is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

  6. Multi-response optimization of process parameters for TIG welding of Incoloy 800HT by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Arun Kumar Srirangan

    2016-06-01

    Full Text Available Incoloy 800HT which was selected as one of the prominent material for fourth generation power plant can exhibit appreciable strength, good resistance to corrosion and oxidation in high temperature environment. This study focuses on the multi-objective optimization using grey relational analysis for Incoloy 800HT welded with tungsten inert arc welding process with N82 filler wire of diameter 1.2 mm. The welding input parameters play a vital role in determining desired weld quality. The experiments were conducted according to L9 orthogonal array. The input parameter chosen were the welding current, Voltage and welding speed. The output response for quality targets chosen were the ultimate tensile strength and yield strength (at room temperature, 750 °C and impact toughness. Grey relational analysis was applied to optimize the input parameters simultaneously considering multiple output variables. The optimal parameters combination was determined as A2B1C2 i.e. welding current at 110 A, voltage at 10 V and welding speed at 1.5 mm/s. ANOVA method was used to assess the significance of factors on the overall quality of the weldment. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics:

  7. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor.

    Science.gov (United States)

    Grosenbaugh, Deborah A; Leard, A Timothy; Bergman, Philip J; Klein, Mary K; Meleo, Karri; Susaneck, Steven; Hess, Paul R; Jankowski, Monika K; Jones, Pamela D; Leibman, Nicole F; Johnson, Maribeth H; Kurzman, Ilene D; Wolchok, Jedd D

    2011-12-01

    To evaluate the safety and efficacy of a vaccine containing plasmid DNA with an insert encoding human tyrosinase (ie, huTyr vaccine) as adjunctive treatment for oral malignant melanoma (MM) in dogs. 111 dogs (58 prospectively enrolled in a multicenter clinical trial and 53 historical controls) with stage II or III oral MM (modified World Health Organization staging scale, I to IV) in which locoregional disease control was achieved. 58 dogs received an initial series of 4 injections of huTyr vaccine (102 μg of DNA/injection) administered transdermally by use of a needle-free IM vaccination device. Dogs were monitored for adverse reactions. Surviving dogs received booster injections at 6-month intervals thereafter. Survival time for vaccinates was compared with that of historical control dogs via Kaplan-Meier survival analysis for the outcome of death. Kaplan-Meier analysis of survival time until death attributable to MM was determined to be significantly improved for dogs that received the huTyr vaccine, compared with that of historical controls. However, median survival time could not be determined for vaccinates because dogs as adjunctive treatment for oral MM. Response to DNA vaccination in dogs with oral MM may be useful in development of plasmid DNA vaccination protocols for human patients with similar disease.

  8. Identifying optimal vaccination strategies for serogroup A Neisseria meningitidis conjugate vaccine in the African meningitis belt.

    Directory of Open Access Journals (Sweden)

    Sara Tartof

    Full Text Available The optimal long-term vaccination strategies to provide population-level protection against serogroup A Neisseria meningitidis (MenA are unknown. We developed an age-structured mathematical model of MenA transmission, colonization, and disease in the African meningitis belt, and used this model to explore the impact of various vaccination strategies.The model stratifies the simulated population into groups based on age, infection status, and MenA antibody levels. We defined the model parameters (such as birth and death rates, age-specific incidence rates, and age-specific duration of protection using published data and maximum likelihood estimation. We assessed the validity of the model by comparing simulated incidence of invasive MenA and prevalence of MenA carriage to observed incidence and carriage data.The model fit well to observed age- and season-specific prevalence of carriage (mean pseudo-R2 0.84 and incidence of invasive disease (mean R2 0.89. The model is able to reproduce the observed dynamics of MenA epidemics in the African meningitis belt, including seasonal increases in incidence, with large epidemics occurring every eight to twelve years. Following a mass vaccination campaign of all persons 1-29 years of age, the most effective modeled vaccination strategy is to conduct mass vaccination campaigns every 5 years for children 1-5 years of age. Less frequent campaigns covering broader age groups would also be effective, although somewhat less so. Introducing conjugate MenA vaccine into the EPI vaccination schedule at 9 months of age results in higher predicted incidence than periodic mass campaigns.We have developed the first mathematical model of MenA in Africa to incorporate age structures and progressively waning protection over time. Our model accurately reproduces key features of MenA epidemiology in the African meningitis belt. This model can help policy makers consider vaccine program effectiveness when determining the

  9. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    Science.gov (United States)

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  10. MicroRNA expression in rainbow trout (Oncorhynchus mykiss) vaccinated with a DNA vaccine encoding the glycoprotein gene of Viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    particularly to sea-farmed rainbow trout and thus necessitates strategies to mitigate potential disease outbreaks. A DNA vaccine encoding the glycoprotein gene of VHSV has been developed and shown to elicit protective immune responses in laboratory trials. It is important to identify key factors as biomarkers...

  11. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Nina Movsesyan

    Full Text Available BACKGROUND: The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Abeta antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Abeta(42 (Abeta(1-11 , a non-self T helper cell epitope (PADRE, and macrophage-derived chemokine (MDC/CCL22 as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype. METHODS AND FINDINGS: We generated pMDC-3Abeta(1-11-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3-4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Abeta antibody, which in turn inhibited accumulation of Abeta pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages. CONCLUSIONS: Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.

  12. Vacunas de ADN: inducción de la respuesta inmunitaria DNA Vaccines: Induction of the immune response

    Directory of Open Access Journals (Sweden)

    Javier Mota-Sánchez

    2009-01-01

    Full Text Available La efectividad de las vacunas y la inmunización en la prevención de las enfermedades infecciosas es uno de los grandes avances de la medicina. En la actualidad, el acceso a la tecnología de punta en el área de la genómica y la proteómica ha hecho posible acelerar el desarrollo de nuevos modelos de vacunas con características mejoradas en aspectos fundamentales, como la inmunogenicidad y la seguridad. A casi dos décadas del primer informe, en el cual se demostró que un gen puede expresarse mediante la inyección directa de ADN desnudo, las vacunas de ADN han probado ser eficientes para inducir una respuesta inmunitaria protectora contra parásitos, virus y bacterias en diversos modelos animales. Esta revisión tiene por objetivo presentar un panorama general de las vacunas de ADN y los mecanismos mediante los cuales la inmunización con antígenos insertados en vectores de ADN (plásmidos inducen una respuesta inmunitaria.The effectiveness of vaccines and immunization in the prevention of infectious diseases is one of the greatest successes in medicine. In recent years, with access to cutting edge genomic and proteomic technology, it is possible to accelerate the development of new and improved vaccines with better immunogenicity and safety characteristics. Since the first report almost two decades ago, where it was demonstrated that gene expression is possible by directed injection of naked DNA, DNA vaccines have been proven to induce protective immune responses against parasites, virus and bacterium in diverse animal disease models. This review aims to present an overview about DNA vaccines and the mechanisms by which immune responses are induced after immunization with plasmid DNA-encoded antigens.

  13. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    Science.gov (United States)

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    Science.gov (United States)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  15. Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Lintelo, E.G. te; Egberink, H.F.; Duquesne, V.; Aubert, A.; Rottier, P.J.M.

    2002-01-01

    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was

  16. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  17. Thrombolysis by intravenous tissue plasminogen activator (t-PA). Current status and future direction

    International Nuclear Information System (INIS)

    Tanahashi, Norio

    2009-01-01

    In Japan, the intravenous tissue plasminogen activator (t-PA) Alteplase (0.6 mg/kg) administration of the within 3 h of the onset of acute ischemic stroke was approved for therapeutic use in the year 2006. t-PA induces thrombolysis in patients with acute ischemic stroke, and this method has gradually gained recognition among physicians and the general population. However, the number of patients who were treated using Alteplase is low (4,000-5,000 patients/year), and this figure accounts for only 2-3% of the annual number of cases of ischemic stroke. There is little doubt that Alteplase treatment is a potentially effective modality for some patients with acute ischemic stroke. The post-marketing surveillance of 4,749 Japanese patients treated using Alteplase showed that 33% of the patients had modified Rankin scale (mRS) scores of 0-1, 17% of patients died and 4.5% presented with symptomatic intracerebral hemorrhage (ICH); these results were comparable to those from other countries. The expansion of the therapeutic time window has been a matter of concern. The investigators of the European Cooperative Acute Stroke Study (ECASS) have reported that there was significant improvement in the clinical outcomes of patients with acute ischemie stroke when Alteplase was administered 3-4.5 h after the onset of the symptoms. Mismatches in perfusion- and diffusion-weighted (DW) magnetic resonance imaging (MRI) images have been used for selecting patients 3 h after the onset of symptoms, and the findings from MRI, dwimages (DWI) and MR angiography are practical predictors of t-PA therapy within 3 h of onset. The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan study showed that local intra-arterial fibrinolysis is effective in patients with embolic MCA occlusion within 6 h of the onset of symptoms. Combining the initiation of intravenous t-PA administration with further intra-arterial fibrinolysis or mechanical thrombolectomy may improve the

  18. Thrombolysis by intravenous tissue plasminogen activator (t-PA). Current status and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, Norio [Saitama Medical Univ., International Medical Center, Hidaka, Saitama (Japan)

    2009-01-15

    In Japan, the intravenous tissue plasminogen activator (t-PA) Alteplase (0.6 mg/kg) administration of the within 3 h of the onset of acute ischemic stroke was approved for therapeutic use in the year 2006. t-PA induces thrombolysis in patients with acute ischemic stroke, and this method has gradually gained recognition among physicians and the general population. However, the number of patients who were treated using Alteplase is low (4,000-5,000 patients/year), and this figure accounts for only 2-3% of the annual number of cases of ischemic stroke. There is little doubt that Alteplase treatment is a potentially effective modality for some patients with acute ischemic stroke. The post-marketing surveillance of 4,749 Japanese patients treated using Alteplase showed that 33% of the patients had modified Rankin scale (mRS) scores of 0-1, 17% of patients died and 4.5% presented with symptomatic intracerebral hemorrhage (ICH); these results were comparable to those from other countries. The expansion of the therapeutic time window has been a matter of concern. The investigators of the European Cooperative Acute Stroke Study (ECASS) have reported that there was significant improvement in the clinical outcomes of patients with acute ischemie stroke when Alteplase was administered 3-4.5 h after the onset of the symptoms. Mismatches in perfusion- and diffusion-weighted (DW) magnetic resonance imaging (MRI) images have been used for selecting patients 3 h after the onset of symptoms, and the findings from MRI, dwimages (DWI) and MR angiography are practical predictors of t-PA therapy within 3 h of onset. The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan study showed that local intra-arterial fibrinolysis is effective in patients with embolic MCA occlusion within 6 h of the onset of symptoms. Combining the initiation of intravenous t-PA administration with further intra-arterial fibrinolysis or mechanical thrombolectomy may improve the

  19. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles.

    Science.gov (United States)

    Adomako, M; St-Hilaire, S; Zheng, Y; Eley, J; Marcum, R D; Sealey, W; Donahower, B C; Lapatra, S; Sheridan, P P

    2012-03-01

    A DNA vaccine against infectious haematopoietic necrosis virus (IHNV) is effective at protecting rainbow trout, Oncorhynchus mykiss, against disease, but intramuscular injection is required and makes the vaccine impractical for use in the freshwater rainbow trout farming industry. Poly (D,L-lactic-co-glycolic acid) (PLGA) is a U.S. Food and Drug Administration (FDA) approved polymer that can be used to deliver DNA vaccines. We evaluated the in vivo absorption of PLGA nanoparticles containing coumarin-6 when added to a fish food pellet. We demonstrated that rainbow trout will eat PLGA nanoparticle coated feed and that these nanoparticles can be detected in the epithelial cells of the lower intestine within 96 h after feeding. We also detected low levels of gene expression and anti-IHNV neutralizing antibodies when fish were fed or intubated with PLGA nanoparticles containing IHNV G gene plasmid. A virus challenge evaluation suggested a slight increase in survival at 6 weeks post-vaccination in fish that received a high dose of the oral vaccine, but there was no difference when additional fish were challenged at 10 weeks post-vaccination. The results of this study suggest that it is possible to induce an immune response using an orally delivered DNA vaccine, but the current system needs improvement. © 2012 Blackwell Publishing Ltd.

  20. Natural history of TPA-untreated minor stroke in the North Dublin population stroke study

    LENUS (Irish Health Repository)

    Marnane, M

    2011-05-01

    Introduction: Current guidelines recommend caution when considering emergency tissue plasminogen activator (tPA) therapy for patients with minor neurological deficits. However few data exist regarding the “natural history” (without tPA) of stroke in unselected population-based cohorts. We sought to evaluate the risk of long term disability in “minor stroke” patients.\\r\

  1. A Multi-Agent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges

    Science.gov (United States)

    2016-07-26

    expression 128 of the structural proteins by adapting the gene sequence to reflect the codon bias of highly-129 expressed Homo sapiens genes...optimized expression in Homo sapiens followed by synthesis of the codon-167 optimized genes (Geneart). VEEV, WEEV, and EEEV DNA vaccine plasmids were...735 to biological warfare agents. Clin Lab Med 21:435-473. 736 9. Hanson RP, Sulkin SE, Beuscher EL , Hammon WM, McKinney RW, Work TH. 1967. Arbovirus

  2. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain; Hébert, Charles

    2017-01-15

    ABSTRACT: For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue. - Highlights: •Effect of mutations in E on properties of WN1806 is determined. •A subset of attenuating mutations suitable for a human vaccine is defined. •Mechanism of attenuation is proposed and illustrated. •Underlying mechanisms of neurovirulence reversion are suggested.

  3. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    International Nuclear Information System (INIS)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-01-01

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d 3 ) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d 3 . In addition, both sCD4-gp120 and sCD4-gp120-mC3d 3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d 3 or sCD4-gp120-mC3d 3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d 3 -DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d 3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d

  4. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  5. The 3H-thymidine incorporation into the DNA of different tissues of the guinea pip after BCG-vaccination and the radiation insultus

    International Nuclear Information System (INIS)

    Langbein, U.

    1976-01-01

    The radioprotective effects of BCG vaccines have been examined. The 3 H-thymidine incorporation into the DNA of different tissues of the guinea-pig after solitary whole-body irradiation by the doses of 160, 400, and 700 R have been used as a parameter for radiation injuries and radioprotection. The specific activity of DNA has been detected by means of liquid scintillation counting and by indirect photomeric determination of the amount at 7 h p.r. It has been revealed that independent of the chosen irradiation dose, there was no significant difference in the rate of DNA synthesis in the duodenal, testicular, bone marrow, liver, and lymphatic ganglion tissues of animals vaccinated 30 days before irradiation insultus and the rate of DNA synthesis in normal animals. Based on medical evidence, effect principles which can be observed on other antigenous radioprotective substances can be excluded this time. The dose effect curve has qualitatively the same features as the curves of cell cultures and synchronized cell systems in mammals. Furthermore, the process of DNA synthesis was observed for 56 days. During this observation period there was no significant difference to be seen in the rate of duodenal, testicular, bone marrow, and liver tissues in vaccinated and in normal animals. Only in lymphatic tissues the synthesis rate of vaccinated animals has shown a significantly more decreasing tendency than that of normal animals. A relation concerning radioprotective substances containing SH-groups and 'short-term' protectors (endotoxines) could be excluded because of medical evidence. It is suggested to carry out further tests with parameters affecting the RES in order to comprehend radioprotection after BCG vaccination. (orig./MG) [de

  6. Production of a DNA Vaccine Specific for the 64 kDa Protective Antigen of Erysipelothrix rhusiopathiae

    National Research Council Canada - National Science Library

    Middlebrooks, Bobby L

    2007-01-01

    The gene for the protective antigen of E. rhusiopathiae will be inserted into a eukaryotic vector both for the production of a DNA vaccine and for large scale production of the recombinant protein (in vitro...

