WorldWideScience

Sample records for toxic metalloid tellurite

  1. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  2. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  3. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  4. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  5. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon

    2015-01-01

    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe

  6. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil.

    Science.gov (United States)

    Mollon, L C; Norton, G J; Trakal, L; Moreno-Jimenez, E; Elouali, F Z; Hough, R L; Beesley, L

    2016-11-01

    Heavy metal(loid) rich ash (≤10,000 mg kg -1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1-3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash. The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits. The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  9. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    Science.gov (United States)

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  10. Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes

    NARCIS (Netherlands)

    Barmentlo, S.H.; van Gestel, C.A.M.; Alvarez-Rogel, J.; Gonzalez Alcaraz, M.N.

    2017-01-01

    This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different

  11. The evolution of December 2004 tsunami deposits: temporal and spatial distribution of potentially toxic metalloids.

    Science.gov (United States)

    Kozak, Lidia; Niedzielski, Przemysław

    2013-11-01

    The article presents the results of research into the content of metalloid fractions in the tsunami deposits from southern Thailand. The following fractions, which are potentially most easily released from deposits to the environment, have been distinguished: the water soluble fraction, the exchangeable fraction extracted with the phosphate buffer and the fraction eluted with the solution of hydrochloric acid. The analytical technique atomic absorption spectrometry with hydride generation was applied. Spatial variability of the metalloid fractions in deposits and changes occurring in deposits over a period of several years of observation were determined. Based on the statistical analysis of the results, an attempt was made to determine the post-depositional release of deposits components to the environment. Based on the conducted research, the 4 years forming process of the arsenic, antimony and selenium occurrence after the deposition of sediments on land were described, as well as the balance in the amount of deposit components released to the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  13. Proteomic differences between tellurite-sensitive and tellurite-resistant E.coli.

    Directory of Open Access Journals (Sweden)

    Jana Aradská

    Full Text Available Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap. In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon

  14. Aquaglyceroporins: generalized metalloid channels

    Science.gov (United States)

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  15. Catalases are NAD(PH-dependent tellurite reductases.

    Directory of Open Access Journals (Sweden)

    Iván L Calderón

    2006-12-01

    Full Text Available Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(PH is not required for their dismutase activity. Although NAD(PH protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(PH-dependent reduction of soluble tellurite ion (TeO(3(2- to the less toxic, insoluble metal, tellurium (Te(o, in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.

  16. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    Science.gov (United States)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  17. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Energy Technology Data Exchange (ETDEWEB)

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)

    2011-02-15

    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  18. Extremely radioresistant microbe Deinococcus radiodurans does not survive tellurite-mediated oxidative stress: revelation of molecular basis

    International Nuclear Information System (INIS)

    Apte, Shree Kumar; Narasimha, Anaganti; Basu, Bhakti

    2014-01-01

    Deinococcus radiodurans exhibits extraordinary resistance to gamma radiation as well as oxidative stress. Comparison of tellurite stress with gamma irradiation, both of which impart severe oxidative stress, revealed that tellurite induced less ROS and caused less oxidative damage to proteins, but was much more lethal to D. radiodurans than gamma irradiation. The proteomic changes induced by tellurite exposure were mapped by two dimensional protein electrophoresis followed by mass spectrometry. Seventy proteins belonging to major functional categories of oxidative stress alleviation, protein translation/folding and metabolism were identified. Tellurite responsive proteome dynamics displayed (i) up-regulation of proteins involved in tellurite stress resistance and oxidative stress alleviation, dehydrogenases involved in generation of reducing potential, and chaperones (such DnaK), and (ii) down regulation of key glycolysis and TCA cycle enzymes, proteins involved in protein translation/folding and energy production. Tellurite stress also resulted in nearly 50% loss in the cellular reducing potential within 1h of exposure while gamma irradiation had no such effect. The findings provide a better insight into the mechanism of tellurite toxicity, beyond metal mediated oxidative stress, in this extremophile. (author)

  19. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.

    Science.gov (United States)

    Pommerrenig, Benjamin; Diehn, Till Arvid; Bienert, Gerd Patrick

    2015-09-01

    Metalloids are a group of physiologically important elements ranging from the essential to the highly toxic. Arsenic, antimony, germanium, and tellurium are highly toxic to plants themselves and to consumers of metalloid-contaminated plants. Boron, silicon, and selenium fulfill essential or beneficial functions in plants. However, when present at high concentrations, boron and selenium cause toxicity symptoms that are detrimental to plant fitness and yield. Consequently, all plants require efficient membrane transport systems to control the uptake and extrusion of metalloids into or out of the plant and their distribution within the plant body. Several Nodulin 26-like intrinsic proteins (NIPs) that belong to the aquaporin plant water channel protein family facilitate the diffusion of uncharged metalloid species. Genetic, physiological, and molecular evidence is that NIPs from primitive to higher plants not only transport all environmentally important metalloids, but that these proteins have a major role in the uptake, translocation, and extrusion of metalloids in plants. As most of the metalloid-permeable NIP aquaporins are impermeable or are poorly permeable to water, these NIP channel proteins should be considered as physiologically essential metalloido-porins. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Ashengroph, Morahem; Malekzadeh, Feridon; Reza Razavi, Mohamad; Naddaf, Saied; Kabiri, Mahboubeh

    2008-01-01

    Among the 49 strains of moderately halophilic bacteria isolated from the salty environments of Iran, a Gram-positive coccus designated as strain QW6 showed high capacity in the removal of toxic oxyanions of tellurium in a wide range of culture medium factors including pH (5.5-10.5), temperature (25-45 degrees C), various salts including NaCl, KCl, and Na(2)SO(4) (0.5-4 M), selenooxyanions (2-10 mM), and at different concentrations of potassium tellurite (0.5-1 mM) under aerobic condition. Phenotypic characterization and phylogenetic analyses based on 16S rDNA sequence comparisons indicated that this strain was a member of the genus Salinicoccus. The maximum tellurite removal was exhibited in 1.5M NaCl at 35 degrees C, while the activity reduced by 53% and 47% at 25 and 45 degrees C, respectively. The optimum pH for removal activity was shown to be 7.5, with 90% and 83% reduced removal capacities at the two extreme values of 5.5 and 10, respectively. The impact of different concentrations of selenooxyanions (2-10 mM) on tellurite removal by strain QW6 was evaluated. The ability of strain QW6 in the removal of tellurite in the presence of 6mM selenite increased by 25%. The concentration of toxic potassium tellurite in the supernatant of the bacterial culture medium decreased by 99% (from 0.5 to 0.005 mM) after 6 days and the color of the medium changed to black due to the formation of less toxic elemental tellurium.

  1. Determination of Abundance of Tellurite-Resistant Bacteria and the Ability of Remove of them from Qom Province Industrial Wastewater, Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mahboubeh Soleimani Sasani

    2013-02-01

    Full Text Available Background and Objectives: Accumulation of toxic oxyanion of potassium tellurite, which has increased in the environment due to industrial activities, can cause complications in human, such as skin irritation, dermatitis, anorexia, tremor, nausea, vomiting, nervous system stimulation, convulsion, and respiratory arrest. The purpose of this research was to isolate tellurite-resistant bacteria, determine the minimum inhibitory concentration (MIC, and evaluate bioreduction of tellurite in strains.Methods: MIC was measured by agar dilution method in 84 resistant strains isolated from wastewater. QWTm6 strain with tolerance of tellurite concentration of 6684μg/ml was selected as superior strain. Toleration of this level of tellurite has not been reported yet. Results: According to biochemical, phenotypic, and physiological characteristics, QWTm6 was initially classified into Staphylococcus genus. Using the spectrophotometric technique and DDTC reagent (A340nm & sodium diethyldithiocarbamate trihydrate, maximum elimination was seen in 0.4mM concentration of potassium tellurite in 24 hours. The strain showed high ability in the elimination of toxic oxyanion of potassium tellurite under a wide range of factors such as pH=(5-11, temperature (15-50◦C, blender speed (50, 100, 150, and 200rpm, various oxyanion concentrations (0.04-1mM, and different percentages of NaCl (0-20%. This strain was also resistant to penicillin, cefixime, tetracycline, chloramphenicol, streptomycin, neomycin, erythromycin, gentamicin, kanamycin, norfloxacin, and ciprofloxacin.Conclusion: The results of this study showed that QWTm6 could be introduced in the international societies as an acceptable candidate for bioremediation, because of its high ability in removal and reduction of potassium tellurite.

  2. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  3. Transport routes of metalloids into and out of the cell: a review of the current knowledge.

    Science.gov (United States)

    Zangi, Ronen; Filella, Montserrat

    2012-04-15

    Except for their extra- and intra-cellular interfaces, cell membranes are hydrophobic and inhibit the transport of hydrophilic molecules. Metalloids in aqueous solutions form chemical species with oxygen and hydroxyl groups and, therefore, exist as hydrophilic neutral polar solutes or as hydrophilic anions. This characteristic of metalloids introduces a large barrier for their passage through the cell membrane via unaided diffusion. The necessity for an uptake mechanism for metalloids arises from the requirement of these species for the maintenance of life, such as the need of boron for plant cells. Conversely, the transport of these species out of the cell is necessary because some metalloids are toxic, such as arsenic and antimony, and their entrance into the cell is undesirable. The undesired uptake of these toxic species is possible via pathways designed for the uptake of other structurally and chemically similar essential compounds. Therefore, the extrusion of arsenic and antimony out of the cell is an example of a detoxification mechanism. As a consequence of the hydrophobic character of the cell membrane in all living systems, the main route for the uptake and efflux of metalloids is facilitated by transmembrane proteins, driven either by concentration gradients or by energy-fueled pumps. However, metalloids forming or embedded in nano-sized particles escape the need to cross the cell membrane because these particles can be taken into the cell by endocytosis. Here, we review the uptake and efflux pathways of boron, silicon, arsenic, and antimony through the cell membranes of different organisms and the protein channels involved in these processes. In particular, passive diffusion via aquaglyceroporins, active transport via primary and secondary ion pumps, extrusion into vacuoles of metalloid-thiol conjugates via ATP-binding cassette, the efflux of methylated metalloids, and endocytosis are summarized. Copyright © 2012 Elsevier Ireland Ltd. All rights

  4. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  5. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    Science.gov (United States)

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.

  6. Technological advances in tellurite glasses properties, processing, and applications

    CERN Document Server

    Manzani, Danilo

    2017-01-01

    This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science,...

  7. Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids.

    Science.gov (United States)

    Wang, Ying; Wu, Fengchang; Liu, Yuedan; Mu, Yunsong; Giesy, John P; Meng, Wei; Hu, Qing; Liu, Jing; Dang, Zhi

    2018-01-01

    Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE 0 and X m 2 r, respectively (R 2  = 0.988, 0.839, 0.871, P metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented. Copyright © 2017. Published by Elsevier Ltd.

  8. Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme

    Directory of Open Access Journals (Sweden)

    Chris Maltman

    2017-04-01

    Full Text Available Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase.

  9. Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures

    Directory of Open Access Journals (Sweden)

    Mauricio Arenas-Salinas

    2016-07-01

    Full Text Available The tellurium oxyanion tellurite (TeO32- is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(PH-dependent, reduction to the less toxic form elemental tellurium (Te0. To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3, among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR. Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB, alkyl hydroperoxide reductase (AhpF, glutathione reductase (GorA, mercuric reductase (MerA, NADH: flavorubredoxin reductase (NorW, dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37 °C.Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS. While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (> 100 nm. Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA and YkgC.

  10. Synthesis and Antibacterial Activity of Metal(loid Nanostructures by Environmental Multi-Metal(loid Resistant Bacteria and Metal(loid-Reducing Flavoproteins

    Directory of Open Access Journals (Sweden)

    Maximiliano Figueroa

    2018-05-01

    Full Text Available Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS, which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loids. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32- and tetrachloro aurate (AuCl4- reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32- and silver (Ag+ reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude

  11. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  12. Optical Properties of Bismuth Tellurite Based Glass

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  13. Nature's refineries — Metals and metalloids in arc volcanoes

    Science.gov (United States)

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  14. Optical properties of zinc lead tellurite glasses

    Directory of Open Access Journals (Sweden)

    Salah Hassan Alazoumi

    2018-06-01

    Full Text Available Tellurite glass systems in the form of [ZnO]x [(TeO20.7-(PbO0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280–4000 cm−1 and UV-Vis (200–800 nm spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41–3.94 eV and 2.40–2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition. Keywords: Tellurite, Glass, Optical band gap, Refractive index

  15. Viscosity properties of tellurite-based glasses

    International Nuclear Information System (INIS)

    Tincher, B.; Massera, J.; Petit, L.; Richardson, K.

    2010-01-01

    The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.

  16. Comparison of accumulation of four metalloids in Allium sativum.

    Science.gov (United States)

    Ogra, Yasumitsu; Awaya, Yumi; Anan, Yasumi

    2015-05-01

    In this study, we evaluated the accumulation and metabolism of four metalloids: arsenic (As), selenium (Se), antimony (Sb), and tellurium (Te) in garlic to determine whether garlic can be used for the phytoremediation of those metalloids. Garlic was able to efficiently accumulate As and Se, the two-fourth-period metalloids. However, it was not able to accumulate Sb and Te, the two-fifth-period metalloids, because their bioaccumulation factors were below one. Speciation analyses revealed that four metalloids could be metabolized in garlic, although their metabolites could not be identified yet. Results also suggested that garlic was able to distinguish the metalloids in groups 15 and 16 and the fourth and fifth periods, i.e., As, Se, Sb, and Te. Therefore, garlic is one of the potential plants for the phytoremediation of the fourth-period metalloids.

  17. Metals, Metalloids and Radionuclides in the Baltic Sea Ecosystem

    International Nuclear Information System (INIS)

    Szefer, P.

    2002-01-01

    The state of knowledge of the distribution, bioavailability, biomagnification, discrimination, fate and sources of chemical pollutants (metals, metalloids, radionuclides and nutrients) in all compartments (atmosphere, water, deposits, biota) of the Baltic environment is presented. Particular components of the Baltic ecosystem are considered as potential monitors of pollutants. Budgets of chemical elements and the ecological status of the Baltic Sea in the past, present and future are presented. Estimates of health risks to man in respect to some toxic metals and radionuclides in fish and seafood are briefly discussed. The content of the book makes possible the identification of gaps in our environmental knowledge of the Baltic Sea, with certain sections establishing possible priorities, key areas or strategies for future research

  18. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  19. Aquaglyceroporins: ancient channels for metalloids

    Science.gov (United States)

    Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita; Thiyagarajan, Saravanamuthu; Rosen, Barry P

    2008-01-01

    The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon. PMID:19014407

  20. Studies on boro cadmium tellurite glasses

    Science.gov (United States)

    Gayathri Pavani, P.; Suresh, S.; Chandra Mouli, V.

    2011-11-01

    To investigate the modification effect of the modifier CdO on boro tellurite glass, a series of glasses with compositions (50 - x) CdO- xTeO 2-50B 2O 3 have been prepared by conventional melt quenching technique. Optical absorption, IR and Raman structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wave length and refractive index increase while optical band gap ( Eopt) and Urbach energy decreases with increase of CdO content. The IR and Raman studies revealed that structure of glass network consists of [TeO 3]/[TeO 3+1], [TeO 4], [BO 3], [BO 4] and [Cd-Te] linkages .The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed.

  1. Aeration Controls the Reduction and Methylation of Tellurium by the Aerobic, Tellurite-Resistant Marine Yeast Rhodotorula mucilaginosa▿

    Science.gov (United States)

    Ollivier, Patrick R. L.; Bahrou, Andrew S.; Church, Thomas M.; Hanson, Thomas E.

    2011-01-01

    We previously described a marine, tellurite-resistant strain of the yeast Rhodotorula mucilaginosa that both precipitates intracellular Te(0) and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a “green” route for the production of Te(0)-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed by R. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te(0) precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te(0) was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te(0) precipitates produced by R. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te(0) is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te(0) nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated. PMID:21602387

  2. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.

    Science.gov (United States)

    Liu, Yuedan; Wu, Fengchang; Mu, Yunsong; Feng, Chenglian; Fang, Yixiang; Chen, Lulu; Giesy, John P

    2014-01-01

    Both nonparametric and parametric approaches were used to construct SSDs for use in ecological risk assessments. Based on toxicity to representative aquatic species and typical water contaminants of metals and metalloids in China, nonparametric methods based on the bootstrap were statistically superior to the parametric curve-fitting approaches. Knowing what the SSDs for each targeted species are might help in selecting efficient indicator species to use for water quality monitoring. The species evaluated herein showed sensitivity variations to different chemical treatments that were used in constructing the SSDs. For example, D. magna was more sensitive than most species to most chemical treatments, whereas D. rerio was sensitive to Hg and Pb but was tolerant to Zn. HC5 values, derived for the pollutants in this study for protecting Chinese species, differed from those published by the USEPA. Such differences may result from differences in geographical conditions and biota between China and the United States. Thus, the degree of protection desired for aquatic organisms should be formulated to fit local conditions. For approach selection, we recommend all approaches be considered and the most suitable approaches chosen. The selection should be based on the practical information needs of the researcher (viz., species composition, species sensitivity, and geological characteristics of aquatic habitats), since risk assessments usually are focused on certain substances, species, or monitoring sites. We used Tai Lake as a typical freshwater lake in China to assess the risk of metals and metalloids to the aquatic species. We calculated hazard quotients for the metals and metalloids that were found in the water of this lake. Results indicated the decreasing ecological risk of these contaminants in the following order: Hg metalloids to aquatic species. Based on the MEC and HC5 derived from SSDs by nonparametric and parametric approaches together, the risk levels of metals

  3. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  4. Heavy metals and metalloids as a cause for protein misfolding and aggregation.

    Science.gov (United States)

    Tamás, Markus J; Sharma, Sandeep K; Ibstedt, Sebastian; Jacobson, Therese; Christen, Philipp

    2014-02-25

    While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.

  5. Magnetically sensitive nanodiamond-doped tellurite glass fibers.

    Science.gov (United States)

    Ruan, Yinlan; Simpson, David A; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; Afshar V, Shahraam; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2018-01-19

    Traditional optical fibers are insensitive to magnetic fields, however many applications would benefit from fiber-based magnetometry devices. In this work, we demonstrate a magnetically sensitive optical fiber by doping nanodiamonds containing nitrogen vacancy centers into tellurite glass fibers. The fabrication process provides a robust and isolated sensing platform as the magnetic sensors are fixed in the tellurite glass matrix. Using optically detected magnetic resonance from the doped nanodiamonds, we demonstrate detection of local magnetic fields via side excitation and longitudinal collection. This is a first step towards intrinsically magneto-sensitive fiber devices with future applications in medical magneto-endoscopy and remote mineral exploration sensing.

  6. Optical properties of zinc lead tellurite glasses

    Science.gov (United States)

    Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset

    2018-06-01

    Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.

  7. Comparative studies on antisickling properties of thiocyanate, tellurite and hydroxyurea

    International Nuclear Information System (INIS)

    Oyewole, O.I.; Maloma, S.O.; Adebayo, J.O.

    2008-01-01

    Thiocyanate, hydroxyurea and tellurite are among chemical agents being used as antisickling drugs and currently receiving attention for research. The antisickling properties of these drugs was investigated and compared in this study. Human sickle blood was incubated with the drugs in vitro at concentrations related to the dose used by patients in vivo. Haemoglobin function and specific aspects of the sickling process were then measured by employing standard methods used in screening potential antisickling agents. All the drugs significantly inhibited (P<0.05) sickling of deoxygenated sickle blood and formation of irreversibly sickled cell in a dose and time-dependent manner. Thiocyanate, hydroxyurea and tellurite inhibited sickling optimally at 20 mM, 40 mM and 50 microM respectively. Thiocyanate and hydroxyurea prolonged sickle red blood cell life span as indicated in the significant decrease in haemolysis and osmotic fragility while tellurite increased these blood parameters. The three drugs also caused significant prolongation of delay time of haemoglobin S (HbS) polymerization while thiocyanate and hydroxyurea significantly increased (P<0.05) both solubility ratio and oxygen affinity of HbS. Results obtained in this study suggest that the three drugs have remarkable antisickling potential in vitro with thiocyanate being the most efficient followed by tellurite. (author)

  8. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China.

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng

    2017-10-01

    The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in

  9. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka.

    Science.gov (United States)

    Dragun, Zrinka; Filipović Marijić, Vlatka; Krasnići, Nesrete; Ivanković, Dušica; Valić, Damir; Žunić, Jakov; Kapetanović, Damir; Smrzlić, Irena Vardić; Redžović, Zuzana; Grgić, Ivana; Erk, Marijana

    2018-01-01

    Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation. Copyright © 2017 Elsevier Inc. All

  10. Hyperaccumulators of metal and metalloid trace elements: facts and fiction.

    NARCIS (Netherlands)

    van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H.

    2012-01-01

    Background: Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc,

  11. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  12. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  13. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  14. Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications

    Science.gov (United States)

    Duan, Zhongchao; Liao, Meisong; Yan, Xin; Kito, Chihiro; Suzuki, Takenobu; Ohishi, Yasutake

    2011-07-01

    We report the fabrication of tellurite composite microstructured optical fibers (CMOFs) which consist of a TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) tellurite glass core and TeO2-ZnO-Na2O-La2O3 (TZNL) tellurite glass cladding. Flattened chromatic dispersion and tunable zero dispersion wavelength (ZDW) were realized in the small core diameter (˜1.5 µm) fiber with six surrounding air holes. The optical loss was measured to be about 4.0 dB/m in the spectral range of 1510-1640 nm. Supercontinuum (SC) generation was demonstrated by a femtosecond laser pumping at 1.55 µm. The threshold pump power for this novel tellurite CMOF was the lowest among tellurite microstructured optical fibers (MOFs).

  15. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  16. Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.

    Science.gov (United States)

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D

    2015-01-01

    Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage

  17. Biosorbents for Removing Hazardous Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Katsutoshi Inoue

    2017-07-01

    Full Text Available Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II, Cr(VI, Sb(III and V, and As(III and V were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II. Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide into biosorbents that effectively removed Pb(II. These materials also effectively removed Sb(III and V and As(III and V when these were preloaded with multi-valent metal ions such as Zr(IV and Fe(III. Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI, were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

  18. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Bioreduction of selenite and tellurite by Phanerochaete chrysosporium

    NARCIS (Netherlands)

    Espinosa‐Ortiz, E.J.

    2015-01-01

    Selenium (Se) and tellurium (Te) are elements, they are part of the chalcogens (VI‐A group of the periodic table) and share common properties. These metalloids are of commercial interest due to their physicochemical properties, and they have been used in a broad range of applications in advanced

  20. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  1. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  2. Fragility–structure–conductivity relations in vanadium tellurite glass

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Rodrigues, Ana Candida Martins

    the ability to intercalate lithium-ions, it is a candidate as cathode material. Here, we investigate the correlation between liquid fragility, structure and electronic conductivity in a series of vanadium-tellurite glasses with varying vanadium concentration. We measure dynamic and thermodynamic fragility...... the number of bonding and non-bonding oxygen atoms per network former, while we use IS and ESR to determine the electronic conductivity and the valence states of the system. We correlate the changes in local atomic structures as determined by NMR to the observed changes in macroscopic properties. Since...

  3. Optical Properties of Erbium Zinc Tellurite Glass System

    Directory of Open Access Journals (Sweden)

    Sidek Hj. Abdul Aziz

    2015-01-01

    Full Text Available Er3+-doped tellurite glasses with molar compositions of xEr2O3-20ZnO-(80-xTeO2 (x=0, 1, 2, 3, and 4 mole% (EZT have been successfully synthesized by the melt-quenching method. Density and molar volume have been measured. UV-VIS absorption spectra in the wavelength range of 400–800 nm at room temperature has been measured. The band gap for every composition has been calculated. Photoluminescence spectroscopy in the wavelength range of 400–650 nm and at room temperature has been evaluated.

  4. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  5. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    Science.gov (United States)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  6. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China.

    Science.gov (United States)

    Chen, Qing; Pan, Xiao-Dong; Huang, Bai-Fen; Han, Jian-Long

    2018-02-23

    Concern about metals and metalloids, especially heavy metals in seaweeds has risen due to potential health risk. This study investigated the distribution of 10 metals and metalloids in 295 dried seaweeds (brown and red) and estimated the possible health risk via hazard index (HI). Elements in seaweeds can be sequenced in descending order by mean values: Al > Mn > As > Cu > Cr > Ni > Cd > Se > Pb > Hg. The levels of Cd, Cu, Mn and Ni in red seaweeds were significantly higher than those in brown seaweeds (P < 0.01). Correlation analysis showed contents of Ni-Cr (r = 0.59, P < 0.01) in seaweeds had moderate positive correlations. Seaweeds from different geographical origins had diverse element distribution. Risk assessment showed that HI at mean level was less than the threshold of 1. It indicates that for the general people there is low health risk to these elements by the intake of seaweeds. Furthermore, in terms of the confirmative toxicity of some metals, such as Cd, Pb and Hg, surveillance of metals in seaweeds should be performed continuously.

  7. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review.

    Science.gov (United States)

    Alves, Georgina M S; Rocha, Luciana S; Soares, Helena M V M

    2017-12-01

    Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex.

    Science.gov (United States)

    Anjum, Naser A; Ahmad, Iqbal; Rodrigues, Sónia M; Henriques, Bruno; Cruz, Nuno; Coelho, Cláudia; Pacheco, Mário; Duarte, Armando C; Pereira, Eduarda

    2013-01-01

    As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH

  9. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  10. Optical studies on Eu3+ doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Marimuthu, K.

    2012-06-01

    Eu3+ doped boro-tellurite glasses with the chemical composition (39-x)B2O3+30TeO2+15MgO+15K2O +xEu2O3 (where x = 0.01, 0.1, 1, 2 and 3 wt%) have been prepared by following conventional melt quenching technique. Spectroscopic properties of the Eu3+ doped boro-tellurite glasses have been studied by recording the optical absorption and luminescence measurements. Through the optical absorption spectra, bonding parameters (β¯, δ) have been calculated to identify the ionic/covalent nature of the glasses. Judd-Ofelt (JO) analysis have been carried out using the luminescence spectra. The JO parameters (Ωλ = 2, 4 and 6) were used to calculate the radiative properties for the 5D0 → 7FJ (J = 1, 2, 3 and 4) emission transitions of the Eu3+ ions. The change in optical properties with the variation of Eu3+ ion concentration have been studied and discussed with similar studies.

  11. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model

    International Nuclear Information System (INIS)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P.

    2014-01-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. - Highlights: • We investigate relationships between σp and log-NOEC in eight species. • The QICAR–SSD model, FACR, and CMC/CCC were used to predict CCCs. • They are as a supplement to screening for toxicities, criteria and standards. - CCCs for 34 metals/metalloids were predicted by use of QICAR–SSD model and FACR method

  12. SELENIUM MODIFIES THE METABOLISM AND TOXICITY OF ARSENIC IN PRIMARY RAT HEPATOCYTES

    Science.gov (United States)

    ABSTRACTSelenium Modifies the Metabolism and Toxicity of Arsenic in Primary Rat Hepatocytes. Miroslav Styblo, David J. Thomas (2000) Toxicol. Appl. Pharmacol. Arsenic and selenium are metalloids with similar chemical properties and metabolic fates. Inorganic arsenic (iAs...

  13. Immobilization and bonding scheme of radioactive iodine-129 in silver tellurite glass

    Science.gov (United States)

    Lee, Cheong Won; Pyo, Jae-Young; Park, Hwan-Seo; Yang, Jae Hwan; Heo, Jong

    2017-08-01

    Silver tellurite glasses with melting temperatures disposal site. Iodine waste loading in glasses was as high as 12.64 wt% of all metallic elements and 11.21 wt% including oxygen. Normalized elemental releases obtained from the product consistency test were well below US regulation of 2 g/m2. Iodines are surrounded by four Ag+ ions forming [Ag4I]3+ units that are further connected to tellurite network through bonds with non-bridging oxygens.

  14. Immobilization of Technetium Waste from Pyro-processing Using Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Pyo, Jae-Young; Lee, Cheong-Won [POSTECH, Pohang (Korea, Republic of); Yang, Jae-Hwan; Park, Hwan-Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Vitrification of Tc wastes has been challenging because of the low solubility in the silicate glass and high volatility in the melting process. In previous studies, the measured solubility of Tc and Re was ⁓ 3000 ppm at 1000 .deg. C in low activity waste (LAW) glass. And retention of Tc has been reported within 12 - 77% during the borosilicate vitrification process. Tellurite glasses have been studied for halide waste immobilization due to low melting temperatures (Tm= 600-800 .deg. C) and flexibility of network with foreign ions. Tellurite glasses offered higher halide retention than borosilicate glasses. The structure of pure tellurite (TeO{sub 2}) consists of TeO{sub 4} trigonal bipyramids (tbp), but TeO{sub 4} units are converted to TeO{sub 3} trigonal pyramids (tp) having non-bridging oxygen (NBO) as the modifiers added. Objectives of this study are to investigate the tellurite glasses for Tc immobilization using Re as a surrogate. Retention and waste loading of Re were analyzed during the vitrification process of tellurite glass. We investigated local structures of Re ions in glasses by Raman and X-ray absorption spectroscopies. The tellurite glass was investigated to immobilize the Ca(TcO{sub 4}){sub 2}, surrogated by Ca(ReO{sub 4}){sub 2}. The average of Re retention in tellurite glass was 86%. The 7-day PCT results were satisfied with U.S requirement up to 9 mass% of Ca(ReO{sub 4}){sub 2} content. Re in the tellurite glass exists +7 oxidation state and was coordinated with 4 oxygen.

  15. Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor.

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes; Field, Jim A

    2017-01-01

    According to the U.S. Department of Energy and the European Union, tellurium is a critical element needed for energy and defense technology. Thus methods are needed to recover tellurium from waste streams. The objectives of this study was to determine the feasibility of utilizing upflow anaerobic sludge bed (UASB) reactors to convert toxic tellurite (Te IV ) oxyanions to non-toxic insoluble elemental tellurium (Te 0 ) nanoparticles (NP) that are amendable to separation from aqueous effluents. The reactors were supplied with ethanol as the electron donating substrate to promote the biological reduction of Te IV . One reactor was additionally amended with the redox mediating flavonoid compound, riboflavin (RF), with the goal of enhancing the bioreduction of Te IV . Its performance was compared to a control reactor lacking RF. The continuous formation of Te 0 NPs using the UASB reactors was found to be feasible and remarkably improved by the addition of RF. The presence of this flavonoid was previously shown to enhance the conversion rate of Te IV by approximately 11-fold. In this study, we demonstrated that this was associated with the added benefit of reducing the toxic impact of Te IV towards the methanogenic consortium in the UASB and thus enabled a 4.7-fold higher conversion rate of the chemical oxygen demand. Taken as a whole, this work demonstrates the potential of a methanogenic granular sludge to be applied as a bioreactor technology producing recoverable Te 0 NPs in a continuous fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  17. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    Science.gov (United States)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mass spectrometric study of vaporization of cesium tellurate and tellurite

    International Nuclear Information System (INIS)

    Semenov, G.A.; Fokina, L.A.; Mouldagalieva, R.A.

    1994-01-01

    The process of vaporization of cesium tellurate and tellurite was studied by the Knudsen effusion method with a mass spectrometric analysis of the vapor composition. The thermal dissociation of Cs 2 TeO 4 to Cs 2 TeO 3 and the congruent vaporization of Cs 2 TeO 3 were established. Thermodynamic functions for gaseous Cs 2 TeO 3 have been calculated. The standard enthalpy of sublimation Δ s H (298.15)=268.1±13.0 kJ mol -1 was determined by the 2nd and 3rd laws of thermodynamics. The enthalpy of formation Δ f H (298.15)=-725.1±13.0 kJ mol -1 for gaseous Cs 2 TeO 3 and the enthalpy of atomization Δ at H (298.15)=1841.3±15.0 kJ mol -1 have been computed. ((orig.))

  19. Linking Arsenic Metabolism and Toxic Effects

    Science.gov (United States)

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  20. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Kareem A. Mosa

    2016-03-01

    Full Text Available Global mechanization, urbanization and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizomediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.

  1. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  2. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Science.gov (United States)

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The associations between metals/metalloids concentrations in blood plasma of Hong Kong residents and their seafood diet, smoking habit, body mass index and age.

    Science.gov (United States)

    Qin, Yan Yan; Leung, Clement Kai Man; Lin, Che Kit; Wong, Ming Hung

    2015-09-01

    The concentrations of metals/metalloids in blood plasma collected from 111 healthy residents (51 female, 60 male) in Hong Kong (obtained from the Hong Kong Red Cross Blood Transfusion Service, from March to April 2008) were quantified by means of a double-focusing sector field inductively coupled plasma optical emission spectrometer (ICP-OES). Results showed that concentrations of these toxic metals such as Hg, Cd, and Pb in Hong Kong residents were not serious when compared with other countries. Males accumulated significantly higher (p diet habit, body mass index (BMI), and age. More intensive studies involving more samples are needed before a more definite conclusion can be drawn, especially on the causal relationships between concentrations of metals/metalloids with dietary preference and lifestyle of the general public.

  5. Dietary intake and health effects of selected toxic elements

    OpenAIRE

    Silva, André Luiz Oliveira da; Barrocas, Paulo R.G.; Jacob, Silvana do Couto; Moreira, Josino Costa

    2005-01-01

    Anthropogenic activities have being contributing to the spread of toxic chemicals into the environment, including several toxic metals and metalloids, increasing the levels of human exposure to many of them. Contaminated food is an important route of human exposure and may represent a serious threat to human health. This mini review covers the health effects caused by toxic metals, especially Cd, Hg, Pb and As, the most relevant toxic elements from a human health point of view. As atividad...

