WorldWideScience

Sample records for toxic gas concentration

  1. TOXRISK, Toxic Gas Release Accident Analysis

    International Nuclear Information System (INIS)

    Bennett, D.E.; Chanin, D.I.; Shiver, A.W.

    1993-01-01

    1 - Description of program or function: TOXRISK is an interactive program developed to aid in the evaluation of nuclear power plant control room habitability in the event of a nearby toxic material release. The program uses a model which is consistent with the approach described in the NRC Regulatory Guide 1.78. Release of the gas is treated as an initial puff followed by a continuous plume. The relative proportions of these as well as the plume release rate are supplied by the user. Transport of the gas is modeled as a Gaussian distribution and occurs through the action of a constant velocity, constant direction wind. Great flexibility is afforded the user in specifying the release description, meteorological conditions, relative geometry of the accident and plant, and the plant ventilation system characteristics. Two types of simulation can be performed: multiple case (parametric) studies and probabilistic analyses. Upon execution, TOXRISK presents a menu, and the user chooses between the Data Base Manager, the Multiple Case program, and the Probabilistic Study Program. The Data Base Manager provides a convenient means of storing, retrieving, and modifying blocks of data required by the analysis programs. The Multiple Case program calculates resultant gas concentrations inside the control room and presents a summary of information that describes the event for each set of conditions given. Optimally, a time history profile of inside and outside concentrations can also be produced. The Probabilistic Study program provides a means for estimating the annual probability of operator incapacitation due to toxic gas accidents on surrounding transportation routes and storage sites. 2 - Method of solution: Dispersion or diffusion of the gas during transport is described by modified Pasquill-Gifford dispersion coefficients

  2. Maryland air toxics regulation applicable to a natural gas compressor station

    International Nuclear Information System (INIS)

    Weidemann, H.A.; Hoffman, P.M.

    1992-01-01

    Columbia Gas Transmission Corporation submitted an air permit application to the Maryland Department of the Environment to construct a natural gas compressor station near Rutledge, Maryland. The station consists of three natural gas-fueled internal combustion reciprocating engines, each rated at 3200 horsepower. Maximum potential pollutant emissions associated with the station operation did not trigger Prevention of Significant Deterioration review or nonattainment area New Source review. However, a minor source air permit cannot be issued without addressing Maryland's toxic air regulations. Columbia initiated a detailed investigation of toxic air pollutants, including a stack test of an identical engine. Based on this information, the proposed station was subject to the toxic air regulation for acetaldehyde, acrolein, benzene, crotonaldehyde, and formaldehyde. Compliance with the toxic air regulation for crotonaldehyde was demonstrated by having an emission rate less than the threshold emission rate, specified in the regulation. The ambient air quality impact of the other four pollutants was determined using the Industrial Source Complex dispersion model and resulted in predicted concentrations below the pollutant-specific acceptable ambient level. A carcinogenic impact analysis was performed for acetaldehyde, benzene, and formaldehyde to demonstrate compliance with the accepted risk of one in one hundred thousand

  3. A design of toxic gas detecting security robot car based on wireless path-patrol

    Directory of Open Access Journals (Sweden)

    Cheng Ho-Chih

    2017-01-01

    Full Text Available Because a toxic gas detecting/monitoring system in a chemical plant is not movable, a gas detecting/monitoring system will be passive and the detecting range will also be constrained. This invention is an active multi-functional wireless patrol car that can substitute for humans that inspect a plant's security. In addition, to widen the monitoring vision within the environment, two motors used to rotate a wireless IPCAM with two axes are presented. Also, to control the robot car's movement, two axis motors used to drive the wheel of the robot car are also installed. Additionally, a toxic gas detector is linked to the microcontroller of the patrol car. The detected concentration of the gas will be fed back to the server pc. To enhance the robot car's patrolling duration, a movable electrical power unit in conjunction with a wireless module is also used. Consequently, this paper introduces a wireless path-patrol and toxic gas detecting security robot car that can assure a plant's security and protect workers when toxic gases are emitted.