  7. Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

    Directory of Open Access Journals (Sweden)

    Najlah Kochtebane

    2014-01-01

    Full Text Available Purpose. Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Methods. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Results. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39. There was no correlation between u-PA and PAI-1 (r=0.3 but t-PA and PAI-1 were strongly correlated with each other (r=0.6. Overexpression of PAI-1 was proportional to the calcium content of the AS valves. Conclusions. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The overexpression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

  8. Chitosan-coated poly(lactic-co-glycolic acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine

    Directory of Open Access Journals (Sweden)

    Zhao K

    2014-09-01

    Full Text Available Kai Zhao,1,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Ci Shi,1,2 Xin Wang,1 Xiaohua Wang,1 Zheng Jin,3 Shangjin Cui2 1Laboratory of Microbiology, School of Life Science, Heilongjiang University, 2Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, 3Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People’s Republic of China *These authors contributed equally to this work Abstract: We determined the efficacy and safety of chitosan (CS-coated poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs as a delivery system for a vaccine to protect chickens against Newcastle disease virus (NDV. The newly constructed vaccine contained DNA (the F gene of NDV. The Newcastle disease virus (NDV F gene deoxyribonucleic acid (DNA plasmid (pFDNA-CS/PLGA-NPs were spherical (diameter =699.1±5.21 nm [mean ± ­standard deviation] and smooth, with an encapsulation efficiency of 98.1% and a Zeta potential of +6.35 mV. An in vitro release assay indicated that CS controlled the burst release of plasmid DNA, such that up to 67.4% of the entire quantity of plasmid DNA was steadily released from the pFDNA-CS/PLGA-NPs. An in vitro expression assay indicated that the expression of nanoparticles (NPs was maintained in the NPs. In an immunization test with specific pathogen-free chickens, the pFDNA-CS/PLGA-NPs induced stronger cellular, humoral, and mucosal immune responses than the plasmid DNA vaccine alone. The pFDNA-CS/PLGA-NPs did not harm 293T cells in an in vitro assay and did not harm chickens in an in vivo assay. Overall, the results indicated that CS-coated PLGA NPs can serve as an efficient and safe mucosal immune delivery system for NDV DNA vaccine.Keywords: mucosal immune delivery system, immune effect

  9. Protective effect of the DNA vaccine encoding the major house dust mite allergens on allergic inflammation in the murine model of house dust mite allergy

    Directory of Open Access Journals (Sweden)

    Lee Jaechun

    2006-02-01

    Full Text Available Abstract Background Vaccination with naked DNA encoding antigen induces cellular and humoral immunity characterized by the activation of specific Th1 cells. Objective To evaluate the effects of vaccination with mixed naked DNA plasmids encoding Der p 1, Der p 2, Der p 3, Der f 1, Der f 2, and Der f 3, the major house dust mite allergens on the allergic inflammation to the whole house dust mites (HDM crude extract. Methods Three hundred micrograms of these gene mixtures were injected into muscle of BALB/c mice. Control mice were injected with the pcDNA 3.1 blank vector. After 3 weeks, the mice were actively sensitized and inhaled with the whole house dust mite extract intranasally. Results The vaccinated mice showed a significantly decreased synthesis of total and HDM-specific IgE compared with controls. Analysis of the cytokine profile of lymphocytes after challenge with HDM crude extract revealed that mRNA expression of interferon-γ was higher in the vaccinated mice than in the controls. Reduced infiltration of inflammatory cells and the prominent infiltration of CD8+ T cells were observed in histology of lung tissue from the vaccinated mice. Conclusion Vaccination with DNA encoding the major house dust mite allergens provides a promising approach for treating allergic responses to whole house dust mite allergens.

  10. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  11. Differential diagnostic value of combined detection of serum CA153, CEA and TPA levels in patients with breast tumor

    International Nuclear Information System (INIS)

    Ding Wei

    2007-01-01

    Objective: To assess the differential diagnostic value of combined detection of serum CA153, CEA and TPA levels in patients with breast tumor. Methods: Serum levels of CA153, CEA and TPA were measured with RIA in 269 patients with breast tumor and 150 controls. Results: The serum levels of CA153, CEA and TPA in patients with breast cancer were significantly higher than those in the patients with benign breast tumor and controls. The positive rate of CA153 was 63.8% in the patients with breast cancer and that of CEA and TPA was 22.4% and 62.1% respectively, with combined detection of CA153 and CEA, the positive rate was 69.8%, with CA153 and TPA combined, the positive rate was 87.1%, with the three marker combined, the positive rate was 90.5%. The specificity was 77.9% with CA153, 77.9% with CA153 and CEA, 71.9% with CA153 and TPA, and 73.4% with all the three markers combined. Conclusion: The positive rate was increased remarkably with combined detection of CA153, CEA and TPA, however the specificity was not much changed, so the combined detection was valuable for differential diagnosis. (authors)

  12. Assessment of CA 15.3, CEA and TPA concentrations during monitoring of breast cancer

    DEFF Research Database (Denmark)

    Sölétormos, G; Petersen, P H; Dombernowsky, P

    2000-01-01

    The variability of the tumor markers cancer antigen (CA) 15.3, carcinoembryonic antigen (CEA) and tissue polypeptide antigen (TPA) during steady state concentrations and the rate of increase during progression is described. One hundred and ninety-two patients were monitored during first...... with above cutoff level values. Clinical and marker progression was registered for 75 (CA 15.3), 62 (CEA), and 57 (TPA) patients. The coefficients of total variation of steady state concentrations (comprising the intra- and interassay analytical imprecision and the within subject biological variation) were...... for TPA (0.0346). Our data indicate that criteria for assessment of sequential tumor marker concentrations should consider the marker in question, the steady state variability, the cutoff value, and the rate of increase during disease progression....

  13. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    Science.gov (United States)

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  14. Catheter-directed Thrombolysis with Argatroban and tPA for Massive Iliac and Femoropopliteal Vein Thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mohsen, E-mail: seyedmohsensharifi@yahoo.com [Arizona Cardiovascular Consultants (United States); Bay, Curt [A. T. Still University (United States); Nowroozi, Sasan; Bentz, Suzanne; Valeros, Gayle; Memari, Sara [Arizona Cardiovascular Consultants (United States)

    2013-12-15

    Purpose: Catheter-directed thrombolysis (CDT) is a highly effective approach in the treatment of deep venous thrombosis (DVT). There are no data on the primary use of CDT with argatroban and tissue plasminogen activator (tPA) in patients without heparin-induced thrombocytopenia (HIT). The aim of this study was to evaluate the efficacy and safety of the combined administration of argatroban and tPA during CDT for massive DVT in patients without HIT. Methods: Thirty-three patients with massive symptomatic iliac and femoropopliteal DVT underwent CDT with tPA and argatroban within 28 {+-} 6 h of presentation. The dose of tPA was 0.75-1 mg/h through the infusion port and that of argatroban at 0.3-1 {mu}g/kg/min through the side port of the sheath. The patients were evaluated for the efficacy and safety of CDT and recurrent symptomatic venous thromboembolism (VTE) at a mean follow-up of 22 months. Results: There was no bleeding or iatrogenic pulmonary embolism with the CDT regimen we used. Grade III lysis (complete resolution of thrombus on venography) was achieved in 30 patients (91 %). In 3 patients with additional inferior vena cava filter thrombosis, further thrombectomy of the filter was required. No patient developed recurrent VTE. Conclusion: Concomitant administration of argatroban and tPA is a highly safe and effective regimen for CDT for massive DVT.

  15. Investigation of DNA Integration into Reproductive Organs Following Intramuscular Injection of DNA in Mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Vahedi

    2012-10-01

    Full Text Available Background: DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host genome, and elicitation of adverse immune responses. Methods: In this study, we examined the potential integration and bio-distribution of pcDNA3.1+PA, a new vaccine candidate with GenBank accession # EF550208, encoding the PA63 gene, in reproductive organs of mice; ovaries and uterus in female, and testis in male. Animals of both sexes were injected intramuscularly with pcDNA3.1+PA. Host genome integration and tissue distribution were examined using PCR and RT-PCR two times monthly for six months. Results: RT-PCR confirmed that pcDNA3.1+PA was not integrated into the host genome and did not enter reproductive organs. Conclusions: This finding has important implications for the use of pcDNA3.1+PA plasmid as a vaccine and opens new perspectives in the DNA vaccine area.

  16. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  17. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine

    Science.gov (United States)

    Muthumani, Karuppiah; Griffin, Bryan D; Agarwal, Sangya; Kudchodkar, Sagar B; Reuschel, Emma L; Choi, Hyeree; Kraynyak, Kimberly A; Duperret, Elizabeth K; Keaton, Amelia Anne; Chung, Christopher; Kim, Yinho K; Booth, Stephanie A; Racine, Trina; Yan, Jian; Morrow, Matthew P; Jiang, Jingjing; Lee, Brian; Ramos, Stephanie; Broderick, Kate E; Reed, Charles C; Khan, Amir S; Humeau, Laurent; Ugen, Kenneth E; Park, Young K; Maslow, Joel N; Sardesai, Niranjan Y; Joseph Kim, J; Kobinger, Gary P; Weiner, David B

    2016-01-01

    Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre’ syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR−/−) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR−/− mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans. PMID:29263859

  18. ZIKA-001: Safety and Immunogenicity of an Engineered DNA Vaccine Against ZIKA virus infection

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Zaidi, Faraz; Boyer, Jean; Kudchodkar, Sagar; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Kobinger, Gary P; Weiner, David; Maslow, Joel

    2017-01-01

    Abstract Background While Zika virus (ZIKV) infection is typically self-limited, congenital birth defects and Guillain-Barré syndrome are well-described. There are no therapies or vaccines against ZIKV infection. Methods ZIKA-001 is a phase I, open label, clinical trial designed to evaluate the safety, side effect profile, and immunogenicity of a synthetic, DNA vaccine (GLS-5700) targeting the pre-membrane+envelope proteins (prME) of the virus. Two groups of 20 participants received GLS-5700 at one of two dose levels: 1 mg or 2 mg DNA/dose at 0, 4, and 12 weeks. Vaccine was administered as 0.1 or 0.2 ml (1 or 2 mg) intradermal (ID) injection followed by electroporation (EP) with the CELLECTRA®-3P device Results The median age of the 40 participants was 38 (IQR 30–54) years; 60% were female 30% Latino and 78% white. No SAEs have been reported to date. Local minor AEs were injection site pain, redness, swelling and itching that occurred in half of the participants. Systemic adverse events were rare and included headache, myalgias, upper respiratory infections, fatigue/malaise and nausea. Four weeks after the first dose 25% vs. 60% of the participants in the 1 mg and 2 mg dose seroconverted. By week 6, 2 weeks after the second dose, the response was 65 and 84% respectively and 2 weeks after the third dose all participants in both dosing groups developed antibodies. At the end of the vaccination period over 60% of vaccinated person neutralized Zika virus in a vero cell assay and greater than 80% on neuronal cell targets. The protective efficacy of the antibodies generated by the vaccine was evaluated in the lethal IFNAR−/− mouse model. After the intraperitoneal administration of 0.1 ml of either baseline, week 14 serum or PBS the animals were challenged with 106 PFUs of ZIKV PR209 isolate. Whereas animals administered PBS (control) or baseline serum succumbed after a median of 5 days, those pretreated with week 14 serum from study participants survived

  19. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure.

    Directory of Open Access Journals (Sweden)

    Nicole Haese

    Full Text Available Andes virus (ANDV and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000. Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50. Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8, or no-treatment (n=8, developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral

  20. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  1. Preclinical assessment of adjunctive tPA and DNase for peritoneal dialysis associated peritonitis.

    Directory of Open Access Journals (Sweden)

    Amanda L McGuire

    Full Text Available A major complication of peritoneal dialysis is the development of peritonitis, which is associated with reduced technique and patient survival. The inflammatory response elicited by infection results in a fibrin and debris-rich environment within the peritoneal cavity, which may reduce the effectiveness of antimicrobial agents and predispose to recurrence or relapse of infection. Strategies to enhance responses to antimicrobial agents therefore have the potential to improve patient outcomes. This study presents pre-clinical data describing the compatibility of tPA and DNase in combination with antimicrobial agents used for the treatment of PD peritonitis. tPA and DNase were stable in standard dialysate solution and in the presence of antimicrobial agents, and were safe when given intraperitoneally in a mouse model with no evidence of local or systemic toxicity. Adjunctive tPA and DNase may have a role in the management of patients presenting with PD peritonitis.

  2. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis.

    Science.gov (United States)

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2017-03-01

    There is no effective vaccine for the prevention and elimination of leishmaniasis. For this reason, we assessed the protective effects of DNA vaccines containing LeIF, TSA genes alone, or LeIF-TSA fusion against cutaneous leishmaniasis pEGFP-N1 plasmid (empty vector) and phosphate buffer saline (PBS) were used as control groups. Therefore, cellular and humoral immune responses were evaluated before and after the challenge with Leishmania major. Lesion diameter was also measured 3-12 weeks after challenge. All immunized mice with plasmid DNA encoding Leishmania antigens induced the partial immunity characterized by increased IFN-γ and IgG2a levels compared with control groups (p TSA, and LeIF-TSA, respectively, than in PBS group at 12th week post infection. IFN/IL-4 and IgG2a/IgG1 ratios indicated that group receiving LeIF-TSA fusion had the highest IFN-γ and IgG2a levels. In this study, DNA immunization promoted Th1 immune response characterized by higher IFN-γ and IgG2a levels and also reduction in lesion size. These results showed that a bivalent vaccine containing two distinct antigens may induce more potent immune responses against leishmaniasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  3. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...

  4. Unstandardized Responses to a "Standardized" Test: The edTPA as Gatekeeper and Curriculum Change Agent

    Science.gov (United States)

    Ledwell, Katherine; Oyler, Celia

    2016-01-01

    We examine edTPA (a teacher performance assessment) implementation at one private university during the first year that our state required this exam for initial teaching certification. Using data from semi-structured interviews with 19 teacher educators from 12 programs as well as public information on edTPA pass rates, we explore whether the…

  5. Optimizing reactive responses to outbreaks of immunizing infections: balancing case management and vaccination.

    Directory of Open Access Journals (Sweden)

    Petra Klepac

    Full Text Available For vaccine-preventable infections, immunization generally needs to be supplemented by palliative care of individuals missed by the vaccination. Costs and availability of vaccine doses and palliative care vary by disease and by region. In many situations, resources for delivery of palliative care are independent of resources required for vaccination; however we also need to consider the conservative scenario where there is some trade-off between efforts, which is of potential relevance for resource-poor settings. We formulate an SEIR model that includes those two control strategies--vaccination and palliative care. We consider their relative merit and optimal allocation in the context of a highly efficacious vaccine, and under the assumption that palliative care may reduce transmission. We investigate the utility of a range of mixed or pure strategies that can be implemented after an epidemic has started, and look for rule-of-thumb principles of how best to reduce the burden of disease during an acute outbreak over a spectrum of vaccine-preventable infections. Intuitively, we expect the best strategy to initially focus on vaccination, and enhanced palliative care after the infection has peaked, but a number of plausible realistic constraints for control result in important qualifications on the intervention strategy. The time in the epidemic when one should switch strategy depends sensitively on the relative cost of vaccine to palliative care, the available budget, and R0. Crucially, outbreak response vaccination may be more effective in managing low-R0 diseases, while high R0 scenarios enhance the importance of routine vaccination and case management.