  6. Optical, physical and structural studies of boro-zinc tellurite glasses

    International Nuclear Information System (INIS)

    Gayathri Pavani, P.; Sadhana, K.; Chandra Mouli, V.

    2011-01-01

    To investigate the modification effect of the modifier ZnO on boro-tellurite glass, a series of glasses with compositions 50B 2 O 3 -(50-x)ZnO-xTeO 2 have been prepared by conventional melt quenching technique. Amorphous nature of the samples was confirmed through X-ray diffraction technique. Optical absorption and IR structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap (E opt ) and Urbach energy decreases with an increase of ZnO content. Refractive index evaluated from E opt was found to increase with an increase of ZnO content. The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed. The IR studies showed that the structure of glass consists of TeO 4 , TeO 3 /TeO 3+1 , BO 3 , BO 4 and ZnO 4 units. -- Research highlights: → Novel boro-zinc tellurite ternary glasses that can compete with boro-tellurite and zinc tellurite glasses are successfully prepared. → Boro-zinc tellurite ternary glasses are of higher refractive index compared with zinc tellurite glasses. → Optical, physical and structural properties of the novel ternary glass system are explained.→ At 30 mol% of ZnO, TeO 4 is replaced by ZnO 4 indicating the presence of ZnO 4 network.

  7. Polarographic behaviour and determination of selenite and tellurite in simple solutions or in a binary mixture

    International Nuclear Information System (INIS)

    Hassan, A.

    1991-01-01

    The polarographic behaviour of simple solutions of selenite and tellurite in 1 M ammonium salts of formate, acetate, tartrate, oxalate, and benzoate solutions in absence and in presence of Triton X-100 as a maximum suppressor and a temperature of 25 O C has been investigated. Schemes for the mechanism of reductions occuring at the DME have been deduced. A method for analytical determination of selenite and tellurite in simple solutions as well as in a binary mixture in the presence of 4-14 . 10 -3 % Triton X-100 is reported. (author)

  8. Atom-Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres

    Science.gov (United States)

    Ruan, Yinlan; Gibson, Brant C.; Lau, Desmond W. M.; Greentree, Andrew D.; Ji, Hong; Ebendorff-Heidepriem, Heike; Johnson, Brett C.; Ohshima, Takeshi; Monro, Tanya M.

    2015-06-01

    We have developed a technique for creating high quality tellurite microspheres with embedded nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum and sensing applications.

  9. Comparisons of plutonium, thorium, and cerium tellurite sulfates.

    Science.gov (United States)

    Lin, Jian; Cross, Justin N; Diwu, Juan; Meredith, Nathan A; Albrecht-Schmitt, Thomas E

    2013-04-15

    The hydrothermal reaction of PuCl3 or CeCl3 with TeO2 in the presence of sulfuric acid under the comparable conditions results in the crystallization of Pu(TeO3)(SO4) or Ce2(Te2O5)(SO4)2, respectively. Pu(TeO3)(SO4) and its isotypic compound Th(TeO3)(SO4) are characterized by a neutral layer structure with no interlamellar charge-balancing ions. However, Ce2(Te2O5)(SO4)2 possesses a completely different dense three-dimensional framework. Bond valence calculation and UV-vis-NIR spectra indicate that the Ce compound is trivalent whereas the Pu and Th compounds are tetravalent leading to the formation of significantly different compounds. Pu(TeO3)(SO4), Th(TeO3)(SO4), and Ce2(Te2O5)(SO4)2 represent the first plutonium/thorium/cerium tellurite sulfate compounds. Our study strongly suggests that the chemistries of Pu and Ce are not the same, and this is another example of the failure of Ce as a surrogate.

  10. Structural and optical study of tellurite-barium glasses

    Science.gov (United States)

    Grelowska, I.; Reben, M.; Burtan, B.; Sitarz, M.; Cisowski, J.; Yousef, El Sayed; Knapik, A.; Dudek, M.

    2016-12-01

    The goal of this work was to determine the effect of barium oxide on the structural, thermal and optical properties of the TeO2-BaO-Na2O (TBN) and TeO2-BaO-WO3 (TBW) glass systems. Raman spectra allow relating the glass structure and vibration properties (i.e. vibrational frequencies and Raman intensities) with the glass composition. Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Differential thermal analysis DTA, XRD measurements have been considered in term of BaO addition. The spectral dependence of ellipsometric angles of the tellurite-barium glass has been studied. The optical measurements were conducted on Woollam M2000 spectroscopic ellipsometer in spectral range of 190-1700 nm. The reflectance and transmittance measurements have been done on spectrophotometer Perkin Elmer, Lambda 900 in the range of 200-2500 nm (UV-VIS-NIR). From the transmittance spectrum, the energy gap was determined.

  11. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  12. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure

    Science.gov (United States)

    Kim, C.S.; Wilson, K.M.; Rytuba, J.J.

    2011-01-01

    The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.

  13. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris).

    Science.gov (United States)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-08-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioaccumulation of metals and metalloids in medicinal plant Ipomoea pes-caprae from areas impacted by tsunami.

    Science.gov (United States)

    Kozak, Lidia; Kokociński, Mikołaj; Niedzielski, Przemysław; Lorenc, Stanisław

    2015-02-01

    Tsunami events may have an enormous impact on the functioning of aquatic and terrestrial ecosystems by altering various relationships with biotic components. Concentrations of acid-leachable fractions of heavy metals and metalloids in soils and plant samples from areas affected by the December 2004 tsunami in Thailand were determined. Ipomoea pes-caprae, a common plant species growing along the seashore of this region, and frequently used in folk medicine, was selected to assess the presence of selected elements. Elevated amounts of Cd, Pb, Zn, and As in soil samples, and Pb, Zn, As, Se, Cr, and Ni in plant samples were determined from the tsunami-impacted regions for comparison with reference locations. The flowers of Ipomoea pes-caprae contained the highest amounts of these metals, followed by its leaves, and stems. In addition, its bioaccumulation factor (BAF) supports this capability of high metal uptake by Ipomoea pes-caprae from the areas affected by the tsunami in comparison with a reference site. This uptake was followed by the translocation of these elements to the various plant components. The presence of these toxic metals in Ipomoea pes-caprae growing in contaminated soils should be a concern of those who use this plant for medicinal purposes. Further studies on the content of heavy metals and metalloids in this plant in relation to human health concerns are recommended. © 2014 SETAC.

  15. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)

    International Nuclear Information System (INIS)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-01-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. -- Highlights: •Historically polluted soils collected from a lead recycling facility were studied. •Cast production is a sensitive parameter to assess ecotoxicity on earthworms. •Both soil parameters, like organic matter content and pH and earthworm specie influence metal uptake and ecotoxicity. -- Behavioural factors and inorganic pollutant uptake by earthworms provide a valuable indication of bioavailability and ecotoxicity

  16. Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    2012-01-01

    Background Large scale usage of tobacco causes a lot of health troubles in human. Various formulations of tobacco are extensively used by the people particularly in developing world. Besides several toxic tobacco constituents some metals and metalloids are also believed to pose health risks. This paper describes inductively coupled plasma-mass spectrometric (ICP-MS) quantification of some important metals and metalloids in various brands of smoked, sniffed, dipped and chewed tobacco products. Results A microwave-assisted digestion method was used for sample preparation. The method was validated by analyzing a certified reference material. Percentage relative standard deviation (% R.S.D.) between recovered and certified values was  r > 0.999. Improved limits of detection (LODs) were in range of ng/L for all elements. Fe, Al and Mn were found to be in the highest concentration in all types of tobacco products, while Zn, Cu, Ni and Cr were below the average concentration of 40 μg/g, and Pb, Co, As, Se and Cd were below 5 μg/g. All elements, apart from Pb, were high in concentration in dipping tobacco in comparison to other tobacco products. Generally, the order of all elemental concentration can be expressed in different tobacco products as chewing metalloids in a wide spectrum of tobacco formulations. The outcome of this study would be beneficial for health authorities and individuals. PMID:22709464

  17. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... glass matrix with different RE ions for optical properties is of importance. ... Figure 1. XRD pattern of the tellurite glasses studied. Table 1. Composition and glass transition ... convoluted using Gaussian line shape. Parameters like .... On the other hand, in Er3+ ion, the ground state 4I15/2 itself has manifold.

  18. Solid State Field-Assisted Diffusion of Copper in Multi-Component Tellurite Glass

    Czech Academy of Sciences Publication Activity Database

    Stepanov, B.; Ren, J.; Wágner, T.; Lorinčík, Jan; Frumar, M.; Churbanov, M.; Chigirinsky, Y.

    2011-01-01

    Roč. 94, č. 7 (2011), 1986-1988 ISSN 0002-7820 Institutional research plan: CEZ:AV0Z20670512 Keywords : Solid state diffusion * Secondary Ion Mass Spectrometry * Tellurite glass Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.272, year: 2011

  19. Solid state field-assisted diffusion of silver in multi-component tellurite glasses

    Czech Academy of Sciences Publication Activity Database

    Stepanov, B.; Ren, J.; Wágner, T.; Lorinčík, Jan; Frumar, M.; Churbanov, M.; Chigirinsky, Y.

    2011-01-01

    Roč. 357, č. 15 (2011), 3022-3026 ISSN 0022-3093 Institutional research plan: CEZ:AV0Z20670512 Keywords : Solid state diffusion * Secondary Ion Mass Spectrometry * Tellurite glass Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.537, year: 2011

  20. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  1. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  2. Plasma-based techniques applied to the determination of metals and metalloids in atmospheric aerosols

    International Nuclear Information System (INIS)

    Smichowski, Patricia

    2011-01-01

    Full text: This lecture presents an overview of the research carried out by our group during the last decade on the determination of metals, metalloids, ions and species in atmospheric aerosols and related matrices using plasma-based techniques. In our first studies we explored the application of a size fractionation procedure and the subsequent determination of minor, major and trace elements in samples of deposited particles collected one day after the eruption of the Copahue Volcano, located in the Chile-Argentina border to assess the content of relevant elements with respect of the environment and the local population health. We employed a multi-technique approach (ICP-MS, XRD and NAA) to gain complete information of the characteristics of the sample. In addition to the study of ashes emitted for natural sources we also studied ashes of anthropogenic origin such as those arising from coal combustion in thermal power plants. For estimating the behavior and fate of elements in atmospheric particles and ashes we applied in this case a chemical fractionation procedure in order to establish the distribution of many elements amongst soluble, bound to carbonates, bound to oxides and bound to organic matter and environmental immobile fraction. Studies on the air quality of the mega-city of Buenos Aires were scarce and fragmentary and our objective was, and still is, to contribute to clarify key issues related to levels of crustal, toxic and potentially toxic elements in this air basin. Our findings were compared with average concentrations of metals and metalloids with results reported for other Latin American cities such as Sao Paulo, Mexico and Santiago de Chile. In this context, a series of studies were carried out since 2004 considering different sampling strategies to reflect local aspects of air pollution sources. In the last years, our interest was focused on the levels of traffic-related elements in the urban atmosphere. We have contributed with the first data

  3. Plasma-based techniques applied to the determination of metals and metalloids in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia, E-mail: smichows@cnea.gov.ar [Comision Nacional de Energia Atomica, Gerencia Quimica, Pcia de Buenos Aires (Argentina)

    2011-07-01

    Full text: This lecture presents an overview of the research carried out by our group during the last decade on the determination of metals, metalloids, ions and species in atmospheric aerosols and related matrices using plasma-based techniques. In our first studies we explored the application of a size fractionation procedure and the subsequent determination of minor, major and trace elements in samples of deposited particles collected one day after the eruption of the Copahue Volcano, located in the Chile-Argentina border to assess the content of relevant elements with respect of the environment and the local population health. We employed a multi-technique approach (ICP-MS, XRD and NAA) to gain complete information of the characteristics of the sample. In addition to the study of ashes emitted for natural sources we also studied ashes of anthropogenic origin such as those arising from coal combustion in thermal power plants. For estimating the behavior and fate of elements in atmospheric particles and ashes we applied in this case a chemical fractionation procedure in order to establish the distribution of many elements amongst soluble, bound to carbonates, bound to oxides and bound to organic matter and environmental immobile fraction. Studies on the air quality of the mega-city of Buenos Aires were scarce and fragmentary and our objective was, and still is, to contribute to clarify key issues related to levels of crustal, toxic and potentially toxic elements in this air basin. Our findings were compared with average concentrations of metals and metalloids with results reported for other Latin American cities such as Sao Paulo, Mexico and Santiago de Chile. In this context, a series of studies were carried out since 2004 considering different sampling strategies to reflect local aspects of air pollution sources. In the last years, our interest was focused on the levels of traffic-related elements in the urban atmosphere. We have contributed with the first data

  4. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    We report on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr3+-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr3+-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory.

  5. Critical V2O5/TeO2 Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses.

    Science.gov (United States)

    Kjeldsen, Jonas; Rodrigues, Ana C M; Mossin, Susanne; Yue, Yuanzheng

    2014-12-26

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In this work, we investigate how the dynamic and physical properties vary with composition in the vanadium tellurite system. The results show that there exists a critical V(2)O(5) concentration of 45 mol %, above which the local structure is subjected to a drastic change with increasing V(2)O(5), leading to abrupt changes in both hardness and liquid fragility. Electronic conductivity does not follow the expected correlation to the valence state of the vanadium as predicted by the Mott-Austin equation but shows a linear correlation to the mean distance between vanadium ions. These findings could contribute to designing optimum vanadium tellurite compositions for electrochemical devices. The work gives insight into the mechanism of electron conduction in the vanadium tellurite systems.

  6. Effect of ZnO on the Thermal Properties of Tellurite Glass

    Directory of Open Access Journals (Sweden)

    H. A. A. Sidek

    2013-01-01

    Full Text Available Systematic series of binary zinc tellurite glasses in the form (ZnOx(TeO2 (where x=0 to 0.4 with an interval of 0.05 mole fraction have been successfully prepared via conventional melt cast-quenching technique. Their density was determined by Archimedes method with acetone as buoyant liquid. The thermal expansion coefficient of each zinc tellurite glasses was measured using L75D1250 dilatometer, while their glass transition temperature (Tg was determined by the SETARAM Labsys DTA/6 differential thermogravimetric analysis at a heating rate of 20 K min−1. The acoustic Debye temperature and the softening temperature (Ts were estimated based on the longitudinal (VL and shear ultrasonic (Vs wave velocities propagated in each glass sample. For ultrasonic velocity measurement of the glass sample, MATEC MBS 8000 Ultrasonic Data Acquisition System was used. All measurements were taken at 10 MHz frequency and at room temperature. All the thermal properties of such binary tellurite glasses were measured as a function of ZnO composition. The composition dependence was discussed in terms of ZnO modifiers that were expected to change the thermal properties of tellurite glasses. Experimental results show their density, and the thermal expansion coefficient increases as more ZnO content is added to the tellurite glass network, while their glass transition, Debye temperature, and the softening temperature decrease due to a change in the coordination number (CN of the network forming atoms and the destruction of the network structure brought about by the formation of some nonbridging oxygen (NBO atoms.

  7. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  9. Jacks of metal(loid chelation trade in plants – an overview

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2015-04-01

    Full Text Available Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loids (hereafter termed as ‘metal/s’ mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of glutathione (GSH (reduced GSH; phytochelatins, PCs; metallothioneins, MTs and non-GSH (histidine, nicotianamine, organic acids origin. This paper presents an appraisal of recent reports on both GSH and non-GSH associated compounds in an effort to shed light on the significance of these compounds in metal-plant tolerance, as well as to provide scientific clues for the development of phytoextraction strategies.

  10. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    Science.gov (United States)

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Carbon dioxide triggered metal(loid) mobilisation in a mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2014-01-01

    Carbon capture and geologic storage is a frequently discussed option to reduce atmospheric CO2 concentrations with the long-term risk of leakage from storage sites to overlying aquifers and soils. We chose natural CO2 exhalations, so-called mofettes, in a wetland area in the Czech Republic...... as analogues to follow the fate of metal(loid)s under CO2-saturated conditions. Compared to the reference fluvisol at the study site, mofette soils exhibited lower pH (4.9 ± 0.05) and redox potential (300 ± 40 mV), as well as higher organic carbon contents. Poorly crystalline and crystalline Fe (hydr...... to complexation and/or adsorption to organic carbon and the small amount of Fe (hydr)oxides. A one-month-in-situ mobilisation experiment showed mobilisation of all investigated elements to the aqueous phase suggesting that desorption is the faster and initially dominating process while resorption is a secondary...

  12. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.

    Science.gov (United States)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P

    2014-05-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR-SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  14. Trace Metals and Metalloids in Forest Soils and Exotic Earthworms in Northern New England, USA

    Science.gov (United States)

    Richardson, J.B.; Görres, J.H.; Jackson, B.P.; Friedland, A.J.

    2015-01-01

    Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 uncontaminated sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg and U) TMM concentrations (mg kg-1) and pools (mg m-2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive Amynthas agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region. PMID:25883392

  15. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  16. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  17. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  18. Optical aging observation in suspended core tellurite microstructured fibers under atmospheric conditions

    Science.gov (United States)

    Strutynski, C.; Mouawad, O.; Picot-Clémente, J.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F.

    2017-11-01

    Tellurite glasses are good candidates for the development of broadband supercontinuum (SC) laser sources in the 1-5 μm range. At the moment, beside very few exceptions, SC generation in TeO2-based microstructured optical fibers (MOFs) is limited to 3 μm in the mid-infrared (MIR). We present here an observation of an optical aging occurring in six-hole suspended-core tellurite MOFs. When exposed to atmospheric conditions, such fibers show an alteration of their transmission between 3 and 4 μm. This aging phenomenon leads to the growth of strong additional losses in this wavelengths range over time. Impact of the transmission degradation on spectral broadening is studied through numerical simulations of SC generation.

  19. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.

  20. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  1. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  2. Up-conversion luminescence and local heating in Er{sup 3+} doped tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Y.; Rai, S.B. [Banaras Hindu University, Laser and Spectroscopy Laboratory, Physics Department, Varanasi, UP (India)

    2012-10-15

    The present article discusses the up-conversion and thermometric properties of Er doped tellurite glass on excitation with 976 nm laser radiation. Temperature has been measured using fluorescence intensity ratio variation, in 528/548 and 801/828 nm, with temperature. Temperature at laser focus spot has been estimated by comparing the intensity ratios at different laser powers with the intensity ratio at different temperatures when sample was heated externally. (orig.)

  3. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  4. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  6. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    International Nuclear Information System (INIS)

    Gaafar, M.S.; Abdeen, Mostafa A.M.; Marzouk, S.Y.

    2011-01-01

    Research highlights: → Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). → The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb 5+ ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. → Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. → The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb 2 O 5 -(1 - x)TeO 2 , 0.1PbO-xNb 2 O 5 -(0.9 - x)TeO 2 , 0.2PbO-xNb 2 O 5 -(0.8 - x)TeO 2 and 0.05Bi 2 O 3 -xNb 2 O 5 -(0.95 - x)TeO 2 were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb 2 O 5 as a network modifier provides oxygen ions to change [TeO 4 ] tbps into [TeO 3 ] tps.

  7. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: mohamed_s_gaafar@hotmail.com [Ultrasonic Department, National Institute for Standards, Giza (Egypt); Physics Department, Faculty of Science, Majmaah University, Zulfi (Saudi Arabia); Abdeen, Mostafa A.M., E-mail: mostafa_a_m_abdeen@hotmail.com [Dept. of Eng. Math. and Physics, Faculty of Eng., Cairo University, Giza (Egypt); Marzouk, S.Y., E-mail: samir_marzouk2001@yahoo.com [Arab Academy of Science and Technology, Al-Horria, Heliopolis, Cairo (Egypt)

    2011-02-24

    Research highlights: > Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). > The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb{sup 5+} ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. > Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. > The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb{sub 2}O{sub 5}-(1 - x)TeO{sub 2}, 0.1PbO-xNb{sub 2}O{sub 5}-(0.9 - x)TeO{sub 2}, 0.2PbO-xNb{sub 2}O{sub 5}-(0.8 - x)TeO{sub 2} and 0.05Bi{sub 2}O{sub 3}-xNb{sub 2}O{sub 5}-(0.95 - x)TeO{sub 2} were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb{sub 2}O{sub 5} as a network modifier provides oxygen ions to change [TeO{sub 4}] tbps into [TeO{sub 3}] tps.

  8. Biosorbents for Removing Hazardous Metals and Metalloids

    Science.gov (United States)

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  9. Elaboration and optimization of tellurite-based materials for raman gain application

    Science.gov (United States)

    Guery, Guillaume

    Tellurite-based oxide glasses have been investigated as promising materials for Raman gain applications, due to their good linear and nonlinear optical properties and their wide transparency windows in the near- and midwave infrared spectral region. Furthermore, their interesting thermal properties, i.e. low glass transition temperature and ability to be drawn into optical fibers, make tellurite-based glasses excellent candidates for optical fiber amplifiers. The estimation of the strength and spectral distribution of Raman gain in materials is commonly approximated from the spontaneous Raman scattering cross-section measurement. For development of tellurite-based glasses as Raman amplifiers, understanding the relationship between glass structure, vibrational response, and nonlinear optical properties (NLO) represents a key point. This dissertation provides an answer to the fundamental question of the PhD study: "What is the impact of the glass structure on Raman gain properties of tellurite glasses?" This dissertation summarizes findings on different tellurite-based glass families: the TeO2-TaO5/2-ZnO, TeO2-BiO 3/2-ZnO and TeO2-NbO5/2 glass networks. The influence of glass modifiers has been shown on the glass' properties. Introduction of tantalum oxide or zinc oxide has been shown to increase the glass' stability against crystallization, quantified by DeltaT, where DeltaT = Tx -Tg. Added to the variation of the glass viscosity, this attribute is critical in fabricating optical fibers and for the use of these materials in fiber-based Raman gain applications. The role of ZnO in the tellurite network and the mechanism for structural modification has been determined. This addition results in not only the largest DeltaT reported for these highly nonlinear glasses to date, but coincides with a commensurate decrease of the refractive index. A hydroxyl purification has been developed that when employed, resulted in high purity preform materials exhibiting a limited

  10. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  11. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass for waveguide amplifier application

    International Nuclear Information System (INIS)

    Zhao Shilong; Wang Xiuli; Fang Dawei; Xu Shiqing; Hu Lili

    2006-01-01

    Tungsten-tellurite glass with molar composition of 60TeO 2 -30WO 3 -10Na 2 O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er 3+ -doped tungsten-tellurite glass have been discussed. The results show that the introduction of WO 3 increases significantly the glass transition temperature and the maximum phonon energy. Er 3+ -doped tungsten-tellurite glass exhibits high glass transition temperature (377 deg. C), large emission cross-section (0.91 x 10 -20 cm 2 ) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er 3+ -doped waveguide amplifier application

  12. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Parraga-Aguado, Isabel, E-mail: isabel.parraga@upct.es [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain); Querejeta, Jose-Ignacio [Water and Soil Conservation Department, Centro de Edafología y Biología Aplicada del Segura CEBAS-CSIC Campus Universitario de Espinardo, PO Box 164, Espinardo-Murcia ES-30100 (Spain); González-Alcaraz, María Nazaret; Conesa, Hector M. [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain)

    2014-07-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ{sup 13}C, δ{sup 15}N, δ{sup 18}O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ{sup 13}C and δ{sup 18}O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain

  13. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    International Nuclear Information System (INIS)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María Nazaret; Conesa, Hector M.

    2014-01-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ 13 C, δ 15 N, δ 18 O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ 13 C and δ 18 O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain. - Highlights: • Significant

  14. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  15. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  16. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed.

    Science.gov (United States)

    Guo, Guanghui; Song, Bo; Xia, Deshang; Yang, Zijie; Wang, Fopeng

    2018-03-16

    Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM 10 ) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM 10 . The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m 3 . Significant higher metal and metalloid concentrations were found in PM 10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p metalloids in PM 10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  17. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Science.gov (United States)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  18. Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008-2010.

    Science.gov (United States)

    Nisse, Catherine; Tagne-Fotso, Romuald; Howsam, Mike; Richeval, Camille; Labat, Laurence; Leroyer, Ariane

    2017-04-01

    French national survey for the same period except for urinary V. Mean blood lead level was markedly less than that of the French national population. This first biomonitoring survey of a large number of metal(loid)s in the general population of Northern France provides useful information on exposure levels to toxic elements and highlights the specificity of the regional environment. These data could be used, in complement to the national human biomonitoring reference values, for the interpretation of biomonitoring results. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Energy transfer induced Eu{sup 3+} photoluminescence enhancement in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Stambouli, W. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, Universite de Tunis-ElManar ElManar 2092, Tunis (Tunisia); Gelloz, B. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan); Ferid, M. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Koshida, N. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan)

    2012-01-15

    In this work, structural, thermal and optical properties of Eu{sup 3+} doped TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor {Delta}T=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with E{sub g}=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu-Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the {sup 5}D{sub 2}{yields}{sup 7}F{sub 0} are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu{sup 3+} energy levels. By co-doping tellurite glasses with Eu and Tb, a strong Eu{sup 3+} PL enhancement is shown due to excitation transfer from Tb{sup 3+} and intrinsic defects to Eu ions. - Highlights: > TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass doped Eu{sup 3+} with good thermal stability elaborated. > PL evolution of Eu{sup 3+} with temperature shows a non-conventional behavior. > Thermally activated carrier transfer from intrinsic defects states to Eu{sup 3+} shown. > Strong Eu{sup 3+} PL enhancement is shown in Eu-Tb codoped glass.

  20. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.

    2013-01-01

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  1. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus.

    Science.gov (United States)

    Luebke, Justin L; Arnold, Randy J; Giedroc, David P

    2013-04-01

    Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR') and CstR2(RS-S-SR')n)n=1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work we show by high resolution tandem mass spectrometry that CstR is readily modified by selenite (SeO3(2-)) or tellurite (TeO3(2-)) to form a mixture of intersubunit disulfides and selenotrisulfides or tellurotrisulfides, respectively, between Cys31 and Cys60'. Analogous studies with S. aureus CsoR reveals no reaction with selenite and minimal reaction with tellurite. All cross-linked forms of CstR exhibit reduced DNA binding affinity. We show that Cys31 initiates the reaction with sulfite through the formation of S-sulfocysteine (RS-SO3(2-)) and Cys60 is required to fully derivatize CstR to CstR2(RS-SR') and CstR2(RS-S-SR'). The modification of Cys31 also drives an allosteric switch that negatively regulates DNA binding while derivatization of Cys60 alone has no effect on DNA binding. These results highlight the differences between CstRs and CsoRs in chemical reactivity and metal ion selectivity and establish Cys31 as the functionally important cysteine residue in CstRs.

  2. Absorption and emission analysis of RE3+(Sm3+ and Dy3+): lithium boro tellurite glasses.

    Science.gov (United States)

    Sooraj Hussain, N; Hungerford, G; El-Mallawany, R; Gomes, M J M; Lopes, M A; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the development and spectral analysis of Sm3+ (1.0%) and Dy3+ (1.0%) doped lithium-boro-tellurite glasses. A bright orange (4G5/2-->6H7/2) along with a red (4G5/2-->6H9/2) and a yellow (4G5/2-->6H5/2) emission transition have been measured from Sm3+ doped lithium-boro-tellurite glass. Both blue (4F9/2-->6H15/2) and yellow (4F9/2-->6H13/2) emission bands have been obtained from Dy3+ glass. From the measured decay profiles, the lifetimes of the emissions of the Sm3+ glass (4G5/2-->6H5/2, 7/2, 9/2 and 11/2) at an excitation of 401 nm have been found to be in the range 0.47-0.81 ms, and with respect to the Dy3+ emissions (4F9/2-->6H15/2 and 13/2), with excitation at 450 nm, are measured to be in the range of 0.302-0.307 ms. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have also been computed and the values are in the range of (0.38-1.20) x 10(-20) cm2 for Sm3+ and for Dy3+ doped lithium-boro-tellurite glass the values are (0.66-1.39) x 10(-20) cm2.

  3. Comparative Spectroscopic Investigation of Tm3+:Tellurite Glasses for 2-μm Lasing Applications

    Directory of Open Access Journals (Sweden)

    Huseyin Cankaya

    2018-02-01

    Full Text Available We performed a comparative spectroscopic analysis on three novel Tm3+:tellurite-based glasses with the following compositions Tm2O3:TeO2-ZnO (TeZnTm, Tm2O3:TeO2-Nb2O5 (TeNbTm, and Tm3+:TeO2-K2O-Nb2O5 (TeNbKTm, primarily for 2-μm laser applications. Tellurite glasses were prepared at different doping concentrations in order to investigate the effect of Tm3+ ion concentration as well as host composition on the stimulated emission cross sections and the luminescence quantum efficiencies. By performing Judd–Ofelt analysis, we determined the average radiative lifetimes of the 3H4 level to be 2.55 ± 0.07 ms, 2.76 ± 0.03 ms and 2.57 ± 0.20 ms for the TeZnTm, TeNbTm and TeNbKTm samples, respectively. We clearly observed the effect of the cross-relaxation, which becomes significant at higher Tm2O3 concentrations, leading to the quenching of 1460-nm emission and enhancement of 1860-nm emission. Furthermore, with increasing Tm2O3 concentrations, we observed a decrease in the fluorescence lifetimes as a result of the onset of non-radiative decay. For the 3H4 level, the highest obtained quantum efficiency was 32% for the samples with the lowest Tm2O3 ion concentration. For the 1860-nm emission band, the average emission cross section was determined to measure around 6.33 ± 0.34 × 10−21 cm2, revealing the potential of thulium-doped tellurite gain media for 2-μm laser applications in bulk and fiber configurations.

  4. Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction

    International Nuclear Information System (INIS)

    Hoppe, U; Yousef, E; Ruessel, C; Neuefeind, J; Hannon, A C

    2004-01-01

    Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO 4 to TeO 3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb 2 O 5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of ∼ 0.19 and ∼ 0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO 4 trigonal bipyramids and TeO 3 trigonal pyramids. All oxygen atoms from ZnO and Nb 2 O 5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO 4 to TeO 3 groups. The tendency for a TeO 4 → TeO 3 change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO 4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO 3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb 2 O 5 additions

  5. The heron that laid the golden egg: metals and metalloids in ibis, darter, cormorant, heron, and egret eggs from the Vaal River catchment, South Africa.

    Science.gov (United States)

    van der Schyff, V; Pieters, R; Bouwman, H

    2016-06-01

    Metal pollution issues are afforded the highest priority in developing countries. Only one previous study has addressed metals in African bird eggs. We determined the concentration of metals and metalloids in bird eggs from four sites in the Vaal River catchment (VRC) of South Africa to provide data on the current situation. We analysed 16 pools of 77 heron, ibis, darter, egret, and cormorant eggs for 18 metals and metalloids using ICP-MS. We found high concentrations of gold (Au), uranium (U), thallium (Tl), and platinum (Pt) in Grey Heron eggs from Baberspan. Great white egrets from Bloemhof Dam had high concentrations of mercury (Hg). Multivariate analyses revealed strong associations between Au and U, and between palladium (Pd) and Pt. The toxic reference value (TRV) for Hg was exceeded in seven pools. Selenium exceeded its TRV in one pool; in the same pool, copper (Cu) reached its TRV. Compared with other studies, VRC bird eggs had high concentrations of contaminants. Based on these high concentrations, human health might be at risk as Grey Herons and humans share similar food and are therefore exposed to the same contaminants.

  6. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  7. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus

    OpenAIRE

    Luebke, Justin L.; Arnold, Randy J.; Giedroc, David P.

    2013-01-01

    Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR′) and CstR2(RS-S-SR′)n, n = 1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work w...

  8. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  9. All-optical control of group velocity dispersion in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2012-12-15

    We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.

  10. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide

    Directory of Open Access Journals (Sweden)

    Mario Christian Falconi

    2017-06-01

    Full Text Available A review on the recent progress in modeling and fabrication of medium infrared (Mid-IR fiber lasers is reported. The main objective is to illustrate some recent examples of continuous wave optical sources at wavelengths longer than those commonly employed in telecom applications and allowing high beam quality. A small number of Mid-IR lasers, among the large variety of schemes, glasses, dopants and pumping schemes reported in literature, is selected on the basis of their slope efficiency and threshold pump power. In particular, tellurite, fluoride and chalcogenide fiber lasers are considered. More details are given with reference to the novel pumping schemes.

  11. The influence of ytterbium doping on the optical properties of tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jaglarz, Janusz; Burtan, Bozena [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 Cracow (Poland); Reben, Manuela; Wasylak, Jan [Faculty of Materials Science and Ceramics, AGH - University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow (Poland); Cisowski, Jan [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 Cracow (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowskiej 34, 41-819 Zabrze (Poland); Jarzabek, Bozena [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowskiej 34, 41-819 Zabrze (Poland)

    2011-09-15

    The goal of this work was to investigate the influence of rare earth ion Yb{sup 3+} doping on the thermal and optical properties of tellurite glass (TG) of the TeO{sub 2}-ZnO-PbO-La{sub 2}O{sub 3} system. The reflectance, transmittance and ellipsometric measurements have been done. Decreasing of the refractive index of TG with the Yb{sup 3+} ion doping has been concluded. For determination of the refractive index variation in the bulk, the small angle light scatter (SALS) measurements have been carried out. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction

    Science.gov (United States)

    Hoppe, U.; Yousef, E.; Rüssel, C.; Neuefeind, J.; Hannon, A. C.

    2004-03-01

    Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO4 to TeO3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb2O5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of {\\sim }0.19 and {\\sim }0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO4 trigonal bipyramids and TeO3 trigonal pyramids. All oxygen atoms from ZnO and Nb2O5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO4 to TeO3 groups. The tendency for a {\\mathrm {TeO}}_{4} \\to {\\mathrm {TeO}}_{3} change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb2O5 additions. Some of these results have already been presented in thesis work: Yousef E 2003 A study of some physical properties of tellurite glass (Al-Azhar University, Assiut Egypt).