  4. Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

    Directory of Open Access Journals (Sweden)

    Akamatsu Akinori

    2012-02-01

    Full Text Available Abstract Background Chlorine dioxide (CD gas has a potent antimicrobial activity at extremely low concentration and may serve as a new tool for infection control occupationally as well as publicly. However, it remains unknown whether the chronic exposure of CD gas concentration effective against microbes is safe. Therefore, long-term, low concentration CD gas inhalation toxicity was studied in rats as a six-month continuous whole-body exposure followed by a two-week recovery period, so as to prove that the CD gas exposed up to 0.1 ppm (volume ratio is judged as safe on the basis of a battery of toxicological examinations. Methods CD gas at 0.05 ppm or 0.1 ppm for 24 hours/day and 7 days/week was exposed to rats for 6 months under an unrestrained condition with free access to chow and water in a chamber so as to simulate the ordinary lifestyle in human. The control animals were exposed to air only. During the study period, the body weight as well as the food and water consumptions were recorded. After the 6-month exposure and the 2-week recovery period, animals were sacrificed and a battery of toxicological examinations, including biochemistry, hematology, necropsy, organ weights and histopathology, were performed. Results Well regulated levels of CD gas were exposed throughout the chamber over the entire study period. No CD gas-related toxicity sign was observed during the whole study period. No significant difference was observed in body weight gain, food and water consumptions, and relative organ weight. In biochemistry and hematology examinations, changes did not appear to be related to CD gas toxicity. In necropsy and histopathology, no CD gas-related toxicity was observed even in expected target respiratory organs. Conclusions CD gas up to 0.1 ppm, exceeding the level effective against microbes, exposed to whole body in rats continuously for six months was not toxic, under a condition simulating the conventional lifestyle in human.

  5. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Carr, R. S.; Chapman, D. C.; Presley, B. J.; Biedenbach, J. M.; Robertson, L.

    1996-01-01

    Sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore oil and gas platforms in the Gulf of Mexico to determine the potential long-term environmental impacts of offshore oil and gas exploration and production. Evidence of toxicity was obtained from four of the five platforms from data on sea urchin fertilization and embryonic development. The majority of toxic samples were collected within 150 m of the platform. Sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations. Porewater metal concentrations were found to be high enough to account for the observed toxicity. The general conclusion reached from these toxicity tests was that the contaminant-induced impacts from the offshore platforms were confined to a limited area in the immediate vicinity of the platform. 23 refs., 8 tabs., 2 figs

  6. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  7. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  8. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Urbaniak, Magdalena; Kiedrzyńska, Edyta

    2015-10-01

    Wastewater treatment plants (WWTPs) are widely recognized as important sources of toxic contaminants such as polychlorinated biphenyls (PCBs). An example is given in the present paper, where concentrations of 12 dioxin-like PCBs (dl-PCBs) congeners were investigated in effluents from 14 WWTPs of different sizes, using gas chromatography tandem-mass spectrometry. The results obtained demonstrate that the smallest WWTPs are characterized by the highest total dl-PCB concentration of 102.69 pg/L, roughly twice those of medium-size and large WWTPs, i.e. 41.14 and 48.29 pg/L, respectively. In all cases, the concentrations obtained were generated mostly by increased contributions of PCB-77, PCB-105 and PCB-118 which constituted 48 %-59 % of the mean dl-PCB concentration. The results also reveal a predominance of mono-ortho over non-ortho PCBs. All three types of WWTP effluent were found to have similar toxic equivalency (TEQ) values, ranging from 0.31 for large to 0.37 pg TEQ/L for medium WWTPs.

  9. Estimation of Toxicity Equivalent Concentration (TEQ) of ...

    African Journals Online (AJOL)

    Estimation of Toxicity Equivalent Concentration (TEQ) of carcinogenic polycyclic aromatic hydrocarbons in soils from Idu Ekpeye playground and University of Port ... Effective soil remediation and detoxification method like Dispersion by chemical reaction technology should be deployed to clean-up sites to avoid soil toxicity ...

  10. An approach for estimating toxic releases of H2S-containing natural gas.

    Science.gov (United States)

    Jianwen, Zhang; Da, Lei; Wenxing, Feng

    2014-01-15

    China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards' effects by two essential parameters - toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after release incidents. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An approach for estimating toxic releases of H{sub 2}S-containing natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Jianwen, Zhang, E-mail: zhangjw@mail.buct.edu.cn [Lab of Fluid Flow and Heat Transfer, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Safety Management, Beijing University of Chemical Technology, Beijing 100029 (China); Da, Lei [Lab of Fluid Flow and Heat Transfer, Beijing University of Chemical Technology, Beijing 100029 (China); College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wenxing, Feng [Pipeline Research Center of PetroChina Company Lmited, 51 Golden Road, Langfang 065000 (China)

    2014-01-15

    Highlights: • Behavior of H{sub 2}S-containing natural gas exhibits appearance of neutral gas by CFD. • The poisoning hazards of H{sub 2}S by gas pipeline releases are successfully estimated. • An assessment method for available safe egress time is proposed. -- Abstract: China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards’ effects by two essential parameters – toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after

  12. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico

    Science.gov (United States)

    Carr, R.S.; Chapman, D.C.; Presley, B.J.; Biedenbach, J.M.; Robertson, L.; Boothe, P.; Kilada, R.; Wade, T.; Montagna, P.