  6. Optimization of a methamphetamine conjugate vaccine for antibody production in mice.

    Science.gov (United States)

    Stevens, Misty W; Gunnell, Melinda G; Tawney, Rachel; Owens, S Michael

    2016-06-01

    There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. TPA device for demonstration

    International Nuclear Information System (INIS)

    1980-02-01

    The TPA (torus plasma for amature) is a small race-trac type device made by the technical service division to demonstrate basic properties of plasma such as electron temperature, conductivity, effect of helical field for toroidal drift, and shape of plasma in mirror and cusp magnetic field in linear section. The plasmas are produced by RF discharge (-500W) and/or DC discharge (-30 mA) within glass discharge tube. Where major radius is 50 cm, length of linear section is 50 cm, toroidal magnetic field is 200 gauss. The device has been designed to be compact with only 100 V power source (-3.2 KW for the case without helical field) and to be full automatic sequence of operation. (author)

  8. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    Science.gov (United States)

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-04-01

    Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non-invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein-expressing Caco-2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  9. Application of tumor markers SCC-Ag, CEA, and TPA in patients with cervical precancerous lesions.

    Science.gov (United States)

    Farzaneh, Farah; Shahghassempour, Shapour; Noshine, Bahram; Arab, Maliheh; Yaseri, Mehdi; Rafizadeh, Mitra; Alizadeh, Kamyab

    2014-01-01

    To determine the potential clinical utility of tumor markers CEA, TPA, and SCC-Ag for early detection of cervical precancerous lesions. A case-control study was carried out on 120 women (46 patients with histologically confirmed cervical precancerous lesions and 74 healthy controls). The significance of serum selected tumor markers in early detection of cervical intraepithelial neoplasia (CIN) were assessed. Of the case group, the rates of CIN I, II, III, was 69.6%, 23.9%, and 6.5%, respectively. According to the manufacturer's cut-off values of 2 ng/ml, 5 ng/ml, and 70 U/ml for SCC-Ag, CEA and TPA tests, in that order, SCC-Ag test had a sensitivity of 13%, but CEA and TPA tests could not distinguish between case and control groups. The diagnostic sensitivities were highest at cut-off values of 0.55 ng/ml for SCC-Ag, 2.6 ng/ ml for CEA, and 25.5 U/ml for TPA which were 93%, 61%, and 50%, respectively. However, the area under the receiver operating characteristic curve was the largest for SCC-Ag (0.95 vs. 0.61 and 0.60 for CEA and TPA, respectively). Moreover, there was a highly significant direct correlation between SCC-Ag concentration and the degree of cervical precancerous lesions (r=0.847, ptumor marker in Iranian patients with CIN and it needs to be more evaluated by studies with larger populationa.

  10. Constructing DNA Barcode Sets Based on Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi

    2018-01-01

    Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.

  11. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  12. Association Between PAI-1 Activity Levels and t-PA Antigen with Glycemic Status in Prediabetic Population

    Directory of Open Access Journals (Sweden)

    Andi Fachruddin Benyamin

    2016-11-01

    Full Text Available Aim: to evaluate an association between fibrinolysis defect and glycemic status in prediabetic population by assessing the levels of t-PA antigen and PAI-1 activity. Methods: it was an observational study with cross-sectional approach. There were 72 subjects aged 30-50 years who had met the inclusion criteria. The diagnosis of diabetes mellitus (DM and glycemic index were determined based on the American Diabetes Association (ADA criteria. The PAI-1 and t-PA antigen levels were measured quantitatively using enzyme-linked immunosorbent assay (ELISA. Analysis between the levels of t-PA antigen and PAI-1 activity was performed using ANOVA. Results: the t-PA antigen level was significantly higher in subjects with impaired glucose tolerance (IGT and impaired fasting blood glucose (IFBG as well as subject with impaired fasting blood glucose (IFBG than those with normal glucose tolerance (NGT (p=0.047. The PAI-1 activity was significantly higher in subjects with IGT, IFBG and subjects with IFBG than NGT (p=0.024. There was a significant association between glycemic status in prediabetic subjects and PAI-1 activity (p=0.04. Conclusion: the level of t-PA antigen and PAI-1 activity were significantly higher in prediabetic subjects than those with NGT; and there was a significant association between glycemic status in prediabetic subjects and PAI-1 activity.

  13. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  14. Abeta DNA vaccination for Alzheimer's disease: focus on disease prevention.

    Science.gov (United States)

    Cribbs, David H

    2010-04-01

    several significant advantages, including lower cost and the typical immunization protocol should be much less intrusive to the patient relative to passive therapy, in the advent of Abeta-antibody immune complex-induced adverse events the patients will have to receive immuno-supperssive therapy for an extended period until the anti Abeta antibody levels drop naturally as the effects of the vaccine decays over time. Obviously, improvements in vaccine design are needed to improve both the safety, as well as the efficacy of anti-Abeta immunotherapy. The focus of this review is on the advantages of DNA vaccination for anti-Abeta immunotherapy, and the major hurdles, such as immunosenescence, selection of appropriate molecular adjuvants, universal T cell epitopes, and possibly a polyepitope design based on utilizing existing memory T cells in the general population that were generated in response to childhood or seasonal vaccines, as well as various infections. Ultimately, we believe that the further refinement of our AD DNA epitope vaccines, possibly combined with a prime boost regime will facilitate translation to human clinical trials in either very early AD, or preferably in preclinical stage individuals identified by validated AD biomarkers.

  15. Copper Hugoniot measurements to 2.8 TPa on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael D.; Haill, Thomas A

    2018-04-01

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure on the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.

  16. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens.

    Science.gov (United States)

    Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-09-01

    Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier

  17. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Pmaxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  19. ZEUS - standardized macros for the TPA computer

    International Nuclear Information System (INIS)

    Winde, M.

    1976-01-01

    An existing cross-assembler with macro-option was modified to allow the usage of the ZEUS macros. The ZEUS macros are understood by the assembler without prior definition by the user. ZEUS macros allow the programmer, who is obliged to code his TPA (PDP-8) programs on the assembler level to formulate his program logic as in a higher level language. ZEUS macros offer all basic elements necessary for structured programming. (author)

  20. An optimized DNA extraction protocol for benthic Didymosphenia geminata.

    Science.gov (United States)

    Uyua, Noelia Mariel; Manrique, Julieta Marina; Jones, Leandro Roberto

    2014-09-01

    Didymosphenia geminata mats display few cells in relation to extracellular material and contain polysaccharides and heavy metals that interfere with molecular studies. We describe an optimized DNA extraction protocol that help to overcome these difficulties. Our protocol outperformed five previously described DNA extraction techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Lorenzen, Niels; Einer-Jensen, Katja

    2005-01-01

    The present study was performed as a time course study of fish vaccinated with 20 mu g plasmid DNA vaccine encoding either the VHSV G-protein or the VHSV N-protein. Samples of the injection site were collected sequentially over a 7-week period. The study revealed an intense positive staining by i...

  2. Testing the ability of viral haemorrhagic septicaemia virus to evade the protective immune response induced in rainbow trout by DNA vaccination

    DEFF Research Database (Denmark)

    Sepulveda, Dagoberto; Lorenzen, Niels

    2013-01-01

    , this work aims to evaluate whether VHSV is able to evade the protective immune response induced by the DNA vaccination. Earlier studies have demonstrated that VHSV can evade the neutralizing effect of monoclonal antibodies by mutations in the glycoprotein gene. One approach of the present study is therefore...... to try to isolate VHSV variants which can escape the neutralizing activity of serum from fish immunized with the DNA vaccine. To do so, a highly pathogenic VHSV isolate (DK3592B) will be repeatedly passaged in fish cell cultures in the presence of neutralizing fish serum. Another approach comprises...

  3. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  4. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  5. [Combined use of irradiation and DNA tumor vaccine to treat canine oral malignant melanoma: a pilot study].

    Science.gov (United States)

    Herzog, A; Buchholz, J; Ruess-Melzer, K; Lang, J; Kaser-Hotz, B

    2013-02-01

    Melanoma is the most common oral tumor in dogs, characterized by rapid growth, local invasion, and high metastatic rate. The goal of this study was to evaluate the combination of radiation therapy and DNA tumor vaccine. We hypothesized, that the concurrent use would not increase toxicity. Nine dogs with oral melanoma were treated with 4 fractions of 8 Gray at 7-day intervals. The vaccine was given 4 times every 14 days, beginning at the first radiation fraction. Local acute radiation toxicities were assessed according to the VRTOG toxicity scoring scheme over a time period of 7 weeks. In none of the evaluated dogs, mucositis, dermatitis and conjunctivitis exceeded grade 2. In 3 dogs mild fever, lethargy, and local swelling at the injection site were seen after vaccine application. In conclusion, the concurrent administration of radiation therapy and vaccine was well tolerated in all dogs.

  6. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    Science.gov (United States)

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  7. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Ma, Jiang-Yao; Hao, Le; Liu, Zhen-Xing

    2017-07-01

    Streptococcus agalactiae (S. agalactiae) is an important fish pathogen, which has received more attention in the past decade due to the increasing economic losses in the tilapia industry worldwide. As existing effective vaccines of S. agalactiae in fish have obvious disadvantage, to select immunoprotective antigens and package materials would undoubtedly contribute to the development of novel oral vaccines. In the present study, surface immunogenic protein (sip) was selected from the S. agalactiae serovar I a genomes as immunogenic protein in DNA vaccine form with cationic chitosan and biodegradable and biocompatible PLGA. The pcSip plasmid in cationic-PLGA was successfully expressed in tissues of immunized tilapia and the immunogenicity was assessed in tilapia challenge model. A significant increase was observed in the cytokine levels of IL-1β, TNF-α, CC1, CC2 in spleen and kidney tissues. Furthermore, immunized tilapia conferred different levels of protection against challenge with a lethal dose of highly virulent serovar I a S. agalactiae. Our results indicated that the pcSip plasmid in cationic-PLGA induced high level of antibodies and protection against S. agalactiae infection, could be effective oral DNA vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Efficacy of DSP30-IL2/TPA for detection of cytogenetic abnormalities in chronic lymphocytic leukaemia/small lymphocytic lymphoma.

    Science.gov (United States)

    Holmes, P J; Peiper, S C; Uppal, G K; Gong, J Z; Wang, Z-X; Bajaj, R

    2016-10-01

    Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia in the Western Hemisphere. Cytogenetic abnormalities in CLL are used for diagnosis, prognosis and treatment. However, detecting these is difficult because mature B cells do not readily divide in culture. Here, we present data on two mitogen cocktails: CpG-oligonucleotide DSP30/Interleukin-2 (IL-2) and DSP30/IL-2 in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA). We analysed 165 cases of CLL with FISH and cytogenetics from January 2011 to June 2013. In 2011, three cultures were set-up: unstimulated, DSP30/IL-2-stimulated and TPA-stimulated. In 2012-2013, two cultures were set-up: unstimulated and stimulated with TPA/DSP30/IL-2. In 2011, FISH had a detection rate of 91% and cytogenetics using DSP30/IL2 had a detection rate of 91% (n = 22). In 2012-2013, FISH had a detection rate of 79% and cytogenetics using TPA/DSP30/IL-2 had a detection rate of 98% (n = 40). The percentage of cases with normal FISH but abnormal cytogenetics increased from 9% in 2011 to 21% in 2012-2013. The TPA/DSP30/IL-2 cultures in 2012-2013 detected more novel abnormalities (n = 5) as compared to DSP30/IL-2 alone (n = 3). TPA/DSP30/IL2 was as good as or better than DSP30/IL2 alone. TPA/DSP30/IL-2 offers a high detection rate for CLL abnormalities with a single stimulated culture and may increase detection of clinically significant abnormalities. © 2016 John Wiley & Sons Ltd.

  9. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Karthik Mallilankaraman

    2011-01-01

    Full Text Available Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.

  10. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    Science.gov (United States)

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Management of acute ischemic stroke. What is the role of tPA and antithrombotic agents?

    Science.gov (United States)

    Meschia, J F

    2000-05-15

    Every patient with acute stroke who presents to a medical center that has appropriate resources should undergo evaluation for intravenous tPA therapy. Such therapy should not be given unless the patient meets strict eligibility criteria based on clinical, radiographic, and laboratory data. Intra-arterial thrombolysis may be a promising alternative to intravenous tPA therapy, but it should still be regarded as experimental. Daily aspirin therapy should be initiated immediately in most patients who do not receive intravenous tPA therapy and after 24 hours in most patients who receive this treatment. Measures should be taken to prevent medical complications, such as aspiration pneumonia, deep vein thrombosis, contractures, and pressure sores. Early initiation of rehabilitation can maximize stroke recovery. Whenever feasible, institutions should have stroke teams or units to streamline care and provide expertise for patients with acute stroke.

  12. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  13. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  14. Luminoimmunometric Assay of Tissue Polypeptide Antigen (Tpa and Cancer Antigen 125 (Ca-125 in Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    O. El-Ahmady

    1993-01-01

    Full Text Available Serum TPA and CA-125 were determined in 86 individuals (66 with breast cancer representing the different stages and grades of the disease and 20 normal healthy controls. TPA and CA-125 were estimated using the L1A reagents supplied by BYK Sangtec. TPA showed sensitivity rates of 31.8%, 42.4% and 51.5% while CA-125 showed sensitivities of 16.3%, 18.6% and 25.6% at specificity levels of 100%, 95% and 90% respectively. Combined determination of the two markers resulted in some improvement in sensitivity. For follow-up of breast cancer patients after surgery both markers were of value and showed near-identical patterns.

  15. Electric gun: a new method for generating shock pressures in excess of 1 TPa

    International Nuclear Information System (INIS)

    Steinberg, D.; Chau, H.; Dittbenner, G.; Weingart, R.

    1978-01-01

    By combining the electrically-driven, flying-plate, high-explosive initiator with well-known gas-gun technology, a novel method of generating and measuring shock pressures greater than 1 TPa has been developed. Called the electric gun, this system is competitive with laser or nuclear-driven, shock-wave, equation-of-state experiments in the 1 to 5 TPa range. Compared to those other methods, it has the advantage of simplicity, high precision, and low cost. In addition, its small size and low total energy allow it to be easily contained for experiments with toxic materials

  16. IDENTIFIKASI PERTAMBAHAN PERSEBARAN LIMBAH TEMPAT PEMBUANGAN AKHIR (TPA JATIBARANG TAHUN 2015 MENGGUNAKAN METODE GEOLISTRIK

    Directory of Open Access Journals (Sweden)

    R S Wulandari

    2016-04-01

    Full Text Available Pada tahun 2000 timbunan sampah pada TPA Jatibarang yang berlokasi di Kelurahan Kedungpane Kecamatan Mijen Kota Semarang, sudah melebihi daya tampung yaitu sekitar 1,6 juta m3. Kondisi tersebut sangat berpotensi menimbulkan pencemaran lingkungan terutama pencemaran leacheat (air lindi. Oleh karena itu, dilakukan penelitian untuk mengetahui tingkat pencemaran limbah di daerah sekitar TPA Jatibarang pada tahun  2015 dengan menggunakan metode geolistrik konfigurasi schlumberger. Pengambilan data dilakukan pada tiga titik penelitian, dua berada didalam TPA dan satu berada di daerah perumahan sekitar TPA dengan panjang lintasan masing-masing 75 m. Pengolahan data hasil penelitian dilakukan dengan menggunakan softwareres2dinv. Hasil yang didapatkan berupa kondisi topografi serta nilai resistivitas lindi sebesar 0,044-0,70 Ωm. Persebaran lindi pada tahun 2015 menuju ke daerah dengan elevasi rendah yang mengarah ke Sungai Kreo. Sedangkan persebaran lindi pada lokasi penelitian di Perumahan Bambankerep Kecamatan Ngaliyan Kota Semarang juga telah diidentifikasikan tercemar oleh air lindi yang diduga berasal TPA Jatibarang.In 2000, piles of garbage in the landfill is located in the Village Jatibarang Kedungpane Mijen District of Semarang, has exceeded the capacity of around 1.6 million m3. The condition is potentially causing environmental pollution, especially pollution leacheat (leachate. Therefore, to investigate the pollution level of waste in the area around the landfill Jatibarang 2015 using geoelectric method Schlumberger configuration. Data were collected at three points research, two are in the landfill and one is located in a residential area around the landfill with a path length of each- each 75 m. Data processing results of research conducted by using softwareres2dinv. Results obtained in the form of topography and leachate resistivity value of 0.044 Ωm- 0.70 Ωm. Distribution of leachate in 2015 heading to areas with low elevation that

  17. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model ...... results when index cases were in the vaccinated areas. However, given that the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seem preferable....