  13. Implementation of ferric hydroxide-based media for removal of toxic metalloids

    Science.gov (United States)

    Szlachta, Małgorzata; Wójtowicz, Patryk

    2017-11-01

    Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.

  14. Critical V2O5/TeO2 ratio inducing abrupt property changes in vanadium tellurite glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Rodrigues, Ana C. M.; Mossin, Susanne

    2014-01-01

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In t...

  15. Comparative investigation on the spectroscopic properties of Pr³⁺-doped boro-phosphate, boro-germo-silicate and tellurite glasses.

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    2012-07-01

    We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr(3+)-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  17. Dy{sup 3+} ions as optical probes for studying structure of boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tuyen, Vu Phi, E-mail: vptuyen@gust-edu.vast.vn [Duytan University, K7/25 Quang Trung, Da Nang (Viet Nam); Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Sengthong, Bounyavong; Quang, Vu Xuan [Duytan University, K7/25 Quang Trung, Da Nang (Viet Nam); Van Do, Phan [Thuyloi University, 175 Tay Son, Dong Da, Hanoi (Viet Nam); Van Tuyen, Ho; Xuan Hung, Le [Duytan University, K7/25 Quang Trung, Da Nang (Viet Nam); Thanh, Nguyen Trong [Institute of Materials Science – VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nogami, Masayuki [Duytan University, K7/25 Quang Trung, Da Nang (Viet Nam); Toyota Physical and Chemical research Institute (Japan); Hayakawa, Tomokatsu [Nagoya Institute of Technology, Gokisocho Showaku, 466-8555 Nagoya, Aichiken (Japan); Huy, Bui The, E-mail: buithehuy.nt@gmail.com [Duytan University, K7/25 Quang Trung, Da Nang (Viet Nam); Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2016-10-15

    Dy{sup 3+}-doped glasses with various compositions (35+x)B{sub 2}O{sub 3}+ (45−x)TeO{sub 2}+9.5ZnO+10Na{sub 2}O+0.5Dy{sub 2}O{sub 3} (x=0; 10 and 20) were prepared by a melt–quenching technique. The Dy{sup 3+} ions are used as an optical probe, of which the Judd–Ofelt parameters, the phonon-side band, and the Raman spectra were quantitatively estimated to search the change of glass structure (the change of the ratio of [BO{sub 4}] to [BO{sub 3}] units, formation of the non-bridging oxygens (NBO{sup −}), the change of [TeO{sub 3}] to [TeO{sub 4}] units) as a function of the B{sub 2}O{sub 3} content. The Ω{sub 2} and Ω{sub 6} values of Dy{sup 3+}-doped boro-tellurite samples are larger than that of Dy{sup 3+}-doped borate or tellurite sample. The CIE chromaticity color coordinates were calculated for the luminescence spectra of Dy{sup 3+} ions of the glasses with the different compositions and they were all located in the vicinity of white light center of the color coordination diagram.

  18. Structural studies on iron-tellurite glasses prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Rada, S., E-mail: Simona.Rada@phys.utcluj.r [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Dehelean, A. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Stan, M. [Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Chelcea, R. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania); Nat. Inst. for R and D of Isotopic and Molec. Technologies, Cluj-Napoca (Romania); Culea, E. [Department of Physics, Technical University of Cluj-Napoca, Bibliotecii, No. 10, 400020 Cluj-Napoca (Romania)

    2011-01-05

    Research highlights: {yields} Iron-tellurite glasses obtained using the sol-gel synthesis. - Abstract: In this study, we report structural properties of the iron-tellurite glasses obtained using the sol-gel synthesis. The samples were characterized by X-ray diffraction, FTIR, UV-vis and EPR spectroscopy. Our results indicate dominant presence of iron ions in the trivalent state and the existence some Fe{sup 2+} ions. The analysis of the IR spectra indicates a gradual transformation of iron ions from tetrahedral into octahedral sites when the concentration of Fe(NO{sub 3}){sub 3} is increased beyond 0.64 mol%. EPR studies show that the increase of Fe(NO{sub 3}){sub 3} content in the host matrix induces the growth of the number of effective g values. This can be explained considering that the orbitals of O{sup 2-} ion with a large spin-orbit interaction constant will interact with the 3d orbital of Fe{sup 3+} ion bonded to this O{sup 2-} ion, thus leading to appearance of an orbital angular momentum which contributes to the magnetic moment of Fe{sup 3+} ion. A strong dipolar interaction, which is more predominant in a glass with higher content of Fe(NO{sub 3}){sub 3}, causing a localized magnetic field along the site of the Fe{sup 3+} ions and the increase the effective g values.

  19. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  20. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of B2O3 on luminescence of erbium doped tellurite glasses.

    Science.gov (United States)

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.

  2. Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties

    Science.gov (United States)

    Merzliakov, M. A.; Kouhar, V. V.; Malashkevich, G. E.; Pestryakov, E. V.

    2018-01-01

    Glasses of the TeO2-WO3-Yb2O3 system are synthesized for wide range of Yb3+ concentrations of up to 6.0 × 1021 ions/cm3. The spectral-luminescent properties of lightly doped samples are investigated at room temperature and at the boiling point of liquid nitrogen. The energies of the Stark levels of the ground and excited states of Yb3+ ions incorporated into tungsten-tellurite glass are determined by analyzing the low-temperature spectra. The absorption, emission, and gain cross section spectra are obtained. The excess of the measured fluorescence decay time over the radiative lifetime ∼0.3 ms derived from the absorption spectra is attributed to the reabsorption effect in bulk samples. Measurements of lightly doped glass powder in the immersion liquid are made to reduce the effect of reabsorption. The fluorescence decay time of the powder is very close to the calculated radiative lifetime. Compared with phosphate, silicate, and other Yb3+-doped glasses, the tungsten-tellurite glass has a promising potential as a gain medium for lasers and amplifiers.

  3. RETROSPECTIVE STUDY OF METHYLMERCURY AND OTHER METAL(LOID)S IN MADAGASCAR UNPOLISHED RICE (Oryza sativa L.)

    Science.gov (United States)

    Rothenberg, Sarah E.; Mgutshini, Noma L.; Bizimis, Michael; Johnson-Beebout, Sarah E.; Ramanantsoanirina, Alain

    2014-01-01

    The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n=51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p<0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n=20) and brown bran (n=31) (Wilcoxon rank sum, p=0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r=0.33, p<0.05) and total mercury (r=0.44, p<0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r<0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem. PMID:25463705

  4. Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium

    Energy Technology Data Exchange (ETDEWEB)

    Jlassi, I., E-mail: ifa.jlassi@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95 Hammam-Lif 2050 (Tunisia); Elhouichet, H. [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95 Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, Campus ElManar 2092 (Tunisia); Hraiech, S.; Ferid, M. [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95 Hammam-Lif 2050 (Tunisia)

    2012-03-15

    The 75TeO{sub 2}-20ZnO-4Na{sub 2}CO{sub 3}-1Er{sub 2}O{sub 3} (in molar ratio) glass system was prepared by the conventional melt-quenching method. As such, the samples prepared were investigated by differential scanning calorimetry (DSC), X-ray diffractrometry (XRD), Raman spectroscopy and infrared luminescence. DSC analyses were carried out on our glass at different heating rates between 5 and 20 Degree-Sign C/min. The result of the annealing temperature on the spectroscopic properties of Er{sup 3+} in tellurite glasses was discussed. The activation energy, for surface crystallization, was determined graphically from a Kissinger-type plot and had a value about 897.2 kJ/mol. Crystalline phases for both {alpha}-TeO{sub 2}, {gamma}-TeO{sub 2} and Zn{sub 2}Te{sub 3}O{sub 8} system were determined by the XRD method and were confirmed by Raman spectroscopy characterizations after heat treatment. The effect of heat treatment on absorption spectra and luminescence properties in the tellurite glass was also investigated. With heat treatment, the ultraviolet absorption edge presented a redshift. As a result, the Judd-Ofelt (J-O) intensity parameters ({Omega}{sub 2}, {Omega}{sub 4}, {Omega}{sub 6}) were determined. The spontaneous emission probabilities of some relevant transitions, the branching ratio and the radiative lifetimes of several excited states of Er{sup 3+} were predicted using intensity J-O parameters. The near infrared emission that corresponds to Er{sup 3+}: {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2} can be significantly enhanced after heat treatment. Notably, it is found that the luminescence lifetime in the present system is much longer than that in most other glasses and glass ceramics. A comparative study on luminescence performance suggests that the obtained glass ceramic is a promising material for Er{sup 3+} doped fiber amplifiers. - Highlights: Black-Right-Pointing-Pointer Tellurite glasses were prepared by conventional melt-quenching method. Black

  5. Structural and spectroscopic studies on Er{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2012-04-01

    Er{sup 3+} doped boro-tellurite glasses with the chemical composition (69-x)B{sub 2}O{sub 3}-xTeO{sub 2}-15MgO-15K{sub 2}O-1Er{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er{sup 3+} ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters ({beta}{sup Macron} and {delta}) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio ({beta}{sub R}) and peak stimulated emission cross-section ({sigma}{sub P}{sup E}) for the excited state transitions {sup 2}H{sub 9/2}{yields}{sup 4}I{sub 15/2} and {sup 2}H{sub 11/2} and {sup 4}S3{sub /2}{yields}{sup 4}I{sub 15/2} of the Er{sup 3+} ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (E{sub opt}) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er{sup 3+} doped boro-tellurite glasses in the present study. The

  6. Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses

    Science.gov (United States)

    Selvaraju, K.; Marimuthu, K.

    2012-04-01

    Er3+ doped boro-tellurite glasses with the chemical composition (69-x)B2O3-xTeO2-15MgO-15K2O-1Er2O3 (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er3+ ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters (βbar and δ) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters Ωλ (λ=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio (βR) and peak stimulated emission cross-section (σPE) for the excited state transitions 2H9/2→4I15/2 and 2H11/2 and 4S3/2→4I15/2 of the Er3+ ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (Eopt) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er3+ doped boro-tellurite glasses in the present study. The optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar results.

  7. Tellurite composite microstructured optical fibers with ultra-flattened and zero dispersion

    Science.gov (United States)

    Duan, Zhongchao; Liao, Meisong; Tomas, Kohoutek; Tong, Hoangtuan; Asano, Koji; Suzuki, Takenobu; Ohishi, Yasutake

    2012-04-01

    We report the fabrication of tellurite composite microstructured optical fiber (CMOF) with ultra-flattened zero dispersion (+/-3 ps/nm/Km) over 200nm band. To obtain this dispersion profile together with high nonlinearity, one ring of air holes and two layers of glass cladding are employed in the tellurite CMOF. The core of fiber is made of TeO2-Li2O-WO3 -MoO3-Nb2O5 (TLWMN) tellurite glass which possesses high linear and nonlinear refractive indices. The refractive index (n) at 1544nm and nonlinear refractive index (n2) of TLWMN glass is 2.08 and 3.78×10-11 esu, respectively. TeO2-ZnO-Na2O-La2O3 (TZNL) glass with n of 1.96 at 1544 nm and TeO2-ZnO-Li2O-Na2O-P2O5 (TZLNP) glass with low refractive index n of 1.63 at 1544 nm are used as the first cladding and the second cladding, respectively. Six small air holes are located between the core and the first glass cladding. Such kind of fiber with ~1.7 μm core and ~0.6 μm air holes are fabricated by a rod-in-tube method. The chromatic dispersion of the fiber is calculated by the fully vectorial finite difference method (FV-FDM) and becomes (+/-3 ps/nm/Km) in the wide range from 1.53 μm to 1.72 μm. And the nonlinear coefficient of present fiber is about 3.47 m-1W-1 which is much higher than that of silica MOFs. Furthermore, broad and flattened supercontinuum generation is demonstrated in 30-cm-long fiber with femtosecond laser pumping at 1557 nm. This kind of fiber has promising potential in nonlinear applications owing to the high nonlinearity and flattened dispersion profile.

  8. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  9. In-Situ Analysis Of Metal(loid)s In Plants: State Of The Art And Artefacts

    Science.gov (United States)

    Metals and metalloids play important roles in plant function and metabolism. Likewise, plants subsequently introduce vital dietary nutrition to people and animals. Understanding the transport, localisation and speciation of these elements is critical for understanding availabil...

  10. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    Science.gov (United States)

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.

  11. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.

    Science.gov (United States)

    Wang, Ruigang; Guo, Junkang; Xu, Yingming; Ding, Yongzhen; Shen, Yue; Zheng, Xiangqun; Feng, Renwei

    2016-02-01

    The economical, environmental friendly and efficient materials to remediate the pollution with multiple heavy metals and metalloids are scarce. Silkworm excrement (SE) and mushroom dregs (MD) are two types of agricultural wastes, and they are widely used to improve the soil fertility in many regions of China. A pot experiment with sixteen treatments was set up to assess the possibility of using SE and MD to stabilize heavy metals and metalloids and reduce their uptake in pakchoi cultivated in slightly contaminated soils with arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn). The results showed that the single addition of SE obviously stimulated the growth of pakchoi, reduced the contents of all tested heavy metals and metalloids in the edible part of pakchoi and availability of Zn and Cd in soil. The single MD treatment showed an inferior ability to enhance the growth and reduce the contents of heavy metals and metalloids in the edible part of pakchoi. The combined utilization of SE and MD appeared not to show better effects than their individual treatment when using them to remediate this contaminated soil. Some potential mechanisms on the stimulation on pakchoi growth and decreasing the accumulation of heavy metals and metalloids in pakchoi subjected to SE were suggested, including: (1) enhancing soil pH to impact the availability of heavy metals and metalloids; (2) improve the fertility of soil; (3) sulfhydryl groups of organic materials in SE play a role in conjugating heavy metals and metalloids to affect their availability in soil; and (4) stimulating the growth of pakchoi so as to show a "dilution effect" of heavy metals and metalloids. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Fabrication and characterization of an all-solid tellurite-phosphate photonic bandgap fiber.

    Science.gov (United States)

    Cheng, Tonglei; Sakai, Yukiko; Suzuki, Takenobu; Ohishi, Yasutake

    2015-05-01

    We present an all-solid tellurite-phosphate photonic bandgap fiber (PBGF) with two layers of high-index rods (TeO2-Li2O-WO3-MoO3-Nb2O5, TLWMN) in the cladding (TeO2-ZnO-Li2O-K2O-Al2O3-P2O5, TZLKAP). TLWMN and TZLKAP glasses have good compatibility for fabricating the all-solid PBGF. Photonic bandgap (PBG) properties are calculated by the plane wave expansion method (PWM), and the results agree well with the measured transmission spectrum. Furthermore, the modal field patterns are measured at ∼1300 and 1520 nm, respectively. The light is confined to the core at ∼1300  nm and lost in the cladding at ∼1520  nm, which match well with the calculated modal field intensities.

  13. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    Science.gov (United States)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  14. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    Science.gov (United States)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  15. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  16. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvements are needed to meet chemical durability requirements.

  17. Investigations on luminescence behavior of Er3+/Yb3+ co-doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Venkata Krishnaiah, K.; Marimuthu, K.

    2015-01-01

    Er3+/Yb3+ co-doped boro-tellurite glasses with the chemical composition 30TeO2+(24 - x)B2O3 + 15SrO + 10BaO + 10Li2O + 10LiF + 1Er2O3 + xYb2O3 (where x = 0, 0.1, 0.5, 1 and 2 in wt%) have been prepared and their luminescence behavior were studied and reported. Absorption spectral measurements have been used to derive the Judd-Ofelt (JO) intensity parameters from the experimental and calculated oscillator strength values following the JO theory. The various lasing parameters such as stimulated emission cross-section (σEp), experimental and calculated branching ratios (βR) and radiative lifetime (τcal) for the 2H9/2 → 4I15/2, 4S3/2 → 4I15/2 and 4I13/2 → 4I15/2 emission transitions were determined using the JO intensity parameters. The absorption and emission cross-section values for the 4I13/2 → 4I15/2 emission band have been calculated using McCumbar theory and the Gain cross-section for the 4I13/2 → 4I15/2 emission transition also obtained. The upconversion emission mechanism have been studied through various energy transfer processes and the intensity of the upconversion emission transitions are found to increase with the increase in Yb3+ ion concentration. The luminescence decay curves corresponding to the 4I13/2 → 4I15/2 transition of the Er3+/Yb3+ co-doped boro-tellurite glasses under 980 nm excitation wavelength have also been studied and reported in the present work.

  18. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    Directory of Open Access Journals (Sweden)

    Kawa M. Kaky

    Full Text Available In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 − xTeO2. (10ZnO. (10WO3. (5Na2O. (5TiO2. (xBi2O3 (x = 1, 2, 3, 4, and 5 mol% have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD which confirms the non-crystalline structure and scanning electron microscopy (SEM micrographs also confirm the XRD results. The energy dispersive X-ray (EDX analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65–150 cm−1, R2 (280–550 cm−1, R3 (880–950 cm−1 and R4 (916–926 cm−1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV–Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF, and band gaps from indirect and ASF were matched. Keywords: Tellurite glasses, XRD, FT-IR, Raman, TGA/DSC

  19. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  20. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses

    International Nuclear Information System (INIS)

    Zhang, Q.Y.; Feng, Z.M.; Yang, Z.M.; Jiang, Z.H.

    2006-01-01

    We report on the energy transfer and frequency upconversion spectroscopic properties of Er 3+ -doped and Er 3+ /Yb 3+ -codoped TeO 2 -ZnO-Na 2 O-PbCl 2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er 3+ /Yb 3+ -codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process

  1. Study of absorption and IR-emission of Er3+, Dy3+, Tm3+ doped high-purity tellurite glasses

    Science.gov (United States)

    Motorin, S. E.; Dorofeev, V. V.; Galagan, B. I.; Sverchkov, S. E.; Koltashev, V. V.; Denker, B. I.

    2018-04-01

    A study of high-purity TeO2-ZnO based tellurite glasses doped with Er3+, Dy3+ or Tm3+ that could be used as laser media in the 2-3 μm spectral range is presented. The glasses are prepared by melting the oxides mixture inside a silica glass reactor in an atmosphere of purified oxygen. The low level of hydroxyl groups absorption allowed to measure correctly the luminescence decay characteristics of the dopants. The rare-earth ions absorption bands, the luminescence spectra and kinetic characteristics of emission from the levels 4I11/2, 4I13/2 of Er3+, 6H13/2 of Dy3+ and 3H4, 3H5, 3F4 of Tm3+ ions are investigated. The results confirm the high potential of tellurite glasses as an active media for bulk, planar waveguide and fiber lasers.

  2. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology.

    Science.gov (United States)

    Barbosa, Fernando

    2017-01-01

    The function and behavior of chemical elements in ecosystems and in human health probably comprise one of the most studied issues and a theme of great interest and fascination in science. Hot topics are emerging on an annual basis in this field. Bearing this in mind, some promising themes to explore in the field of metals and metalloids in the environment and in toxicology are highlighted and briefly discussed herein.

  3. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    Science.gov (United States)

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  5. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    OpenAIRE

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated t...

  6. Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar.

    Science.gov (United States)

    Feng, Mingyu; Zhang, Weihua; Wu, Xueyong; Jia, Yanming; Jiang, Chixiao; Wei, Hang; Qiu, Rongliang; Tsang, Daniel C W

    2018-06-01

    After the application of sludge derived biochar (SDBC) for soil stabilization, it is subjected to continuous leaching that may change its surface properties and metal(loid) immobilization performance. This study simulated the continuous leaching through the fresh SDBC sample in columns with unsaturated and saturated zones under flushing with 0.01M NaNO 3 solution (pH5.5) and acidic solution (pH adjusted to 3.2 by HNO 3 :H 2 SO 4 =1:2), respectively. The resultant changes were assessed in terms of the SDBC surface characteristics and metal(loid) sorption capacities. Continuous leaching was found to gradually decrease the density of basic functional groups and increase the density of carboxyl groups as well as cation exchange capacity on the SDBC surface. It was attributed to the surface acidification and oxidation process by the leaching process, yet it occurred to a lesser extent than the atmospheric exposure. Continuous leaching increased Pb(II), Cr(VI), and As(III) sorption capacity of the SDBC, probably because the increase in carboxyl groups promoted inner-sphere complexation and Fe oxidation as revealed by spectroscopic analysis. It was noteworthy that the SDBC in the unsaturated and saturated zones under continuous leaching displayed distinctive effects on metal(loid) sorption capacity than the atmospheric exposure. Future investigations are needed for understanding the fate and interactions of the SDBC under varying redox conditions and intermittent leaching process. Copyright © 2017. Published by Elsevier B.V.

  7. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  8. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  10. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    Directory of Open Access Journals (Sweden)

    S. Kedenburg

    2016-11-01

    Full Text Available We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  11. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico

    International Nuclear Information System (INIS)

    Ley-Quinonez, C.; Zavala-Norzagaray, A.A.; Espinosa-Carreon, T.L.; Peckham, H.; Marquez-Herrera, C.; Campos-Villegas, L.; Aguirre, A.A.

    2011-01-01

    Highlights: → We report baseline levels of selected heavy metals in blood of Pacific loggerhead turtles. → Blood was used to measure in a relatively non-invasive way baseline values of heavy metals. → Zn and Cd were found in high concentrations compared to levels reported in other parts of the world. → Cu concentrations in blood are high as they relate to concentrations in muscle. → No correlations were found between of heavy metals and metalloids analyzed and the size of the turtles. - Abstract: Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto Lopez Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g -1 ), followed by Selenium (10.92 μg g -1 ). The mean concentration of toxic metal Cadmium was 6.12 μg g -1 and 1.01 μg g -1 respectively. Mean concentrations of metals followed this pattern: Zn > Se > Ni > Cu > Mn > Cd > Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.

  12. Concentration dependent luminescence quenching of Er{sup 3+}-doped zinc boro-tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Reza Dousti, M.

    2013-12-15

    Understanding the mechanism of luminescence quenching in rare earth doped tellurite glass is an important issue. The Er{sup 3+}-doped boro-tellurite glasses with compositions 30B{sub 2}O{sub 3}+10ZnO+(60−x)TeO{sub 2}+xEr{sub 2}O{sub 3} (where x=0, 0.5, 1, 1.5 and 2 mol%) were prepared by melt quenching method. Structural and optical properties of the proposed glasses were characterized using XRD, FTIR, density, UV–vis-IR absorption and PL spectroscopy. The amorphous nature of these glasses was confirmed by XRD technique. The IR-spectrum reveals five absorption bands assigned to different B–O and Te–O vibrational groups. UV–vis-IR absorption spectrum exhibits seven absorption bands at 6553, 10,244, 12,547, 15,360, 19,230, 20,661 and 22,522 cm{sup −1} corresponding to {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}I{sub 9/2}, {sup 4}F{sub 9/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 7/2} and {sup 4}F{sub 3/2} excited states of Er{sup 3+} ion respectively. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions decreased, while the Urbach energy and cut-off wavelengths are increased by the introduction of Er{sup 3+} ions. The refractive index, density and phonon cut-off edge of the samples are increased and the molar volume decreased with the further addition of dopants. The Judd–Ofelt parameter (Ω{sub 2}) decreased from 5.73 to 3.13×10{sup −20} cm{sup 2} with the increase of erbium ions concentration from 0.5 to 2 mol%. The PL spectra show green emissions for the transition from {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} excited states to {sup 4}I{sub 15/2} ground state, which show strong quenching due to the addition of Er{sup 3+} ions. -- Highlights: • Er{sup 3+}-doped zinc boro-tellurite glass has been synthesized by melt quench method. • Spectroscopic properties dependent concentration is analyzed by different techniques. • Judd–Ofelt intensity parameter (Ω{sub 2}) decreased by increase in erbium

  13. Selenium. Role of the Essential Metalloid in Health

    Science.gov (United States)

    Kurokawa, Suguru; Berry, Marla J.

    2015-01-01

    Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102

  14. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Directory of Open Access Journals (Sweden)

    W. Widanarto

    Full Text Available An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-xTeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6, monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10−7 S cm−1 at the frequency of 54 Hz and in the temperature range of 323–473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures. Keywords: Zinc-tellurite, Glass-ceramics, X-ray diffraction, Ionic conductivity, Lithium oxide

  15. Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Amjad, Raja J., E-mail: rajajunaid25@gmail.com [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Sahar, M.R.; Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Riaz, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Samavati, A.R.; Arifin, R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Naseem, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan)

    2013-04-15

    Silver nanoparticles (NPs) embedded Er{sup 3+} ions doped magnesium–tellurite glasses are prepared using melt quenching technique. Heat treatment with different time intervals above the glass transition temperature is applied in order to reduce the silver ions (Ag{sup +}) to silver NPs (Ag{sup o}). The transmission electron microscopy (TEM), differential thermal analyses (DTA), UV–vis-NIR absorption spectroscopy and photoluminescence (PL) spectroscopy are used to examine annealing time dependent structural and optical properties. The characteristics temperatures such as glass transition temperature (T{sub g}), crystallization temperature (T{sub c}) and melting temperature (T{sub m}) obtained from DTA for an as prepared sample are 322 °C, 450 °C and 580 °C, respectively. TEM image clearly shows the homogeneous distribution of silver NPs with an average diameter ∼12 nm. The observed localized surface plasmon resonance (LSPR) band is evidenced at 534 nm. Furthermore, the infrared to visible frequency up-conversion (UC) emission under 786 nm excitation exhibits three emission bands centered at 532 nm, 554 nm and 634 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+}, respectively. Intensity of all the bands is found to enhance by increasing the annealing time up to 24 h. However, further increase in the annealing time duration (∼40 h) reduces the intensity. Enhancement in the luminescence intensity is understood in terms of the local field effect of the silver NPs whereas the quenching is attributed to the energy transfer from Er{sup 3+} ions to silver NPs. -- Highlights: ► Er{sup 3+}-doped silver NPs embedded magnesium–tellurite glasses are prepared. ► TEM confirms the successful precipitation of spherical NPs by heat treatment (HT). ► Luminescence is enhanced due to the growth of NPs after HT up to 24 h. ► With HT>24 h (40 h

  16. Thermal, structural and spectroscopic investigations on Eu{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Seshagiri, T.K.; Godbole, S.V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Fundamental O-H, (BO{sub 3}){sup -} vibrations and B-O-B linkages in borate network explored. Black-Right-Pointing-Pointer The covalent nature of the Eu{sup 3+} ions with surrounding ligands have been confirmed. Black-Right-Pointing-Pointer B3TMK glass is found to be the best optical candidate for laser working at 612 nm. - Abstract: Eu{sup 3+} doped boro-tellurite glasses with the chemical composition (69 - x)B{sub 2}O{sub 3}-xTeO{sub 2}-15Mg{sub 2}O-15K{sub 2}O-1Eu{sub 2}O{sub 3} (where x = 0, 10, 20, 30 and 40 wt%) have been synthesized and its thermal, structural and spectroscopic behavior were studied and reported. The thermal behavior of the Eu{sup 3+} doped boro-tellurite glasses were explored through DTA thermograms. The presence of varying tellurium dioxide results in structural and spectroscopic changes around Eu{sup 3+} ions and are explored through XRD, FTIR, UV-vis, Luminescence and lifetime measurements. The XRD pattern confirms the amorphous nature and the FTIR spectra reveal the formation of the local structural units BO{sub 3} and BO{sub 4} in the prepared glasses. The bonding parameters (-bar {beta} and {delta}) have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt (JO) parameters were determined from the absorption and luminescence spectra and the results are presented. The variation in the JO intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) and the hypersensitive band positions with the change in chemical composition have been discussed in detail. The JO parameters have been used to derive important radiative properties like transition probabilities (A), branching ratios ({beta}{sub R}) and peak stimulated emission cross section ({sigma}E/P) for the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1, 2, 3 and 4) transitions of the Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have

  17. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration.

    Science.gov (United States)

    Majumdar, Arnab; Barla, Anil; Upadhyay, Munish Kumar; Ghosh, Dibyarpita; Chaudhuri, Punarbasu; Srivastava, Sudhakar; Bose, Sutapa

    2018-08-15

    Eichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.81 ± 0.394, 16.74 ± 0.367, 12.18 ± 0.153 mg Kg -1 arsenic, 18.95 ± 0.212, 9.53 ± 0.054, 6.83 ± 0.306 mg kg -1 lead and 2.79 ± 0.033, 1.39 ± 0.025, 0.92 ± 0.045 mg kg -1 cadmium, respectively in root, shoot and leaves, proving it's phytoaccumulation capacity. Next, these hyacinths has been used as a source of organic supplement for preparing vermicompost using Eisenia fetida following analysis of total metal content and sequential extraction. Control soil was having 134.69 ± 2.47 mg kg -1 arsenic in compare to 44.6 ± 0.91 mg kg -1 at premature stage of compost to 23.9 ± 1.55 mg kg -1 at mature compost indicating sustainable fate of phytoremediated vermicompost. This vermiremediation of arsenic and other toxic elements, restricted the bioavailability of soil pollutants. Furthermore, processed compost amended as organic fertilizer, growing chickpea, coriander, tomato and chilli plant, resulted in negligible metal(loid)s in treated samples, enhancing also plant's growth and production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China

    Directory of Open Access Journals (Sweden)

    Fei Li

    2018-01-01

    Full Text Available The contents of seven toxic metals (Cu, Cr, Cd, Zn, Pb, Hg and As in soils from Central China, including Henan Province, Hubei Province and Hunan Province, were collected from published papers from 2007 to 2017. The geoaccumulation index, health risk assessment model and statistics were adopted to study the spatial contamination pattern, to assess the human health risks and to identify the priority control pollutants. The concentrations of soil metals in Central China, especially Cd (1.31 mg/kg, Pb (44.43 mg/kg and Hg (0.19 mg/kg, surpassed their corresponding background values, and the Igeo values of Cd and Hg varied the most, ranging from the unpolluted level to the extremely polluted level. The concentrations of toxic metals were higher in the southern and northern parts of Central China, contrasting to the lowest contents in the middle parts. For non-carcinogenic risk, the hazard index (HI values for the children in Hubei Province (1.10 and Hunan Province (1.41 exceeded the safe level of one, with higher health risks to children than adults, and the hazard quotient (HQ values of the three exposure pathways for both children and adults in Central China decreased in the following order: ingestion > dermal contact > inhalation. For carcinogenic risk (CR, the CR values for children in Hubei Province (2.55 × 10−4, Hunan Province (3.44 × 10−4 and Henan Province (1.69 × 10−4, and the CR for adults in Hubei Province (3.67 × 10−5, Hunan Province (4.92 × 10−5 and Henan Province (2.45 × 10−5 exceeded the unacceptable level (10−4 and acceptable level (10−6, respectively. Arsenic (As appeared to be the main metalloid for both children and adults causing the high carcinogenic risk. For sustainable development in Central China, special attention should be paid to Cd, Hg, Cr, Pb and As, identified as the priority control soil metals. Importance should also be attached to public education, source control, and the remediation of the

  19. Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses

    Science.gov (United States)

    Rani, S.; Ahlawat, N.; Parmar, R.; Dhankhar, S.; Kundu, R. S.

    2018-01-01

    Lithium zinc boro tellurite glasses with compositions xLi2O-(100-x) [0.25ZnO-0.15B2O3-0.60TeO2] [where x = 0, 5, 10, 15 and 20 mol%] have been prepared by melt-quench technique. The amorphous nature of the prepared system is ascertained by X-ray diffraction. The density and molar volume are found to decrease with the increase in concentration of Li2O. The differential scanning calorimetry is used to calculate the glass transition temperature (Tg) and the observed values are found to be decreased. The IR and Raman spectra indicate that Li2O acts as a network modifier in the glass matrix. In the present system, tellurium exists as TeO4 and TeO3, B2O3 in the form of BO4 and BO3 and zinc oxide exists as ZnO4 structural units. The values of the optical band gap are estimated from the fitting of Mott and Davis's and model. A better convergence is achieved between experimental observed spectra of absorption coefficient and hydrogenic excitonic model. The optical band gap energy increases, whereas refractive index and molar refractivity follow the reverse trend with Li2O. The range of metallization criterion suggests that these glasses may be a potential candidate for nonlinear optical materials.

  20. YCu(TeO32(NO3(H2O3: a novel layered tellurite

    Directory of Open Access Journals (Sweden)

    Stuart J. Mills

    2016-08-01

    Full Text Available A new hydrated yttrium copper tellurite nitrate, yttrium(III copper(II bis[trioxidotellurate(IV] nitrate trihydrate, has been synthesized hydrothermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its crystal structure is unique, with relatively strongly bound layers extending parallel to (020, defined by YO8, CuO4 and TeO3 polyhedra, while the NO3− anions and one third of the water molecules lie between those layers. The structural unit consists of [Cu2(TeO34]4− loop-branched chains of {Cu...Te...Cu...Te} squares running parallel to [001], which are linked further into layers only through Y(O,H2O8 polyhedra. Weak `secondary' Te bonds and O—H...O hydrogen-bonding interactions, involving water molecules and layer O atoms, link the layers and interlayer species. IR spectroscopic data are also presented.