    1996-01-01

    As part of a multidisciplinary program to assess the potential long-term impacts of offshore oil and gas exploration and production activities in the Gulf of Mexico, sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore platforms. Based on data from sea urchin fertilization and embryological development assays, toxicity was observed near four of the five platforms sampled; the majority of the toxic samples were collected within 150 m of a platform. There was excellent agreement among the results of porewater tests with three different species (sea urchin embryological development, polychaete reproduction, and copepod nauplii survival). The sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations, and good agreement was observed between predicted and observed toxicity. Porewater metal concentrations compared with EC50, LOEC, and NOEC values generated for water-only exposures indicated that the porewater concentrations for several metals were high enough to account for the observed toxicity. Results of these studies utilizing highly sensitive toxicity tests suggest that the contaminant-induced impacts from offshore platforms are limited to a localized area in the immediate vicinity of the platforms. 

  13. Group Waterpipe Tobacco Smoking Increases Smoke Toxicant Concentration.

    Science.gov (United States)

    Ramôa, Carolina P; Shihadeh, Alan; Salman, Rola; Eissenberg, Thomas

    2016-05-01

    Waterpipe tobacco smoking is a global health concern. Laboratory research has focused on individual waterpipe users while group use is common. This study examined user toxicant exposure and smoke toxicant yield associated with individual and group waterpipe smoking. Twenty-two pairs of waterpipe smokers used a waterpipe individually and as a dyad. Before and after smoking, blood was sampled and expired carbon monoxide (CO) measured; puff topography was recorded throughout. One participant from each pair was selected randomly and their plasma nicotine and expired air CO concentrations were compared when smoking alone to when smoking as part of a dyad. Recorded puff topography was used to machine-produce smoke that was analyzed for toxicant content. There was no difference in mean plasma nicotine concentration when an individual smoked as part of a dyad (mean = 14.9 ng/ml; standard error of the mean [SEM] = 3.0) compared to when smoking alone (mean = 10.0 ng/ml; SEM = 1.5). An individual smoking as part of as a dyad had, on average, lower CO (mean = 15.8 ppm; SEM = 2.0) compared to when smoking alone (mean= 21.3 ppm; SEM = 2.7). When two participants smoked as a dyad they took, on average, more puffs (mean = 109.8; SEM = 7.6) than a singleton smoker (mean = 77.7; SEM = 8.1) and a shorter interpuff interval (IPI; dyad mean = 23.8 seconds; SEM = 1.9; singleton mean = 40.8 seconds; SEM = 4.8). Higher concentrations of several toxicants were observed in dyad-produced smoke. Dyad smoking may increase smoke toxicant content, likely due to the dyad's shorter IPIs and greater puff number. More work is needed to understand if group waterpipe smoking alters the health risks of waterpipe tobacco smoking. This study is the first to measure toxicants in smoke generated from a waterpipe when used by a dyad. Relative to smoke generated by a singleton, dyad smoke had higher concentration of some toxicants. These differences may be attributed to differences in puffing behavior

  14. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  15. Transition of a Combined Toxic Gas Lethality Model to an Injury Model

    National Research Council Canada - National Science Library

    Stuhmiller, James

    1997-01-01

    Acute exposure to toxic gases under militarily relevant conditions differs dramatically from the long-term, low-dose exposure conditions for which most toxic gas injury criteria have been developed...

  16. Action of coal gas on plants. II. Action on green plants

    Energy Technology Data Exchange (ETDEWEB)

    Wehmer, C

    1917-01-01

    Experiments were performed to determine the effects of coal gas on cress. Although the seeds are not killed by coal gas, they are prevented from germinating. Cress will grow in as much as 30% coal gas, but it will not survive higher concentrations. Coal gas contains both toxic and non-toxic constituents. CO, C/sub 2/H/sub 4/, C/sub 2/H/sub 2/, CS/sub 2/, H/sub 2/S are not toxic at concentrations found in coal gas. The toxic effects of coal gas are not caused by the lack of O/sub 2/, but by minor impurities in the gas.

  17. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils.