  18. A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma.

    Science.gov (United States)

    Treggiari, Elisabetta; Grant, Jessica Pauline; North, Susan Margaret

    2016-06-01

    A xenogeneic DNA vaccination has been licensed for use in dogs with locally controlled stage II and III oral malignant melanoma (OMM). At present, there are limited outcome data for dogs with OMM treated with surgery and immunotherapy. The aim of this study is to retrospectively review the outcome and survival of 32 dogs affected by OMM that were treated with a combination of surgery and the xenogeneic DNA vaccination (with the addition of radiotherapy in some cases) and to determine the influence of surgical margins and delay in receiving vaccination. The overall median survival time (MST) was 335 days (95% CI: 301-540 days), and the overall median progression-free survival (PFS) was 160 days (mean 182 days, 95% CI: 132-232 days). Stage, completeness of surgical margins and delay in administration of the vaccine did not appear to statistically influence survival or PFS, although these results may reflect the low statistical power of the study due to small numbers. Further studies are required to assess whether the addition of any adjuvant treatment to surgery, including immunotherapy, is able to significantly prolong survival in cases of canine oral melanoma.

  19. Production and Purification of Monoclonal Antibody Against Tumor Marker of TPA

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Abbas Ghodrat

    2016-05-01

    Full Text Available Considering the invasive nature of cancer cells, one of the most important and best indicator of them is the markers inside them. One of the most important markers that observed in some types of cancer cells in various parts of the body is the Cytokeratin. Tissue plasminogen activator antigen (TPA is a Cytokeratin composed of molecules with various molecular weights. The level of TPA serum as associated with cellular growth level and tumorization of cells. In this research, the hybrid of spleen cells in BALB/c female mouse with myeloma cells was conducted with a ratio of 10:1. The resulting monoclonal antibodies were confirmed by SDS-PAGE and western blot. Protein G chromatography was utilized to purify monoclonal antibodies. The results for determining isotypes showed IgM and IgG classes. The titer of the antibody obtained from various clones was capable of identifying Cytokeratin antigen with a dilution of 1/10000. The resulting antibodies were finally confirmed by western blot and all the 5 resulting monoclonal antibodies were capable of identifying a 48 kDa protein. The results indicate that with the help of TPA marker and the monoclonal antibodies produced against them, this marker can be recognized quickly with great accuracy in suspicious cases of cancer. Thus, appropriate measures will be taken to prevent and fight off its probable side effects. This factor can be further used to build a diagonal kit with high sensitivity.

  20. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice

    International Nuclear Information System (INIS)

    Jin Huali; Xiao Chong; Chen Ze; Kang Youmin; Ma Yijie; Zhu Kaichun; Xie Qifa; Tu Yixian; Yu Yang; Wang Bin

    2005-01-01

    Vaccination against the SARS-CoV infection is an attractive means to control the spread of viruses in public. In this study, we employed a DNA vaccine technology with the levamisole, our newly discovered chemical adjuvant, to generate Th1 type of response. To avoid the enhancement antibody issue, genes encoding the nucleocapsid, membrane, and envelope protein of SARS-CoV were cloned and their expressions in mammalian cells were determined. After the intramuscular introduction into animals, we observed that the constructs of the E, M, and N genes could induce high levels of specific antibodies, T cell proliferations, IFN-γ, DTH responses, and in vivo cytotoxic T cells activities specifically against SARS-CoV antigens. The highest immune responses were generated by the construct encoding the nucleocapsid protein. The results suggest that the N, M, and E genes could be used as the targets to prevent SARS-CoV infection in the DNA vaccine development

  1. Molecular adjuvant interleukin-33 enhances the antifertility effect of Lagurus lagurus zona pellucida 3 DNA vaccine administered by the mucosal route

    Directory of Open Access Journals (Sweden)

    Y.X. Tu

    2013-12-01

    Full Text Available It has been shown that cytokines can act as molecular adjuvant to enhance the immune response induced by DNA vaccines, but it is unknown whether interleukin 33 (IL-33 can enhance the immunocontraceptive effect induced by DNA vaccines. In the present study, we explored the effects of murine IL-33 on infertility induced by Lagurus lagurus zona pellucida 3 (Lzp3 contraceptive DNA vaccine administered by the mucosal route. Plasmid pcD-Lzp3 and plasmid pcD-mIL-33 were encapsulated with chitosan to generate the nanoparticle chi-(pcD-Lzp3+pcD-mIL-33 as the DNA vaccine. Sixty female ICR mice, divided into 5 groups (n=12/group, were intranasally immunized on days 0, 14, 28, and 42. After intranasal immunization, the anti-LZP3-specific IgG in serum and IgA in vaginal secretions and feces were determined by ELISA. The results showed that chi-(pcD-Lzp3+pcD-mIL-33 co-immunization induced the highest levels of serum IgG, secreted mucosal IgA, and T cell proliferation. Importantly, mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33 had the lowest birth rate and mean litter size, which correlated with high levels of antibodies. Ovaries from infertile female mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33 showed abnormal development of ovarian follicles, indicated by atretic follicles and loss of oocytes. Our results demonstrated that intranasal delivery of the molecular adjuvant mIL-33 with chi-pcD-Lzp3 significantly increased infertility by enhancing both systemic and mucosal immune responses. Therefore, chi-(pcD-Lzp3+pcD-mIL-33 co-immunization could be a strategy for controlling the population of wild animal pests.

  2. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  3. The effect of co-administration of DNA carrying chicken interferon-gamma gene on protection of chickens against infectious bursal disease by DNA-mediated vaccination.

    Science.gov (United States)

    Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long

    2006-11-17

    The purpose of the present study was to determine whether DNA vaccination by co-administration of DNA coding for chicken interferon-gamma (IFN-gamma) gene and DNA encoding for the VP243 gene of IBDV could enhance immune response and protection efficacy of chickens against challenge by IBDV. Plasmids carrying VP243 gene of IBDV strain variant E (VE) (P/VP243/E) and chicken IFN-gamma gene (P/cIFN-gamma) were constructed, respectively. One-day-old chickens were intramuscularly injected with P/VP243/E, or P/cIFN-gamma, or both once, twice, or three times into the thigh muscle of one leg or the thigh muscles of two separate legs at weekly intervals. Chickens were orally challenged with IBDV strain VE at 3 weeks of age and observed for 10 days. Chickens receiving two plasmids in the same site two times had significantly higher (Pprotection and those receiving two plasmids in the same sites did not have any protection against IBD. The enzyme-linked immunosorbent assay (ELISA) and virus neutralization (VN) titers to IBDV of chickens in the groups with three doses of P/VP243/E were significantly higher (Pprotected by DNA vaccination did not have detectable IBDV antigen in the bursae as determined by immunofluorescent antibody assay (IFA). The results indicated that co-administration of plasmid encoding chicken IFN-gamma gene with plasmid encoding a large segment gene of the IBDV did not enhance immune response and protection against challenge by IBDV.

  4. Dose-optimal vaccine allocation over multiple populations

    OpenAIRE

    Duijzer, Evelot; Jaarsveld, Willem; Wallinga, Jacco; Dekker, Rommert

    2015-01-01

    textabstractFor a large number of infectious diseases, vaccination is the most effective way to prevent an epidemic. However, the vaccine stockpile is hardly ever sufficient to treat the entire population, which brings about the challenge of vaccine allocation. To aid decision makers facing this challenge, we provide insights into the structure of this problem. We first investigate the dependence of health benefit on the fraction of people that receive vaccination, where we define health bene...

  5. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  6. Polysaccharides from Dioscorea (山藥 Shān Yào and Other Phytochemicals Enhance Antitumor Effects Induced by DNA Vaccine Against Melanoma

    Directory of Open Access Journals (Sweden)

    Wen-Chi Wei

    2014-01-01

    Full Text Available Adjuvants can be used to enhance the immunogenicity of antigens and improve the efficacy of vaccines. Potent adjuvant action is known to often correlate with the activation of the transcription factor, nuclear factor-κB (NF-κB. Specific plant polysaccharides and a variety of phytochemicals from foods and traditional medicinal herbs have been shown to modulate NF-κB activation. In the present study, selected plant polysaccharides and phytochemicals were evaluated for use as a DNA vaccine adjuvant in a murine melanoma model. We observed that a specific ethanol extract fraction (DsCE-I from the tuber of a key Traditional Chinese Medicine plant, Dioscorea (山藥 Shān Yào, enhanced the protection against melanoma after immunization with a gene-based vaccine. A number of anti-inflammatory phytochemicals tested were able to partially diminish the inflammation-associated tumorigenesis elicited by LPS. Among the several phytochemical combinations investigated, the use of an adjuvant containing LPS in combination with emodin resulted in smaller tumors and higher survival rate in test mice than the use of other adjuvant treatments and the control sets in this DNA cancer vaccine model. A Dioscorea polysaccharide fraction (DsCE-I and several specific phytochemicals warrant further exploration as useful adjuvants for anticancer vaccines.

  7. Dose-optimal vaccine allocation over multiple populations

    NARCIS (Netherlands)

    L.E. Duijzer (Evelot); W.L. van Jaarsveld (Willem); J. Wallinga (Jacco); R. Dekker (Rommert)

    2015-01-01

    textabstractFor a large number of infectious diseases, vaccination is the most effective way to prevent an epidemic. However, the vaccine stockpile is hardly ever sufficient to treat the entire population, which brings about the challenge of vaccine allocation. To aid decision makers facing this

  8. A Phase I Trial of a Human Papillomavirus (HPV) DNA Vaccine for HPV16+ Cervical Intraepithelial Neoplasia 2/3

    Science.gov (United States)

    Trimble, Cornelia L.; Peng, Shiwen; Kos, Ferdynand; Gravitt, Patti; Viscidi, Raphael; Sugar, Elizabeth; Pardoll, Drew; Wu, TC

    2010-01-01

    Purpose: To evaluate the safety and immunogenicity of a therapeutic HPV16 DNA vaccine administered to women with HPV16+CIN2/3. Experimental Design: This phase I trial incorporated the standard ‘3+3” dose escalation design with an additional 6 patients allocated to the maximally tolerated dose (MTD). Healthy adult women with colposcopically-directed biopsy-proven HPV16+ CIN2/3 received three intramuscular (IM) vaccinations (0.5 mg, 1 mg, or 3mg) of a plasmid expressing a Sig-E7(detox)-HSP70 fusion protein on days 0, 28 and 56, and underwent standard therapeutic resection of the cervical squamocolumnar junction at day 105 (week 15). Safety and immunogenicity of the vaccine and histologic outcome based on resection at week 15 were assessed. Results: Fifteen patients were evaluable (3 each at 0.5 mg and 1mg, 9 at 3mg). The vaccine was well tolerated: most adverse events were mild transient injection-site discomfort; no dose-limiting toxicities were observed. Although HPVE7-specific T-cell responses to E7 detected by enzyme-linked immunospot assays (IFNγ) were of low frequency and magnitude, detectable increases in response subsequent to vaccination were identified in subjects in the second and third cohorts. Complete histologic regression occurred in 3/9 (33%, CI: 7%-70%)) individuals in the highest dose cohort, Although the difference is not significant, it is slightly higher than would be expected in an unvaccinated cohort (25%). Conclusions: This HPV16 DNA vaccine was safe and well tolerated. While it appears possible to elicit HPV-specific T cell responses in patients with established dysplastic lesions, other factors are likely to play a role in lesion regression. PMID:19118066

  9. The role of tumor markers (CEA, TPA, CA 19-9) in colon and rectum carcinomas

    International Nuclear Information System (INIS)

    Cangemi, V.; Volpino, P.; Fiori, E.; Giammarco, A.; Piat, G.

    1987-01-01

    We have evaluated the diagnostic efficacy (sensitivity, specificity, accuracy, predictive malignancy index) of CEA, TPA, CA 19-9 in colon and rectum tumors (56 cases), the difference in behaviour of these markers in relation to the stage and grading of the cancer, their reliability regarding postsurgical relapses and/or metastases. The sensitivity of CEA (>10 ng/ml), TPA (>130 U/L), CA 19-9 (>37 u/ml) for diagnostic purpose was rather limited (28.6% - 30% - 18.5%) with a malignancy prediction value of 100% - 81.8% - 62.5%. With regard to relapses and/or metastases, the diagnostic efficacy of the marker proved to be evident only for CEA, TPA, CA 19-9 value greater than 25 ng/ml, 250 U/L and 100 u/ml. The use of thethree markers together was certainly an advantage both for primitive tumors (sensitivity: 52.8%) and relapses and/or metastases after surgery (sensitivity: 66.7%)

  10. Strain differences in mouse skin carcinogenesis experiments using ionizing radiation and the tumor promoter TPA

    International Nuclear Information System (INIS)

    Jaffe, D.R.; Bowden, G.T.

    1985-01-01

    Ionizing radiation has been shown to be a complete carcinogen in rodent skin when administered repeatedly. The initiating potential of ionizing radiation in mouse skin was tested in a classical two-stage protocol in both CD-1 and Sencar mice. Beta radiation (0.5, 1.5, 3.0 and 5.0 Gy) was administered by a strontium 90 applicator followed two weeks later by twice weekly application of 5 μg TPA. A statistical difference in the papilloma incidence between radiation initiated, TPA promoted versus non-initiated TPA promoted groups was not found (25-35% animals with papillomas and 0.35-0.45 papillomas per mouse at 65 weeks of promotion for both initiated and non-initiated mice). There appeared to be no strain differences between the CD-1 and Sencar in response to the initiating effects if ionizing radiation. This is in direct contrast to the studies showing Sencar mice to be much more sensitive than CD-1 to the initiating effects of chemical carcinogens

  11. DNA vaccine encoding nucleocapsid and surface proteins of wild type canine distemper virus protects its natural host against distemper.

    Science.gov (United States)

    Cherpillod, P; Tipold, A; Griot-Wenk, M; Cardozo, C; Schmid, I; Fatzer, R; Schobesberger, M; Zurbriggen, R; Bruckner, L; Roch, F; Vandevelde, M; Wittek, R; Zurbriggen, A

    2000-07-01

    Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.

  12. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep.

    Science.gov (United States)

    van Rijn, Piet A; Daus, Franz J; Maris-Veldhuis, Mieke A; Feenstra, Femke; van Gennip, René G P

    2017-01-05

    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost

  13. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  14. Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong

    2017-01-01

    The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.

  15. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Penaranda, M.M.D.; LaPatra, S.E.; Kurath, G.