  1. Tellurites of hexavalent uranium: first observation of polymerized (UO{sub 4}){sup 2-} tetraoxido cores

    Energy Technology Data Exchange (ETDEWEB)

    Zadoya, Anastasiya I.; Siidra, Oleg I.; Nazarchuk, Evgeny V.; Bocharov, Sergey N. [Department of Crystallography, St. Petersburg State University (Russian Federation); Bubnova, Rimma S. [Department of Crystallography, St. Petersburg State University (Russian Federation); Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2016-09-15

    Two novel Ca{sub 2}(UO{sub 3})(TeO{sub 3}){sub 2} (1) and K{sub 2}(UO{sub 2}){sub 2}O{sub 2}(TeO{sub 3}) (2) uranyl tellurites were obtained from telluric acid, used as a starting reagent for both compounds. In 1, the tetraoxido core is coordinated by TeO{sub 3} groups and UO{sub 4} squares polymerize into [UO{sub 3}] chains. The tetraoxido core coordination modes in compound 1 are unique. New layered {sub ∞}{sup 2}[(UO{sub 2}){sub 2}(TeO{sub 3})O{sub 2}]{sup 2-} topology is observed for 2. Both of the compounds were studied by the means of high-temperature X-ray diffraction. The thermal decomposition of 1 and 2 is different and leads to formation of uranate compounds. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Investigations on structural and optical behavior of Er3+ doped lead boro-tellurite glasses

    Science.gov (United States)

    Karthikeyan, P.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2015-06-01

    Er3+ doped lead boro-tellurite glasses with the chemical composition (30-x)B2O3+30TeO2+23MgO+17PbF2+xEr2O3 (where x=0.05, 0.25, 0.5, and 1 in wt%) were synthesized by melt quenching technique. The structural and optical behaviors have been investigated through FTIR, absorption and emission spectral analysis. The UV-vis- NIR absorption spectra were used to calculate the bonding parameters (β ¯, δ), Judd-Ofelt intensity parameters (Ωλ, λ = 2, 4 and 6), Optical band gap and Urbach's energy of the prepared glasses. The radiative properties such as transition probability (AR), stimulated emission cross-section (σPE ), branching ratios (βR) were calculated from the luminescence spectra. The optical properties of the prepared glasses with varying Er3+ ion concentration have been studied and reported in the present work.

  3. Band gap and polarizability of boro-tellurite glass: Influence of erbium ions

    Science.gov (United States)

    Said Mahraz, Zahra Ashur; Sahar, M. R.; Ghoshal, S. K.

    2014-08-01

    Understanding the influence of rare earth ions in improving the structural and optical properties of inorganic glasses are the key issues. Er3+-doped zinc boro-tellurite glasses with composition 30B2O3-10ZnO-(60-x) TeO2-xEr2O3 are prepared (x = 0, 0.5, 1, 1.5 and 2 mol%) using melt quenching technique. The physical and optical characterizations are measured by density and UV-Vis-IR absorption spectroscopy. The color of the glass changed from light yellow to deep pink due to the introduction of Er3+ ions. The maximum density is found to be ∼4.73 g cm-3 for 1 mol% of Er3+ doping. The variations in the polarizability (6.7-6.8 cm3) and the molar volume (27.987-28.827 cm3 mol-1) with dopant concentration are ascribed to the formation of non-bridging oxygen. This observation is consistent with the alteration of number of bonds per unit volume. The direct and indirect optical band gaps are increased while the phonon cut-off wavelength and Urbach energy decreased with the increase of erbium content. A high density and wide transparency range in VIS-IR area are achieved. Our results on high refractive index (∼2.416) and polarizability suggest that these glasses are potential for photonics, solid state lasers and communications devices.

  4. Nd3+-doped lanthanum lead boro-tellurite glass for lasing and amplification applications

    Science.gov (United States)

    Madhu, A.; Eraiah, B.; Manasa, P.; Srinatha, N.

    2018-01-01

    Nd3+-doped lanthanum lead boro-tellurite glass samples were prepared by conventional melt quenching method and their structural, thermal, fluorescence, and decay times of the glasses were investigated. Prepared glass samples exhibits amorphous nature and shows good thermal stability in the temperature range of 100-800 °C. Judd-Ofelt (JO) analysis was carried out and the intensity parameters (Ωλ = 2, 4, 6) also spontaneous radiative probability and stimulated-.emission cross-sections were estimated. The magnitude of Ωλ confirms the covalency nature. The near infrared emission spectra were measured by 808 nm excitation in which the emission intensity is found to be high at 1060 nm for the 4F3/2 → 4F11/2 transition. The stimulated cross section, effective band width and branching ratios are found to be 8.910 × 10-20 cm2, 21.57 nm and 53.72 % respectively, for 4F3/2 → 4F11/2 transition. The derived gain bandwidth, figure of merit, threshold and saturation intensity found to be comparable to some of the glass systems. Furthermore, the time decay rate found to decrease from 100 μs to 27 μs when the concentration increased from 0.1 to 3.0 mol% of Nd3+ ions and also all follow the single exponential behaviour which is attributed to the self quenching effect due to the cross-relaxation channels.

  5. Optical properties of Dy3+ doped bismuth boro-tellurite glasses for WLED applications

    Science.gov (United States)

    Karthikeyan, P.; Marimuthu, K.

    2016-05-01

    The Dy3+ doped bismuth boro-tellurite glasses with the chemical composition (79.5-x) B2O3+xTeO2+10Bi2O3+10PbF2+0.5Dy2O3 (where x = 10, 20, 30 and 40 in wt%) have been prepared by melt quenching technique. The optical properties of the prepared glasses have been studied through absorption and emission spectral measurements. The bonding parameters, optical band gap energy, Urbach's energy and Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the absorption spectra. The radiative properties like transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) were calculated from the emission spectra using JO theory. The strong emissions in the visible region, large stimulated emission cross-section and higher branching ratio values observed for the title glasses are found to be suitable for lasers and WLED applications.

  6. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    Science.gov (United States)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  7. Spectral properties of Er3+/Yb3+ codoped tungsten-tellurite glasses.

    Science.gov (United States)

    Shen, Xiang; Nie, QiuHua; Xu, TieFeng; Gao, Yuan

    2005-07-01

    The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.

  8. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    Science.gov (United States)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  9. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    Science.gov (United States)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  10. Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Boro-tellurite based glasses (10La2O3-(20-x) TeO2-30PbO-40B2O3-xSm2O3) (x = 0, 0.5, 1.0 and 2.0 mol %) doped with different concentrations of Sm3+ ions has been investigated. The optical properties have been studied through spectroscopic measurements such as absorption and luminescence. Absorption spectra reveals nine peaks due to 6H5/2→6P3/2, 4I3/2+4F5/2+4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, and 6H13/2 transitions. Luminescence spectra under the excitation of 403 nm display four emission bands due to 4G5/2→6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ ions. Among them 6H7/2 bright orange -red is more intense which proves that the present glasses are potential candidates for luminescent device applications in visible range as well as optical fibre communication since its refractive index is 1.65 high compared to other glasses.

  11. Self-Q-switching behavior of erbium-doped tellurite microstructured fiber lasers

    International Nuclear Information System (INIS)

    Jia, Zhi-Xu; Yao, Chuan-Fei; Kang, Zhe; Qin, Guan-Shi; Qin, Wei-Ping; Ohishi, Yasutake

    2014-01-01

    We reported self-Q-switching behavior of erbium-doped tellurite microstructured fiber (EDTMF) lasers and further demonstrated a self-Q-switched EDTMF laser with a high repetition rate of more than 1 MHz. A 14 cm EDTMF was used as the gain medium. Upon a pump power of ∼705 mW at 1480 nm, output pulses with a lasing wavelength of ∼1558 nm, a repetition rate of ∼1.14 MHz, and a pulse width of ∼282 ns were generated from the fiber by employing a linear cavity. The maximum output power was ∼316 mW and the slope efficiency was about 72.6% before the saturation of the laser power. Moreover, the influence of the fiber length on laser performances was investigated. The results showed that self-Q-switching behavior in our experiments was caused by the re-absorption originated from the ineffectively pumped part of the active fiber.

  12. Tailored white light emission in Eu3+/Dy3+ doped tellurite glass phosphors containing Al3+ ions

    Science.gov (United States)

    Walas, Michalina; Piotrowski, Patryk; Lewandowski, Tomasz; Synak, Anna; Łapiński, Marcin; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems modified by addition of aluminum fluoride AlF3 have been successfully synthesized as host matrices for optically active rare earth ions RE3+ (RE3+ = Eu3+, Dy3+). Samples with different Eu3+ to Dy3+ molar ratio have been studied in order to determine possibility of white light emission via UV excitation. Structural investigations confirmed amorphous character of materials whereas spectroscopic studies brought more insight into glass network's nature. FTIR results shown presence of two features related to tellurite glass matrix (in 490-935 cm-1 spectral region) and another one (940-1250 cm-1) due to aluminum addition. Especially, Al-O and Te-O-Al bonds of AlO4 tetrahedrons have been found. AlO4 units are considered as glass formers that improve network's strength and thermal resistivity against devitrification. Based on XPS studies of Al3+ photoelectron band the existence of Al-O and also Al-F bonds have been examined. Moreover, signals originating from Eu3+ and Dy3+ have been found confirming their valence state. Luminescence results revealed possibility of simultaneous UV excitation of Eu3+ and Dy3+ ions. Excitation with λexc = 390 and 393 nm resulted in white light generation starting from warm white to neutral and cool white depending on Eu3+ concentration and used excitation wavelength. Additionally, increase of decay lifetime of Eu3+ induced by Al3+ presence have been revealed based on luminescence decay analysis. Thus, tellurite glass systems modified by AlF3 and doped with Eu3+/Dy3+ may be considered as promising candidates for white light emitting sources.

  13. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  14. Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses

    International Nuclear Information System (INIS)

    Spector, N.; Reisfeld, R.; Boehm, L.

    1977-01-01

    Electronic wavefunctions of Tm 3+ in intermediate coupling were obtained and used to calculate the Usup((lambda)) matrix elements between all possible states of the 4f 12 configuration. The Judd-Ofelt intensity parameters Ωsub(lambda) obtained for Tm 3+ in phosphate and tellurite glasses were used in conjunction with the Usup((lambda))'s to calculate the forced electric dipole line strengths. The total electric and magnetic radiative transition probabilities are calculated. The entire theoretical spectrum involving the ground and excited levels (from 129 nm to 16447 nm) is given. (Auth.)

  15. Comparison of sample preparation procedures on metal(loid) fractionation patterns in lichens.

    Science.gov (United States)

    Kroukamp, E M; Godeto, T W; Forbes, P B C

    2017-08-13

    The effects of different sample preparation strategies and storage on metal(loid) fractionation trends in plant material is largely underresearched. In this study, a bulk sample of lichen Parmotrema austrosinense (Zahlbr.) Hale was analysed for its total extractable metal(loid) content by ICP-MS, and was determined to be adequately homogenous (sample were prepared utilising a range of sample preservation techniques and subjected to a modified sequential extraction procedure or to total metal extraction. Both experiments were repeated after 1-month storage at 4 °C. Cryogenic freezing gave the best reproducibility for total extractable elemental concentrations between months, indicating this to be the most suitable method of sample preparation in such studies. The combined extraction efficiencies were >82% for As, Cu, Mn, Pb, Sr and Zn but poor for other elements, where sample preparation strategies 'no sample preparation' and 'dried in a desiccator' had the best extraction recoveries. Cryogenic freezing procedures had a significantly (p sample cleaning and preservation when species fractionation patterns are of interest. This study also shows that the assumption that species stability can be ensured through cryopreservation and freeze drying techniques needs to be revisited.

  16. Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China.

    Science.gov (United States)

    Zhu, Yuen; Wang, Yuzhe; Meng, Fanjian; Li, Lifen; Wu, Shan; Mei, Xiaohui; Li, Hua; Zhang, Guixiang; Wu, Daishe

    2018-02-01

    This study investigated the levels of metal and metalloid elements (As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in scalp hair samples collected from 161 people of different age and gender groups living in the six districts of Taiyuan, an industrial city with rich coal reserve in Shanxi province in China. Levels of most elements in the hair were high in the 26-40 age groups and increased with the length of residence. Calcium, Cr, Mg, Ni and Zn levels in the females' hair were significantly higher than those in the males' (p industrial and non-industrial districts because most of industry factories are in the upper wind position in Taiyuan, and contamination is prone to spread to non-industrial districts. The principal component analysis indicates that the main sources of these elements are mining activities, the neighboring stainless steel industry, and coal combustion. These results indicate that the industrial activities primarily contribute to the metal and metalloid pollution in Taiyuan, whereas numerous factors caused the metals accumulation in hair. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  18. Low-level environmental metals and metalloids and incident pregnancy loss.

    Science.gov (United States)

    Buck Louis, Germaine M; Smarr, Melissa M; Sundaram, Rajeshwari; Steuerwald, Amy J; Sapra, Katherine J; Lu, Zhaohui; Parsons, Patrick J

    2017-04-01

    Environmental exposure to metals and metalloids is associated with pregnancy loss in some but not all studies. We assessed arsenic, cadmium, mercury, and lead concentrations in 501 couples upon trying for pregnancy and followed them throughout pregnancy to estimate the risk of incident pregnancy loss. Using Cox proportional hazard models, we estimated hazard ratios (HR) and 95% confidence intervals (CIs) for pregnancy loss after covariate adjustment for each partner modeled individually then we jointly modeled both partners' concentrations. Incidence of pregnancy loss was 28%. In individual partner models, the highest adjusted HRs were observed for female and male blood cadmium (HR=1.08; CI 0.81, 1.44; HR=1.09; 95% CI 0.84, 1.41, respectively). In couple based models, neither partner's blood cadmium concentrations were associated with loss (HR=1.01; 95% CI 0.75, 1.37; HR=0.92; CI 0.68, 1.25, respectively). We observed no evidence of a significant relation between metal(loids) at these environmentally relevant concentrations and pregnancy loss. Published by Elsevier Inc.

  19. Determination of the long-term release of metal(loid)s from construction materials using DGTs.

    Science.gov (United States)

    Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A

    2013-09-15

    Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Prominent spectral features of Sm3+ ion in disordered zinc tellurite glass

    Directory of Open Access Journals (Sweden)

    Y.A. Tanko

    Full Text Available Trivalent rare earth doped glasses with modified spectroscopic features are essential for solid state lasers and diverse photonic applications. Glass composition optimisation may fulfil such demand. Stimulating the spectral properties of samarium (Sm3+ ions in tellurite glass host with desired enhancement is the key issue. Glasses with composition (80 − xTeO2–20ZnO–(xSm2O3, where 0 ⩽ x ⩽ 1.5 mol% are prepared using melt quenching method. The role of varying Sm3+ contents to improving the absorption and emission properties of the prepared glasses are determined. XRD pattern verifies amorphous nature of synthesised glasses. FTIR spectroscopy has been used to observe the structural modification of (TeO4 trigonal bipyramid structural units. DTA traces display prominent transition peaks for glass transition, crystallisation and melting temperature. Samples are discerned to be stable with desired Hruby parameter and superior glass forming ability. The UV–Vis–NIR absorption spectra reveals nine peaks centred at 470, 548, 947, 1085, 1238, 1385, 1492, 1550 and 1589 nm. These bands arise due to 6H5/2 → 4I11/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 transitions, respectively. The direct, indirect band gap and Urbach energy calculated from the absorption edge of UV–Vis–NIR spectra are found to appear within (2.75–3.18 eV, (3.22–3.40 eV, and (0.20–0.31 eV, respectively. The observed increase in refractive index from 2.45 to 2.47 is ascribed to the generation of non-bridging oxygen atoms via the conversion of TeO4 into TeO3 units. Conversely the decrease in refractive index to 2.39 is attributed to the lower ionic radii (1.079 Å of Sm3+. PL spectra under the excitation of 452 nm display four emission bands centred at 563, 600, 644 and 705 nm corresponding to 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of samarium ions. Excellent features of the results nominate these compositions

  1. Structural and optical studies on Eu3+ doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Veeran, P. K.; Marimuthu, K.

    2013-03-01

    Eu3+ doped boro-tellurite glasses (69 - x)B2O3 + xTeO2 + 15Na2CO3 + 15NaF + 1Eu2O3 (where x = 0, 10, 20, 30 and 40 wt%) have been prepared and their structural and optical properties were studied through XRD, FTIR, absorption, luminescence and decay time measurements. The FTIR spectra reveal the presence of B-O-B bond bending vibrations and Te-O-Te or O-Te-O linkage bending vibrations in the prepared glasses. The absorption spectral measurements were used to calculate the bonding parameters (β¯, δ). The direct, indirect allowed band gap (Eopt), band tail parameter (B) and Urbach energy (ΔE) values of the prepared glasses have also been determined from the absorption spectral measurements. The phonon sideband is observed from the excitation spectra on the higher energy side of the 7F0 → 5D2 transition. The phonon energy (hω) and the electron-phonon coupling constant (g) were also derived from the phonon sideband spectra. Through the luminescence spectra, Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) and the luminescence intensity ratio (R) have been determined. The JO parameters have also been used to calculate the radiative properties like transition probability (A), stimulated emission cross-section (σPE), radiative lifetime (τrad), and branching ratios (βR) for the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) emission transitions of the Eu3+ ions. The experimental lifetime of the 5D0 level is found to be single exponential for all the prepared glasses. The obtained results were discussed and reported in the present work.

  2. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    Science.gov (United States)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  3. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Science.gov (United States)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  4. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    Science.gov (United States)

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  5. All-solid tellurite optical fiber with transversely disordered refractive index profile and its optical image transport performance

    Science.gov (United States)

    Tong, Hoang Tuan; Kuroyanagi, Shunei; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    All-solid tellurite-glass optical rod and fiber with transversely-disordered refractive index profile were successfully fabricated to study the transport of infrared images by using transverse localization of light. The fabrication was carried out by using stack-and-draw and rod-in-tube techniques. The fabricated tellurite optical rod and fiber were composed of high-index and low-index units which were arranged randomly in the transverse plane but were invariant in the longitudinal direction. The diameter of each unit was approximately 1.0 μm. The high-index and low-index materials were TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass and TeO2-ZnO-Na2O-La2O3 (TZNL) glass, respectively. At 1550 nm, their refractive index difference Δn is 0.096. To investigate the optical image transport capability, A CW laser light at 1550 nm was used as an input probe beam and the 1951 U.S. Air Force test target was installed in front of 10-cm-long segments of the fabricated rod and fiber in the experimental setup. The output signal was recorded by a beam profiler. As a result, clear transported images of numbers and lines on the test target were obtained.

  6. Photoluminescence study of Sm{sup 3+}–Yb{sup 3+}co-doped tellurite glass embedding silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reza Dousti, M., E-mail: mrdousti@ifsc.usp.br [Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Fisica de São Carlos, Universidade de São Paulo, Av. Trabalhador So-carlense 400, São Carlos, SP 13566-590 (Brazil); Department of Physics, Tehran-North Branch, Islamic Azad University Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Amjad, R.J. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Hosseinian S, R.; Salehi, M.; Sahar, M.R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)

    2015-03-15

    We report on the upconversion emission of Sm{sup 3+} ions doped tellurite glass in the presence of Yb{sup 3+} ions and silver nanoparticles. The enhancement of infrared-to-visible upconversion emissions is achieved under 980 nm excitation wavelength and attributed to the high absorption cross section of Yb{sup 3+} ions and an efficient energy transfer to Sm{sup 3+} ions. Further enhancements are attributed to the plasmonic effect via metallic nanoparticles resulting in the large localized field around rare earth ions. However, under excitation at 406 nm, the addition of Yb{sup 3+} content and heat-treated silver nanoparticles quench the luminescence of Sm{sup 3+} ions likely due to quantum cutting and plasmonic diluent effects, respectively. - Highlights: • Sm{sup 3+} tellurite glasses co-doped with Yb{sup 3+} ions and tri-doped with Yb{sup 3+}:Ag NPs were prepared. • In first step, Yb{sup 3+} ions enhanced the upconversion emissions of Sm{sup 3+} doped samples. • In second step, Ag NPs further enhanced the upconversion emissions in tri-doped glasses. • Finally, the quench in luminescence under 406 nm excitation is observed and discussed.

  7. Simple one-pot aqueous synthesis of CdHgTe nanocrystals using sodium tellurite as the Te source

    International Nuclear Information System (INIS)

    Shen, Zhitao; Luo, Chunhua; Huang, Rong; Wang, Yiting; Peng, Hui; Travas-sejdic, Jadranka

    2014-01-01

    In this work, we systematically investigated the one-pot aqueous synthesis conditions of CdHgTe nanocrystals (NCs) using sodium tellurite (Na 2 TeO 3 ) as the Te source, and found that the added content of Hg 2+ and the initial pH value of reaction solutions significantly affected the photoluminescence quantum yield (PL QY) of alloyed CdHgTe NCs. When the concentration of Cd was 1.0 mmol L −1 , the mole ratio of Cd/Te/Hg/MPA was 1:0.5:0.05:2.4, and the initial pH value of the reaction solution was about 8.78, the PL QY of as-prepared CdHgTe NCs was up to 45%. Characterization by HRTEM and XRD confirmed the crystalline nature of CdHgTe NCs. Compared to other synthetic approaches of CdHgTe NCs, our experimental results indicate that Na 2 TeO 3 could be an attractive alternative Te source to directly synthesize CdHgTe NCs in aqueous media. - Highlights: • A one-pot method was developed for the synthesis of highly luminescent CdHgTe nanocrystals (NCs). • Sodium tellurite was used as the Te source. • The quantum yield reached up to 45%. • The experimental conditions were optimized and the prepared CdHgTe NCs were characterized

  8. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications

    International Nuclear Information System (INIS)

    Sayyed, M.I.; Lakshminarayana, G.; Kityk, I.V.; Mahdi, M.A.

    2017-01-01

    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Z eff ), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF 2 ) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑ R ) for these glasses were also calculated. The maximum value for µ/ρ, Z eff and ∑ R was found for heavy metal (Bi 2 O 3 ) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications. - Highlights: • μ/ρ, Z eff , HVL and MFP for PbF 2 based tellurite-rich glasses have been calculated. • µ/ρ and Z eff depend on the photon energy and chemical composition of the glasses. • EBF values of these glasses have been calculated using G-P fitting method. • The maximum value for µ/ρ and Z eff was found for Bi 2 O 3 oxide introduced glass. • New types of non-traditional radiation shielding glasses are demonstrated.

  9. Stabilization of metal(loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material.

    Science.gov (United States)

    Trakal, Lukáš; Raya-Moreno, Irene; Mitchell, Kerry; Beesley, Luke

    2017-08-01

    Two metal(loid) contaminated agricultural soils were amended with grape stalk (wine production by-product)-derived biochar as well as its pre-pyrolysed origin material, to investigate their geochemical impacts on As, Cr, Cu and Zn. Detailed physico-chemical evaluation combined with a column leaching test determined the retention of metal(loid)s from soil solution by each amendments. A pot experiment measured metal(loid)s in soil pore water and their uptake to ryegrass when the amendments were mixed into soils at 1 and 5% (w/w). Total Cr and Zn concentrations were reduced furthest in column leachates by the addition of raw material and biochar respectively, compared to the untreated soil; Cr(III) was the predominant specie initially due to rapid acidification of leachates and organic complexation resulting from raw material addition. Loadings of metal(loid)s to the amendments recovered from the post-leached columns were in the order Cu » Zn > Cr ≈ As. In the pot test ryegrass Cr uptake was initiated by the addition of both amendments, compared to the untreated soil, whereas only biochar addition resulted in significant increases in Zn uptake, explained by its significant enhancement of ryegrass biomass yield, especially at 5% dosage; raw material addition significantly decreased biomass yields. Inconsistent relationships between pore water parameters and ryegrass uptake were common to both soils investigated. Therefore, whilst both amendments modified soil metal(loid) geochemistry, their effects differed fundamentally; in environmental risk management terms these results highlight the need to investigate the detailed geochemical response of contaminated soils to diverse organic amendment additions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Supplementary dataset for child and adult exposure and health risk evaluation following the use of metal- and metalloid-containing costume cosmetics sold in the United States

    Directory of Open Access Journals (Sweden)

    Angela L. Perez

    2017-08-01

    Full Text Available The data presented in this article are related to the research article entitled "Child and adult exposure and health risk evaluation following the use of metal- and metalloid-containing costume cosmetics sold in the United States" [1]. This article describes the concentration of metals and metalloids contained in various cosmetic products such as body paint, lipstick and eye shadow, the relative percent deviation of two analyses performed on the products and the physico-chemico properties of the metals and metalloids used in the SkinPerm model presented in the aforementioned article.

  11. Development of an accelerated leaching method for incineration bottom ash correlated to toxicity characteristic leaching protocol.

    Science.gov (United States)

    Lin, Shengxuan; Zhou, Xuedong; Ge, Liya; Ng, Sum Huan; Zhou, Xiaodong; Chang, Victor Wei-Chung

    2016-10-01

    Heavy metals and some metalloids are the most significant inorganic contaminants specified in toxicity characteristic leaching procedure (TCLP) in determining the safety of landfills or further utilization. As a consequence, a great deal of efforts had been made on the development of miniaturized analytical devices, such as Microchip Electrophoresis (ME) and μTAS for on-site testing of heavy metals and metalloids to prevent spreading of those pollutants or decrease the reutilization period of waste materials such as incineration bottom ash. However, the bottleneck lied in the long and tedious conventional TCLP that requires 18 h of leaching. Without accelerating the TCLP process, the on-site testing of the waste material leachates was impossible. In this study, therefore, a new accelerated leaching method (ALM) combining ultrasonic assisted leaching with tumbling was developed to reduce the total leaching time from 18 h to 30 min. After leaching, the concentrations of heavy metals and metalloids were determined with ICP-MS or ICP-optical emission spectroscopy. No statistical significance between ALM and TCLP was observed for most heavy metals (i.e., cobalt, manganese, mercury, molybdenum, nickel, silver, strontium, and tin) and metalloids (i.e., arsenic and selenium). For the heavy metals with statistical significance, correlation factors derived between ALM and TCLP were 0.56, 0.20, 0.037, and 0.019 for barium, cadmium, chromium, and lead, respectively. Combined with appropriate analytical techniques (e.g., ME), the ALM can be applied to rapidly prepare the incineration bottom ash samples as well as other environmental samples for on-site determination of heavy metals and metalloids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC{sub 50} values of other test models

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S., E-mail: bkhangarot@hotmail.com [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Das, Sangita [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2009-12-30

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC{sub 50}) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC{sub 50} values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r{sup 2}) for 17 physicochemical properties of metals or metal ions and EC{sub 50}s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK{sub sp}), softness parameter and some other physicochemical characteristics were significantly correlated with EC{sub 50}s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC{sub 50}s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  13. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models

    International Nuclear Information System (INIS)

    Khangarot, B.S.; Das, Sangita

    2009-01-01

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC 50 ) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC 50 values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r 2 ) for 17 physicochemical properties of metals or metal ions and EC 50 s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK sp ), softness parameter and some other physicochemical characteristics were significantly correlated with EC 50 s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC 50 s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  14. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  15. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  16. Theoretical studies on metal thioarsenites and thioantimonides: synergistic interactions between transition metals and heavy metalloids

    Directory of Open Access Journals (Sweden)

    Tossell JA

    2000-05-01

    Full Text Available Recently we established that the ternary complex, CuAsS(SH(OH has an unusually high stability and makes a large contribution to the total concentrations of both Cu and As in sulfidic solutions equilibrated with Cu and As sulfide minerals. This ternary complex has an unusual structure, containing a bond which is formally Cu(I–As(III, along with a broken As–S bond. We have now found that complexes with similar structures exist for Au+ and Tl+ coordinated to AsS(SH(OH-. However, such a direct metal–metalloid bond is not a requirement for stability. In fact, TlAsS(SH(OH is unstable while AuAsS(SH(OH is highly stable (compared to the aquo ion. Zn2+, Cd2+, Hg2+ and Pb2+ also form bonds to the As of AsS(SH(OH, but without breaking any As–S bonds, and HgAsS(SH(OH+ and PbAsS(SH(OH+ are particularly stable complexes. Calculated structures are shown for these complexes, gas-phase energies are calculated, and formation constants in aqueous solution are estimated. The SbS(SH(OH- ion forms analogous complexes, with similar stabilities. However, the Au+ complex of SbS(SH(OH- is slightly less stable than the Cu+ complex, opposite to the order found for the AsS(SH(OH- ligand. The Au+ and AuSH complexes of AsSSHOH- or AsS(SH2- may be implicated in "invisible gold" in arsenian pyrites. Vibrational frequencies are given for the AuAsS(SH3- complex and the XANES energies of this complex and Au(SH2- are compared. The existence of such strong complexes may explain the many correlations observed between the concentrations of coinage metals and metalloids.

  17. Uptake of metals and metalloids by Conyza canadensis L. from a thermoelectric power plant landfill

    Directory of Open Access Journals (Sweden)

    Vukojević Vesna

    2016-01-01

    Full Text Available Fourteen metals and metalloids were determined in Conyza canadensis L. harvested from the fly ash landfill of the thermoelectric power plant “Kolubara” (Serbia. Fly ash samples were collected together with the plant samples and subjected to sequential extraction according to the three-step sequential extraction scheme proposed by the Community Bureau of Reference (BCR; now the Standards, Measurements and Testing Program. The contents of metals and metalloids were determined by inductively coupled plasma optical emission spectrometry (ICP-OES in plant root and the aboveground part and correlated with their contents in the fly ash samples. The bioconcentration factor (BCF and translocation factors (TF were calculated to access uptake of metals from fly ash and their translocation to the aboveground part. Results regarding As revealed that fly ash samples in the proximity of the active cassette had higher amounts of the element. Principal component analysis (PCA showed that As had no impact on the classification of plant parts. BCF for As ranged from 1.44 to 23.8 and varied, depending on the investigated area; TF for As ranged from 0.43 to 2.61, indicating that the plant translocated As from root to shoot. In addition to As, Conyza canadensis L. exhibited efficient uptake of other metals from fly ash. According to the calculated BCF and TF, the plant retained Al, Fe and Cr in the root and translocated Zn, Cd, Cu and As from root to shoot in the course of the detoxifying process. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172017

  18. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China.

    Science.gov (United States)

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-07-13

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.

  19. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China

    Science.gov (United States)

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-01-01

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781

  20. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  1. Natural Fe{sub 3}O{sub 4} nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Widanarto, W. [Physics Study Program, Jenderal Soedirman University, Jl. Dr. Soeparno 61, Purwokerto 53123 (Indonesia); Sahar, M.R., E-mail: rahimsahar@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Jandra, M. [FTI, University Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia)

    2013-02-15

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe{sub 3}O{sub 4} nanoparticles with composition (80 − x)TeO{sub 2}·xFe{sub 3}O{sub 4}·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm{sup −1} to 671 cm{sup −1} in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO{sub 3} peak at 752 cm{sup −1}. A new peak around 461 cm{sup −1} is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe{sub 3}O{sub 4} concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe{sub 3}O{sub 4} nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe{sub 3}O{sub 4} concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe{sub 3}O{sub 4} nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability.

  2. Silver nanoparticles enhanced 1.53 µm band fluorescence of Er{sup 3+}/Yb{sup 3+} codoped tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yawei; Zhou, Yaxun, E-mail: zhouyaxun@nbu.edu.cn; Wu, Libo; Yang, Fengjing; Peng, Shengxi; Zheng, Shichao; Yin, Dandan

    2014-09-15

    The silver nanoparticles (NPs) was introduced into the Er{sup 3+}/Yb{sup 3+} codoped tellurite glasses with composition of TeO{sub 2}–ZnO to improve the 1.53 µm band fluorescence of Er{sup 3+} and the thermal stability of glass host. The UV–Vis–NIR absorption spectra, 1.53 µm band fluorescence spectra and fluorescence decaying curves, the differential scanning calorimeter (DSC) curves, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images of glass samples were characterized to investigate the effect of silver NPs on the fluorescence properties of Er{sup 3+}, thermal stability and structure behavior of glass host. It is shown that the Er{sup 3+}/Yb{sup 3+} codoped tellurite glass emits intense 1.53 µm band fluorescence with peak wavelength located at about 1532 nm under the 980 nm excitation. The introduction of silver NPs further improves the fluorescence intensity of Er{sup 3+} which is attributed to the enhanced local electric field effect induced by localized surface Plasmon resonance (LSPR) of silver NPs and the possible energy transfer from silver NPs to Er{sup 3+}. An improvement by about 62% of 1.5{sup 3} µm band fluorescence intensity was found in the studied Er{sup 3+}/Yb{sup 3+} codoped tellurite glass containing 0.5 mol% amount of AgNO{sub 3}. In addition, the thermal stability of glass host increases with the introduction of silver NPs while the glass structure maintains the amorphous nature. The present results indicate that the prepared Er{sup 3+}/Yb{sup 3+} codoped tellurite glass with an appropriate amount of silver NPs has good prospect as a gain medium applied for 1.53 µm band broad and high-gain erbium-doped fiber amplifiers (EDFAs). - Highlights: • Tellurite glass with Er{sup 3+}/Yb{sup 3+} and silver NPs was prepared by melt-quenching method. • Silver NPs with average size of 12 nm and Plasmon band at 560 nm was observed. • Addition of silver NPs increased the thermal stability of tellurite glass.

  3. Data on metals (Zn, Al, Sr, and Co and metalloid (As concentration levels of ballast water in commercial ships entering Bushehr port, along the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Farshid Soleimani

    2016-12-01

    Full Text Available In this article, we determined the concentration levels of metals including Zn, Al, Sr, and Co and metalloid of As of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Ballast water samples were taken from commercial ships entering Bushehr port from 34 ports around the world during 15 February and 25 August 2016. The concentration levels of metals and metalloid were determined by using a graphite furnace absorption spectrometer (AAS.