    2011-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a fish rhabdovirus that causes significant mortality in salmonid species. In North America IHNV has three major genogroups designated U, M, and L. Host-specificity of the M and U genogroups of IHNV has been established both in the field and in experimental challenges, with M isolates being more prevalent and more virulent in rainbow trout (Oncorhynchus mykiss), and U isolates being more prevalent and highly virulent in sockeye salmon (Oncorhynchus nerka). In this study, efficacy of DNA vaccines containing either M (pM) or U (pU) virus glycoprotein genes was investigated during intra- and cross-genogroup challenges in rainbow trout. In virus challenges at 7 days post-vaccination (early antiviral response), both pM and pU were highly protective against either M or U IHNV. In challenges at 28 days post-vaccination (specific antiviral response), both pM and pU were protective against M IHNV but the homologous pM vaccine was significantly more protective than pU in one of two experiments. At this stage both pM and pU induced comparably high protection against U IHNV challenge. Correlates of protection were also investigated by assessing the expression of the interferon-stimulated gene Mx-1 and the production of neutralizing antibodies (NAbs) following pM or pU DNA vaccination. Mx-1 gene expression, measured at 4 and 7 days post-vaccination as an indicator of the host innate immune response, was found to be significantly higher after pM than pU vaccination in some cases. Neutralizing antibody was produced in response to the two vaccines, but antibody titers did not show consistent correlation with protection. The results show that the rainbow trout innate and adaptive immune responses have some ability to distinguish between the U and M genogroup IHNV, but overall the pM and pU vaccines were protective against both homologous and cross-genogroup challenges.

  16. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  17. RBC-coupled tPA prevents cerebrovasodilatory impairment and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK unregulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Kumkum [Los Alamos National Laboratory; Armstead, William M [U PENNSYLVANIA; Kiessling, J W [U PENNSYLVANIA; Chen, Xiao - Han [U PENNSYLVANIA; Smith, Douglas H [U PENNSYLVANA; Higazi, Abd Ar [U PENNSYLVANIA; Cines, Douglas B [U PENNSYLVANIA; Bdeir, Khalil [U PENNSYLVANIA; Zaitsev, Sergei [U PENNSYLVANIA; Muzykantov, Vladimir R [U PENNSYLVANIA

    2008-01-01

    Babies experience hypoxia (H) and ischemia (I) from stroke. The only approved treatment for stroke is fibrinolytic therapy with tissue-type plasminogen activator (tPA). However, tPA potentiates H/I-induced impairment of responses to cerebrovasodilators such as hypercapnia and hypotension, and blockade of tPA-mediated vasoactivity prevents this deleterious effect. Coupling tPA to RBCs reduces its CNS toxicity through spatially confining the drug to the vasculature. Mitogen activated protein kinase (MAPK), a family of at least 3 kinases, is upregulated after H/I. In this study we determined if RBC-tPA given before or after cerebral H/I would preserve responses to cerebrovasodilators and prevent neuronal injury mediated through the ERK MAPK pathway. Animals given RBC-tPA maintained responses to cerebrovasodilators at levels equivalent to pre-H/I values. CSF and brain parenchymal ERK MAPK was elevated by H/I and this upregulation was potentiated by tPA, but blunted by RBC-tPA. U 0126, an ERK MAPK antagonist, also maintained cerebrovasodilation post H/I. Neuronal degeneration in CA1 hippocampus and parietal cortex after H/I was exacerbated by tPA, but ameliorated by RBC-tPA and U 0126. These data suggest that coupling tPA to RBCs may offer a novel approach towards increasing the benefit/risk ratio of thrombolytic therapy for CNS disorders associated with H/I.

  18. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  19. Optimizing energy for a 'green' vaccine supply chain.

    Science.gov (United States)

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-02-11

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the 'net zero energy' (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7-10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. Copyright © 2014 The Authors. Published by Elsevier Ltd

  20. Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Nejati-Moheimani, Mehdi; Ghasemian, Melina; Bouzari, Saeid

    2016-12-25

    In the present study, immunogenicity and protective efficacy of the Brucella outer membrane protein 2b (Omp2b) was evaluated in BALB/c mice using Protein/Protein, DNA/DNA and DNA/Protein vaccine strategies. Immunization of mice with three vaccine regimens elicited a strong specific IgG response (higher IgG2a titers over IgG1 titers) and provided Th1-oriented immune response. Vaccination of BALB/c mice with the DNA/Pro regimen induced higher levels of IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the protein or DNA alone. In conclusion, Omp2b is able to stimulate specific immune responses and to confer cross protection against B. melitensis and B. abortus infection. Therefore, it could be introduced as a new potential candidate for the development of a subunit vaccine against Brucella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites.

    Science.gov (United States)

    Scorza, T; Grubb, K; Cambos, M; Santamaria, C; Tshikudi Malu, D; Spithill, T W

    2008-06-01

    A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.

  2. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis.

    Science.gov (United States)

    Song, Neng; Tan, Yang; Zhang, Lingyun; Luo, Wei; Guan, Qing; Yan, Ming-Zhe; Zuo, Ruiqi; Liu, Weixiang; Luo, Feng-Ling; Zhang, Xiao-Lian

    2018-04-24

    Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients' blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.

  3. Cervical screening in HPV-vaccinated populations.

    Science.gov (United States)

    Canfell, K

    2018-06-01

    Cervical screening with cytology has been the basis for substantial reductions in cervical cancer incidence and mortality in most high-income countries over the last few decades. More recently, there have been two key, parallel developments which have prompted a major re-consideration of cervical screening. The first is the emergence of evidence on the improved sensitivity of human papillomavirus (HPV) DNA testing compared to cytology, and the second is the large-scale deployment of prophylactic vaccination against HPV. A key challenge to be overcome before HPV screening could be introduced into national cervical screening programs was the specificity of an infection, for detection of precancerous lesions. This has been done in three ways: (1) by considering the appropriate age for starting HPV screening (30 years in unvaccinated populations and 25 years in populations with mature vaccination programs and high vaccine uptake) and the appropriate screening interval; (2) via development of clinical HPV tests, which are (by design) not as sensitive to low viral loads; and (3) by introducing effective triaging for HPV-positive women, which further risk-stratifies women before referral for diagnostic evaluation. This review discusses these major developments and describes how the benefits of HPV screening are being optimized in both unvaccinated and vaccinated populations.

  4. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Directory of Open Access Journals (Sweden)

    Johanna Poecheim

    2015-12-01

    Full Text Available Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA. The formulations included (1 trimethyl chitosan (TMC nanoparticles, (2 a squalene-in-water nanoemulsion, and (3 a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9. In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2 was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

  5. Optimal control of gene mutation in DNA replication.

    Science.gov (United States)

    Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong

    2012-01-01

    We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps.

  6. Recombinant Invasive Lactococcus lactis Carrying a DNA Vaccine Coding the Ag85A Antigen Increases INF-γ, IL-6, and TNF-α Cytokines after Intranasal Immunization

    Directory of Open Access Journals (Sweden)

    Pamela Mancha-Agresti

    2017-07-01

    Full Text Available Tuberculosis (TB remains a major threat throughout the world and in 2015 it caused the death of 1.4 million people. The Bacillus Calmette-Guérin is the only existing vaccine against this ancient disease; however, it does not provide complete protection in adults. New vaccines against TB are eminently a global priority. The use of bacteria as vehicles for delivery of vaccine plasmids is a promising vaccination strategy. In this study, we evaluated the use of, an engineered invasive Lactococcus lactis (expressing Fibronectin-Binding Protein A from Staphylococcus aureus for the delivery of DNA plasmid to host cells, especially to the mucosal site as a new DNA vaccine against tuberculosis. One of the major antigens documented that offers protective responses against Mycobacterium tuberculosis is the Ag85A. L. lactis FnBPA+ (pValac:Ag85A which was obtained and used for intranasal immunization of C57BL/6 mice and the immune response profile was evaluated. In this study we observed that this strain was able to produce significant increases in the amount of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6 in the stimulated spleen cell supernatants, showing a systemic T helper 1 (Th1 cell response. Antibody production (IgG and sIgA anti-Ag85A was also significantly increased in bronchoalveolar lavage, as well as in the serum of mice. In summary, these findings open new perspectives in the area of mucosal DNA vaccine, against specific pathogens using a Lactic Acid Bacteria such as L. lactis.

  7. The effect of local sustained delivery of sirolimus on the vascular PAI-1 and t-PA expression after angioplasty

    International Nuclear Information System (INIS)

    E Yajun; He Nengshu; Fan Hailun

    2011-01-01

    Objective: To investigate the effect of local sustained delivery of sirolimus on the vascular inhibitor of plasminogen activator-1 (PAI-1) and tissue type plasminogen activator (t-PA) expression after angioplasty. Methods: Experimental common carotid artery injury model was established in the rats. A total of 30 male Wistar rats were divided into experimental group (n=20) and control group (n=10). Adventitial administration of drug was applied. Pluronic F-127 gel containing sirolimus was administered to the exposed adventitial surface of injured carotid artery. The experimental group was divided into high concentration (600 μg/100 μl) sub-group and low concentration (300 μg/100μl) sub-group according to the concentration of sirolimus delivered. The effect of local sustained delivery sirolimus on vascular PAI-1 and t-PA expression after percutaneous angioplasty was evaluated by immunohistochemistry. Results: Compared to control group, 15 and 30 days after injury local sustained delivery of sirolimus in both high concentration and low concentration sub-groups the expression of the PAI-1 in neointima was significantly enhanced (P 0.05). At 15 and 30 days after injury, the expression of t-PA in neointima was decreased in both high and low concentration sub-groups (P<0.05), and the expression of t-PA in media was significantly decreased in high concentration sub-group (P<0.05) while on significant difference could be detected in low concentration sub-group. Conclusion: Local sustained delivery of sirolimus can induce the high expression of PAI-1 and low expression of t-PA in neointima although it inhibits the proliferation of neointima in the same time, and the imbalanced expression of t-PA and PAI-1 may probably play an important role in the late formation of thrombosis after the placement of drug-eluting stent. (authors)

  8. Quantitative real-time PCR study on persistence of pDNA vaccine pVax-Hsp60 TM814 in beef muscles

    Czech Academy of Sciences Publication Activity Database

    Orság, P.; Kvardová, V.; Raška, M.; Miller, A. D.; Ledvina, Miroslav; Turánek, J.

    2008-01-01

    Roč. 6, č. 11 (2008), s. 1-11 ISSN 1479-0556 R&D Projects: GA MZe QF3115 Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA vaccine * real-time PCR * liposomes Subject RIV: CC - Organic Chemistry

  9. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  10. Optimizing targeted vaccination across cyber-physical networks: an empirically based mathematical simulation study.

    Science.gov (United States)

    Mones, Enys; Stopczynski, Arkadiusz; Pentland, Alex 'Sandy'; Hupert, Nathaniel; Lehmann, Sune

    2018-01-01

    Targeted vaccination, whether to minimize the forward transmission of infectious diseases or their clinical impact, is one of the 'holy grails' of modern infectious disease outbreak response, yet it is difficult to achieve in practice due to the challenge of identifying optimal targets in real time. If interruption of disease transmission is the goal, targeting requires knowledge of underlying person-to-person contact networks. Digital communication networks may reflect not only virtual but also physical interactions that could result in disease transmission, but the precise overlap between these cyber and physical networks has never been empirically explored in real-life settings. Here, we study the digital communication activity of more than 500 individuals along with their person-to-person contacts at a 5-min temporal resolution. We then simulate different disease transmission scenarios on the person-to-person physical contact network to determine whether cyber communication networks can be harnessed to advance the goal of targeted vaccination for a disease spreading on the network of physical proximity. We show that individuals selected on the basis of their closeness centrality within cyber networks (what we call 'cyber-directed vaccination') can enhance vaccination campaigns against diseases with short-range (but not full-range) modes of transmission. © 2018 The Author(s).

  11. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC).

    Science.gov (United States)

    Palma, Paolo; Romiti, Maria Luisa; Montesano, Carla; Santilli, Veronica; Mora, Nadia; Aquilani, Angela; Dispinseri, Stefania; Tchidjou, Hyppolite K; Montano, Marco; Eriksson, Lars E; Baldassari, Stefania; Bernardi, Stefania; Scarlatti, Gabriella; Wahren, Britta; Rossi, Paolo

    2013-01-01

    Twenty vertically HIV-infected children, 6-16 years of age, with stable viral load control and CD4+ values above 400 cells/mm(3). Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A. The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. clinicaltrialsregister.eu _2007-002359-18IT.

  12. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC.

    Directory of Open Access Journals (Sweden)

    Paolo Palma

    Full Text Available SUBJECTS: Twenty vertically HIV-infected children, 6-16 years of age, with stable viral load control and CD4+ values above 400 cells/mm(3. INTERVENTION: Ten subjects continued their ongoing antiretroviral treatment (ART, Group A and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B. The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. RESULTS: Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047, whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031. No increased CD8+ perforin levels were observed in control Group A. CONCLUSIONS: The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. TRIAL REGISTRATION: clinicaltrialsregister.eu _2007-002359-18IT.

  13. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model.

    Science.gov (United States)

    Platteel, Anouk C M; Nieuwenhuizen, Natalie E; Domaszewska, Teresa; Schürer, Stefanie; Zedler, Ulrike; Brinkmann, Volker; Sijts, Alice J A M; Kaufmann, Stefan H E

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 + T cell responses in vivo . As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4 + and CD8 + T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4 + T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4 + and CD8 + T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4 + T cells responding to Ag85B- and ESAT-6

  14. Potential overestimation of HPV vaccine impact due to unmasking of non-vaccine types: quantification using a multi-type mathematical model.

    Science.gov (United States)

    Choi, Yoon Hong; Chapman, Ruth; Gay, Nigel; Jit, Mark

    2012-05-14

    Estimates of human papillomavirus (HPV) vaccine impact in clinical trials and modelling studies rely on DNA tests of cytology or biopsy specimens to determine the HPV type responsible for a cervical lesion. DNA of several oncogenic HPV types may be detectable in a specimen. However, only one type may be responsible for a particular cervical lesion. Misattribution of the causal HPV type for a particular abnormality may give rise to an apparent increase in disease due to non-vaccine HPV types following vaccination ("unmasking"). To investigate the existence and magnitude of unmasking, we analysed data from residual cytology and biopsy specimens in English women aged 20-64 years old using a stochastic type-specific individual-based model of HPV infection, progression and disease. The model parameters were calibrated to data on the prevalence of HPV DNA and cytological lesion of different grades, and used to assign causal HPV types to cervical lesions. The difference between the prevalence of all disease due to non-vaccine HPV types, and disease due to non-vaccine HPV types in the absence of vaccine HPV types, was then estimated. There could be an apparent maximum increase of 3-10% in long-term cervical cancer incidence due to non-vaccine HPV types following vaccination. Unmasking may be an important phenomenon in HPV post-vaccination epidemiology, in the same way that has been observed following pneumococcal conjugate vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pTSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pTSA and TSA groups than LACK group after challenge (pTSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  16. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  17. Amplification of bovine papillomavirus DNA by N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus

    International Nuclear Information System (INIS)

    Schmitt, J.; Schlehofer, J.R.; Mergener, K.; Gissmann, L.; zur Hausen, H.

    1989-01-01

    Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur

  18. Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings.

    Science.gov (United States)

    Moore, Sean M; Lessler, Justin

    2015-10-06

    The World Health Organization (WHO) recently established a global stockpile of oral cholera vaccine (OCV) to be preferentially used in epidemic response (reactive campaigns) with any vaccine remaining after 1 year allocated to endemic settings. Hence, the number of cholera cases or deaths prevented in an endemic setting represents the minimum utility of these doses, and the optimal risk-averse response to any reactive vaccination request (i.e. the minimax strategy) is one that allocates the remaining doses between the requested epidemic response and endemic use in order to ensure that at least this minimum utility is achieved. Using mathematical models, we find that the best minimax strategy is to allocate the majority of doses to reactive campaigns, unless the request came late in the targeted epidemic. As vaccine supplies dwindle, the case for reactive use of the remaining doses grows stronger. Our analysis provides a lower bound for the amount of OCV to keep in reserve when responding to any request. These results provide a strategic context for the fulfilment of requests to the stockpile, and define allocation strategies that minimize the number of OCV doses that are allocated to suboptimal situations. © 2015 The Authors.