  4. Structural and optical investigations on Dy{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Maheshvaran, K. [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India)

    2011-07-07

    Highlights: > The structural and optical properties have been studied through XRD, FTIR, absorption, luminescence and decay time measurements. > The prepared glasses posses ionic nature and the ionic nature gradually increases when the tellurium di-oxide content increases in the host matrix. > The radiative properties such as radiative transition probability (A), radiative lifetime ({tau}{sub rad}), stimulated emission cross section ({sigma}{sub P}{sup E}) and branching ratios ({beta}{sub R}) are calculated for the {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2}, {sup 6}H{sub 13/2} and {sup 6}H{sub 11/2} transitions. > The decay curve of the {sup 4}F{sub 9/2} level of Dy{sup 3+}:BXTD glasses is well fitted for single exponential. > The stimulated emission cross section for the Dy{sup 3+}:B3TD glass possess higher value and therefore it is suggested for suitable laser applications. - Abstract: Dy{sup 3+} doped boro-tellurite glasses were prepared by following melt quenching technique with the chemical composition (69 - x)H{sub 3}BO{sub 3} + xTeO{sub 2} + 15Mg{sub 2}CO{sub 3} + 15K{sub 2}CO{sub 3} + 1Dy{sub 2}O{sub 3} (where x = 0, 10, 20, 30 and 40 wt%) by varying the tellurium dioxide content. The structural and optical properties have been studied through XRD, FTIR, absorption, luminescence and decay time measurements. The XRD pattern has been used to confirm the amorphous nature of the prepared glasses. The FTIR spectra reveals the presence of B-O vibrations and Te-O stretching modes of TeO{sub 3} and TeO{sub 6} units in the prepared glasses. The UV-vis-NIR absorption spectra were used to calculate the oscillator strength, bonding parameters ({beta}-bar and {delta}) and Judd-Ofelt intensity parameters ({Omega}{sub {lambda},} {lambda} = 2, 4 and 6). The radiative transition probability (A), stimulated emission cross section ({sigma}{sub P}{sup E}) and the experimental, calculated branching ratios ({beta}{sub R}) have been calculated from the luminescence spectra

  5. Optical properties of gold nanoparticle embedded Er{sup 3+} doped lead–tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E.S.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Awang, A.

    2014-09-01

    Highlights: • Er{sup 3+} doped lead–tellurite glass with and without GNPs has been synthesized. • The existence of Au NPs with average diameter of 6.09 nm dispersed in glass matrix. • Plasmonic effect from Au NPs exert prominent enhancement in UC. - Abstract: Enhanced optical properties of rare earth doped glasses for sundry applications are current challenges in materials science and technology. Series of gold nanoparticles (GNPs) embedded Er{sup 3+} doped TeO{sub 2}–PbO–PbO{sub 2} glasses are synthesized and the influences of GNPs on the optical behaviors are examined. XRD spectra confirm the amorphous nature of all the glass samples. TEM images display the existence of a broad distribution of spherical crystalline GNPs with average diameter ∼6.09 nm. UV–Vis–NIR spectra reveal seven absorption bands centered at 490, 526, 551, 652, 800, 982 and 1520 nm due to the absorptions from the ground state to different excited states. Two surface plasmon resonance bands of gold (Au{sup 0}) are evidenced at 556 and 585 nm. The sizable decrease in the optical band gap (2.82–1.09 eV) with the increase of GNPs concentration from 0.025 to 0.1 mol% is attributed to the generation of higher NPs nucleation sites. The intensity parameters related to the radiative transitions within 4f{sup n} configuration of Er{sup 3+} ion are determined and analyzed using Judd–Ofelt (J–O) theory. The room temperature up-conversion emission spectra under 779 nm excitations shows three peaks centered at 520, 550 and 660 nm corresponding to the transitions from {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} excited states to {sup 4}I{sub 15/2} ground state. Significant enhancement in the luminescence intensity is primarily ascribed to surface plasmon resonance mediated strong local field effect of GNPs in the proximity Er{sup 3+} ion and radiative energy transfer. The maximum enhancement are evident for green and red bands at 0.05 mol% of Au. The stimulated

  6. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  7. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  8. Effect of concentration on the photoluminescence properties of Sm3+ and Dy3+: cadmium lithium boro tellurite glasses.

    Science.gov (United States)

    Raju, K Vemasevana; Sailaja, S; Reddy, M Bhushana; Giridhar, P; Raju, C Nageswara; Reddy, B Sudhakar

    2012-02-01

    Rare-earth (Sm3+ or Dy3+) ions doped cadmium lithium boro tellurite glasses have been prepared by melt quenching method for their spectral studies. From X-ray diffraction (XRD) patterns the glass amorphous nature has been confirmed. Vis-NIR absorption, excitation and emission spectra of these glasses have been analyzed systematically and also rare earth ion concentration is optimised Sm3+: CLiBT glasses have shown strong orange-reddish emission at 598 nm (4G5/2-->6H7/2) with an excitation wavelength lambda(exci) = 401 nm and Dy3+: CLiBT glasses have shown strong yellow emission at 574 nm (6F9/2-->6H13/2) with lambda(exci) = 451 nm.

  9. Infrequent blue and green emission transitions from Eu3+ in heavy metal tellurite glasses with low phonon energy

    International Nuclear Information System (INIS)

    Lin, H.; Tanabe, S.; Lin, L.; Yang, D.L.; Liu, K.; Wong, W.H.; Yu, J.Y.; Pun, E.Y.B.

    2006-01-01

    Eu 3+ doped alkali-barium-bismuth-tellurite (Eu 3+ :LKBBT) glasses were prepared by conventional melt quenching. Twelve emission bands including infrequent blue and green bands are observed and they almost cover whole visible spectral region under violet light radiation. The blue and green emissions of Eu 3+ rarely appeared in oxide glasses before, but they have been clearly recorded in Eu 3+ :LKBBT glasses even in the case of high concentration doping of Eu 3+ . The analysis based on spontaneous-radiative rate, energy gap and Raman scattering reveals that the obtaining of the abundant multichannel emissions of Eu 3+ is due to the higher refractive index and the lower phonon energy in LKBBT glass system

  10. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications

    Science.gov (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF2) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑R) for these glasses were also calculated. The maximum value for μ/ρ, Zeff and ∑R was found for heavy metal (Bi2O3) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications.

  11. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment.

    Science.gov (United States)

    Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin

    2017-01-01

    Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.

  12. Raman, photoluminescence and EPR spectroscopic characterization of europium(III) oxide–lead dioxide–tellurite glassy network

    Energy Technology Data Exchange (ETDEWEB)

    Dehelean, A. [National Research and Development Institute for Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Rada, S. [Technical University of Cluj-Napoca (Romania); Popa, A.; Suciu, R.C. [National Research and Development Institute for Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Culea, E., E-mail: eugen.culea@phys.utcluj.ro [Technical University of Cluj-Napoca (Romania)

    2016-09-15

    Raman, photoluminescence and EPR spectroscopies were used to characterize some xEu{sub 2}O{sub 3}·(100−x)[4TeO{sub 2}·PbO{sub 2}] glasses with x=0–50 mol% obtained by melt quenching technique. Raman spectra of these glasses were interpreted in terms of vibration modes of deformed Te–O–Te linkages due to the intercalation of [PbO{sub n}] and [EuO{sub n}] entities produced by addition of Eu{sub 2}O{sub 3} to the host lead–tellurite glass. Photoluminescence spectra of xEu{sub 2}O{sub 3}·(100−x)[4TeO{sub 2}·PbO{sub 2}] glasses reveal the presence of Pb{sup 2+}, Eu{sup 2+} and Eu{sup 3+} ions. EPR data confirm the presence of Eu{sup 2+} ions in the europium–lead–tellurite glassy network and offer information about the compositional evolution of the Eu{sup 2+} ions local environment and Eu{sup 3+}↔Eu{sup 2+} redox process. PL and EPR data show that the decrease of the Eu{sup 2+} ions luminescence intensity for the x≥40 mol% Eu{sub 2}O{sub 3} region is not due to the clusterization of europium ions but is due the decrease of the amount of Eu{sup 2+} ions as result of changes in the Eu{sup 3+}→Eu{sup 2+} redox equilibrium.

  13. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    Science.gov (United States)

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  14. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    Science.gov (United States)

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  15. Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana.

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-07-01

    Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (μg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.

  16. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  17. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  18. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children.

    Science.gov (United States)

    Lin, Xinjiang; Xu, Xijin; Zeng, Xiang; Xu, Long; Zeng, Zhijun; Huo, Xia

    2017-01-01

    We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P 10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    Science.gov (United States)

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-01-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10−20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system. PMID:24918516

  20. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    Science.gov (United States)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  1. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    Science.gov (United States)

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-06-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10-20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system.

  2. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    OpenAIRE

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-01-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10−20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a g...

  3. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On observation of the downconversion mechanism in Er{sup 3+}/Yb{sup 3+} co-doped tellurite glass using thermal and optical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M.S.; Santos, F.A. [Universidade Federal da Grande Dourados, Faculdade de Ciências Exatas e Tecnologias, Dourados, MS (Brazil); Yukimitu, K.; Moraes, J.C.S. [Universidade Estadual Paulista, UNESP, Departamento de Física e Química, Av. Brasil, 56, 15385-000 Ilha Solteira, SP (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Andrade, L.H.C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil); Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil)

    2015-01-15

    In this work we report the observed downconversion (DC) mechanism in Er{sup 3+}/Yb{sup 3+}-codoped tellurite glasses (in mol%, 80TeO{sub 2}–10Li{sub 2}O–10TiO{sub 2}). The samples were synthesized by the conventional melt-quenching method and then studied using optical spectroscopy and thermal lens spectroscopy (TLS). These characterizations enabled investigation of the radiative and nonradiative processes involved in energy transfer from erbium to ytterbium. The visible Er{sup 3+} fluorescence intensities decreased as a function of the Yb{sup 3+} concentration, and there was a corresponding increase in the ytterbium emission at around 980 nm. Simultaneously, there was a reduction in the heat-generated due nonradiative decays (∼21%) when ytterbium was added. This temperature change was measured by TLS measurements and the results corroborate with the indicated by spectroscopic interpretation. - Highlights: • Energy transfer from erbium to ytterbium in tellurite glass. • ∼56% of cross-relaxation efficiency from Er{sup 3+} to Yb{sup 3+}. • Downconversion effect in tellurite glasses. • Downconversion effect observation by thermal lens spectroscopy.

  5. Introducing Toxics

    OpenAIRE

    David C. Bellinger

    2013-01-01

    With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present ...

  6. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China

    International Nuclear Information System (INIS)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-01-01

    Manufacture of lead-acid batteries is of widespread interest because of its emissions of heavy metals and metalloids into environment, harming environmental quality and consequently causing detrimental effects on human health. In this study, exposure pathways and health risks of children to heavy metal(loid)s (Pb, Cd, As, etc) were investigated based on field sampling and questionnaire. Pb was one of the most abundant elements in children's blood, with an elevated blood lead level of 12.45 μg dL −1 . Soil/dust and food were heavily polluted by targeted metal(loid)s. Food ingestion accounted for more than 80% of the total exposure for most metal(loid)s. The non-cancer risks to children were 3–10 times higher than the acceptable level of 1, while the cancer risks were 5–200 times higher than the maximum acceptable level of 1.0 × 10 −4 . The study emphasized the significance of effective environmental management, particularly to ensure food security near battery facilities. - Highlights: • The health risks of children living around a typical lead-acid battery was analyzed. • The exposure pathways of children to 12 heavy metal(loid)s were assessed. • Courtyard soil and indoor dust and duplicate food were contaminated by metal(loid)s. • Food ingestion was the major pathway for children's exposure to most metal(loid)s. • Higher potentially non-cancer and cancer risks happened to the local children. - The children living around a typical lead-acid battery plant suffered from serious health risks, which mainly attributed to food ingestion and air inhalation exposure

  7. Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida

    Directory of Open Access Journals (Sweden)

    Neelima Meravi

    2013-06-01

    Full Text Available The present study was conducted in GGV campus, Bilaspur in which heavy metals/metalloids speciation of soil (for Cr, Fe, Ni, Cd and Pb was performed for assessing the genotoxicity of these metals. The metals concentrations were measured with the help of AAS 7000 (Shimadzu and the standard solution was prepared using standard metal solution of Inorganic Ventures. The concentrations of Cr, Fe, Ni, Cd and Pb (in ug/100 g soil were 12.4, 33.9, 3.1, 0.07 and 2.4 respectively. The flowers of Tradescantia pallida plants growing in this soil were taken and their micronucleus (Trad-MCN bioassay was performed. Trad-MCN bioassay was performed using the protocols established by Ma (1981. The study revealed that at these concentrations of metals micronuclei (stained objects that were smaller than the nuclei and not connected to the nuclei are classified as MCN were formed. Therefore it can be inferred from the present study that soil of GGV campus is genotoxic for the Tradescantia pallida.

  8. Determination of the oxidation states of metals and metalloids: An analytical review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  9. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    Science.gov (United States)

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  10. Assessment of Metalloid and Metal Contamination in Soils from Hainan, China

    Directory of Open Access Journals (Sweden)

    Xiangjun Liao

    2018-03-01

    Full Text Available The characterization of the concentrations and sources of metals and metalloids in soils is necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. A total of 8713 soil samples throughout Hainan Island, China were collected at a density of one sample per 4 km2, and concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn were analyzed. The geometric mean values of the elements were 2.17, 0.60, 26.5, 9.43, 0.033, 8.74, 22.2, 0.26, and 39.6 mg·· kg−1 for As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn, respectively, significantly lower than the background values of Chinese soils with the exception of Se. Principal component analysis (PCA suggested that multiple anthropogenic sources regulated the elemental compositions of the Hainan environment. Coal combustion and mining are important anthropogenic sources of metals for Hainan. The geochemical maps of elements in Hainan soils were produced using the Geographic Information System (GIS method, and several hot-spot areas were identified. The ecological impact of As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn pollution to the soils was extremely “low”.

  11. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  12. Heavy metals, metalloids and other hazardous elements in marine plastic litter.

    Science.gov (United States)

    Turner, Andrew

    2016-10-15

    Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of silver nanoparticles on the 1.53 μm fluorescence in Er3+/Yb3+ codoped tellurite glasses

    Science.gov (United States)

    Wu, Libo; Zhou, Yaxun; Zhou, Zizhong; Cheng, Pan; Huang, Bo; Yang, Fengjing; Li, Jun

    2016-07-01

    Improving the spectroscopic properties of rare earth (RE) doped glass materials is a challenging task. In the present work the metallic silver nanoparticles (Ag NPs) were embedded into Er3+/Yb3+ codoped tellurite glasses with composition TeO2-Bi2O3-TiO2, prepared using melt-quenching and subsequent heat-treated techniques, and the improved effect of Ag NPs on the 1.53 μm band fluorescence of Er3+ ions was investigated. About 24 h heat-treatment of Er3+/Yb3+ codoped tellurite glass containing 1 mol % amount of AgNO3 at the temperature 370 °C yielded the well-dispersed and near-spherical Ag NPs with ∼11.4 nm average diameter as evidenced by transmission electron microscopy (TEM) image. The intense 1.53 μm band fluorescence was observed in the prepared Er3+/Yb3+ codoped tellurite glasses under the excitation of 980 nm and was further improved with the presence of Ag NPs in the glass matrix, which is attributed to the enhanced local electric field around doped RE ions induced by Ag NPs and the possible energy transfer from Ag NPs to Er3+ ions. The enhanced local electric field was well demonstrated by comparing the variation of emission spectra of hypersensitive probe Eu3+ ions in tellurite glasses with and without Ag NPs. From the Judd-Ofelt analysis, it was also found that the value of Ω6 intensity parameter increased slightly with the increase of Ag NPs concentration in a certain range, also confirming the possibility of realizing strong fluorescence emission. In addition, the amorphous structural nature was demonstrated by the measured X-ray diffraction (XRD) patterns with no sharp diffraction peak. The enhanced 1.53 μm band fluorescence indicates that the Er3+/Yb3+ codoped tellurite glass with an appropriate amount of Ag NPs is a promising candidate for the development of Er3+-doped fiber amplifiers (EDFAs) applied in the WDM systems.

  14. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  15. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  16. Tailoring Nd3+ emission spectrum by a neodymium-doped tellurite all-solid photonic bandgap fiber

    Science.gov (United States)

    Tong, Hoang Tuan; Demichi, Daisuke; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    A tellurite all-solid photonic bandgap fiber (ASPBF) whose cladding consists of 60 high-index rods arranged periodically around a central core was successfully fabricated. The diameter of high-index rod was about 5.0 μm and the distance between the center of two adjacent high-index rods was approximately 8.0 μm. The high-index rod was made of the TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass, the cladding was made of the TeO2-ZnO-Na2O-La2O3 (TZNL) glass as the background glass material and the central core was made of TZNL glass doped with 0.5 wt% of Nd2O3. A supercontinuum light from 0.6 to 2.4 μm was coupled into the core of fiber which is 2.2 cm long to measure its transmission spectrum. High transmission bands were obtained in the vicinity of 0.75 and 1.3 μm but the transmission was suppressed in the wavelength range from 1.0 to 1.06 μm. When a titanium∶Sapphire laser source at 0.75 μm was used, the emission spectrum was obtained with two peaks at 1.06 and 1.33 μm which are attributed to the 4F3/2->4I11/2 and 4F3/2->4I13/2 transitions of Nd3+ ion, respectively. The intensities of those emission peaks were compared with those obtained from a bulk glass having the same doping concentration of Nd3+. The results showed that by using tellurite ASPBF, the intensity of the 1.06-μm emission was suppressed by one-twelfth but the intensity of the 1.33-μm emission was maintained. This feature is very advantageous to filter out the 1.06-μm emission of Nd3+ ion in order to realize practical amplifier devices at 1.3 μm.

  17. A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses.

    Science.gov (United States)

    Holland, D; Bailey, J; Ward, G; Turner, B; Tierney, P; Dupree, R

    2005-01-01

    125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.

  18. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    Science.gov (United States)

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated that about one-half of the Ter E. coli O157:H7 strains (6 of 15), including the Sakai strain, which has been sequenced, carried a single copy of the Ter genes. Five of the strains, including EDL933, which has also been sequenced, contained two copies. Three other O157:H7 strains and the O46:H− strain did not contain the Ter genes. In strains containing two copies, the Ter genes were associated with the serW and serX tRNA genes. Five O157:H7 strains resembled the O157 Sakai strain whose sequence contained one copy, close to serX, whereas in one isolate the single copy was associated with serW. There was no correlation between Ter and the ability to produce Shiga toxin ST1 or ST2. The Ter MIC for most strains, containing either one or two copies, was 1,024 μg/ml, although for a few the MIC was intermediate, 64 to 128 μg/ml, which could be increased to 512 μg/ml by pregrowth of strains in subinhibitory concentrations of potassium tellurite. Reverse transcriptase PCR analysis confirmed that in most strains Ter was constitutive but that in the rest it was inducible and involved induction of terB and terC genes. Only the terB, -C, -D, and -E genes are required for Ter. The considerable degree of homology between the ter genes on IncH12 plasmid R478, which originated in Serratia marcescens, and pTE53, from an E. coli clinical isolate, suggests that the pathogenicity island was acquired from a plasmid. This work demonstrates diversity among E. coli O157:H7 isolates, at least as

  19. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar

    International Nuclear Information System (INIS)

    Freddo, Alessia; Cai Chao; Reid, Brian J.

    2012-01-01

    Nine dissimilar biochars, produced from varying feedstock at different pyrolysis temperatures, are appraised with respect to concentrations of potentially toxic elements, specifically, metals, metalloids and polycyclic aromatic hydrocarbons (PAHs). Concentrations of the metals and metalloids varied with the following ranges (mg kg −1 ): 0.02–0.94, Cd; 0.12–6.48, Cr; 0.04–13.2, Cu; 0.1–1.37, Ni; 0.06–3.87, Pb; 0.94–207, Zn and 0.03–0.27, As. Σ 16 PAH concentrations (16 Environmental Protection Agency (EPA) PAHs) range between 0.08 mg kg −1 to 8.7 mg kg −1 . Subsequent comparison with background soil concentrations, concentration applied to the regulation of composted materials (Publicly Available Specification (PAS 100)) and European Union (EU) regulations relating to the application of sewage sludge to agricultural land suggest low risk associated with the concentrations of PTEs observed in biochar. Collectively, results suggest that environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal. - Highlights: ► Concentrations of PTEs varied with feedstock and temperature of production. ► Of the PTEs Zn (0.94–207 mg kg −1 ) was of most priority. ► PTE levels did not infringe guidance values for compost or sewage sludge. ► Biochar ( −1 ) is unlikely to make any real difference to PTE concentrations in soil. - Environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal.

  20. Immunological alterations in individuals exposed to metal(loid)s in the Panasqueira mining area, Central Portugal.

    Science.gov (United States)

    Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Fuchs, Dietmar; Geisler, Simon; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo

    2014-03-15

    Environmental studies performed in Panasqueira mine area (central Portugal) identified high concentrations of several metal(loid)s in environmental media, and individuals environmentally and occupationally exposed showed higher levels of As, Cr, Mg, Mn, Mo, Pb and Zn in blood, urine, hair and nails when compared to unexposed controls. To evaluate the presence of immunological alterations attributable to environmental contamination, we quantified neopterin, kynurenine, tryptophan, and nitrite concentrations in plasma, and analysed the percentage of several lymphocytes subsets, namely CD3(+), CD4(+) and CD8(+) T-cells, CD19(+) B-cells, and CD16(+)56(+) natural killer (NK) cells in a group of individuals previously tested for metal(loid) levels in different biological matrices. The environmentally exposed group had significantly lower levels of %CD8(+) and higher CD4(+)/CD8(+) ratios, whereas the occupationally exposed individuals showed significant decreases in %CD3(+) and %CD4(+), and significant increases in %CD16(+)56(+), when compared to controls. Analysed biomarkers were found to be influenced by age, particularly neopterin, kynurenine and kynurenine to tryptophan ratio (Kyn/Trp) with significantly higher levels in older individuals, and %CD3(+), %CD8(+) and %CD19(+) with significantly lower values in older individuals. Males environmentally exposed showed significantly lower values of %CD19(+) when compared to control females. The concentration of Pb in toenails was associated to the level of neopterin, kynurenine and Kyn/Trp ratio (all direct), and the concentration of Mn in blood to the level of %CD8(+), %CD19(+) (both inverse) and CD4(+)/CD8(+) ratio (direct). Overall our results show that the metal(loid) contamination in Panasqueira mine area induced immunotoxic effects in exposed populations, possibly increasing susceptibility to diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China.

    Science.gov (United States)

    Wu, Yan; Zhou, Yihui; Qiu, Yanling; Chen, Da; Zhu, Zhiliang; Zhao, Jianfu; Bergman, Ǻke

    2017-06-01

    The present study measured concentrations of Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb in surface sediments and two benthic invertebrate species (Anodonta woodiana and Bellamya aeruginosa) collected from Dianshan Lake, located in the Yangtze River Delta. The Dianshan Lake acts as one of the most important drinking water sources to Shanghai, the biggest city in China. Concentrations of trace metals and metalloids ranged from 0.04 mg/kg for Cd to 288.0 mg/kg for Zn. Substantial bioaccumulation in invertebrates was observed for Zn and Cu based on the biota-sediment accumulation factor (BSAF) measurements. The results revealed that concentrations of metals and metalloids in sediments from Dianshan Lake were at the lower end of the range of levels found in other regions of China. The assessment of three significantly inter-related evaluation indices, including the geo-accumulation Index (I geo ), potential ecological risk factor (Er i ), and mean probable effect concentration quotients (Q m-PEC ), suggested that sediment-associated trace elements exhibited no considerable ecological risks in the studied watershed. However, the target hazard quotient and hazard index analysis suggested that selected elements (particularly As) accumulation in edible tissues of benthic invertebrates could pose potential health risks to local populations, especially fishermen. Given that wild aquatic organisms (e.g., fish and bivalves) constitute the diet of local populations as popular food/protein choices, further investigations are needed to better elucidate human health risks from metal and metalloid exposure via edible freshwater organisms.

  2. [Detection of metals and metalloids in the lavage fluid of whole-lung lavage of the cases of pneumoconiosis].

    Science.gov (United States)

    Wen, K; Ding, C G; Chen, G; Ma, G X; Wang, H Q

    2017-11-20

    Objective: To detect of the components and concentration of the metals and metalloids in the lavage fluid of whole-lung lavage (WLL) of the cases of pneumoconiosis, and analyze the characteristics, and explore the method to sample and process the samples of bronchoalveolar lavage fluid (BAL) . Methods: The samples of urine and serum of three cases of pneumoconiosis were collected before WLL, and the samples of BAL were collected during the WLL from the left and right lungs according to the sequence of four pressured gas flow and five negative pressure drainage. Each of 10ml original samples of WLL was collected firstly, and the left was centrifuged to acquire all the sediment samples and each of 10 ml samples from the centrifuge clear liquids, The components and concentration of the metals and metalloids in the samples were measured by Inductively Coupled Plasma mass spectrometer (ICP-MS) . Results: The average volume of BAL from unilat-eral lung for 3 patients was 10 758.3±1518 ml, and the average recovery rate was 89.7%. The average dry weight of sediment samples of BAL of three cases of pneumoconiosis was 0.292 gram with the right lung sam-ples slightly higher than the left lung samples. The detectable elements from the samples included Barium (Ba) , Strontium (Sr) , Calcium (Ca) , Magnesium (Mg) , Manganum (Mn) , Ferrum (Fe) , Cuprum (Cu) , Zinc (Zn) , Kalium (K) , Natrium (Na) , Selenium (Se) , Silicon (Si) and Uranium (U) . Each of concentration dis-tributions of these elements were not normal. Except for Cuprum, Selenium and Uranium, the concentrations of the other ten elements in the supernatant samples, mixture samples and sediments samples were statistical-ly different with the nonparametric test of Kruskal-Wallis. The concentrations of Natrium, Kalium and Barium in supernatant samples were higher, while the others in precipitation samples were higher. The concentration of elements in the sample from the right lung was slightly higher than that from the

  3. Metals and metalloids in precipitation collected during CHINARE campaign from Shanghai, China, to Zhongshan Station, Antarctica: Spatial variability and source identification

    Science.gov (United States)

    Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.

    2015-06-01

    Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.

  4. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  5. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    OpenAIRE

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-01-01

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the imple...

  6. Judd-Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): Cadmium lithium boro tellurite glasses

    Science.gov (United States)

    Raju, K. Vemasevana; Raju, C. Nageswara; Sailaja, S.; Reddy, B. Sudhakar

    2013-01-01

    Rare earth (Er3+ and Nd3+) ions doped cadmium lithium boro tellurite (CLiBT) glasses were prepared by melt quenching method. The vis-NIR absorption spectra of these glasses have been analyzed systematically. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated and used to compute the radiative properties of emission transitions of Er3+ and Nd3+: CLiBT glasses. From the NIR emission spectra of Er3+: CLiBT glasses a broad emission band centered at 1538 nm (4I13/2 → 4I15/2) is observed and from Nd3+: CLiBT glasses, three NIR emission bands at 898 nm (4F3/2 → 4I9/2), 1070 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) are observed with an excitation wavelength λexci = 514.5 nm (Ar+ Laser). The FWHM and stimulated emission cross-section values are calculated for Er3+ and Nd3+: CLiBT glasses. FWHM × σeP values are also calculated for Er3+: CLiBT glasses.

  7. Enhanced green and red upconversion emissions in Er3+-doped boro-tellurite glass containing gold nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Amjad, Raja J.; Mahraz, Zahra Ashur S.

    2015-01-01

    Increasing the cross-section of upconversion emissions from the rare earth ions doped materials is a challenging issue. In this work, we report on the enhancement of the up-converted emissions of Er3+-doped boro-tellurite glasses containing gold nanoparticles which have been prepared by a conventional melt-quench technique. Seven absorption bands and three emission lines are observed using the UV-Vis-IR and photoluminescence spectroscopic techniques, respectively. Red emission is enhanced up to 30 times in a sample having 1 wt% of Au nanoparticles. The presence of the gold nanoparticles with average size of ∼5.74 nm is confirmed by transmission electron microscopy and corresponding surface plasmon band is observed at 630 nm in a singly-doped Au-nanoparticles embedded glass sample. A model to determine the enhancement factor of the emissions is suggested which could not describe the phenomenon for high concentrations of nanoparticles. Enhancement is attributed to the increased local field around the metal, and the results are discussed in details.

  8. Optical analysis of RE(3+) (RE = Pr(3) (+) , Er(3) (+) and Nd(3) (+) ):cadmium lead boro tellurite glasses.

    Science.gov (United States)

    Giridhar, P; Bhushana Reddy, M; Neelima, G; Ramanaiah, R; Nagamuni Reddy, K; Sahadeva Reddy, V; Sudhakar Reddy, B

    2016-09-01

    This article reports on the optical characterization of Pr(3) (+) -, Er(3) (+) - and Nd(3) (+) -doped cadmium lead boro tellurite (CLBT) glasses prepared using the melt quenching method. The visible-near infrared (Vis-NIR) absorption spectra of these glasses were analyzed systematically. On measuring the NIR emission spectra of Er(3) (+) :CLBT glasses, a broad emission band centered at 1536 nm ((4) I13 /2  → (4) I15 /2 ) was observed, as were three NIR emission bands at 900 nm ((4) F3 /2  → (4) I9 /2 ), 1069 nm ((4) F3 /2  → (4) I11 /2 ) and 1338 nm ((4) F3 /2  → (4) I13 /2 ) from Nd(3) (+) :CLBT glasses and an NIR emission band at 1334 nm ((1) G4  → (3) H5 ) from Pr(3) (+) :CLBT glasses at an excitation wavelength (λex ) of 514.5 nm (Ar(+) laser). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    DEFF Research Database (Denmark)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten Levin

    2015-01-01

    tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further...... increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed...... to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth....

  10. Optical properties of single doped Cr3+ and co-doped Cr3+-Nd3+ aluminum tantalum tellurite glasses

    International Nuclear Information System (INIS)

    Rodriguez-Mendoza, U.R.; Speghini, A.; Jaque, D.; Zambelli, M.; Bettinelli, M.

    2004-01-01

    The optical properties for single doped Cr 3+ and co-doped Cr 3+ -Nd 3+ aluminum tantalum tellurite glasses have been studied as a function of temperature. For the single doped glass, the existence of two bands in the emission spectra at low temperature indicates the presence of two different sites for the Cr 3+ ions, labelled as usual as low- and high-field sites. The broad band centred in the Near Infrared region, corresponds to low-field sites transition 4 T 2 → 4 A 2 , and the narrow band centred at approximately 715 nm to the high-field sites transition 2 E→ 4 A 2 . The emission intensity for both high- and low-field sites shows a strong decrease with increasing temperature, with the emission for the former sites vanishing at RT. In both cases the quenching observed with the increase of temperature can be ascribed to the presence of non-radiative relaxation mechanisms. Experimental observations for the co-doped glass show that both radiative and non-radiative energy transfer processes from Cr 3+ to Nd 3+ are present

  11. Introducing Toxics

    Directory of Open Access Journals (Sweden)

    David C. Bellinger

    2013-04-01

    Full Text Available With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present their work in as much detail as they wish. Toxics will publish original research papers, conventional reviews, meta-analyses, short communications, theoretical papers, case reports, commentaries and policy perspectives, and book reviews (Book reviews will be solicited and should not be submitted without invitation. Toxins and toxicants concern individuals from a wide range of disciplines, and Toxics is interested in receiving papers that represent the full range of approaches applied to their study, including in vitro studies, studies that use experimental animal or non-animal models, studies of humans or other biological populations, and mathematical modeling. We are excited to get underway and look forward to working with authors in the scientific and medical communities and providing them with a novel venue for sharing their work. [...

  12. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review

    International Nuclear Information System (INIS)

    Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L.

    2010-01-01

    This review integrates knowledge on the removal of metals and metalloids from contaminated waters in constructed wetlands and offers insight into future R and D priorities. Metal removal processes in wetlands are described. Based on 21 papers, the roles and impacts on efficiency of plants in constructed wetlands are discussed. The effects of plant ecotypes and class (monocots, dicots) and of system size on metal removal are addressed. Metal removal rates in wetlands depend on the type of element (Hg > Mn > Fe = Cd > Pb = Cr > Zn = Cu > Al > Ni > As), their ionic forms, substrate conditions, season, and plant species. Standardized procedures and data are lacking for efficiently comparing properties of plants and substrates. We propose a new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal removal in constructed wetlands. Further research is needed on key components, such as effects of differences in plant ecotypes and microbial communities, in order to enhance metal removal efficiency. - A new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal and metalloid removal in constructed wetlands.

  13. Determination and evaluation of the metals and metalloids in the Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli).

    Science.gov (United States)

    Barbosa, Uenderson Araujo; dos Santos, Ivanice Ferreira; dos Santos, Ana Maria Pinto; dos Santos, Debora Correia; da Costa, Grenivel Mota

    2013-09-01

    The Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli) is a native plant from Brazil, which has been mainly used in medicinal application being a potent antirheumatic and diuretic, in the production of soft drinks, and also in the ornamentation of aquariums. In this paper, the metals and metalloids for the leaves of chapeu-de-couro collected in the Paraguacu River from the city Cachoeira, Bahia State, Brazil, was determined and evaluated using multivariate analysis. The samples were digested using nitric acid and hydrogen peroxide and were analyzed using inductively coupled plasma mass spectrometry. The accuracy of the method was confirmed by analysis of a certified reference material of apple leaves, furnished by National Institute of Standard and Technology. The study involved 15 samples of the Paraguacu River. The results expressed as milligrams of element per kilogram of sample demonstrated that the concentration ranges varied: 1.39-5.27 for chromium, 44.85-165.39 for manganese, 0.55-0.84 for arsenic, 0.01-3.94 for antimony, and 0.18-0.31 for lead. The principal component analysis and hierarchical cluster analysis evidenced that the concentrations of the metals and metalloids varied according with the variations in the water of the Paraguacu.

  14. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    Science.gov (United States)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  15. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  16. Establishing the importance of human health risk assessment for metals and metalloids in urban environments.

    Science.gov (United States)

    Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C

    2014-11-01

    Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr

  17. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  18. Antimony Toxicity

    OpenAIRE

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The...

  19. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  20. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  1. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  2. Global DNA methylation in earthworms: A candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Santoyo, Maria; Rodriguez Flores, Crescencio; Lopez Torres, Adolfo; Wrobel, Kazimierz [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico); Wrobel, Katarzyna, E-mail: katarzyn@quijote.ugto.mx [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico)

    2011-10-15

    In this work, possible relationships between global DNA methylation and metal/metalloid concentrations in earthworms have been explored. Direct correlation was observed between soil and tissue As, Se, Sb, Zn, Cu, Mn, Ag, Co, Hg, Pb (p < 0.05). Speciation results obtained for As and Hg hint at the capability of earthworms for conversion of inorganic element forms present in soil to methylated species. Inverse correlation was observed between the percentage of methylated DNA cytosines and total tissue As, As + Hg, As + Hg + Se + Sb ({beta} = -0.8456, p = 0.071; {beta} = -0.9406, p = 0.017; {beta} = -0.9526, p = 0.012 respectively), as well as inorganic As + Hg ({beta} = -0.8807, p = 0.049). It was concluded that earthworms would be particularly helpful as bioindicators of elements undergoing in vivo methylation and might also be used to assess the related risk of epigenetic changes in DNA methylation. - Graphical abstract: Display Omitted Highlights: > Several metals and metalloids contribute to epigenetic gene regulation. > As, Hg, Se, Sb inversely correlated with global DNA methylation in earthworms. > Biomethylation of the above elements in worms suggested. > Elements biomethylation apparently competes with DNA methylation. > DNA methylation a biomarker of epigenetic risks related to soil metals/metalloids. - Biomethylation of As, Hg in earthworms versus DNA methylation - a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in soil.

  3. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure

    International Nuclear Information System (INIS)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-01-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. -- Highlights: •The study compares foliar and root transfers of metal(loid)s and their effects on plants. •Field experiments are performed combining ecotoxicological and statistical analyses. •The use of leaf fatty acid composition is a relevant indicator of exposure pathway. •The uptake pathways are independent, with an additive effect in terms of phytotoxicity. -- Metal uptake via both foliar and root pathways alters in a distinctive manner the fatty acid composition of lettuce leaves

  4. Determination of soluble ultra-trace metals and metalloids in rainwater and atmospheric deposition fluxes: a 2-year survey and assessment.

    Science.gov (United States)

    Montoya-Mayor, R; Fernández-Espinosa, A J; Seijo-Delgado, I; Ternero-Rodríguez, M

    2013-08-01

    The present work investigates the relationships between composition of rainwater and dry deposition fluxes by trace metals and metalloids. A modification in automatic "wet-only" and "dry-only" samplers was applied, which allowed the collection and conservation of samples separately. ICP-MS technique was used for the determination of analytes in samples. Concentrations of soluble elements in rainwater were measured directly in filtered samples. A sequential acid treatment with nitric, hydrofluoric and finally perchloric acids was used to measure the total contents of metals and metalloids in coarse particles. Variation between periods of heavy and light rains was assessed. Almost all of the metals and metalloids - B, Tl, Th, U, Al, Cs, Be, Ti and others - studied in dry deposition showed important decreases in concentrations (40-92%) during periods of heavy rainfall. Most of these metals and metalloids - As, Cr, Co, Ni - presented their highest levels (53-90%) in heavy rainfall periods in rainwater samples. Sources were identified in both types of samples collected using a new chemometric tool (SPCA). Urban traffic, surrounding contaminated soils and local anthropogenic sources were identified for rainwater samples. Natural and contaminated soils and general anthropogenic emissions were the sources identified for dry deposition fluxes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  6. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er{sup 3+} doped zinc–sodium tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S.K.; Awang, Asmahani, E-mail: asmahani_awang@yahoo.com; Sahar, M.R.; Arifin, R.

    2015-03-15

    Significant enhancements in Er{sup 3+} luminescence and Raman intensity mediated via surface plasmon resonance (SPR) of gold (Au) nanoparticles (NPs) embedded zinc–sodium tellurite glass are reported. The observed modifications in the physical and spectroscopic properties are ascribed to the alterations in the glass network. XRD pattern confirms the amorphous nature of prepared glass sample. UV–vis-NIR spectra reveal seven absorption bands. Surface plasmon band is evidenced around 626–630 nm. TEM images manifest the growth of non-spherical Au NPs with average diameter between ∼7.2 nm and 8.6 nm. The visible up-conversion (UC) emission for all samples under 779 nm excitation exhibits three bands centered at 503 nm (green), 546 (green) and 637 nm (red) ascribed to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions. Glass sample with 0.4 mol% Au displaying the highest luminescence intensity with enhancement factor of 3.85 and 3.56 for green bands, and 7.61 for the red band is ascribed to the NPs local field enhancement and energy transfer between rare earth (RE) ions and NPs. FTIR spectra show the vibration of ZnO{sub 4} bonds, Te-O bond in TeO{sub 3} (tp) and TeO{sub 4} (tbp) units and the hydroxyl groups. Raman spectra demonstrate the presence of Er-O and Zn-O bond, anti-symmetric vibrations of Te-O-Te bonds and stretching modes of non-bonded oxygen exists in TeO{sub 3} and TeO{sub 3+1} unit. The amplifications in Raman signals by a factor of 1.62, 1.58, 1.64, 1.68 and 1.69 corresponding to the peak centered at 262 cm{sup −1}, 382 cm{sup −1}, 521 cm{sup −1}, 670 cm{sup −1} and 725 cm{sup −1} are attributed to the contribution of a surface plasmon generating a strong, localized and secondary field. We assert that our glass compositions offer favorable potential to develop solid state lasers and other versatile nanophotonic devices. - Highlights: • Gold

  7. Effect of co-doping Tm3+ ions on the emission properties of Dy3+ ions in tellurite glasses

    International Nuclear Information System (INIS)

    Sasikala, T.; Rama Moorthy, L.; Mohan Babu, A.; Srinivasa Rao, T.

    2013-01-01

    The present work reports the absorption, photoluminescence and decay properties of singly doped Dy 3+ and co-doped Dy 3+ /Tm 3+ ions in TeO 2 +ZnO+K 2 O+CaO (TZKC) glasses prepared by the melt quenching technique. The glassy nature of the host glass has been confirmed by X-ray diffraction analysis and the primary vibrational modes were determined from the Raman spectrum. Judd–Ofelt (JO) analysis has been used to calculate the radiative transition rates, branching ratios and radiative lifetime of the emitting 4 F 9/2 state. The effect of co-doping of different concentrations of Tm 3+ ions on the emission properties of Dy 3+ ions has been investigated. The decay profiles of the 4 F 9/2 level were fitted to double exponential as well as Inokuti–Hirayama (IH) model to determine the energy transfer rates between Dy 3+ and Tm 3+ ions. The energy transfer rates found to increase with the increase of Tm 3+ ions concentration. The chromaticity coordinates and color purity of the emitted light for all glasses were determined. - Graphical abstract: The graphical abstract shows the emission spectra of Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ co-doped TZKC glasses recorded by exciting at 355 nm wavelength. - Highlights: • Zinc tellurite glasses doped with Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ ions were prepared. • XRD, DTA and Raman spectral measurements were recorded to know the nature of host. • Energy transfer occurs from Dy 3+ ions to Tm 3+ ions. • The color purity of the emitted light was determined

  8. Optical characterization of Eu3+ and Tb3+ ions doped cadmium lithium alumino fluoro boro tellurite glasses.

    Science.gov (United States)

    Raju, K Vemasevana; Sailaja, S; Raju, C Nageswara; Reddy, B Sudhakar

    2011-06-01

    This article reports on the development and spectral results of Eu(3+) and Tb(3+) ions doped cadmium lithium alumino fluoro boro tellurite (CLiAFBT) glasses in the following composition. 40TeO2-30B2O3-10CdO-10Li2O-10AlF3 (Hostglass) (40-x)TeO2-30B2O3-10CdO-10Li2O-10AlF3-xEu2O3 (40-x)TeO2-30B2O3-10CdO-10Li2O-10AlF3-xTb4O7 where x=0.25, 0.50, 0.75, 1.0, 1.25 mol%. Glass amorphous nature and thermal properties have been studied using the XRD and DSC profiles. From the emission spectra of Eu(3+):glasses, five emission transitions have been observed at 578 nm, 592 nm, 612 nm, 653 nm, 701 nm and are assigned to the transitions (5)D(0)→(7)F(0), (7)F(1,)(7)F(2), (7)F(3) and (7)F(4), respectively, with λ(exci)=392 nm ((7)F(0)→(5)L(6)). In case of Tb(3+):glasses, four emission transitions ((5)D(4)→(7)F(6,)(7)F(5), (7)F(4) and (7)F(3)) are observed at 488 nm, 543 nm, 584 nm and 614 nm, respectively, with λ(exci)=376 nm. Decay curves and energy level diagrams have been plotted to evaluate the life times and to analyze the emission mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    Science.gov (United States)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  10. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  11. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Wenjun; Lin, Jian; Cheng, Mingzhao; Zhang, Shuo; Jia, Yujie; Zhao, Junhong

    2015-01-01

    Er 3+ -doped, Er 3+ /Yb 3+ co-doped tellurite glass with and without Ag NPs were synthesized by melt-quenching method. The high resolution transmission electron microscopy (HR-TEM) and selected area electron diffractions (SAED) manifest growth of Ag NPs. The UV–vis–NIR absorption spectroscopy and fluorescence spectroscopy were measured. The optical band gap and multiphonon relaxation rate constants were calculated. The electronic band structure and local density of state (DOS) of Ag NPs are calculated. The fluorescence emission and enhancement mechanism including localized surface plasmon resonance (LSPR) and energy transfer (ET) microcosmic mechanism were discussed. The electric field distributions of Ag NPs are emulated by FDTD solutions software. Local field enhancement (LFE) induced by LSPR and lightning rod effect was found to be responsible for the fluorescence enhancement while energy transfer from Ag NPs to rare-earth was considered ignorable in the samples without photoluminescent emission. - Highlights: • Tellurite glasses containing Er 3+ , Yb 3+ and Ag NPs are prepared. • Judd–Ofelt and multiphonon relaxation are calculated. • The electronic band structures of Ag NPs are calculated. • The energy transfer mechanism is discussed. • The plasmon resonance effect of Ag NPs is discussed

  12. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  13. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    Science.gov (United States)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  14. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  15. Monitoring of heavy/toxic metals and halides in surface/ground water (abstract)

    International Nuclear Information System (INIS)

    Viqar-un-Nisa; Ahmed, R.; Husain, M.

    1999-01-01

    Water is essential for maintaining physical and social life. Human and animal consumption is perhaps the most evident essential use of water. Water quality and quantity have become critical issues, affecting all life. The importance of water in our lives, combined with the threats, make water resources use a global problem. Among the different pollutants toxic metals, metalloids and halides have special significance. Industrial effluents and municipal wastewater are normally drained into water streams, rivers and other reservoirs thus polluting these significantly. Quality of our water resources especially is an issue, which continues to arouse the attention of concerned scientists, legislators and the general public. Among various pollutant chemicals, the heavy metals and metalloids are present at trace levels in various compartments of the environment. Some metals become toxic even at trace levels because of the important features that distinguishes metals from other pollutants is that they are not biodegradable. The halides like Cl, Br, and I from different sources can enter easily into water systems and then they make their way directly into the human body. The intake of toxic as wells as essential elements through water and other food items like vegetables, milk wheat flour etc. is significant. The abundance or deficiency of these meals as well as halides results in abnormal metabolic functions. Due to excessive demand for trace analysis in water and other materials a variety of techniques and instrumentation has been developed. Determination of heavy metals ions is of the highest interest in environmental analysis. Among the food materials water is most important because of their large consumption by man. Also toxic metals in water may be in dissolved ionic form, which directly go into human metabolism and start their toxic action. Presence of even small amounts of toxic metals in drinking water can produce serious health hazards. (author)

  16. Seasonal variation and annual trends of metals and metalloids in the blood of the Little Penguin (Eudyptula minor).

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Orbell, John D; Dann, Peter; Nugegoda, Dayanthi; Scarpaci, Carol

    2016-09-15

    Little Penguins (Eudyptula minor) are high-trophic coastal feeders and are effective indicators of bioavailable pollutants in their foraging zones. Here, we present concentrations of metals and metalloids in blood of 157 Little Penguins, collected over three years and during three distinct seasons (breeding, moulting and non-breeding) at two locations: the urban St Kilda colony and the semi-rural colony at Phillip Island, Victoria, Australia. Penguin metal concentrations were foremostly influenced by location (St Kilda>Phillip Island for non-essential elements) and differed among years and seasons at both locations, reflecting differences in seasonal metal bioaccumulation or seasonal exposure through prey. Mean blood mercury concentrations showed an increasing annual trend and a negative correlation with flipper length at St Kilda. Notably, this study is the first to report on blood metal concentrations during the different stages of moult, showing the mechanism of non-essential metal mobilisation and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nanquan coast of Taihu Lake, China.

    Science.gov (United States)

    Su, Yanping; Liu, Hongbo; Yang, Jian

    2012-08-01

    Concentrations of 12 metal(oid)s were investigated in the bloom-forming cyanobacteria and ambient water samples collected monthly between March 2009 and February 2010 at the Nanquan coast of Taihu Lake, China. The metal(oid) concentrations in ambient water decreased in the order Fe > Zn > Ni ≈ As ≈ Cu > Mn > Ag > Cr > Se > Cd > Co > Tl, while those in cyanobacteria followed a sequence Fe > Mn > Zn > Cu ≈ Ni > Co > Ag > Cr ≈ As > Cd > Tl > Se. The metal(loid) burdens removed by cyanobacteria were estimated as 164 t Fe, 12.4 t Mn, 3.6 t Zn, 2.0 t Ni, 2.0 t Cu, 0.5 t As, 0.5 t Cr, 0.4 t Cd, 0.9 t Ag, 1.1 t Co, 0.2 t Tl, and 0.09 t Se during the 2008-2010 bloom seasons.

  18. Lake sediment cores as indicators of historical metal(loid) accumulation – A case study in Mexico

    International Nuclear Information System (INIS)

    Hansen, Anne M.

    2012-01-01

    To examine and compare historical accumulation of metal(loid)s in Mexican lakes and reservoirs, 210 Pb and 137 Cs dated sediment cores were evaluated: two from the remote Zempoala and Miramar Lagoons and three from Lake Pátzcuaro, and the Intermedia and Silva dams that are affected by human activities. Sediment ecotoxicology was assessed using consensus-based sediment quality guidelines for freshwater ecosystems. The +100 a sediment core from the remote Miramar Lagoon had the highest concentrations of Cr and Ni these being higher than the Probable Effect Levels (PELs). Zinc concentrations were also higher in the Miramar Lagoon compared to the other lakes and reservoirs, with concentrations higher than the Threshold Effect Level (TEL). Mercury concentrations from this lagoon were comparable to those for the Intermedia dam that receives water from urban, industrial and agricultural areas. The higher metal concentrations in the core from the Miramar Lagoon suggest that metal concentrations in the rocks of the watershed are high. Another explanation for the higher metal concentrations is the slow sediment accumulation that causes metals to be accumulated over longer time-periods at the sediment–water interface. A decrease in the concentration of As in the Intermedia dam was observed in sediments corresponding to the last decades. This may be due to an increase in sediment accumulation rate or to the reduction in sources of this metalloid in the watershed. In the Miramar Lagoon, an increase was observed in concentrations of As and Cr in more recent sediments, probably related to increased deforestation in the area or the eruption of El Chichonal volcano in 1982. Concentrations of Pb showed a decreasing tendency over the past decades in the Lake Pátzcuaro, Miramar and Zempoala Lagoons sediment cores while such behavior was not be observed for the Intermedia dam. This reduction in concentrations of Pb was attributed to the decrease in use of leaded gasoline.

  19. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    Science.gov (United States)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  20. Enhanced luminescence from silver nanoparticles integrated Er{sup 3+}-doped boro-tellurite glasses: Impact of annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    2015-11-15

    Considerable enhancement of rare earth ions luminescence intensity stimulated via metal nanoparticles (NPs) inclusion inside inorganic glass matrix opened a new avenue to achieving efficient lasing glass media. Tuning the localised surface plasmon resonance (LSPR) band of noble metal NPs through their precise size manipulation is demonstrated to be the key for such accomplishment. We report the influences of annealing (heat treatment) temperature (AT) on the down-conversion luminescence features of erbium (Er{sup 3+}) doped zinc-boro-tellurite (ZBT) glasses containing silver NPs. The AT dependent (between 390 and 450 °C) variations in refractive index and density are ascribed to the generation of non-bridging oxygen (NBO) ions. X-ray diffraction pattern confirmed the amorphous nature of the melt-quenched synthesized glass samples. TEM micrograph revealed the nucleation of Ag NPs inside the glass matrix having average diameter between 8.4 (un-annealed sample) to 11.8 nm (annealed). The UV–Vis spectra exhibited seven absorption bands corresponding to {sup 4}f–{sup 4}f transitions of Er{sup 3+} ions. Annealed samples displayed a red shift of SPR bands positioned at 550 and 580 nm. Judd–Ofelt theory is used to evaluate the intensity parameters for radiative transitions within 4f{sup n} configuration of Er{sup 3+} ion. Annealing up to 410 °C is found to stimulate the plasmonic effect through the enlargement of NPs. Consequently, the PL intensity is enhanced by a factor of 3.23 ({sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}), 4.10 ({sup 4}S{sub 3/2} → {sup 4}I{sub 15/2}), and 3.79 ({sup 4}F{sub 9/2} → {sup 4}I{sub 15/2}). This achieved excellent down-conversion luminescence efficiency of proposed glasses shows their potential implementation in photonic devices and solid state lasers. - Highlights: • The changes in the physical properties are ascribed to the generation of NBO. • TEM images confirmed the presence of Ag NPs in the glass matrix. • The achieved

  1. Silver nanoparticles enhanced luminescence properties of Er³⁺ doped tellurite glasses: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fares, Hssen; Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Department of Physics, Sciences Faculty of Tunis, University Tunis ElManar 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2014-09-28

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimes were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I13/2 → ⁴I15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I13/2 → ⁴I15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.

  2. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water – Evaluation of static versus dynamic leaching

    International Nuclear Information System (INIS)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-01-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K d values was demonstrated for dynamic leaching which is relevant for environmental processes. - Highlights: ► We examine the mobilization of metal(loid)s by water under simulated conditions. ► Static versus dynamic leaching (RCC) with continuous supply of extractant was compared. ► RCC is favourable for detailed time-resolved investigations of the leaching behaviour. ► The influence of matrices on the leaching behaviour was investigated. ► The capabilities of the K d values in environmentally relevant processes is shown. - Dynamic leaching with continuous supply of water has proved as tool for long-term and time-resolved mobility of metal(loid)s in contaminated soils.

  3. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    Science.gov (United States)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  5. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhixu; Zheng, Kezhi [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Yao, Chuanfei; Wang, Shunbin; Qin, Guanshi, E-mail: qings@jlu.edu.cn; Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xiong, Liangming; Luo, Jie; Lv, Dajuan [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468–8511 (Japan)

    2016-04-28

    We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  6. Human Toxicity

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter

    2015-01-01

    all chemicals and impact pathways characterizes the contribution of each factor to the total variation of 10–12 orders of magnitude in impacts per kg across all chemicals. This large variation between characterisation factors for different chemicals as well as the 3 orders of magnitude uncertainty....... As a whole, the assessment of toxicity in LCA has progressed on a very sharp learning curve during the past 20 years. This rapid progression is expected to continue in the coming years, focusing more on direct exposure of workers to chemicals during manufacturing and of consumers during product use...

  7. Reaction of 11 C-benzoyl chlorides with metalloid reagents: 11 C-labeling of benzyl alcohols, benzaldehydes, and phenyl ketones from [11 C]CO.

    Science.gov (United States)

    Roslin, Sara; Dahl, Kenneth; Nordeman, Patrik

    2018-01-26

    In this article, we describe the carbon-11 ( 11 C, t 1/2  = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-step synthesis in which 11 C-carbon monoxide is used in an initial palladium-mediated reaction to produce 11 C-benzoyl chloride as a key intermediate. In the second step, the obtained 11 C-benzoyl chloride is further treated with a metalloid reagent to furnish the final 11 C-labeled product. Benzyl alcohols were obtained in moderated to high non-isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11 C-benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11 C-phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  9. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure.

    Science.gov (United States)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-08-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Jlassi, I. [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.t [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, Campus ElManar 2092 (Tunisia); Ferid, M. [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Barthou, C. [Institut des Nanosciences de Paris, Universite P. et M. Curie, Centre Nationale de la Recherche Scientifique, UMR-7588, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris (France)

    2010-12-15

    Er{sup 3+} and Er{sup 3+}/Yb{sup 3+} co-doped tellurite glasses, suitable for developing optical fiber laser and amplifier, have been elaborated from the conventional melt-quenching method. Results of differential scanning calorimetry (DSC) measurements indicate a good thermal stability of tellurite glasses. The DSC measurements show an improvement of thermal stability of glass hosts after adding P{sub 2}O{sub 5}. Absorption spectrum from near infrared to visible was obtained and the Judd-Ofelt (J-O) intensity parameters ({Omega}{sub 2}, {Omega}{sub 4}, and {Omega}{sub 6}) were determined. Spontaneous emission probabilities of some relevant transitions, branching ratio, and radiative lifetimes of several excited states of Er{sup 3+} have been predicted using intensity J-O parameters. Absorption cross-section and calculated emission cross-section, using the McCumber method, for the {sup 4}I{sub 13/2{yields}}{sup 4}I{sub 15/2} transition, were determined and compared for the doped and co-doped glasses. Energy transfer (ET) and effect of changing concentration of P{sub 2}O{sub 5} and Yb{sup 3+} ions on spectroscopic properties were investigated. It was found that the addition of P{sub 2}O{sub 5} can increase the symmetry of the Er{sup 3+} ion. As a consequence, PL lifetime becomes more longer. The spectroscopic properties and the efficient infrared luminescence indicate that Er{sup 3+} doped TeO{sub 2}-ZnO-Na{sub 2}O-Er{sub 2}O{sub 3}(TZNE) is a promising laser and amplifier materials and may be a potentially useful material for developing upconversion fiber optical devices.

  11. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  12. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    Directory of Open Access Journals (Sweden)

    Airon José da Silva

    2015-02-01

    Full Text Available Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr and far-red fluorescence (FFr ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1 and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1. Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

  13. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  14. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    Science.gov (United States)

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg

  16. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico)

    International Nuclear Information System (INIS)

    Cortés-Gómez, Adriana A.; Fuentes-Mascorro, Gisela; Romero, Diego

    2014-01-01

    Highlights: • We evaluate the concentrations of inorganic pollutants in Olive Ridley turtles. • Information can be used to monitoring the pollutants in habitats of sea turtles. • The renal cadmium levels is the highest ever reported worldwide for any sea turtle species. • Pb levels have declined in recent years in this population. - Abstract: Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μg g −1 ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.99 μg g −1 (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles

  18. Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: Laboratory and field studies

    International Nuclear Information System (INIS)

    Metian, Marc; Hedouin, Laetitia; Eltayeb, Mohamed M.; Lacoue-Labarthe, Thomas; Teyssie, Jean-Louis; Mugnier, Chantal; Bustamante, Paco; Warnau, Michel

    2010-01-01

    The present work aimed at better understanding metal and metalloid bioaccumulation in the edible Pacific blue shrimp Litopenaeus stylirostris, using both laboratory and field approaches. In the laboratory, the bioaccumulation kinetics of Ag, Cd, Co, Cr, and Zn have been investigated in shrimp exposed via seawater and food, using the corresponding γ-emitting radiotracers ( 110m Ag, 109 Cd, 57 Co, 51 Cr, and 65 Zn) and highly sensitive nuclear detection techniques. Results showed that hepatopancreas and intestine concentrated the metals to the highest extent among the blue shrimp organs and tissues. Moulting was found to play a non negligible detoxification role for Co, Cr and, to a lesser extent, Zn. Metal retention by L. stylirostris widely varied (from a few days to several months), according to the element and exposure pathway considered (a given metal was usually less strongly retained when ingested with food than when it was taken up from the dissolved phase). In the field study, Ag, As, Cd, Co, Cr, Cu, Mn, Ni, and Zn were analysed in shrimp collected from a New Caledonian aquaculture pond. Metal concentrations in the shrimp muscles were generally relatively low and results confirmed the role played by the digestive organs and tissues in the bioaccumulation/storage/detoxification of metals in the Pacific blue shrimp. Preliminary risk considerations indicate that consumption of the shrimp farmed in New Caledonia is not of particular concern for human health.

  19. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    Science.gov (United States)

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (photspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases.

    Science.gov (United States)

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E

    2017-02-01

    The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl 4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  1. Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China

    International Nuclear Information System (INIS)

    Ye, H.; Zang, S.; Xiao, H.; Zhang, L.

    2015-01-01

    A total of 271 sediments samples from the Zhalong Wetland were analyzed for concentration and distribution of Hg, Cd, As, Cu, Pb, Zn, Cr, and Zn; their speciation according to the modified European Community Bureau of Reference sequential extraction procedures and their ecological risk based on Lars Hakanson’s potential ecological risk assessment and risk assessment code were made. The results can be summarized as the followings: (1) Concentrations of all metals measured were above soil background values of Songnen Plain, and their spatial distributions were distinctly different. The concentrations of metals (except Pb) were high in the east, followed by the north, and were relatively low in the core zone and south. The concentration of Pb was high in the north, south, and west, compared with low concentration in the core zone and east. (2) The dominant proportion of Pb, Zn, and Cr was in the residual fraction, suggesting that they were environmental stable. The concentrations of Cu and As in the reducible fraction, the concentration of Cd in the acid soluble fraction, and the concentration of Hg in the oxidizable fraction were relatively high, indicating they had greater environmental effects. (3) The evaluation of the ecological risk showed that Cd, Hg, and As had relatively high ecological risk index, especially the ecological risk of Cd should be paid attention to. In general, the ecological risk of the heavy metals and metalloid by zone was experimental zone >buffering zone>ecological tourism zone>core zone.

  2. Metal and metalloid contamination in roadside soil and wild rats around a Pb-Zn mine in Kabwe, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Shouta M.M.; Ikenaka, Yoshinori; Hamada, Kyohei [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan); Muzandu, Kaampwe; Choongo, Kennedy [Department of Biomedical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Teraoka, Hiroki; Mizuno, Naoharu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.j [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan)

    2011-01-15

    Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. - The area around Kabwe, Zambia is highly polluted with metals and As. Wild rats from this area had high tissue concentrations of Pb and decreased body weight.

  3. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water.

    Science.gov (United States)

    Mercado-Borrayo, B M; Schouwenaars, R; González-Chávez, J L; Ramírez-Zamora, R M

    2013-01-01

    A multi-analytical approach was used to develop a mathematical regression model to calculate the residual concentration of borate ions in water present at high initial content, as a function of the main physicochemical, mineralogical and electrokinetic characteristics after adsorption on five different types of iron and steel slag. The analytical techniques applied and slag properties obtained in this work were: X-ray Fluorescence for the identification of the main chemical compounds, X-ray Diffraction to determine crystalline phases, physical adsorption of nitrogen for the quantification of textural properties and zeta-potential for electrokinetic measurements of slag particles. Adsorption tests were carried out using the bottle-point technique and a highly concentrated borate solution (700 mg B/L) at pH 10, with a slag dose of 10 g/L. An excellent correlation between the residual concentration of boron and three independent variables (content of magnesium oxide, zeta potential and specific surface area) was established for the five types of slag tested in this work. This shows that the methodology based on a multi-analytical approach is a very strong and useful tool to estimate the performance of iron and steel slag as adsorbent of metalloids.

  4. Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico).

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Fuentes-Mascorro, Gisela; Romero, Diego

    2014-12-15

    Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μ gg(-1) ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.9 9μg g(-1) (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Contamination of soils with heavy metals and metalloids in the vicinity of the Erdenet copper-molybdenum mining area in Mongolia

    Science.gov (United States)

    Timofeev, Ivan; Kosheleva, Natalia; Gunin, Petr; Bazha, Sergei; Enkh-Amgalan, Sandag

    2014-05-01

    The present study was conducted to assess soil contamination taking place in Erdenet, the Mongolian city with a gigantic ore-mining and ore-dressing complex that was founded mainly to exploit the area's huge deposits of copper and molybdenum ore. The objectives of the study were: (1) to determine the content of heavy metals and metalloids (HMs) in soils of background and urban landscapes and to evaluate environmental hazard of HMs pollution; (2) to compile geochemical maps and to define zones with anomalously high concentrations of toxic elements in the city, (3) to identify spatial patterns and leading factors of pollutant accumulation. Sampling was performed in 2011 using regular spacing of 500-700m. In total 225 samples were collected from surface soil horizons (0 - 10 cm) in different functional areas of the city and in the background area located 5-6km from the city. The sampling scheme in background area took into account the topography and geological heterogeneity of the study area. The bulk contents of HMs in soil samples were analyzed by mass spectrometry and inductively coupled mass spectrometry (ICP-MS). Background concentrations of HMs were estimated for several soil groups formed on specific parent rocks and were compared with their global abundances in soils. The pollution of urban soils was evaluated using background soils as reference objects. Associations of HMs were identified according to the enrichment factor (EF) values and using cluster analysis with complete linkage algorithm. Visualization of soil-geochemical data was performed by local interpolation or kriging method in MapInfo 11.5 and Surfer 11. Multiple regression analysis (decision trees method) was applied to determine soil properties and landscape factors that may control HMs accumulation in soils. Background soils formed on granite and granodiorite of Permian-Selenga complex occupy the largest area and are characterized by high concentrations of V, Cr, Co, Ni, Zn, Sr, Cu, Zn, Mo and

  6. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area.

    Science.gov (United States)

    Cejpková, Jaroslava; Gryndler, Milan; Hršelová, Hana; Kotrba, Pavel; Řanda, Zdeněk; Synková, Iva; Borovička, Jan

    2016-11-01

    Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Příbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg -1 dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China.

    Science.gov (United States)

    Wang, Xiaodi; Zang, Shuying

    2014-05-01

    It is necessary to estimate heavy metal concentrations and risk in surface water for understanding the heavy metal contaminations and for sustainable protection of ecosystems and human health. To investigate the anthropogenic contribution of heavy metal accumulation surrounding an industrial city in China, the concentrations of six heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), and cadmium (Cd) were examined; from four different regions of Daqing in autumn 2011 and winter 2012. The results showed heavy metals distributed in the industrial area at concentrations relatively higher than those in other three areas, while concentrations in the farming area and the protected area were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and As, Cu, Pb and Cr were lower than the cutoff values for the Class I water quality that was set as the highest standard to protect the national nature reserves. While Hg and As of lakes in industry region had a higher level than those in the agriculture and landscape water, the lowest allowed. The concentrations of all the heavy metals in winter were higher than in the autumn. Cu had a higher ecological risks level to freshwater organisms. The discharge of urban sewage and industrial wastewater might be a major pollutant source, thus these sources should identified before remediation efforts. Efforts are needed to protect the lakes from pollution and also to reduce environmental health risks. This study and the valuable data will pave the way for future research on these Lakes in Daqing.

  9. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  10. Metal/metalloid content in plant parts and soils of Corylus spp. influenced by mining-metallurgical production of copper.

    Science.gov (United States)

    Radojevic, Ana A; Serbula, Snezana M; Kalinovic, Tanja S; Kalinovic, Jelena V; Steharnik, Mirjana M; Petrovic, Jelena V; Milosavljevic, Jelena S

    2017-04-01

    The town of Bor and its surroundings (Serbia) have been under environmental pollution for more than a century, due to exploitation of large copper deposits. Naturally present Corylus spp. were sampled in the surroundings of the mine and flotation tailings at 12 sites distributed in six zones with different pollution loads, under the assumption that all the zones were endangered except for the background. As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn inputs from soil and the air were evaluated in plant parts, in terms of absorption, accumulation and indication abilities of Corylus spp. The obtained results showed that As and Cu were the most enriched elements in soil, and their concentration exceeded the limit and remediation values proposed by the regulation. Plant parts (root, branch, leaf and catkin) also showed enrichment of most studied elements in wide ranges. According to the enrichment factor for plant, metal/metalloid inputs, particularly in leaves, were from anthropogenic origin. Plant absorption which occurred at the soil-root interface was low, based on the bioaccumulation factor, which could be indicative of resistance mechanisms of root to abiotic stress induced by a high content of elements in soil substrate. The values of bioaccumulation coefficient suggested weak and intermediate absorption and exclusion abilities of Corylus spp. to the studied elements. Element concentrations differ in unwashed and washed leaves, as well as pollution loads in plant and soil samples from the background, traffic and the sites with clear mining-metallurgical influence. Therefore, Corylus spp. could be promising in biomonitoring studies.

  11. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees.

    Science.gov (United States)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María-Nazaret; Jiménez-Cárceles, Francisco J; Conesa, Héctor M

    2014-01-15

    The goal of this work was to assess the selection of the most suitable combination of plant species for the phytomanagement of mine tailings, by comparing among different plant life-forms (grasses, shrubs and trees). A comparison on induced rhizosphere changes generated by four plant species (the grass Piptatherum miliaceum, the shrub Helichrysum decumbens, and the trees, Pinus halepensis and Tetraclinis articulata) and high density vegetation patches (fertility islands) at a mine tailing located at Southeast Spain and the description of their physiological status employing stable isotopes analyses were carried out. The edaphic niches for plant growth were determined by salinity, organic matter and total soil nitrogen while metal(loid)s concentrations played a minor role. Induced changes in plant rhizospheres had a significant impact in soil microbiology. While grasses and shrubs may play an important role in primary ecological succession, trees seem to be the key to the development of fertility islands. The low δ(15)N values (-8.00‰) in P. halepensis needles may reflect higher ectomycorrhizal dependence. Large differences in leaf δ(18)O among the plant species indicated contrasting and complementary water acquisition strategies. Leaf δ(13)C values (-27.6‰) suggested that T. articulata had higher water use efficiency than the rest of species (-29.9‰). The implement of a diverse set of plant species with contrasting life forms for revegetating tailings may result in a more efficient employment of water resources and a higher biodiversity not only in relation to flora but soil microbiology too. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  13. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-01-01

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  14. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    International Nuclear Information System (INIS)

    Schmukat, A.; Duester, L.; Goryunova, E.; Ecker, D.; Heininger, P.; Ternes, T.A.