  19. Kinetics of Mx expression in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) parr in response to VHS-DNA vaccination

    DEFF Research Database (Denmark)

    Acosta, F.; Petrie, A.; Lockhart, K.

    2005-01-01

    vaccine or the synthetic double-stranded RNA, poly LC. In both species there was a rapid response to poly LC detectable from day 1, reaching maximum from days 3 to 9 and decreasing to background level by day 12. The peak level and return to background was reached slightly later in salmon. In both species...... the response to the VHS/DNA vaccine was slower to begin, not being detectable on days 1 and 3, but elevated levels were found on day 6. However, in the salmon part, the peak level was on day 6 and the signal disappeared by day 12, while in the rainbow trout, the response peaked at day 12 and lasted until day......The duration of the Mx mRNA response to an intramuscular injection of the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) gene DNA vaccine as well as to the control plasmid was determined in rainbow trout at 14 degreesC over a period of 11 weeks. The Mx response was detectable on day 7...

  20. Photovoltaic Small Molecules of TPA(FxBT-T-Cz)3: Tuning Open-Circuit Voltage over 1.0 V for Their Organic Solar Cells by Increasing Fluorine Substitution.

    Science.gov (United States)

    Wang, Qiong; Duan, Linrui; Tao, Qiang; Peng, Wenhong; Chen, Jianhua; Tan, Hua; Yang, Renqiang; Zhu, Weiguo

    2016-11-09

    To simultaneously improve both open-circuit voltage (V oc ) and short-circuit current density (J sc ) for organic solar cells, a novel D(A-π-Ar) 3 type of photovoltaic small molecules of TPA(F x BT-T-3Cz) 3 was designed and synthesized, which contain central triphenylamine (TPA), terminal carbazole (Cz), armed fluorine-substituted benzothiadiazole (F x BT, where x = 1 or 2), and bridged thiophene (T) units. A narrowed ultraviolet-visible absorption and a decreasing highest occupied molecular orbital energy level were observed from TPA(F 1 BT-T-3Cz) 3 to TPA(F 2 BT-T-3Cz) 3 with increasing fluorine substitution. However, the TPA(F 2 BT-T-3Cz) 3 /PC 71 BM-based solar devices showed a rising V oc of 1.01 V and an enhanced J sc of 10.84 mA cm -2 as well as a comparable power conversion efficiency of 4.81% in comparison to the TPA(F 1 BT-T-3Cz) 3 /PC 71 BM-based devices. Furthermore, in comparison to the parent TPA(BT-T-3Cz) 3 molecule without fluorine substitution, the fluorine-substituted TPA(F x BT-T-3Cz) 3 molecules exhibited significantly incremental V oc and J sc values in their bulk heterojunction organic solar cells, owing to fluorine incorporation in the electron-deficient benzothiadiazole unit.

  1. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    Science.gov (United States)

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  2. Approaches to Preventative and Therapeutic HIV vaccines

    Science.gov (United States)

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  3. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    Science.gov (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  4. Penurunan Logam Timbal (Pb pada Limbah Cair TPA Piyungan Yogyakarta dengan Constructed Wetlands Menggunakan Tumbuhan Eceng Gondok (Eichornia Crassipes

    Directory of Open Access Journals (Sweden)

    Eko Siswoyo

    2015-10-01

    Full Text Available Salah satu permasalahan lingkungan yang ditimbulkan dari adanya lindi di TPA Piyungan yaitu pencemaran pada badan air, sungai dan air tanah. Untuk mengatasi permasalahan ini salah satunya dengan sistem Constructed Wetlands dengan menggunakan tumbuhah eceng gondok. Tujuan dari penelitian ini adalah untuk mengetahui tingkat penurunan konsentrasi Timbal (Pb yang terdapat dalam limbah cair TPA Piyungan dengan Constructed Wetlands menggunakan tumbuhan eceng gondok dan untuk mengetahui seberapa besar kapasitas serapan tumbuhan eceng gondok terhadap kandungan Timbal (Pb dalam limbah cair TPA Piyungan.Dalam penelitian ini digunakan reaktor yang terbuat dari kayu yang dilapisi plastik dengan ukuran 0,5 m x 1,0 m. Setiap reaktor diberi media tanah 5 cm, dan diberi tumbuhan sebanyak 14 buah. Reaktor tersebut diberi perlakuan dengan konsentrasi limbah yang bervariasi (100%, 75%, 50%, 25%, dan 0%, dan waktu pengambilan sampel (0, 3, 6, 9, 12 hari. Dengan menggunakan metode SSA (Spektrofotometri Serapan Atom.Berdasarkan pengujian diperoleh bahwa penurunan logam Pb pada limbah cair TPA Piyungan hari ke- 12, yaitu sebesar 0.0501mg/L pada konsentrasi 100%, 0.0295mg/L pada konsentrasi 75%, 0.0267mg/L pada konsentrasi 50% dan 0.0041 mg/L pada konsentrasi 25%.

  5. Incorporation of β-glucans in meat emulsions through an optimal mixture modeling systems.

    Science.gov (United States)

    Vasquez Mejia, Sandra M; de Francisco, Alicia; Manique Barreto, Pedro L; Damian, César; Zibetti, Andre Wüst; Mahecha, Hector Suárez; Bohrer, Benjamin M

    2018-05-22

    The effects of β-glucans (βG) in beef emulsions with carrageenan and starch were evaluated using an optimal mixture modeling system. The best mathematical models to describe the cooking loss, color, and textural profile analysis (TPA) were selected and optimized. The cubic models were better to describe the cooking loss, color, and TPA parameters, with the exception of springiness. Emulsions with greater levels of βG and starch had less cooking loss (54 and <62), and greater hardness, cohesiveness and springiness values. Subsequently, during the optimization phase, the use of carrageenan was eliminated. The optimized emulsion contained 3.13 ± 0.11% βG, which could cover the intake daily of βG recommendations. However, the hardness of the optimized emulsion was greater (60,224 ± 1025 N) than expected. The optimized emulsion had a homogeneous structure and normal thermal behavior by DSC and allowed for the manufacture of products with high amounts of βG and desired functional attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Prior DNA immunization enhances immune response to dominant and subdominant viral epitopes induced by a fowlpox-based SIVmac vaccine in long-term slow-progressor macaques infected with SIVmac251

    International Nuclear Information System (INIS)

    Radaelli, Antonia; Nacsa, Janos; Tsai, W.-P.; Edghill-Smith, Yvette; Zanotto, Carlo; Elli, Veronica; Venzon, David; Tryniszewska, Elzbieta; Markham, Phil; Mazzara, Gail P.; Panicali, Dennis; Morghen, Carlo De Giuli; Franchini, Genoveffa

    2003-01-01

    A therapeutic vaccine for individuals infected with HIV-1 and treated with antiretroviral therapy (ART) should be able to replenish virus-specific CD4+ T-cells and broaden the virus-specific CD8+ T-cell response in order to maintain CD8+ T-cell function and minimize viral immune escape after ART cessation. Because a combination of DNA and recombinant poxvirus vaccine modalities induces high levels of virus-specific CD4+ T-cell response and broadens the cytolytic activity in naive macaques, we investigated whether the same results could be obtained in SIVmac251-infected macaques. The macaques studied here were long-term nonprogressors that naturally contained viremia but were nevertheless treated with a combination of antiviral drugs to assess more carefully the effect of vaccination in the context of ART. The combination of a DNA expressing the gag and pol genes (DNA-SIV-gp) of SIVmac239 followed by a recombinant fowlpox expressing the same SIVmac genes (FP-SIV-gp) was significantly more immunogenic than two immunizations of FP-SIV-gp in SIVmac251-infected macaques treated with ART. The DNA/FP combination significantly expanded and broadened Gag-specific T-cell responses measured by tetramer staining, ELISPOT, and intracellular cytokine staining and measurement of ex vivo cytolytic function. Importantly, the combination of these vaccine modalities also induced a sizeable expansion in most macaques of Gag-specific CD8-(CD4+) T-cells able to produce TNF-α. Hopefully, this modality of vaccine combination may be useful in the clinical management of HIV-1-infected individuals

  7. The Evolution of Poxvirus Vaccines

    Science.gov (United States)

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  8. The Evolution of Poxvirus Vaccines

    Directory of Open Access Journals (Sweden)

    Lucas Sánchez-Sampedro

    2015-04-01

    Full Text Available After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV, the causative agent of smallpox. Cowpox virus (CPXV and horsepox virus (HSPV were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV, which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  9. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  10. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  11. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) accelerates expression of differentiation markers in cultures of rat palatal epithelial cells

    DEFF Research Database (Denmark)

    Arenholt, D; Dabelsteen, Erik

    1987-01-01

    Cultures of rat palatal epithelium grown on collagen rafts were treated with different doses of the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Sections from biopsies taken 1, 6, 24, and 48 hr after the addition of TPA were examined for the localization of staining by blood ...

  12. Vaccines prepared from translation products of cloned viral genes

    International Nuclear Information System (INIS)

    Patzer, J.; Obijeski, J.F.

    1985-01-01

    With the advent of recombinant DNA (rDNA) techniques and their application to viruses for vaccine research, there has been an explosion of information about the molecular structure and replication of many viruses. rDNA technology in conjunction with several other emerging technologies, e.g. monoclonal antibodies, solid phase synthesis of peptides and prediction of protein conformation on the basis of amino acid sequence, has provided a powerful battery of techniques that in many cases has allowed the identification of specific sites on the virion surface that elicit neutralizing antibodies. Knowledge of these sites allows one to design a subunit vaccine that utilizes one of the virion proteins or regions of a particular protein in the absence of any other viral proteins or the viral nucleic acid. The advantages of this approach are: that there are no potentially infectious agents contained in the vaccine if the inactivation procedure is incomplete, there is less chance of complications from the vaccine due to nonessential viral components in the vaccine, a purified protein or polypeptide is usually more stable than virus particles during storage, and many times larger quanitities of an antigen can be produced by rDNA techniques than by classical vaccine methods

  13. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Directory of Open Access Journals (Sweden)

    Melanie Thompson

    Full Text Available GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA boost vaccine (GOVX-B11, was undertaken in HIV infected participants on antiretroviral treatment (ART to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI. Nine men who began antiretroviral therapy (ART within 18 months of seroconversion and had sustained plasma HIV-1 RNA <50 copies/mL for at least 6 months were enrolled. Median age was 38 years, median pre-ART HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine.clinicaltrials.gov NCT01378156.

  14. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Science.gov (United States)

    Thompson, Melanie; Heath, Sonya L; Sweeton, Bentley; Williams, Kathy; Cunningham, Pamela; Keele, Brandon F; Sen, Sharon; Palmer, Brent E; Chomont, Nicolas; Xu, Yongxian; Basu, Rahul; Hellerstein, Michael S; Kwa, Suefen; Robinson, Harriet L

    2016-01-01

    GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA) boost vaccine (GOVX-B11), was undertaken in HIV infected participants on antiretroviral treatment (ART) to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI). Nine men who began antiretroviral therapy (ART) within 18 months of seroconversion and had sustained plasma HIV-1 RNA HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine. clinicaltrials.gov NCT01378156.

  15. Optimizing energy for a ‘green’ vaccine supply chain

    Science.gov (United States)

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-01-01

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the ‘net zero energy’ (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7–10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. PMID:25444811

  16. Faecal shedding of canine parvovirus after modified-live vaccination in healthy adult dogs.

    Science.gov (United States)

    Freisl, M; Speck, S; Truyen, U; Reese, S; Proksch, A-L; Hartmann, K

    2017-01-01

    Since little is known about the persistence and faecal shedding of canine parvovirus (CPV) in dogs after modified-live vaccination, diagnostic tests for CPV can be difficult to interpret in the post-vaccination period. The primary aim of this study was to determine the incidence, duration and extent of CPV vaccine virus shedding in adult dogs and to investigate related factors, including the presence of protective antibodies, increase in anti-CPV antibody titres and development of any gastrointestinal side-effects. A secondary objective was to assess prevalence of CPV field virus shedding in clinically healthy dogs due to subclinical infections. One hundred adult, healthy privately owned dogs were vaccinated with a commercial CPV-2 modified-live vaccine (MLV). Faeces were tested for the presence of CPV DNA on days 0 (prior to vaccination), 3, 7, 14, 21 and 28 by quantitative real-time PCR. Pre- and post-vaccination serum titres were determined by haemagglutination inhibition on days 0, 7 and 28. Transient excretion of CPV DNA was detected in 2.0% of dogs before vaccination. About one quarter of dogs (23.0%) shed CPV DNA during the post-vaccination period, but field and vaccine virus differentiation by VP2 gene sequencing was only successful in few samples. Faecal CPV excretion occurred despite protective serum antibody titres. Post-vaccination CPV shedding was not related to adequate antibody response after vaccination or to the occurrence of gastrointestinal side-effects. Despite individual differences, CPV DNA was detectable for up to 28 days after vaccination, although the faecal CPV DNA load in these clinically healthy dogs was very low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Optimizing factors influencing DNA extraction from fresh whole avian ...

    African Journals Online (AJOL)

    A study was conducted to optimize the efficient combination of lysis buffer, proteinase K, incubation time, phenol-chloroform-isoamyl alcohol (PCI) volume, spinning rate (rpm), and precipitation agent on quantity and quality of DNA extracted from various volumes of avian blood. Blood samples were collected in EDTA and ...

  18. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    International Nuclear Information System (INIS)

    Pretell, J.O.; Cone, R.E.

    1985-01-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA

  19. The Role of TPA I/D and PAI-1 4G/5G Polymorphisms in Multiple Sclerosis

    Science.gov (United States)

    Živković, Maja; Starčević Čizmarević, Nada; Lovrečić, Luca; Klupka-Sarić, Inge; Stanković, Aleksandra; Gašparović, Iva; Dinčić, Evica; Stojković, Ljiljana; Rudolf, Gorazd; Šega Jazbec, Saša; Perković, Olivio; Sinanović, Osman; Sepčić, Juraj; Kapović, Miljenko; Peterlin, Borut

    2014-01-01

    Background. Previous studies have shown impaired fibrinolysis in multiple sclerosis (MS) and implicated extracellular proteolytic enzymes as important factors in demyelinating neuroinflammatory disorders. Tissue-type plasminogen activator (t-PA) and its inhibitor (PAI-1) are key molecules in both fibrinolysis and extracellular proteolysis. In the present study, an association of the TPA Alu I/D and PAI-1 4G/5G polymorphisms with MS was analyzed within the Genomic Network for Multiple Sclerosis (GENoMS). Methods. The GENoMS includes four populations (Croatian, Slovenian, Serbian, and Bosnian and Herzegovinian) sharing the same geographic location and a similar ethnic background. A total of 885 patients and 656 ethnically matched healthy blood donors with no history of MS in their families were genotyped using PCR-RFLP. Results. TPA DD homozygosity was protective (OR = 0.79, 95% CI 0.63–0.99, P = 0.037) and PAI 5G5G was a risk factor for MS (OR = 1.30, 95% CI 1.01–1.66, P = 0.038). A significant effect of the genotype/carrier combination was detected in 5G5G/I carriers (OR = 1.39 95% CI 1.06–1.82, P = 0.017). Conclusions. We found a significantly harmful effect of the combination of the PAI-1 5G/5G genotype and TPA I allele on MS susceptibility, which indicates the importance of gene-gene interactions in complex diseases such as MS. PMID:24825926

  20. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    Science.gov (United States)

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  1. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  2. Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8 induction in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Refsnes M

    2014-12-01

    Full Text Available Magne Refsnes, Tonje Skuland, Marit Låg, Per E Schwarze, Johan Øvrevik Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway Abstract: Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8, in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, and sodium fluoride (NaF to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-κB- and mitogen-activated protein kinase (MAPK signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (mRNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2 and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB, whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-κB activation appeared to be

  3. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Science.gov (United States)

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  4. Evaluation of cytokine mRNA expression in vaccinated guinea pigs with foot-and-mouth disease type O inactivated vaccine

    Directory of Open Access Journals (Sweden)

    Pasandideh, R.