    2016-01-01

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  15. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schmukat, A., E-mail: schmukat@harzwasserwerke.de [Harzwasserwerke GmbH, Zur Granetalsperre 8, 38685 Langelsheim (Germany); Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Duester, L. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Goryunova, E. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); KAPP-Chemie GmbH & Co. KG, Industriestr. 2-4, 56357 Miehlen (Germany); Ecker, D.; Heininger, P.; Ternes, T.A. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2016-03-05

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  16. Effects of sex on the levels of metals and metalloids in the hair of a group of healthy Spanish adolescents (13 to 16 years old).

    Science.gov (United States)

    Peña-Fernández, Antonio; Del Carmen Lobo-Bedmar, Maria; González-Muñoz, Maria José

    2017-10-01

    Human biomonitoring can be a reliable tool to protect the health of the citizens of major urban environments. Human hair may be an invaluable specimen to determine chronic exposure to any environmental contaminant in an individual, especially in the young population. However, different factors including a lack of studies that have established reference values for metals and metalloids (trace elements) in human scalp hair make the use of this matrix controversial. A monitoring study was performed to establish possible normal or tentative reference values of Al, As, Be, Cd, Cr, Cu, Hg, Mn, Pb, Sn, Ti, Tl and Zn in adolescents' (aged 13-16) hair who have lived since birth in Alcalá de Henares, Madrid region (Spain). Strict inclusion criteria were followed to study the effect of sex on the hair metal content, and the levels of the above contaminants were also studied in park topsoils from Alcalá de Henares. Scalp hair samples were collected from 96 healthy adolescents (28 boys and 68 girls), and reference values were calculated following the recommendations of the International Union of Pure and Applied Chemistry. The levels of Cd, Cu, Pb, Sn and Zn in hair of adolescents from Alcalá de Henares show a sex dependency, being significantly higher in female participants. Sex should be a factor taken into account when developing future reference values and hair metal content. Soil metal contamination was not correlated with the levels found in hair. To conclude, the values of metals and metalloids here analysed and discussed could be considered as tentative reference values for Spanish adolescents aged 13-16 years living in the Madrid region, and may be used to identify the level of exposure of adolescents in this Spanish region to the various metals and metalloids.

  17. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: human exposure risk.

    Science.gov (United States)

    Affholder, Marie-Cécile; Prudent, Pascale; Masotti, Véronique; Coulomb, Bruno; Rabier, Jacques; Nguyen-The, Bénédicte; Laffont-Schwob, Isabelle

    2013-06-01

    This study aimed at estimating exposition risks to wild rosemary used as herbs in the contaminated area of the former smelting factory of L'Escalette (South of Marseille, France). Metals and metalloids i.e. Pb, As, Sb, Zn, and Cu concentrations were analyzed in soils and in rosemary aerial parts (stems and leaves) on two sites: one heavily contaminated and the other far away from the pollution source, considered as reference. The metal and metalloid transfer into water during the brewing process of herbal tea was also determined. A mixed contamination by the above-cited contaminants was demonstrated in soils of the factory site, with average concentrations of 9253, 1127, 309, 2698 and 32 mg/kg for Pb, As, Sb, Zn and Cu, respectively. However, metals and metalloids' transfer in rosemary aerial parts was limited, as bioaccumulation factors were under 1. Thus, Pb, As and Cu concentrations in leaves were below international regulation limits concerning ingestion of medicinal herbs (no regulation values available for Sb and Zn). This study highlighted that, if contaminated rosemary leaves were ingested, health risks may be limited since acceptable daily intake (ADI) for Pb, As, Sb and Cu (no ADI value available for Zn) will only be reached if very high quantities are consumed. Furthermore, we aimed to establish if this mixed contamination could alter rosemary's essential oil quality, and thereby the compositions of essential oils obtained from individuals on the heavily contaminated soil were compared to those obtained from the reference population. An increased biosynthesis of antioxidant compounds was favored in essential oils from rosemary individuals growing in contaminated site. Although the health risk of a long-term exposition of low level of the mixed contamination by rosemary ingestion is not easy to elucidate, the use of rosemary essential oils from contaminated site appears as safe. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China.

    Science.gov (United States)

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-11-29

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective : This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods : Contamination factors ( CFs ) and integrated pollution indexes ( IPIs ) and enrichment factors ( EFs ) were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results : The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loid)s such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions : The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing way

  19. Distributed Structure Searchable Toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data....

  20. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    International Nuclear Information System (INIS)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-01-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant

  1. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki, E-mail: itai@sci.ehime-u.ac.jp [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Otsuka, Masanari [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Asante, Kwadwo Ansong [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Muto, Mamoru [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu [CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan)

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant.

  2. Effect of natural Fe{sub 3}O{sub 4} nanoparticles on structural and optical properties of Er{sup 3+} doped tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Widanarto, W. [Physics Study Program, Jenderal Soedirman University, Jl. dr. Soeparno 61 Purwokerto 53123 (Indonesia); Sahar, M.R., E-mail: m-rahim@dfiz2.fs.utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia)

    2013-01-15

    Control doping of magnetic nanoparticles and its influence on optical and structural properties of tellurite glass is important from device perspectives. Natural Fe{sub 3}O{sub 4} nanoparticles obtained by extracting and ball milling iron sand, are incorporated in the Er{sup 3+} doped tellurite glasses having composition (80-x)TeO{sub 2}{center_dot}xFe{sub 3}O{sub 4}{center_dot}18ZnO{center_dot}1Li{sub 2}O{center_dot}1Er{sub 2}O{sub 3} (0{<=}x{<=}1.5) in mol% by melt quenching method at 850 Degree-Sign C. X-Ray diffraction spectra confirms the presence of iron nanoparticles with estimated sizes 18-70 nm and an amorphous structure of the samples. Thermal and optical characterizations are made using diffential thermal analysis, ultraviolet-visible and photoluminescence spectrocopies. It is found that the presence of nanoparticles changes color and thermal stability of the glasses, which is proved by increasing thermal stability factor from 118 to 132 Degree-Sign C. Absorption spectra consist of six peaks corresponding to different transition from ground state to the excited states in which the quench of the peak associated with {sup 4}F{sub 1/2} is attributed to the effect nanoparticles. Moreover, the shift in the absorption edge from {approx}400 to {approx}500 nm indicates a significant decrease of the optical energy band gap for both direct and indirect allowed transitions and a decrease in the Urbach energy as much as 0.116 eV is observed. The room temperature down-conversion luminescence spectra obtained under 500 nm excitation exhibit two strong peaks related to excited states {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} of Er{sup 3+} ions in the absence of nanoparticles. Furthermore, embedding nanoparticles into the glass not only make the peaks weaker but the second peak completely disappears. Interestingly, the emission bands of the Er{sup 3+} ion are quenched as concentration of the magnetic nanoparticles is increased.

  3. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  5. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    Science.gov (United States)

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with

  6. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE

    Science.gov (United States)

    Cafagna, Fabio; Jugo, Pedro J.

    2016-04-01

    Pyrite, the most abundant sulfide in the Earth's crust, is an accessory mineral in several magmatic sulfide deposits. Although most pyrite is hydrothermal, previous experimental studies have shown that pyrite can also have a primary magmatic origin, by exsolving from monosulfide solid solution (mss) during cooling of a sulfide melt, if sulfur fugacity is sufficiently high. Pyrite from some localities has significant amounts of Co, and complex zonation in some low-melting-point chalcophile elements (LMCE), such as As, Se, Sb, Te, Bi (henceforth referred to as metalloids) and some platinum-group elements (PGE: Ru, Rh, Pd, Os, Ir, Pt). However, the origin of such pyrite and the causes of zonation are not clear. Because the distribution of some of these elements is heterogeneous and seems to be developed in concentric zones, the zonation has been interpreted to represent growth stages, some of them secondary and caused partly by hydrothermal fluids. Better constraints on the origin of Co-PGE-bearing pyrite could help unravel the geochemical processes affecting the sulfide assemblages in which it is found; thus, an experimental study was undertaken to characterize pyrite formation in magmatic sulfide environments and its relationship with metalloids and highly siderophile elements (HSE: PGE, Re, Au). Natural pyrrhotite, chalcopyrite, pentlandite and elemental S were mixed and doped with approximately 50 ppm of each HSE. A mixture of metalloids was added at 0.2 wt.% or 3 wt.% to aliquots of sulfide mixtures. Starting materials were sealed in evacuated silica tubes and fused at 1200 °C. The temperature was subsequently reduced to 750 °C (at 60 °C/h), then to 650 °C (at 0.5 °C/h) to produce relatively large euhedral pyrite crystals, then quenched. The experiments were analyzed using reflected light, SEM, EPMA and LA-ICP-MS. Experimental products contained euhedral pyrite, mss, intermediate solid solution (iss) and metalloid-rich phases, interpreted as quench product

  7. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  8. Spectroscopic properties of Er3+/Yb3+ Co-doped zinc boro-tellurite glasses for 1.5 xB5m broadband optical amplifiers

    Science.gov (United States)

    Suthanthirakumar, P.; Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2015-06-01

    A new series of Er3+/Yb3+ co-doped Zinc boro-tellurite glasses with the chemical composition (40-x-y)B2O3+ 25TeO2+20ZnO+15BaO+xYb2O3+yEr2O3 (where x = 0.1, 0.5, 1 and 3; y =1 in wt %) were prepared by melt quenching technique and their spectroscopic behavior were studied through UV-Vis-NIR absorption and NIR luminescence measurements. The bonding parameters (β ¯ and δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) have been calculated from the band positions of the absorption spectra. A broad near-infrared emission band at 1540 nm with a full width at half maximum around 80 nm was observed from the NIR luminescence spectra by monitoring an excitation at 980 nm. The absorption cross-section and emission cross-section for the4I13/2→4I15/2 transition of the Er3+ ions were also determined using McCumber theory and the results were discussed and reported.

  9. Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser

    Directory of Open Access Journals (Sweden)

    F. F. Zhang

    2014-04-01

    Full Text Available The influence of fluoride and shielding gas (O2 or Ar on the physical and spectroscopic properties of Er3+ doped TeO2-ZnO-ZnF2 glass system is investigated. The larger electronegativity of F than O accounts for the gradual decrease of refractive index, density, and J-O parameters with increasing ZnF2. An analysis on Fourier transform infrared transmission spectra reveals that the absorption coefficient of OH− around 3 μm as low as 0.247 cm−1 can be achieved when 30 mol% ZnF2 containing sample is treated with Ar gas during glass melting process. The reduction of OH− groups combined with the low multiphonon relaxation rate (207 s−1 contributes to the enhanced emissions at 1.5 and 2.7 μm, along with prolonged lifetimes of 4I11/2 and 4I13/2 levels. A high branching ratio (17.95% corresponding to the Er3+: 4I11/2 → 4I13/2 transition, the large absorption and emission cross section (0.44 × 10−20 cm2 and 0.45 × 10−20 cm2, and good gain cross section demonstrate that oxyfluoride tellurite glass could be a promising material for a diode-pump 2.7 μm fiber laser.

  10. Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus.

    Science.gov (United States)

    Alkas, Fehmi Burak; Shaban, Jehad Abdullah; Sukuroglu, Ayca Aktas; Kurt, Mehmet Ali; Battal, Dilek; Saygi, Sahan

    2017-09-22

    The presence of heavy metals/metalloids in the ecosystem has been an increasing ecological and global public health concern due to their potential to cause adverse health effects. For this reason, the accumulation of some heavy metals such as Cr, Mn, Ni, Cu, As, Cd, Pb was assessed by way of ICP-MS in water, sediment and fish (Cyprinus carpio) sampled from Gonyeli Lake, North Cyprus. The results showed that these metals/metalloids are found widespread throughout the study area. In water, most concentrated element was manganese with 92.1 ppb and least concentrated was lead with 0.914 ppb. In sediment, copper had the highest concentration with 613 ppm, and cadmium the lowest with 1.57 ppm. In fish tissues (muscle and gills), the most concentrated element was manganese with 12.5 ppm and the least concentrated cadmium with 0.017 ppm. These results indicate that future remediation efforts are indispensable for the rehabilitation of the lake.

  11. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  12. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water--evaluation of static versus dynamic leaching.

    Science.gov (United States)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-06-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K(d) values was demonstrated for dynamic leaching which is relevant for environmental processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  14. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    Science.gov (United States)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  16. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Pearce, J; Descourvieres, C; Linge, K L; Busetti, F; Spadek, T

    2010-03-01

    Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  17. Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China.

    Science.gov (United States)

    Falandysz, Jerzy; Zhang, Ji; Wiejak, Anna; Barałkiewicz, Danuta; Hanć, Anetta

    2017-08-01

    Yunnan Province in China is known for its high biodiversity of mushrooms and a diverse geochemistry of soil bedrock and polymetallic soils, but our knowledge of mineral compositions of mushrooms from Yunnan is scarce. The metallic trace elements, Ag, Ba, Co, Cd, Cs, Cu, Cr, Hg, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn, and the metalloids, As and Sb, have been investigated using validated methods with a dynamic reactive cell by mass spectroscopy - inductive coupled plasma and cold vapour - atomic absorption spectroscopy on three popular species of Boletus mushrooms from Southwestern China. The trace mineral profiles in caps and stipes of B. luridus (24 individuals), B. magnificus (29 individuals) and B. tomentipes (38 individuals) have been evaluated. The interspecific differences in the content of several trace elements could be attributed to known differences in the geochemistry of soils in Yunnan, but for copper a difference was observed within species. The mean values of concentrations in composite samples of caps for B. luridus, B. magnificus and B. tomentipes from three to four locations were at the ranges (mgkg -1 dry biomass): Ag (1.3-3.7), As (0.79-53), Ba (4.0-12), Co (0.68-1.2), Cd (0.79-2.2), Cs (0.67-55), Cu (37-77), Cr (5.0-7.6), Hg (2.1-5.4), Li (0.15-0.61), Mn (13-28), Ni (0.86-4.6), Pb (0.59-1.8), Rb (90-120), Sb (0.014-0.088), Sr (0.63-1.6), V (1.4-2.2), Tl (0.017-0.054), U (0.029-0.065) and Zn (130-180). Caps of Boletus mushrooms were richer in Ag, Cu, Hg and Zn than stipes, while other elements were distributed roughly equally between both morphological parts. B. luridus, B. magnificus and B. tomentipes grew in certain sites in Yunnan contained Ag, As, Ba, Cr, Hg, Ni, Sr or V at elevated concentration. A specific geochemistry of the soils type (latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China) can explain occurrence of some minerals at greater or elevated amount in mushrooms

  18. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    Science.gov (United States)

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  19. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    DEFF Research Database (Denmark)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative...... proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33...... proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb...

  20. New vanadium tellurites: Syntheses, structures, optical properties of noncentrosymmetric VTeO{sub 4}(OH), centrosymmetric Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ming-Li [College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Marsh, Matthew [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Shang, Xian-Xing [College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Mao, Jiang-Gao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Kong, Fang, E-mail: kongfang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States)

    2017-05-15

    Two new vanadium tellurites, VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2), have been synthesized successfully with the use of hydrothermal reactions. The crystal structures of the two compounds were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the polar space group Pca2{sub 1} (No. 29) while compound 2 crystallizes in the centrosymmetric space group C2/c (No. 15). The topography of compound 1 reveals a two-dimensional, layered structure comprised of VO{sub 6} octahedral chains and TeO{sub 3}(OH) zig-zag chains. Compound 2, on the contrary, features a three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic framework with Ba{sup 2+} ions filled into the 10-member ring helical tunnels. The [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic network is the first 3D vanadium tellurite framework to be discovered in the alkaline-earth vanadium tellurite system. Powder second harmonic generation (SHG) measurements indicate that compound 1 shows a weak SHG response of about 0.3×KDP (KH{sub 2}PO{sub 4}) under 1064 nm laser radiation. Infrared spectroscopy, elemental analysis, thermal analysis, and dipole moment calculations have also been carried out. - Graphical abstract: VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} (No. 29) while Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) crystallizes in the centrosymmetric space group C2/c (No. 15). - Highlights: • VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) have been synthesized successfully with the use of hydrothermal reactions. • VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} and displays a weak SHG response. • VTeO{sub 4}(OH) (1) represents only the fourth SHG-active material found in vanadium tellurite systems. • Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) exhibits a novel three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10

  1. Cerium(IV) Tellurite Halides [Ce 2 Te 7 O 17 ]X 2 (X = Cl or Br ): The First Cerium-Containing Cationic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian [Department of Civil; amp, Environmental Engineering & amp, Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, 156 Fitzpatrick Hall, Notre; Diwu, Juan [Department of Civil; amp, Environmental Engineering & amp, Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, 156 Fitzpatrick Hall, Notre; Cross, Justin N. [Department of Civil; amp, Environmental Engineering & amp, Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, 156 Fitzpatrick Hall, Notre; Villa, Eric M. [Department of Civil; amp, Environmental Engineering & amp, Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, 156 Fitzpatrick Hall, Notre; Albrecht-Schmitt, Thomas E. [Department of Chemistry

    2012-09-13

    Two isotypic cerium tellurite halides with the formulas [Ce2Te7O17]Cl2 and [Ce2Te7O17]Br2 have been synthesized hydrothermally via the reactions of CeCl3 and CeBr3 with TeO2. The structures of these compounds feature a cationic inorganic framework. The CeIV dimers are bound by a novel 3D Te7O176– building unit, forming an unusual hexagonal-bipyramidal environment around CeIV.

  2. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  3. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  4. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  5. Toxicity alarm: Case history

    International Nuclear Information System (INIS)

    Hogan, D.; Retallack, J.

    1993-01-01

    In late fall 1991, the Novacor petrochemical plant near Joffre, Alberta experienced a toxicity alarm, the first since its startup 14 years ago. Fish exposed to a normal toxicity test were stressed within 2 h and showed 100% mortality after 24 h. A history of the events leading up to, during, and after the toxicity alarm is presented. The major effluent sources were three cooling water systems. Although these sources are well characterized, the event causes were not immediately clear. Initial toxic screening indicated that one was very toxic, another moderately toxic, and the third not toxic at all. All three systems utilized the same chemical treatment program to avoid fouling: stabilized phosphates with minor variants. The most toxic of the cooling systems operated at 10-12 cycles, had three chemicals for biocide control, and had three makeup streams. Toxic and nontoxic system characteristics were compared. An in-depth modified toxicity identification and evaluation program was then performed to identify and evaluate the cause of the toxicity alarm for future prevention. The most probable causes of toxicity were identified by elimination. The combination of high numbers of cycles, hydrocarbons in the makeup water, and bromine added as an antifoulant resulted in formation of aromatic bromamines which are capable of causing the toxic condition experienced. 2 tabs

  6. Toxic substances handbook

    Science.gov (United States)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  7. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-11-01

    Full Text Available Background: Mining activities always emit metal(loids into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods: Contamination factors (CFs and integrated pollution indexes (IPIs and enrichment factors (EFs were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results: The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loids such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions: The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing

  8. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    Science.gov (United States)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  9. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  10. Accumulation patterns and risk assessment of metals and metalloid in muscle and offal of free-range chickens, cattle and goat in Benin City, Nigeria.

    Science.gov (United States)

    Ogbomida, Emmanuel Temiotan; Nakayama, Shouta M M; Bortey-Sam, Nesta; Oroszlany, Balazs; Tongo, Isioma; Enuneku, Alex Ajeh; Ozekeke, Ogbeide; Ainerua, Martins Oshioriamhe; Fasipe, Iriagbonse Priscillia; Ezemonye, Lawrence Ikechukwu; Mizukawa, Hazuki; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2018-04-30

    The use of free range animals for monitoring environmental health offers opportunities to detect exposure and assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP-MS) while Hg was determined using Hg analyzer. Mean concentrations of metals (mg/kg ww) varied significantly depending upon the tissues and animal species. Human health risk estimations for children and adults showed estimated daily intake (EDI) values of tissues below oral reference dose (RfD) threshold for non essential metals Cd, As, Pb and Hg thus strongly indicating no possible health risk via consumption of animal based food. Calculated Hazard quotient (THQ) was less than 1 (< 1) for all the metals analyzed for both adult and children. However, Cd and As had the highest value of THQ suggestive of possible health risk associated with continuous consumption of Cd and As contaminated animal based foods. Hazard Index (HI) for additive effect of metals was higher in chicken liver and gizzard for children and chicken liver for adults. Thus, HI indicated that chicken liver and gizzard may contribute significantly to adult and children dietary exposure to heavy metals. Principal component analysis (PCA) showed a clear species difference in metal accumulation between chickens and the ruminants. This study provides baseline data for future studies and also valuable evidence of anthropogenic impacts necessary to initiate national and international policies for control of heavy metal and metalloid content in food items. Copyright © 2017. Published by Elsevier Inc.

  11. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.

    Science.gov (United States)

    Bjørklund, Geir; Skalny, Anatoly V; Rahman, Md Mostafizur; Dadar, Maryam; Yassa, Heba A; Aaseth, Jan; Chirumbolo, Salvatore; Skalnaya, Margarita G; Tinkov, Alexey A

    2018-06-11

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk.

    Science.gov (United States)

    Deng, Rui; Lin, Daohui; Zhu, Lizhong; Majumdar, Sanghamitra; White, Jason C; Gardea-Torresdey, Jorge L; Xing, Baoshan

    2017-06-01

    With their growing production and application, engineered nanoparticles (NPs) are increasingly discharged into the environment. The released NPs can potentially interact with pre-existing contaminants, leading to biological effects (bioaccumulation and/or toxicity) that are poorly understood. Most studies on NPs focus on single analyte exposure; the existing literature on joint toxicity of NPs and co-existing contaminants is rather limited but beginning to develop rapidly. This is the first review paper evaluating the current state of knowledge regarding the joint effects of NPs and co-contaminants. Here, we review: (1) methods for investigating and evaluating joint effects of NPs and co-contaminants; (2) simultaneous toxicities from NPs co-exposed with organic contaminants, metal/metalloid ions, dissolved organic matter (DOM), inorganic ligands and additional NPs; and (3) the influence of NPs co-exposure on the bioaccumulation of organic contaminants and heavy metal ions, as well as the influence of contaminants on NPs bioaccumulation. In addition, future research needs are discussed so as to better understand risk associated with NPs-contaminant co-exposure.

  13. Phytoremediation to recovery contaminated soil by metal(loid)s: possible interaction with soil bacteria and biochar

    OpenAIRE

    Lomaglio, Tonia

    2016-01-01

    The industry development has improved living standards for much of the world’s population. At the same time, this growth has created environmental problems in the world by producing large amount toxic compounds. The lack of controlling systems and appropriate laws to govern the waste management has produced worrisome problems for environment. Environmental pollution consists in three basic types of pollution: air, water and soil. Air pollution is cause by the injurious smokes, which contains ...

  14. Toxic substances alert program

    Science.gov (United States)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  15. "Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges."

    Directory of Open Access Journals (Sweden)

    Paul eRay

    2014-07-01

    Full Text Available Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are somatically inherited alterations to an individual’s genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.

  16. Au70S20(PPh3)12: an intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups.

    Science.gov (United States)

    Kenzler, Sebastian; Schrenk, Claudio; Frojd, Andrew R; Häkkinen, Hannu; Clayborne, Andre Z; Schnepf, Andreas

    2018-01-02

    Reducing (Ph 3 P)AuSC(SiMe 3 ) 3 with l-Selectride® gives the medium-sized metalloid gold cluster Au 70 S 20 (PPh 3 ) 12 . Computational studies show that the phosphine bound Au-atoms not only stabilize the electronic structure of Au 70 S 20 (PPh 3 ) 12 , but also behave as electron acceptors leading to auride-like gold atoms on the exterior.

  17. Females and Toxic Leadership

    Science.gov (United States)

    2012-12-14

    labeled as toxic, can he or she be rehabilitated?; Are there leadership styles that can be promoted to combat toxic leadership?; and Are the senior...examines leadership styles that are favorable for female leaders, and offers Transformational/Adaptive leadership as a style promising rehabilitative tools

  18. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  19. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    Science.gov (United States)

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  20. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.

    Science.gov (United States)

    Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael

    2017-01-15

    Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Al2O3 influence on structural, elastic, thermal properties of Yb(3+) doped Ba-La-tellurite glass: evidence of reduction in self-radiation trapping at 1μm emission.

    Science.gov (United States)

    Balaji, S; Biswas, K; Sontakke, A D; Gupta, G; Ghosh, D; Annapurna, K

    2014-12-10

    Ba-La-tellurite glasses doped with Yb(3+) ions have been prepared through melt quenching technique by modifying their composition with the inclusion of varied concentration of Al2O3 to elucidate its effects on glass structural, elastic, thermal properties and Yb(3+) ion NIR luminescence performance. The FTIR spectral analysis indicates Al2O3 addition is promoting the conversion of BOs from NBOs which have been generated during the process of depolymerisation of main glass forming TeO4 units. The elastic properties of the glass revealed an improved rigidity of the glass network on addition of Al2O3. In concurrence to this, differential thermal analysis showed an increase in glass transition temperature with improved thermal stability factor. Also, Yb(3+) fluorescence dynamics demonstrated that, Al2O3 inclusion helps in restraining the detrimental radiation trapping of ∼1μm emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  4. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3)

    Science.gov (United States)

    Meng, Chang-Yu; Wei, Ming-Fang; Geng, Lei; Hu, Pei-Qing; Yu, Meng-Xia; Cheng, Wen-Dan

    2016-07-01

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV-vis-NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P21/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi3O2)(SeO3)2](NO3) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi3O2)(SeO3)2](NO3) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi3O2)(SeO3)2] 3∞ with NO3- anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO3)](NO3) features 2D bismuth(III) tellurite [Bi(TeO3)2]2∞ layers separated by NO3- anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors.

  5. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  6. Electronic Cigarette Toxicity.

    Science.gov (United States)

    Payne, J Drew; Michaels, David; Orellana-Barrios, Menfil; Nugent, Kenneth

    2017-04-01

    Electronic cigarettes (e-cigarettes) are often advertised as a healthier product when compared with traditional cigarettes. Currently, there are limited data to support this and only a threat of federal regulation from the US Food and Drug Administration. Calls to poison control centers about e-cigarette toxicity, especially in children, and case reports of toxic exposures have increased over the past 3 years. This research letter reports the frequency of hazardous exposures to e-cigarettes and characterizes the reported adverse health effects associated with e-cigarette toxicity.

  7. Toxicity Estimation Software Tool (TEST)

    Science.gov (United States)

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  8. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  9. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Fobil, Julius N.; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava) and Musa paradisiaca (plantain)) around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ) of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children) were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption. PMID:26225988

  10. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Directory of Open Access Journals (Sweden)

    Nesta Bortey-Sam

    2015-07-01

    Full Text Available This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava and Musa paradisiaca (plantain around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption.

  11. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  13. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium.

    Science.gov (United States)

    Allan, Mohammed; Le Roux, Gaël; De Vleeschouwer, François; Bindler, Richard; Blaauw, Maarten; Piotrowska, Natalia; Sikorski, Jaroslaw; Fagel, Nathalie

    2013-07-01

    The objective of our study was to determine the trace metal accumulation rates in the Misten bog, Hautes-Fagnes, Belgium, and assess these in relation to established histories of atmospheric emissions from anthropogenic sources. To address these aims we analyzed trace metals and metalloids (Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn), as well as Pb isotopes, using XRF, Q-ICP-MS and MC-ICP-MS, respectively in two 40-cm peat sections, spanning the last 600 yr. The temporal increase of metal fluxes from the inception of the Industrial Revolution to the present varies by a factor of 5-50, with peak values found between AD 1930 and 1990. A cluster analysis combined with Pb isotopic composition allows the identification of the main sources of Pb and by inference of the other metals, which indicates that coal consumption and metallurgical activities were the predominant sources of pollution during the last 600 years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Global DNA methylation in earthworms: a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments.

    Science.gov (United States)

    Santoyo, María Maldonado; Flores, Crescencio Rodríguez; Torres, Adolfo Lopez; Wrobel, Kazimierz; Wrobel, Katarzyna

    2011-10-01

    In this work, possible relationships between global DNA methylation and metal/metalloid concentrations in earthworms have been explored. Direct correlation was observed between soil and tissue As, Se, Sb, Zn, Cu, Mn, Ag, Co, Hg, Pb (p< 0.05). Speciation results obtained for As and Hg hint at the capability of earthworms for conversion of inorganic element forms present in soil to methylated species. Inverse correlation was observed between the percentage of methylated DNA cytosines and total tissue As, As + Hg, As + Hg + Se + Sb (β = -0.8456, p = 0.071; β = -0.9406, p = 0.017; β = -0.9526, p = 0.012 respectively), as well as inorganic As + Hg (β = -0.8807, p = 0.049). It was concluded that earthworms would be particularly helpful as bioindicators of elements undergoing in vivo methylation and might also be used to assess the related risk of epigenetic changes in DNA methylation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A Dataset for Three-Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment.

    Science.gov (United States)

    Wu, B; Wiekenkamp, I; Sun, Y; Fisher, A S; Clough, R; Gottselig, N; Bogena, H; Pütz, T; Brüggemann, N; Vereecken, H; Bol, R

    2017-11-01

    Quantification and evaluation of elemental distribution in forested ecosystems are key requirements to understand element fluxes and their relationship with hydrological and biogeochemical processes in the system. However, datasets supporting such a study on the catchment scale are still limited. Here we provide a dataset comprising spatially highly resolved distributions of 39 elements in soil profiles of a small forested headwater catchment in western Germany () to gain a holistic picture of the state and fluxes of elements in the catchment. The elements include both plant nutrients and other metals and metalloids that were predominately derived from lithospheric or anthropogenic inputs, thereby allowing us to not only capture the nutrient status of the catchment but to also estimate the functional development of the ecosystem. Soil samples were collected at high lateral resolution (≤60 m), and element concentrations were determined vertically for four soil horizons (L/Of, Oh, A, B). From this, a three-dimensional view of the distribution of these elements could be established with high spatial resolution on the catchment scale in a temperate natural forested ecosystem. The dataset can be combined with other datasets and studies of the TERENO (Terrestrial Environmental Observatories) Data Discovery Portal () to reveal elemental fluxes, establish relations between elements and other soil properties, and/or as input for modeling elemental cycling in temperate forested ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Toxicity Reference Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxicity Reference Database (ToxRefDB) contains approximately 30 years and $2 billion worth of animal studies. ToxRefDB allows scientists and the interested...

  18. Toxics Release Inventory (TRI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). It contains information on the release and waste...

  19. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Science.gov (United States)

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  20. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    Science.gov (United States)

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  1. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Directory of Open Access Journals (Sweden)

    Lorenzo Massimi

    2018-02-01

    Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  2. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico.

    Science.gov (United States)

    Ley-Quiñónez, C; Zavala-Norzagaray, A A; Espinosa-Carreón, T L; Peckham, H; Marquez-Herrera, C; Campos-Villegas, L; Aguirre, A A

    2011-09-01

    Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g⁻¹), followed by Selenium (10.92 μg g⁻¹). The mean concentration of toxic metal Cadmium was 6.12 μg g⁻¹ and 1.01μg g⁻¹ respectively. Mean concentrations of metals followed this pattern: Zn>Se>Ni>Cu>Mn>Cd>Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Metal(loid) levels in biological matrices from human populations exposed to mining contamination--Panasqueira Mine (Portugal).

    Science.gov (United States)

    Coelho, Patrícia; Costa, Solange; Silva, Susana; Walter, Alan; Ranville, James; Sousa, Ana C A; Costa, Carla; Coelho, Marta; García-Lestón, Julia; Pastorinho, M Ramiro; Laffon, Blanca; Pásaro, Eduardo; Harrington, Chris; Taylor, Andrew; Teixeira, João Paulo

    2012-01-01

    Mining activities may affect the health of miners and communities living near mining sites, and these health effects may persist even when the mine is abandoned. During mining processes various toxic wastes are produced and released into the surrounding environment, resulting in contamination of air, drinking water, rivers, plants, and soils. In a geochemical sampling campaign undertaken in the Panasqueira Mine area of central Portugal, an anomalous distribution of several metals and arsenic (As) was identified in various environmental media. Several potentially harmful elements, including As, cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), were quantified in blood, urine, hair, and nails (toe and finger) from a group of individuals living near the Panasqueira Mine who were environmentally and occupationally exposed. A group with similar demographic characteristics without known exposure to mining activities was also compared. Genotoxicity was evaluated by means of T-cell receptor (TCR) mutation assay, and percentages of different lymphocyte subsets were selected as immunotoxicity biomarkers. Inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis showed elevated levels of As, Cd, Cr, Mn, and Pb in all biological samples taken from populations living close to the mine compared to controls. Genotoxic and immunotoxic differences were also observed. The results provide evidence of an elevated potential risk to the health of populations, with environmental and occupational exposures resulting from mining activities. Further, the results emphasize the need to implement preventive measures, remediation, and rehabilitation plans for the region.