    2016-03-01

    Full Text Available Foot-and-mouth disease (FMD is a severely contagious viral disease that mainly affects cloven-hoofed livestock and wildlife. This study quantifies the cytokines mRNA expression of vaccinated guinea pigs with FMD type O inactivated vaccine. Blood samples were collected from eight guinea pigs at 7 and 28 days after the first vaccination. Extracted mRNAs were reverse-transcribed into cDNA and analyzed for quantification of IFN-γ, TNF-α and IL-10 expression using relative real-time PCR assay. Our results showed that all of the genes were upregulated. The expression of TNF-α and IL-10 genes significantly increased (P<0.05 in day 28th in comparison to the day 7th post the first vaccination. It can be concluded that the vaccine induced immune responses by increasing expression of the cytokines. Therefore, effects of DNA vaccines on immune system also may be evaluated using these genes.

  5. Co-administration of plasmid expressing IL-12 with 14-kDa Schistosoma mansoni fatty acid-binding protein cDNA alters immune response profiles and fails to enhance protection induced by Sm14 DNA vaccine alone.

    Science.gov (United States)

    Fonseca, Cristina T; Pacífico, Lucila G G; Barsante, Michele M; Rassi, Tatiana; Cassali, Geovanni D; Oliveira, Sérgio C

    2006-08-01

    Schistosomiasis is an endemic disease that affects 200 million people worldwide. DNA-based vaccine is a promising strategy to induce protective immunity against schistosomiasis, since both humoral and cellular immune responses are involved in parasite elimination. In this study, we evaluated the ability of Sm14 cDNA alone or in association with a plasmid expressing murine interleukin (IL)-12 to induce protection against challenge infection. Mice were immunized with four doses of the DNA vaccine and the levels of protection were determined by worm burden recovery after challenge infection. Specific antibody production to rSm14 was determined by ELISA, and cytokine production was measured in splenocyte culture supernatants stimulated with rSm14 and in bronchoalveolar lavage of vaccinated mice after challenge infection. DNA immunization with pCI/Sm14 alone induced 40.5% of worm reduction. However, the use of pCI/IL-12 as adjuvant to pCI/Sm14 immunization failed to enhance protection against challenge infection. Protection induced by pCI/Sm14 immunization correlates with specific IgG antibody production against Sm14, Th1 type of immune response with high levels of interferon (IFN)-gamma and low levels of IL-4 in splenocyte culture supernatants and in bronchoalveolar lavage after challenge infection. IL-12 co-administration with pCI/Sm14 induced a significant production of nitric oxide in splenocyte culture supernatants and also lymphocyte suppression, with reduced percentage of T cells producing IFN-gamma and tumor necrosis factor-alpha.

  6. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints.

    Science.gov (United States)

    Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey

    2018-01-01

    DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.

  7. Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C were generated. The two latter plasmids were designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-IL2AP12A3C developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels of sIgA (secretory IgA present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals. pc-IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C- and pc-P12A3C-immunized animals as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-γ by both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal delivery

  8. KISS1 can be used as a novel target for developing a DNA immunocastration vaccine in ram lambs.

    Science.gov (United States)

    Han, Yanguo; Liu, Guiqiong; Jiang, Xunping; Ijaz, Nabeel; Tesema, Birhanu; Xie, Guangyue

    2015-02-04

    KISS1 gene-encoding kisspeptins are critical for the onset of puberty and control of adult fertility. This study investigated whether KISS1 can be used as a novel target for immunocastration. Human KISS1 was fused with the HBsAg-S gene for constructing an antibiotic-free recombinant plasmid pKS-asd that coded for 31.168 kDa target fusion protein. Six male Hu sheep lambs were divided into two equal groups, treatment and control. The vaccine (1mg/ram lamb) prepared in saline solution was injected into lambs at weeks 0, 3 and 6 of the experiment, respectively. Vaccine efficacy was evaluated in terms of KISS1-specific IgG antibody response, serum testosterone levels, scrotal circumference, testicular weight, length and breadth, extent of testicular tissue damage, and sexual behaviour changes. The specific anti-KISS1 antibody titre in vaccinated animals was significantly higher than that in controls (pvaccinated animals showed lower serum testosterone level, testicular weight and length and smaller scrotal circumference than those in controls (pvaccinated animals was suppressed; sexual behaviours in vaccinated animals were significantly lower (pvaccine induced a strong antibody response and resulted in the suppression of gonadal function and sexual behaviour in animals, demonstrating that KISS1 can be used as a novel target for developing a DNA immunocastration vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Construction of a trivalent candidate vaccine against Shigella species with DNA recombination

    Institute of Scientific and Technical Information of China (English)

    王恒樑; 冯尔玲; 林云; 廖翔; 金明; 黄留玉; 苏国富; 黄翠芬

    2002-01-01

    In this work asd gene of Shigella flexneri 2a strain T32 was replaced by Vibrio cholerae toxin B subunit (ctxB) gene with DNA recombination in vivo and in vitro. The resulting derivative of T32, designed as FWL01, could stably express CtxB, but its growth in LB medium depended on the presence of diaminopimelic acid (DAP). Then form I plasmid of Shigella sonnei strain S7 was labeled with strain T32 asd gene and mobilized into FWL01. Thus a trivalent candidate oral vaccine strain, designed as FSW01, was constructed. In this candidate strain, a balanced-lethal system was constituted between the host strain and the form I plasmid expressing S. sonnei O antigen. Therefore the candidate strain can express stably not only its own O antigen but also CtxB and O antigen of S. sonnei in the absence of any antibiotic. Experiments showed that FSW01 did not invade HeLa cells or cause keratoconjunctivitis in guinea pigs. However, rabbits immunized FSW01 can elicit significant immune responses. In mice and rhesus monkey models, vaccinated animals were protected against the challenges of wild S. flexneri 2a strain 2457T and S. sonnei strain S9.

  10. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Hallouin, M.; Romain, J.P. (GRECO ILM, Laboratoire d' Enegetique et Detonique, ENSMA, 86 - Poitiers (France)); Fabbro, R.; Faral, B. (GRECO ILM, Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91 - Palaiseau (France))

    1984-11-01

    Laser-driven shock pressures up to 5 TPa at 0.26 ..mu..m wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil.

  11. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    International Nuclear Information System (INIS)

    Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.

    1984-01-01

    Laser-driven shock pressures up to 5 TPa at 0.26 μm wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil

  12. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  13. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    Science.gov (United States)

    2016-08-01

    season’s influenza vaccine. There is no overlap with the proposed project. Title: Serological survey for Zika virus and other vector-borne pathogen...studying human immunology and pathogenesis of dengue virus infection Time Commitments: 5% 0.6 calendar months Supporting Agency: Military Infectious...attenuated dengue virus vaccine (LAV), and (3) inactivated dengue virus vaccine. Dengue fever ranks among the top infectious diseases that afflict

  14. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    Science.gov (United States)

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  15. [A study on the construction, expression and immunosterility of Lagurus laguru zona pellucida 3 DNA vaccine pVAX1-sig-LTB-lZP3-C3d3].

    Science.gov (United States)

    Li, Chen-Chen; Yu, Ji-Yun; Jiang, Min; Tu, Yi-Xian; Ma, Xiao-Lin; Zhang, Fu-Chun

    2011-09-01

    To enhance the immunocontraceptive effect of Lagurus lagurus zona pellucida 3 DNA vaccine, and to achieve the prospect of application through the pVAX1-sig-LTB-lZP3-C3d3 different immunity pathway. Two adjuvant molecules were constructed into the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 as DNA vaccine which contains Escherichia coli heat-labile enterotoxin B subunit and the molecular adjuvant 3 copies of C3d. The results of RT-PCR and western blot showed that the DNA vaccine was expressed in mRNA and protein level. The female C57BL/6 mice were immunized by three ways: intramuscular injection, intranasal or oral route.Antibody levels and types were detected by ELISA. ELISA results showed that recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 immunization induced specific IgG, IgA levels were significantly different comparing with control (Psig-LTB-lZP3-C3d3 can induce the specific immune response efficiently and enhance the immunocontraceptive effects.

  16. UvrD in Deinococcus radiodurans is optimized for processing G-quadruplex DNA

    International Nuclear Information System (INIS)

    Das, Anubrata; Misra, H.S.

    2015-01-01

    Deinococcus radiodurans R1 is a radiation resistant Gram-positive bacterium capable of tolerating very high doses of DNA-damaging agents such as gamma radiation (D10 ∼ 12kGy) desiccation (∼ 5% relative humidity), UVC radiation (D10 ∼ 800J/m 2 ) and hydrogen peroxide (40 mM). It achieves this by using a complex regulatory mechanism and novel proteins. Recently bioinformatic analysis showed several stretches of guanine runs in D.radiodurans genome, which could form G-quartets. The role of G-quartets in regulatory processes is well documented in various organisms. The presence of G -quartets in D. radiodurans means that there are regulatory or structural proteins which would bind to these elements. Several proteins are known to bind G-quartets. Finding the proteins which would bind to G4 DNA is difficult as no specific motifs are available for binding these elements. Also most of the known proteins that are shown to bind to G-quadruplex DNA are of eukaryotic nature. To overcome these challenges we defined a set of known G-quadruplex binding proteins and used a smith-waterman algorithm with our own scoring matrix to homologs of G-quadruplex binding proteins in D.radiodurans. Using bioinformatics analysis, we showed that UvrD (DR 1775) of D. radiodurans has ability to bind/translocate along G-quadruplex DNA, a novel feature in prokaryotes. The translocase activity of DR1775 is ATP specific and this ATPase activity is attenuated by ssDNA. Data supporting UvrD of D. radiodurans as a G-quadruplex DNA metabolizing proteins would be presented. (author)

  17. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  18. DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system.

    Science.gov (United States)

    Cole, Grace; Ali, Ahlam A; McCrudden, Cian M; McBride, John W; McCaffrey, Joanne; Robson, Tracy; Kett, Vicky L; Dunne, Nicholas J; Donnelly, Ryan F; McCarthy, Helen O

    2018-03-03

    Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 μg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer. Copyright © 2018. Published by Elsevier B.V.

  19. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  20. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  1. When gene medication is also genetic modification--regulating DNA treatment.

    Science.gov (United States)

    Foss, Grethe S; Rogne, Sissel

    2007-07-26

    The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.

  2. Development of an optimized random amplified polymorphic DNA protocol for fingerprinting of Klebsiella pneumoniae.

    Science.gov (United States)

    Ashayeri-Panah, M; Eftekhar, F; Feizabadi, M M

    2012-04-01

    To develop an optimized random amplified polymorphic DNA (RAPD) protocol for fingerprinting clinical isolates of Klebsiella pneumoniae. Employing factorial design of experiments, repeatable amplification patterns were obtained for 54 nosocomial isolates using 1 μmol 1(-1) primer, 4 mmol 1(-1) MgCl(2), 0·4 mmol 1(-1) dNTPs, 2·5 U Taq DNA polymerase and 90 ng DNA template in a total volume of 25 μl. The optimum thermocycling program was: initial denaturation at 94°C for 4 min followed by 50 cycles of 1 min at 94°C, 2 min at 34°C, 2 min at 72°C and a final extension at 72°C for 10 min. The optimized RAPD protocol was highly discriminatory (Simpson's diversity index, 0·982), and all isolates were typable with repeatable patterns (Pearson's similarity coefficient ≈ 100%). Seven main clusters were obtained on a similarity level of 70% and 32 distinct clusters on a similarity level of 85%, reflecting the heterogeneity of the isolates. Systematic optimization of RAPD generated reliable DNA fingerprints for nosocomial isolates of K. pneumoniae. This is the first report on RAPD optimization based on factorial design of experiments for discrimination of K. pneumoniae. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  3. Adverse Events in the Netherlands Vaccination Programme : Reports in 2010 and Review 1994-2010

    NARCIS (Netherlands)

    Vermeer-de Bondt PE; Moorer-Lanser N; PHaff TAJ; Oostvogels B; Wesselo C; van der Maas NAT; LCI; cib

    2012-01-01

    In 2010, 800,000 children received one or more vaccines on 1.3 million dates, with more than 7 million vaccine components. There is always some chance of adverse reactions but these are usually not severe, though sometimes frightening. This year, RIVM received 1380 reports of adverse events

  4. Next Generation Science Standards and edTPA: Evidence of Science and Engineering Practices

    Science.gov (United States)

    Brownstein, Erica M.; Horvath, Larry

    2016-01-01

    Science teacher educators in the United States are currently preparing future science teachers to effectively implement the "Next Generation Science Standards" (NGSS) and, in thirteen states, to successfully pass a content-specific high stakes teacher performance assessment, the edTPA. Science education and teacher performance assessment…

  5. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  6. Prospects for generating 1-10 TPa pressures with a railgun

    International Nuclear Information System (INIS)

    Hawke, R.S.; Scudder, J.K.

    1979-01-01

    It has been demonstrated that a plasma arc can be accelerated along two current carrying parallel rails and used to accelerate a projectile. We have performed an extensive analysis and found the task of using a railgun to accelerate an impactor plate to velocities of 10 to 40 km/s to be feasible with contemporary technology. This range of impact velocities would enable shock pressures of 1 to 10 TPa to be generated for EOS research

  7. Progress towards a Leishmania vaccine.

    Science.gov (United States)

    Tabbara, Khaled S

    2006-07-01

    Leishmaniasis is a vector-born protozoan disease. Approximately 12 million individuals are affected worldwide with an estimated annual incidence of 1.5-2 million. Two clinical manifestations are recognized, cutaneous, and visceral, both of which are common in the Middle East. In both forms, infection is chronic, with potential deformities, persistence following cure, and lifelong risk of reactivation. Attempts to develop an effective human Leishmania vaccine have not yet succeeded. Leishmanization, a crude form of live vaccination historically originated in this part of the world. Experimental vaccination has been extensively studied in model animals in the past 2 decades. In this review, major human killed vaccine trials are surveyed, and modern trends in Leishmania vaccine development, including subunit vaccines, naked DNA vaccines, and transmission blocking vaccines are explored. Recent findings of a link between persistence of live parasites, and maintenance of long-term immunity suggest live vaccination with attenuated strains, as a future vaccination strategy.

  8. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14 in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.

  9. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    OpenAIRE

    Casimiro, Danilo R.; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Caulfield, Michael J.; Davies, Mary-Ellen; Tang, Aimin; Chen, Minchun; Huang, Lingyi; Harris, Virginia; Freed, Daniel C.; Wilson, Keith A.; Dubey, Sheri; Zhu, De-Min; Nawrocki, Denise

    2003-01-01

    Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defecti...

  10. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Barney S Graham

    Full Text Available DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity.Forty adults, 18-50 years, were randomly assigned to intramuscular (IM vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8 by Biojector® 2000™ or needle and syringe (N/S and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5 with N/S at 10(10 or 10(11 particle units (PU. Equal numbers per assigned schedule had low (≤500 or high (>500 reciprocal titers of preexisting Ad5 neutralizing antibody.120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89% for Biojector® and 13/17 (76% for N/S delivery at Week 28 (4 weeks post rAd5 boost. The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects.DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting.ClinicalTrials.gov NCT00109629.

  11. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    Science.gov (United States)

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-I levels

    NARCIS (Netherlands)

    Asselbergs, Folkert W.; Williams, Scott M.; Hebert, Patricia R.; Coffey, Christopher S.; Hillege, Hans L.; Navis, Gerjan; Vaughan, Douglas E.; van Gilst, Wiek H.; Moore, Jason H.

    2006-01-01

    Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor I (PAI-I) directly influence thrombus formation and degradation and thus risk for arterial thrombosis. We report here results from a genetic analysis of plasma t-PA and PAI-I levels in a large population-based sample from the

  13. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  14. Effects of 12-O-tetradecanoylphorbol-13-acetate on the incorporation of labelled precursors into RNA, DNA and protein in epidermis, dermis and subcutis from precancerous mouse skin with reference to enhanced tumorigenesis

    International Nuclear Information System (INIS)

    Bhisey, R.A.; Ramchandani, A.G.; Sirsat, S.M.

    1984-01-01

    The effects of a single application of 1.8 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) on precursor incorporation into RNA, DNA and protein in the epidermis, dermis and subcutis from 3-methylcholanthrene (MCA) injected precancerous mouse skin were studied at various time points between 3 and 96 h. In the precancerous tissues, the rates of incorporation of [ 3 H]uridine into RNA did not alter appreciably from those in the control tissues; while the rates of [ 3 H]methylthymidine incorporation into DNA were elevated with peaks appearing between 6 and 12 h, at 24 h and at 72 h in epidermis, dermis and subcutis. The rate of incorporation of [ 14 C]leucine into protein was markedly elevated in all the three tissues which showed 3-4 sharp peaks. The maximum stimulation ranged between 14 and 20 times that of the control. A single application of TPA to the precancerous mouse skin induced early stimulation of precursor incorporation into all the three macromolecules in epidermis, dermis and subcutis. The increased stimulation was maintained for 36-72 h. The patterns of incorporation of [ 3 H]methylthymidine into DNA gave rise to 2-3 peaks of elevated uptake in each tissue up to 36-48 h. A lowered rate of DNA synthesis between 48 and 60 h was followed by a peak at 72 h. In each group, epidermal mitotic activity correlated well with spurts of precursor incorporation into cellular DNA. The observations indicate that TPA recruits more cells into the DNA synthetic phase and accelerates selective growth of preneoplastic cells during tumor progression

  15. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  16. A curcumin-based TPA four-branched copper(II) complex probe for in vivo early tumor detection

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Zongxin [Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230001 (China); Wang, Jiafeng; Jiang, Bo [Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038 (China); Cheng, Gang [Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230001 (China); Zhou, Shuangsheng, E-mail: zshuangsheng@126.com [Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038 (China); Center of Modern Experimental Technology, Anhui University, Hefei 230038 (China)

    2015-01-01

    A multibranched Cu(II) complex CuL{sub 2} curcumin-based was synthesized and characterized by single-crystal X-ray diffraction analysis. The photophysical properties of the complex have been investigated both experimentally and theoretically. The results show that the target complex exhibits higher quantum yield and larger two-photon absorption (TPA) cross-section in the near infrared (NIR) region compared with its free ligand. The cell imaging studies in vitro and in vivo reveal that the complex shows good photostability and excellent tumor targeting capability to tested cancerous cells, which can be potentially used for early tumor detection. - Graphical abstract: A multibranched Cu(II) complex was prepared from curcumin. The photophysical properties of the obtained complex have been investigated. The results exhibit that the complex has high capability to test cancerous cells and can distinguish between the cancerous and noncancerous cells, which should be potentially used for early tumor detection. - Highlights: • A novel multi-branched copper complex was synthesized. • The obtained compounds exhibited obvious TPA in high polar solvents. • The complex is a low toxicity at low-micromolar concentrations. • The complex exhibits larger TPA cross-section and brighter TPF imaging. • The complex has excellent targeting capability to tested cancerous cells.

  17. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    Science.gov (United States)

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential

    DEFF Research Database (Denmark)

    Riedl, Petra; Wieland, Andreas; Lamberth, Kasper

    2009-01-01

    Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV...... cell immunity by multidomain Ags. The "weak" (i.e., easily suppressed) K(b)/C(93-100)-specific CD8 T cell response was efficiently elicited by a HBV core Ag-encoding vector in 1.4HBV-S(mut) tg mice (that harbor a replicating HBV genome that produces HBV surface, core, and precore Ag in the liver). K......(b)/C(93-100)-specific CD8 T cells accumulated in the liver of vaccinated 1.4HBV-S(mut) transgenic mice where they suppressed HBV replication. Subdominant epitopes in vaccines can hence prime specific CD8 T cell immunity in a tolerogenic milieu that delivers specific antiviral effects to HBV...

  19. Tomorrow's vector vaccines for small ruminants.

    Science.gov (United States)

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  1. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Kirkby, N

    1999-01-01

    degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible...

  2. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  3. Kandungan Nitrat dan Fosfat Sedimen serta Keterkaitannya dengan Kerapatan Mangrove di Kawasan Mertasari di Aliran Sungai TPA Suwung Denpasar, Bali

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Desi Kusuma Dewi

    2017-06-01

    Full Text Available Mangrove is a green plants tolerant of salt water, which grows mainly along the sheltered coastal areas, especially along the bay or in estuaries. Final Disposal (TPA Rubbish Suwung which located in the village Pedungan South Denpasar District is the rubbish dumps originating from the city of Denpasar and Badung. There is a natural mangrove vegetation in the river TPA. Mertsari area which located in the village of Sanur, West Denpasar District is a mangrove planting area and tourism destination on the Mertasari Beach. The purpose of this research are as follows: (1 To identify the content of nitrate and phosphate in mangrove sediments, (2 To determine the density of mangrove in Region Mertasari and TPA Suwung River Flow and (3 To describe the mangrove density is linkage with nitrate and phosphate mangrove sediments. The method used on this research is linear regression. Nitrate and phosphate sediments of mangroves in TPA Suwung River Flow and Region Mertasari range of 0.04 ppm - 79.034 ppm. The average density results of the mangrove tree level, saplings and seedlings in different locations ranged 0.01 ind / m2 - 0.32 ind / m2. The river's flow TPA Suwung produce a simple linear regression calculation of nitrate mangrove sediments density y = -0,002x + 0,288 (R2 10,1 %, and the calculation of the density sedimentary  phosphate mangrove produce y = 0,007x + 0,125  (R2 6,1 %. The results of simple linear regression calculation of nitrate sediments density Mertasari mangrove area is y = -0,002x+ 0,537  R2 = 4,7%, and the calculation of the density sedimentary  phosphate mangrove produce y = -0,038x + 0,777 (R2 63,7 %.

  4. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  5. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  6. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  7. Oligodeoxyribonucleotides derived from salmon sperm DNA: an alternative to defibrotide.

    Science.gov (United States)

    Hui, Chang-Ye; Guo, Yan; Zhang, Xi; Shao, Jian-Hua; Yang, Xue-Qin; Zhang, Wen

    2013-05-01

    Defibrotide is a single-stranded nucleic acid polymer originally derived from porcine mucosa. Cheap salmon sperm DNA is commercially available and widely used in drug production. In this study, oligodeoxyribonucleotides were successfully obtained from the controlled depolymerization of salmon sperm DNA. The obtained product shared similar chemical and biological properties with defibrotide produced by Gentium SpA, Italy. It was also found that oligodeoxyribonucleotides derived from non-mammalian origins could also directly stimulate tissue plasminogen activator (t-PA) release from cultured human endothelial cells, and enhance fibrinolytic activity in the rabbit. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  9. Geraniol attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: possible role of p38 MAP Kinase and NF-κB.

    Science.gov (United States)

    Khan, Abdul Quaiyoom; Khan, Rehan; Qamar, Wajhul; Lateef, Abdul; Rehman, Muneeb U; Tahir, Mir; Ali, Farrah; Hamiza, Oday O; Hasan, Syed Kazim; Sultana, Sarwat

    2013-06-01

    Abnormal production of reactive oxygen species (ROS) and proinflammatory cytokines often act as trigger for development of most of the chronic human diseases including cancer via up-regulation of transcription factors and activation of MAP kinases. We investigated the protective effects of geraniol (GOH) against 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced oxidative and inflammatory responses, expression of p38MAPK, NF-κB and COX-2 in mouse skin. Animals were divided into four groups I-IV (n=6). Group II and III received topical application of TPA at the dose of 10 nmol/0.2 ml of acetone/animal/day, for two days. Group III was pre-treated with GOH (250 μg) topically 30 min prior to each TPA administration. While group I and IV were given acetone (0.2 ml) and GOH respectively. Our results show that GOH significantly inhibited TPA induced lipid peroxidation (LPO), inflammatory responses, proinflammatory cytokine release, up regulates reduced glutathione (GSH) content and the activity of different antioxidant enzymes. Interestingly, GOH also inhibited TPA induced altered activity of p38MAPK. Further, TPA induced altered expression of NF-κB (p65) and COX-2 was also attenuated by GOH. Thus, our results suggest that GOH attenuates early tumor promotional changes, and it may serve as one of the various ways to prevent carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Communicative Learning Outcomes and World Language edTPA: Characteristics of High-Scoring Portfolios

    Science.gov (United States)

    Swanson, Pete; Hildebrandt, Susan A.

    2017-01-01

    Teacher accountability continues to be at the forefront of educational policy in the United States, with the current focus on the Outcomes of K-12 teaching and teacher education (Cochran-Smith 2000). edTPA, a high-stakes assessment used in many states to make licensure or certification decisions, purports to measure those content-specific…

  11. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples.

    Science.gov (United States)

    Miller, D N; Bryant, J E; Madsen, E L; Ghiorse, W C

    1999-11-01

    We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed

  12. Pilot Study on the Use of DNA Priming Immunization to Enhance Y. pestis LcrV-Specific B Cell Responses Elicited by a Recombinant LcrV Protein Vaccine

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-12-01

    Full Text Available Recent studies indicate that DNA immunization is powerful in eliciting antigen-specific antibody responses in both animal and human studies. However, there is limited information on the mechanism of this effect. In particular, it is not known whether DNA immunization can also enhance the development of antigen-specific B cell development. In this report, a pilot study was conducted using plague LcrV immunogen as a model system to determine whether DNA immunization is able to enhance LcrV-specific B cell development in mice. Plague is an acute and often fatal infectious disease caused by Yersinia pestis (Y. pestis. Humoral immune responses provide critical protective immunity against plague. Previously, we demonstrated that a DNA vaccine expressing LcrV antigen can protect mice from lethal mucosal challenge. In the current study, we further evaluated whether the use of a DNA priming immunization is able to enhance the immunogenicity of a recombinant LcrV protein vaccine, and in particular, the development of LcrV-specific B cells. Our data indicate that DNA immunization was able to elicit high-level LcrV antibody responses when used alone or as part of a prime-boost immunization approach. Most significantly, DNA immunization was also able to increase the levels of LcrV-specific B cell development. The finding that DNA immunization can enhance antigen-specific B cell responses is highly significant and will help guide similar studies in other model antigen systems.

  13. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ

    Directory of Open Access Journals (Sweden)

    Kaustuv Banerjee

    2013-08-01

    Full Text Available Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA, and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA.

  14. Deep insight into white spot syndrome virus vaccines: A review

    Directory of Open Access Journals (Sweden)

    MA Badhul Haq

    2012-02-01

    Full Text Available White spot syndrome virus (WSSV, the causative virus of the disease, is found in most shrimp farming areas of the world, where it causes large economic losses to the shrimp farming industry. The potentially fatal virus has been found to be a threat not only to all shrimp species, but also to other marine and freshwater crustaceans, such as crab and crayfish. To date, no effective prophylactic treatment measures are available for viral infections in shrimp and other crustaceans. Due to current aquaculture practices and the broad host range of WSSV, intervention strategies including vaccination against this virus would be pivotal to save and protect shrimp farming. Several achievements have been attained in the search of novel vaccines for WSSV. DNA vaccination, recombinant vaccines, oral vaccination techniques and gene therapy are some of the thrust areas of focus for scientists and researchers. This review article highlights the recent trends in the development of WSSV vaccines either as DNA vaccines or recombinant vaccines and their functioning strategies as suggested by the researchers worldwide.

  15. Impact and Cost-effectiveness of 3 Doses of 9-Valent Human Papillomavirus (HPV) Vaccine Among US Females Previously Vaccinated With 4-Valent HPV Vaccine.

    Science.gov (United States)

    Chesson, Harrell W; Laprise, Jean-François; Brisson, Marc; Markowitz, Lauri E

    2016-06-01

    We estimated the potential impact and cost-effectiveness of providing 3-doses of nonavalent human papillomavirus (HPV) vaccine (9vHPV) to females aged 13-18 years who had previously completed a series of quadrivalent HPV vaccine (4vHPV), a strategy we refer to as "additional 9vHPV vaccination." We used 2 distinct models: (1) the simplified model, which is among the most basic of the published dynamic HPV models, and (2) the US HPV-ADVISE model, a complex, stochastic, individual-based transmission-dynamic model. When assuming no 4vHPV cross-protection, the incremental cost per quality-adjusted life-year (QALY) gained by additional 9vHPV vaccination was $146 200 in the simplified model and $108 200 in the US HPV-ADVISE model ($191 800 when assuming 4vHPV cross-protection). In 1-way sensitivity analyses in the scenario of no 4vHPV cross-protection, the simplified model results ranged from $70 300 to $182 000, and the US HPV-ADVISE model results ranged from $97 600 to $118 900. The average cost per QALY gained by additional 9vHPV vaccination exceeded $100 000 in both models. However, the results varied considerably in sensitivity and uncertainty analyses. Additional 9vHPV vaccination is likely not as efficient as many other potential HPV vaccination strategies, such as increasing primary 9vHPV vaccine coverage. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Vaccination with DNA encoding truncated enterohemorrhagic Escherichia coli (EHEC factor for adherence-1 gene (efa-1’ confers protective immunity to mice infected with E. coli O157:H7

    Directory of Open Access Journals (Sweden)

    Roberto eRiquelme-Neira

    2016-01-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1’ in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1’ gene (pVAXefa-1’ into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1`, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10 and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1´ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.

  17. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.

  18. Tensile properties of cooked meat sausages and their correlation with texture profile analysis (TPA) parameters and physico-chemical characteristics.

    Science.gov (United States)

    Herrero, A M; de la Hoz, L; Ordóñez, J A; Herranz, B; Romero de Ávila, M D; Cambero, M I

    2008-11-01

    The possibilities of using breaking strength (BS) and energy to fracture (EF) for monitoring textural properties of some cooked meat sausages (chopped, mortadella and galantines) were studied. Texture profile analysis (TPA), folding test and physico-chemical measurements were also performed. Principal component analysis enabled these meat products to be grouped into three textural profiles which showed significant (p<0.05) differences mainly for BS, hardness, adhesiveness and cohesiveness. Multivariate analysis indicated that BS, EF and TPA parameters were correlated (p<0.05) for every individual meat product (chopped, mortadella and galantines) and all products together. On the basis of these results, TPA parameters could be used for constructing regression models to predict BS. The resulting regression model for all cooked meat products was BS=-0.160+6.600∗cohesiveness-1.255∗adhesiveness+0.048∗hardness-506.31∗springiness (R(2)=0.745, p<0.00005). Simple linear regression analysis showed significant coefficients of determination between BS (R(2)=0.586, p<0.0001) versus folding test grade (FG) and EF versus FG (R(2)=0.564, p<0.0001).

  19. The recent progress in RSV vaccine technology.

    Science.gov (United States)

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  20. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Keywords: Multiple DNA vaccine, Omp31 gene, Brucella melitensis, Eae gene, Escherichia ... Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African .... a 1 % agarose gel in 1× TBE buffer, followed by ... manufacturer's protocol, the recombinant ..... Moreno S, Timon M. DNA vaccination: an immunological.