  4. Haloacetonitriles: metabolism and toxicity.

    Science.gov (United States)

    Lipscomb, John C; El-Demerdash, Ebtehal; Ahmed, Ahmed E

    2009-01-01

    The haloacetonitriles (HANs) exist in drinking water exclusively as byproducts of disinfection. HANs are found in drinking water more often, and in higher concentrations, when surface water is treated by chloramination. Human exposure occurs through consumption of finished drinking water; oral and dermal contact also occurs, and results from showering, swimming and other activities. HANs are reactive and are toxic to gastrointestinal tissues following oral administration. Such toxicity is characterized by GSH depletion, increased lipid peroxidation, and covalent binding of HAN-associated radioactivity to gut tissues. The presence of GSH in cells is an important protective mechanism against HAN toxicity; depletion of cellular GSH results in increased toxicity. Some studies have demonstrated an apparently synergistic effect between ROS and HAN administration, that may help explain effects observed in GI tissues. ROS are produced in gut tissues, and in vitro evidence indicates that ROS may contribute to the degradation and formation of reactive intermediates from HANs. The rationale for ROS involvement may involve HAN-induced depletion of GSH and the role of GSH in scavenging ROS. In addition to effects on GI tissues, studies show that HAN-derived radiolabel is found covalently bound to proteins and DNA in several organs and tissues. The addition of antioxidants to biologic systems protects against HAN-induced DNA damage. The protection offered by antioxidants supports the role of oxidative stress and the potential for a threshold in han-induced toxicity. However, additional data are needed to substantiate evidence for such a threshold. HANs are readily absorbed from the GI tract and are extensively metabolized. Elimination occurs primarily in urine, as unconjugated one-carbon metabolites. Evidence supports the involvement of mixed function oxidases, the cytochrome P450 enzyme family and GST, in HAN metabolism. Metabolism represents either a detoxification or

  5. The toxicity of plutonium

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1994-01-01

    Shipments of plutonium occasionally pass around the Cape coastal waters on its way to Japan from Europe. This invariably leads to a great deal of speculation of the dangers involved and of the extreme toxicity of plutonium, with the media and environmental groups claiming that (a) plutonium is the most toxic substance known to man, and that (b) a few kilograms of plutonium ground finely and dispersed in the atmosphere could kill every human being on earth. Comparisons with other poisons are drawn, e.g. common inorganic chemicals and biological agents. The original scare around the extraordinary toxicity of Pu seems to have started in 1974 with the claims of Tamplin and Cochran's hot particle theory about plutonium lodging in the sensitive portions of the lungs in small concentrated aggregates where they are much more effective in producing cancers. This theory, however, is regarded as thoroughly discredited by the experts in the field of radiotoxicity. 8 refs

  6. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  7. External radiation toxicity

    International Nuclear Information System (INIS)

    Fritz, T.E.

    1979-01-01

    The section contains summaries of research on neutron and gamma-ray toxicity in rodents, late effects of low-dose rate, whole-body, protracted exposure to 60 Co gamma rays on young adult beagles, and the effects of protracted, low-dose rate exposure to 60 Co gamma rays on preclinical leukemic phase-related changes in the granulopoietic system of beagles

  8. Local anaesthetic toxicity

    African Journals Online (AJOL)

    Local anaesthetic toxicity has been known since the introduction of local anaesthetic drugs into anaesthetic practice more than a hundred ... was the first to think of cocaine as a narcotic. ..... anaesthetics act as Na+ channel-blocking agents, they slow down .... all neurons, leading to global CNS depression, slowing and.

  9. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  10. Uranium: biokinetics and toxicity

    International Nuclear Information System (INIS)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A.

    2000-01-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation

  11. How toxic is ibogaine?

    NARCIS (Netherlands)

    Litjens, Ruud P. W.; Brunt, Tibor M.

    2016-01-01

    Ibogaine is a psychoactive indole alkaloid found in the African rainforest shrub Tabernanthe Iboga. It is unlicensed but used in the treatment of drug and alcohol addiction. However, reports of ibogaine's toxicity are cause for concern. To review ibogaine's pharmacokinetics and pharmacodynamics,

  12. Monosodium Glutamate Toxicity

    African Journals Online (AJOL)

    Dr Olaleye

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic .... wherein the right hemisphere, was preserved for histology and fixed in 10% ... Biochemical Assays: The left hemisphere of the brain samples was ...... development in male and female rats. Exp Physiol.

  13. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  14. Toxic Hazards in Aviation.

    Science.gov (United States)

    1981-04-01

    Pasteur, Lillm,FRANCE. (2) CONISH H.H., EARTH M.L.& IANNi F.L, "Comparative Toxicology of Platics during Thar-modecoqiorition Intsw-re8posium on...Pyrolysnis and Combustion of Materials" Firm and Materials (1976).1, 29-35 (8) ALAAIE Y."Toxicity of Platic dacomposition ProductsŖd Annu~al Progress

  15. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    Science.gov (United States)

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  16. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    Science.gov (United States)

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  17. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  18. Biological control of toxic cyanobacteri

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-05-01

    Full Text Available . Ecotoxicity studies: is toxicity reduced? (Testing on daphnids, fish and human cell lines) Resulting impacts on cyanotoxins (Toxin conformation changes, ELISA detection) Competition assays against toxic cyanobacteria (Can Bacillus etc. outcompete...

  19. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  20. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  1. Portable, accurate toxicity testing

    International Nuclear Information System (INIS)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.; Hinds, A.A.; Vieaux, G.J.

    1994-01-01

    Ever tightening environmental regulations, severe penalties for non-compliance, and expensive remediation costs have stimulated development of methods to detect and measure toxins. Most of these methods are bioassays that must be performed in the laboratory; none previously devised has been truly portable. The US Army, through the Small Business Innovative Research program, has developed a hand-held, field deployable unit for testing toxicity of battlefield water supplies. This patented system employs the measurable quenching, in the presence of toxins, of the natural bioluminescence produced by the marine dinoflagellate alga Pyrocystis lunula. The procedure's inventor used it for years to measure toxicity concentrations of chemical warfare agents actually, their simulants, primarily in the form of pesticides and herbicides plus assorted toxic reagents, waterbottom samples, drilling fluids, even blood. While the procedure is more precise, cheaper, and faster than most bioassays, until recently it was immobile. Now it is deployable in the field. The laboratory apparatus has been proven to be sensitive to toxins in concentrations as low as a few parts per billion, repeatable within a variation of 10% or less, and unlike some other bioassays effective in turbid or colored media. The laboratory apparatus and the hand-held tester have been calibrated with the EPA protocol that uses the shrimplike Mysidopsis bahia. The test organism tolerates transportation well, but must be rested a few hours at the test site for regeneration of its light-producing powers. Toxicity now can be measured confidently in soils, water columns, discharge points, and many other media in situ. Most significant to the oil industry is that drilling fluids can be monitored continuously on the rig

  2. Lead toxicity: current concerns.

    OpenAIRE

    Goyer, R A

    1993-01-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has be...

  3. Toxic Substances Control Act

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-15

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  4. Kombucha--toxicity alert.

    Science.gov (United States)

    The Kombucha mushroom, also known as Manchurian mushroom, is a mail-order product touted to lower blood pressure and raise T-cell counts. No controlled trials have been conducted to test these claims. Aspergillus, a mold that may grow on the Kombucha mushroom, attacks the brain and may be fatal to persons with weakened immune systems. Reported toxicity reactions have included stomach problems and yeast infections. Taking Kombucha in combination with other drugs may affect the drugs potency.

  5. Toxicity of nitrogen pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Diggle, W M; Gage, J C

    1954-01-01

    Two ppM N/sub 2/O/sub 5/ for 4 h or 1 ppM, 4 h/day for 12 days produced acute pulmonary edema in rats. Ten daily 4-h exposures to 0.5 ppM produced no edema but respiratory distress. NO/sub 2/ produced no edema (some hemorrhage) at 80 mg/m/sup 3/. Nitric acid vapor (63 mg/m/sup 3/) had no obvious toxic effect.

  6. The formal combination of three singlet biradicaloid entities to a singlet hexaradicaloid metalloid Ge14[Si(SiMe3)3]5[Li(THF)2]3 cluster.

    Science.gov (United States)

    Schenk, Christian; Kracke, Andreas; Fink, Karin; Kubas, Adam; Klopper, Wim; Neumaier, Marco; Schnöckel, Hansgeorg; Schnepf, Andreas

    2011-03-02

    The reaction of GeBr with LiSi(SiMe(3))(3) leads to the metalloid cluster compound [(THF)(2)Li](3)Ge(14)[Si(SiMe(3))(3)](5) (1). After the introduction of a first cluster of this type, in which 14 germanium atoms form an empty polyhedron, [(THF)(2)Li](3)Ge(14)[Ge(SiMe(3))(3)](5) (2), we present here further investigations on 1 to obtain preliminary insight into its chemical and bonding properties. The molecular structure of 1 is determined via X-ray crystal structure solution using synchrotron radiation. The electronic structure of the Ge(14) polyhedron is further examined by quantum chemical calculations, which indicate that three singlet biradicaloid entities formally combine to yield the singlet hexaradicaloid character of 1. Moreover, the initial reactions of 1 after elimination of the [Li(THF)(2)](+) groups by chelating ligands (e.g., TMEDA or 12-crown-4) are presented. Collision induced dissociation experiments in the gas phase, employing FT-ICR mass spectrometry, lead to the elimination of the singlet biradicaloid Ge(5)H(2)[Si(SiMe(3))(3)](2) cluster. The unique multiradicaloid bonding character of the metalloid cluster 1 might be used as a model for reactions and properties in the field of surface science and nanotechnology.

  7. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  8. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    Science.gov (United States)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    Science.gov (United States)

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  10. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Plint, Trevor; Lessard, Benoît H. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5 (Canada); Bender, Timothy P. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5 (Canada); Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2016-04-14

    In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X){sub n}-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) or (X){sub n}-MPc)(50 nm)/Alq{sub 3} (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m{sup 2} at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, and tin phthalocyanine (Cl{sub 2}-SiPc, Cl{sub 2}-GePc, and Cl{sub 2}-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m{sup 2} (12 V), 23 ± 1 cd/m{sup 2} (8.5 V), and 59 ± 5 cd/m{sup 2} (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl{sub 2}-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F{sub 10}-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m{sup 2} (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.

  11. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes

    Science.gov (United States)

    Plint, Trevor; Lessard, Benoît H.; Bender, Timothy P.

    2016-04-01

    In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X)n-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) or (X)n-MPc)(50 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m2 at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, and tin phthalocyanine (Cl2-SiPc, Cl2-GePc, and Cl2-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m2 (12 V), 23 ± 1 cd/m2 (8.5 V), and 59 ± 5 cd/m2 (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl2-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m2 (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.

  12. Modern toxic antipersonnel projectiles.

    Science.gov (United States)

    Gaillard, Yvan; Regenstreif, Philippe; Fanton, Laurent

    2014-12-01

    In the spring of 1944, Kurt von Gottberg, the SS police chief in Minsk, was shot and injured by 2 Soviet agents. Although he was only slightly injured, he died 6 hours later. The bullets were hollow and contained a crystalline white powder. They were 4-g bullets, semi-jacketed in cupronickel, containing 28 mg of aconitine. They were later known as akonitinnitratgeschosse. The Sipo (the Nazi security police) then ordered a trial with a 9-mm Parabellum cartridge containing Ditran, an anticholinergic drug with hallucinogenic properties causing intense mental confusion. In later years, QNB was used and given the NATO code BZ (3-quinuclidinyl-benzylate). It was proven that Saddam Hussein had this weapon (agent 15) manufactured and used it against the Kurds. Serbian forces used the same type of weapon in the Bosnian conflict, particularly in Srebrenica.The authors go on to list the Cold War toxic weapons developed by the KGB and the Warsaw pact countries for the discreet elimination of dissidents and proindependence leaders who had taken refuge in the West. These weapons include PSZh-13 launchers, the Troika electronic sequential pistol, and the ingenious 4-S110T captive piston system designed by the engineer Stechkin. Disguised as a cigarette case, it could fire a silent charge of potassium cyanide. This rogues gallery also includes the umbrella rigged to inject a pellet of ricin (or another phytalbumin of similar toxicity, such as abrin or crotin) that was used to assassinate the Bulgarian writer and journalist Georgi Markov on September 7, 1978, in London.During the autopsy, the discovery of a bullet burst into 4 or 5 parts has to make at once suspecting the use of a toxic substance. Toxicological analysis has to look for first and foremost aconitine, cyanide, suxamethonium, Ditran, BZ, or one of the toxic phytalbumins. The use of such complex weapons has to make suspect a powerful organization: army, secret service, terrorism. The existence of the Russian UDAR spray

  13. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  14. Thyroid cancer in toxic and non-toxic multinodular goiter

    Directory of Open Access Journals (Sweden)

    Cerci C

    2007-01-01

    Full Text Available Background : Many authors have claimed that hyperthyroidism protects against thyroid cancer and believed that the incidence of malignancy is lower in patients with toxic multinodular goiter (TMG than in those with non-toxic multinodular goiter. But in recent studies, it was reported that the incidence of malignancy with TMG is not as low as previously thought. Aim : To compare the thyroid cancer incidence in patients with toxic and non-toxic multinodular goiter. Settings and Design : Histology reports of patients treated surgically with a preoperative diagnosis of toxic and non-toxic multinodular goiter were reviewed to identify the thyroid cancer incidence. Patients having a history of neck irradiation or radioactive iodine therapy were excluded from the study. Materials and Methods : We reviewed 294 patients operated between 2001-2005 from toxic and non-toxic multinodular goiter. One hundred and twenty-four of them were toxic and 170 were non-toxic. Hyperthyroidism was diagnosed by elevated tri-iodothyroinine / thyroxine ratios and low thyroid-stimulating hormone with clinical signs and symptoms. All patients were evaluated with ultrasonography and scintigraphy and fine needle aspiration biopsy. Statistical Analysis Used : Significance of the various parameters was calculated by using ANOVA test. Results : The incidence of malignancy was 9% in the toxic and 10.58% in the non-toxic multinodular goiter group. Any significant difference in the incidence of cancer and tumor size between the two groups could not be detected. Conclusions : The incidence of malignancy in toxic multinodular goiter is not very low as thought earlier and is nearly the same in non-toxic multinodular goiter.

  15. The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy

    Science.gov (United States)

    Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.

    2018-05-01

    The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.

  16. Is LSD toxic?

    Science.gov (United States)

    Nichols, David E; Grob, Charles S

    2018-03-01

    LSD (lysergic acid diethylamide) was discovered almost 75 years ago, and has been the object of episodic controversy since then. While initially explored as an adjunctive psychiatric treatment, its recreational use by the general public has persisted and on occasion has been associated with adverse outcomes, particularly when the drug is taken under suboptimal conditions. LSD's potential to cause psychological disturbance (bad trips) has been long understood, and has rarely been associated with accidental deaths and suicide. From a physiological perspective, however, LSD is known to be non-toxic and medically safe when taken at standard dosages (50-200μg). The scientific literature, along with recent media reports, have unfortunately implicated "LSD toxicity" in five cases of sudden death. On close examination, however, two of these fatalities were associated with ingestion of massive overdoses, two were evidently in individuals with psychological agitation after taking standard doses of LSD who were then placed in maximal physical restraint positions (hogtied) by police, following which they suffered fatal cardiovascular collapse, and one case of extreme hyperthermia leading to death that was likely caused by a drug substituted for LSD with strong effects on central nervous system temperature regulation (e.g. 25i-NBOMe). Given the renewed interest in the therapeutic potential of LSD and other psychedelic drugs, it is important that an accurate understanding be established of the true causes of such fatalities that had been erroneously attributed to LSD toxicity, including massive overdoses, excessive physical restraints, and psychoactive drugs other than LSD. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Toxic potential of palytoxin.

    Science.gov (United States)

    Patocka, Jiří; Gupta, Ramesh C; Wu, Qing-hua; Kuca, Kamil

    2015-10-01

    This review briefly describes the origin, chemistry, molecular mechanism of action, pharmacology, toxicology, and ecotoxicology of palytoxin and its analogues. Palytoxin and its analogues are produced by marine dinoflagellates. Palytoxin is also produced by Zoanthids (i.e. Palythoa), and Cyanobacteria (Trichodesmium). Palytoxin is a very large, non-proteinaceous molecule with a complex chemical structure having both lipophilic and hydrophilic moieties. Palytoxin is one of the most potent marine toxins with an LD50 of 150 ng/kg body weight in mice exposed intravenously. Pharmacological and electrophysiological studies have demonstrated that palytoxin acts as a hemolysin and alters the function of excitable cells through multiple mechanisms of action. Palytoxin selectively binds to Na(+)/K(+)-ATPase with a Kd of 20 pM and transforms the pump into a channel permeable to monovalent cations with a single-channel conductance of 10 pS. This mechanism of action could have multiple effects on cells. Evaluation of palytoxin toxicity using various animal models revealed that palytoxin is an extremely potent neurotoxin following an intravenous, intraperitoneal, intramuscular, subcutaneous or intratracheal route of exposure. Palytoxin also causes non-lethal, yet serious toxic effects following dermal or ocular exposure. Most incidents of palytoxin poisoning have manifested after oral intake of contaminated seafood. Poisonings in humans have also been noted after inhalation, cutaneous/systemic exposures with direct contact of aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing Cnidarian zoanthids. Palytoxin has a strong potential for toxicity in humans and animals, and currently this toxin is of great concern worldwide.

  18. Metal metabolism and toxicity

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Whelton, B.D.; Moretti, E.S.; Peterson, D.P.; Oldham, R.D.

    1985-01-01

    This research focuses on the role of pregnancy and lactation in susceptibility to the toxic effects of cadmium and lead. Responses under investigation include lead-induced changes in pathways for vitamin D and calcium metabolism and cadmium-induced alterations in kidney function and skeletal structure. The second area focuses on the gastrointestinal absorption of plutonium and other actinide elements. Studies currently being conducted in nonhuman primates to develop a procedure to determine GI absorption values of uranium and plutonium that does not require sacrifice of the animal. 6 refs

  19. Control of air toxics

    International Nuclear Information System (INIS)

    Livengood, C.D.

    1995-01-01

    For more than 10 years, Argonne National Laboratory has supported the US DOE's Flue Gas Cleanup Program objective by developing new or improved environmental controls for industries that use fossil fuels. Argonne's pollutant emissions research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing, to pilot-scale field tests of several technologies. The work on air toxics is currently divided into two components: Investigating measures to improve the removal of mercury in existing pollution-control systems applied to coal combustion; and, Developing sensors and control techniques for emissions found in the textile industry

  20. Toxicity of tritium

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Among radionuclides of importance in atomic energy, 3 H has relatively low toxicity. The main health and environmental worry is the possibility that significant biological effects may follow from protracted exposure to low concentrations in water. To examine this possible hazard and measure toxicity at low tritium concentrations, chronic exposure studies were done on mice and monkeys. During vulnerable developmental periods animals were exposed to 3 HOH, and mice were exposed also to 60 Co gamma irradiation and energy-related chemical agents. The biological endpoint measured was the irreversible loss of female germ cells. Effects from tritium were observed at surprisingly low concentrations where 3 H was found more damaging than previously thought. Comparisons between tritium and gamma radiation showed the relative biological effectiveness (RBE) to be greater than 1 and to reach approximately 3 at very low exposures. For perspective, other comparisons were made: between radiation and chemical agents, which revealed parallels in action on germ cells, and between pre- and postnatal exposure, which warn of possible special hazard to the fetus from both classes of energy-related byproducts

  1. Toxic compounds in honey.

    Science.gov (United States)

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Thallium toxicity in humans.

    Science.gov (United States)

    Cvjetko, Petra; Cvjetko, Ivan; Pavlica, Mirjana

    2010-03-01

    Thallium is a naturally occurring trace element, widely distributed in the earth's crust, but at very low concentrations. It does not have a known biological use and does not appear to be an essential element for life. It has been considered one of the most toxic heavy metals.Occasionally, there are reports on thallium poisoning as results of suicide or murder attempt or accident. The main threat to humans is through occupational exposure, environmental contamination, and accumulation in food, mainly in vegetables grown on contaminated soil. Increasing use in emerging new technologies and demanding high-tech industry constantly raise concern about exposure risk to all living organisms. Thallium is considered a cumulative poison that can cause adverse health effects and degenerative changes in many organs. The effects are the most severe in the nervous system. The exact mechanism of thallium toxicity still remains unknown, although impaired glutathione metabolism, oxidative stress, and disruption of potassium-regulated homeostasis may play a role. The lack of data about mutagenic, carcinogenic, or teratogenic effects of thallium compounds in humans calls for further research.

  3. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  4. Metalloid Aluminum Clusters with Fluorine

    Science.gov (United States)

    2016-12-01

    metal clusters containing Al4 units. The Al4 was evaluated when attached to an alkaline or transitional metals, namely Na, Li, Be, Cu and Zn. Mandado...i i i n r r r   and therefore the dimensionality goes as 3 3N . This changes the problem to a many one electron problem. Recall that

  5. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  6. Wild lettuce (Lactuca virosa) toxicity

    OpenAIRE

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity...

  7. Availability of metals Cd and Pb and metalloid As in the Ribeira do Iguape River hydrographic basin and its tributaries: an environmental contamination assessment'

    International Nuclear Information System (INIS)

    Castro, Francisco Jose Viana de

    2012-01-01

    During several decades the Alto Vale of Ribeira region (SP-PR) was under influence of lead mining activities, refined and processed in the mines of the region. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aimed to investigate the presence and concentration levels of metals cadmium (Cd) and lead (Pb) and metalloid arsenic (As) in the water, sediment and biota (fish blood) in the aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The sampling collection occurred in 8 sites and fish samples were caught by fishing nets and blood sampling was done in the site. The determination of these elements was carried out by atomic absorption spectrometry with graphite furnace electro thermal heating (GF AAS). This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, regarding precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb in the sediment were compared to the Canadian Council of Ministers of the Environment (CCME), TEL (Threshold Effect Level) e PEL (Probable Effect Level) adopted by CETESB and CONAMA 454/2012 Resolution. The results for As, Cd and Pb in water samples were below the QL of the analytical technique used, indicating that these elements are in concentration levels that do not affect the water quality standard established by CONAMA 357/2005. On the other hand, the concentration values for these elements in fish blood and sediment samples showed a strong contamination tendency for Cd and Pb most of the sampling points assessed. The highest Cd concentration in fish blood was 24.3 μg L -1 , at site 2. For Pb, the highest concentration value was 118 νg L -1 , at

  8. Atmospheric Deposition History of Trace Metals and Metalloids for the Last 200 Years Recorded by Three Peat Cores in Great Hinggan Mountain, Northeast China

    Directory of Open Access Journals (Sweden)

    Kunshan Bao

    2015-03-01

    Full Text Available A large number of studies on trace metals and metalloids (TMs accumulations in peatlands have been reported in Europe and North America. Comparatively little information is available on peat chronological records of atmospheric TMs flux in China. Therefore, the objective of our study was to determine the concentrations and accumulation rates (ARs of TMs in Motianling peatland from Great Hinggan Mountain, northeast China, and to assess these in relation to establish a historical profile of atmospheric metal emissions from anthropogenic sources. To meet these aims we analyzed 14 TMs (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sr, Sb, Tl, and Zn and Pb isotopes (206Pb, 207Pb, 208Pb using ICP-AES and ICP-MS, respectively, in three peat sections dated by 210Pb and 137Cs techniques (approximately spanning the last 200 years. There is a general agreement in the elemental concentration profiles which suggests that all investigated elements were conserved in the Motianling bog. Three principal components were discriminated by principal component analysis (PCA based on Eigen-values >1 and explaining 85% of the total variance of element concentrations: the first component representing Ba, Co, Cr, Mo, Ni, Sr and Tl reflected the lithogenic source; the second component covering As, Cu and Sb, and Cd is associated with an anthropogenic source from ore mining and processing; the third component (Pb isotope, Pb and Zn is affected by anthropogenic Pb pollution from industrial manufacturing and fossil-fuel combustion. The pre-industrial background of typical pollution elements was estimated as the average concentrations of TMs in peat samples prior to 1830 AD and with a 207Pb/206Pb ratio close to 1.9. ARs and enrichment factors (EFs of TMs suggested enhanced metal concentrations near the surface of the peatland (in peat layers dated from the 1980s linked to an increasing trend since the 2000s. This pollution pattern is also fingerprinted by the Pb isotopic composition

  9. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  10. E-Cigarette Toxicity?

    Science.gov (United States)

    Tegin, Gulay; Mekala, Hema Madhuri; Sarai, Simrat Kaur; Lippmann, Steven

    2018-01-01

    Tobacco smoking is the most preventable cause of morbidity and mortality. In just a few short years, electronic cigarettes (e-cigarettes) have become increasingly popular, especially for younger individuals. Many people believe that e-cigarettes are safe. The inhaled aerosols of e-cigarettes contain numerous potential toxicities, some of which could be dangerous for health with long-term use. The safety of prolonged aerosol exposure is not known. The use of e-cigarettes as a harm-reduction tool at stopping tobacco smoking is not uniformly successful. E-cigarettes may be safer than tobacco products, but repeated prolonged exposure to their aerosols has its own considerable potential risk. The long-term health consequences of their use remain to be established. Physicians should vigorously discourage the use of e-cigarettes and tobacco products, with special emphasis on abstinence for younger people and during pregnancy or lactation.

  11. Children's Ability to Recognise Toxic and Non-Toxic Fruits

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol

    2011-01-01

    Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…

  12. Potential human health risk by metal(loid)s, 234,238U and 210Po due to consumption of fish from the "Luis L. Leon" Reservoir (Northern México).

    Science.gov (United States)

    Luna-Porres, Mayra Y; Rodríguez-Villa, Marco A; Herrera-Peraza, Eduardo F; Renteria-Villalobos, Marusia; Montero-Cabrera, María E

    2014-06-25

    Concentrations of As, Cu, Fe, Hg, Pb and Zn and activity concentrations from 234,238U and 210Po in water, fillet, liver and gills were determined in three stocked fish species from the Luis L. Leon reservoir, located in Northern Mexico. The considered species were Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus. 238U and 234U activity concentration (AC) in fillet samples showed values of 0.007-0.014 and 0.01-0.02 Bq∙kg-1 wet weight (ww), respectively. Liver samples for L. cyanellus, C. carpio and I. furcatus present 210Po AC of 1.16-3.26, 0.70-1.13 and 0.93-1.37 Bq∙kg-1 ww. Arsenic, mercury and lead concentration intervals in fillet samples were 0.13-0.39, 0.005-0.126 and 0.009-0.08 mg∙kg-1 ww, respectively, while in gill samples they were 0.11-0.43, 0.002-0.039 and 0.02-0.26 mg∙kg-1 ww. The elemental Bioaccumulation Factor (BAF) for fish tissues with respect to their concentrations in water was determined. L. cyanellus showed the highest BAF values for As and total U, being BAFAs = 37 and 40 L∙kg-1 in fillet and gills, respectively, and BAFU total = 1.5 L∙kg-1 in fillet. I. furcatus showed the highest BAF values for Hg and Pb, being BAFHg = 40 and 13 L∙kg-1 in fillet and gills, and BAFPb = 6.5 and 22 L∙kg-1 in fillet and gills, respectively. Some metal(loid) concentrations are slightly higher than European regulations for fish fillets. The difference in concentrations of metal(loid)s in fillet among the studied species is probably due to their differences in diet and habitat.

  13. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.

    Science.gov (United States)

    Gür, Nurcan; Türker, Onur Can; Böcük, Harun

    2016-08-01

    As many of the metalloid-based pollutants, the boron (B) toxicity issues have aroused more and more global attentions, especially concerning drinking water sources which flow through boron-rich areas. Therefore, feasible and innovative approaches are required in order to assess B toxicity in aquatic ecosystems. In this study, the toxic effects of B on Lemna minor L. and Lemna gibba L. were investigated using various endpoints including number of fronds, growth rates, dry biomass and antioxidants enzymatic activities. Lemna species were exposed to B concentrations of 2 (control), 4, 8, 16, 32, 64 and 128 mg L(-1) for a test period of 7 days. The results demonstrated that plant growth was significantly reduced when the B concentration reached 16 mg L(-1). Furthermore, our results also concluded that among the antioxidative enzymes, SOD, APX and GPX can serve as important biomarkers for B-rich environment. The present results suggested that L. minor and L. gibba are very useful model plants for phytoremediation of low-B contaminated wastewater and they are also suitable options for B biomonitoring due to high phototoxic sensitivity against B. In this respect, the scientific insight of the present study is to fill the gaps in the research about the use of L. minor and L. gibba in ecotoxicological research associated with B toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hydroxycut-induced Liver Toxicity

    African Journals Online (AJOL)

    hanumantp

    Annals of Medical and Health Sciences Research | Jan-Feb 2014 | Vol 4 ... supplements can be responsible for documented or undocumented adverse drug effects. The ... Keywords: Hydroxycut, Liver toxicity, Nutritional supplements ... Caffeine anhydrous: 200 mg* ... series and review of liver toxicity from herbal weight loss.

  15. One Health and Toxic Cyanobacteria

    Science.gov (United States)

    One Health and toxic cyanobacteria Blooms of toxic freshwater blue-green algae or cyanobacteria (HABs) have been in the news after HABs associated with human and animal health problems have been reported in Florida, California and Utah during 2016. HABs occur in warm, slow moving...

  16. Toxic Leadership in Educational Organizations

    Science.gov (United States)

    Green, James E.

    2014-01-01

    While research on the traits and skills of effective leaders is plentiful, only recently has the phenomenon of toxic leadership begun to be investigated. This research report focuses on toxic leadership in educational organizations--its prevalence, as well as the characteristics and early indicators. Using mixed methods, the study found four…

  17. Building a developmental toxicity ontology.

    Science.gov (United States)

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  18. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  19. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  20. VARIATIONS IN REPRODUCTIVE TOXICANT IDENTIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F

    2008-05-13

    Reproductive toxicants are a very important class of compounds. They present unique hazards to those of child bearing ages, perform their 'dirty work' using a wide variety of mechanisms on a number of different organs, and are regulatorily important. Because of all of this, properly identifying reproductive toxicants is important, but fraught with difficulty. In this paper we will describe types or reproductive toxicants, their importance, and both mistakes and good practices that people who are not experts in reproductive toxicology may use in their attempts to identify them. Additionally, this paper will focus on chemical reproductive toxicants and will not address biological agents that could affect reproductive toxicity although many principles outlined here could be applied to that endeavor.

  1. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  2. Toxic epidermal necrolysis.

    Science.gov (United States)

    Pereira, Frederick A; Mudgil, Adarsh Vijay; Rosmarin, David M

    2007-02-01

    Toxic epidermal necrolysis (TEN) is an unpredictable, life-threatening drug reaction associated with a 30% mortality. Massive keratinocyte apoptosis is the hallmark of TEN. Cytotoxic T lymphocytes appear to be the main effector cells and there is experimental evidence for involvement of both the Fas-Fas ligand and perforin/granzyme pathways. Optimal treatment for these patients remains to be clarified. Discontinuation of the offending drug and prompt referral to a burn unit are generally agreed upon steps. Beyond that, however, considerable controversy exists. Evidence both pro and con exists for the use of IVIG, systemic corticosteroid, and other measures. There is also evidence suggesting that combination therapies may be of value. All the clinical data, however, is anecdotal or based on observational or retrospective studies. Definitive answers are not yet available. Given the rarity of TEN and the large number of patients required for a study to be statistically meaningful, placebo controlled trials are logistically difficult to accomplish. The absence of an animal model further hampers research into this condition. This article reviews recent data concerning clinical presentation, pathogenesis and treatment of TEN. At the conclusion of this learning activity, participants should have acquired a more comprehensive knowledge of our current understanding of the classification, clinical presentation, etiology, pathophysiology, prognosis, and treatment of TEN.

  3. The toxicity of plutonium

    International Nuclear Information System (INIS)

    Ramsden, D.; Johns, T.F.

    1977-01-01

    Reference is made to recent publications concerned with the radiotoxicity of inhaled insoluble Pu compounds. The publications are a paper by Thorne and Vennart (Nature 263:555 (1976)), a report entitled 'The Toxicity of Plutonium', (London (HMSO), 1975), and the 'Sixth Report of the Royal Commission on Environmental Pollution', (Cmnd. 6618, London (HMSO), 1976). Thorne and Vennart concluded that the previously accepted value for the maximum permissible annual intake (MPAI) of such compounds may be too high by a factor of about five, and a similar conclusion was reached in the other two publications. It is thought by the present authors that the methods which have been used to suggest new values for the MPAI are unduly pessimistic for high-fired PuO 2 ; calculations have been based on the lung model of ICRP Publication 19 'The Metabolism of Compounds of Plutonium and the Other Actinides', (International Commission of Radiological Protection, 1972). This involves concluding that the risks to bone and liver are comparable to those for lung. This is discussed and it is thought that the previously established idea that the lung is the critical organ remains substantially correct for the case of high-fired PuO 2 . (U.K.)

  4. Molecular toxicity mechanism of nanosilver

    Directory of Open Access Journals (Sweden)

    Danielle McShan

    2014-03-01

    Full Text Available Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O2 and other molecules in the environmental and biological systems leading to the release of Ag+, a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag+. In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag+ inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione, binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1 the toxic contribution from the ionic form versus the nano-form; (2 key enzymes and signaling pathways responsible for the toxicity; and (3 effect of coexisting molecules on the toxicity and its relationship to surface coating.

  5. Evaluation of genetic diversity between toxic and non toxic Jatropha ...

    African Journals Online (AJOL)

    Massimo

    Indian varieties and a non-toxic variety of Mexican origin by means of about 400 RAPD ... evaluate the level of polymorphism and the capacity to discriminate between the ..... Population genetic software for teaching and research. Mol. Ecol.

  6. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  7. A COMPREHENSIVE REVIEW OF TOXIC LEADERSHIP

    Science.gov (United States)

    2016-02-05

    characteristics of a toxic leader , but labels the characteristics - leader types.  Deceptive  Autocratic  Egotistic  Incompetent  Ignorant...3 Characteristics of a Toxic Leader ...5 Table 2: Toxic Leader Characteristics