    Science.gov (United States)

    Kreitinger, Joseph P; Quiñones-Rivera, Antonio; Neuhauser, Edward F; Alexander, Martin; Hawthorne, Steven B

    2007-09-01

    The toxicity and uptake of polycyclic aromatic hydrocarbons (PAHs) by earthworms were measured in soil samples collected from manufactured-gas plant sites having a wide range in PAH concentrations (170-42,000 mg/kg) and soil characteristics. Samples varied from vegetated soils to pure lampblack soot and had total organic carbon contents ranging from 3 to 87%. The biota-soil accumulation factors (BSAFs) observed for individual PAHs in field-collected earthworms (Aporrectodea caliginosa) were up to 50-fold lower than the BSAFs predicted using equilibrium-partitioning theory. Acute toxicity to the earthworm Eisenia fetida was unrelated to total PAH concentration: Mortality was not observed in some soils having high concentrations of total PAHs (>42,000 mg/kg), whereas 100% mortality was observed in other soils having much lower concentrations of total PAHs (1,520 mg/kg). Instead, toxicity appeared to be related to the rapidly released fraction of PAHs determined by mild supercritical CO2 extraction (SFE). The results demonstrate that soils having approximately 16,000 mg rapidly released total PAH/kg organic carbon can be acutely toxic to earthworms and that the concentration of PAHs in soil that is rapidly released by SFE can estimate toxicity to soil invertebrates.

  18. Glycopyrrolate in toxic exposure to ammonia gas

    Directory of Open Access Journals (Sweden)

    Bhalla A

    2011-01-01

    Full Text Available Ammonia (NH 3 is a highly water-soluble, colorless, irritant gas with a unique pungent odor. Liquid ammonia stored under high pressure is still widely used for refrigeration in cold stores used for storing grains. Severe toxicity may occur following accidental exposure. We report an interesting case of accidental exposure to ammonia treated with glycopyrrolate along with other supportive measures.

  19. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  20. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    Science.gov (United States)

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  1. Prediction of toxic metals concentration using artificial intelligence techniques

    Science.gov (United States)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  2. Assessing toxicity of varying major ion concentrations to marine organisms

    International Nuclear Information System (INIS)

    Mount, D.R.; Quast, W.

    1993-01-01

    Recent regulatory developments have required that produced waters discharged in the Gulf of Mexico be monitored for toxicity to marine organisms. While produced water may contain a variety of indigenous and introduced chemicals, virtually all have moderate to high concentrations of major ions. Although seawater is also rich in these ions, excessive salinity can cause toxicity to marine organisms. Perhaps more importantly, toxicity to marine organisms can be caused by deviations from normal ion ratios even if the total salinity is within organism tolerances. To provide a better understanding of marine organism responses to variations in major ion concentrations, the authors conducted a series of laboratory experiments to quantify the responses of mysid shrimp (Mysidopsis bahia) and sheepshead minnows (Cyprinodon variegatus) to modifications of normal seawater chemistry. Acute testing included both increasing and decreasing the concentrations of individual ions relative to seawater, as well as altering total salinity. Results show these organisms can be adversely affected by this altered chemistry and their sensitivity is dependent upon the individual ions that are manipulated. Results from these studies are being incorporated into an overall strategy for evaluating the influence of major ion chemistry on produced water toxicity tests

  3. Pilot study on feasibility of application of gas chromatography for the assessment of acrylamide concentration in sewage sludge.

    Science.gov (United States)

    Włodarczyk, Elżbieta; Próba, Marta; Wolny, Lidia; Wojtal, Łukasz

    2014-01-01

    The aim of this study was to determine the possibility of using gas chromatography to measurement of the acrylamide concentration in sewage sludge. Acrylamide, as a toxic substance, is not indifferent to human health, but it is used in the production of plastics, dyes, adhesives, cosmetics, mortar, as well as a coagulant for water treatment, wastewater or sewage sludge conditioning. Determination of acrylamide by gas chromatography was based on standard: EPA Method 8032A "Acrylamid by gas chromatography." It consists of a bromination reaction of the compound in the presence of dibromopropendial derivative, a triple extraction with the ethyl acetate, a concentration of the eluate sample up to the 1 ml volume, and an analysis by the gas chromatography using an electron capture detector (ECD). The acrylamide concentration of was calculated according to the formula presented in the mentioned standard. All samples were performed twice (the difference between the results was not greater than 10%), and the average value of the four samples was 17.64 µg/L(-1). The presence of acrylamide in sewage sludge has been confirmed.

  4. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    Lintott, D.R.; Goudey, J.S.; Wilson, J.; Swanson, S.; Drury, C.

    1997-01-01

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  5. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.R.; Goudey, J.S. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wilson, J.; Swanson, S. [Golder Associates, Calgary, AB (Canada); Drury, C. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs.

  6. Effect of concentration, exposure time, temperature, and relative humidity on the toxicity of sulfur dioxide to the spores of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.; Uota, M.

    1961-12-01

    When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.

  7. Use of toxicity assessment to develop site specific remediation criteria for oil and gas facilities : guidance manual

    International Nuclear Information System (INIS)

    1996-01-01

    The results of a two year study into the evaluation of toxicity-based methods to develop site-specific, risk-based cleanup objectives for the decommissioning of oil and gas facilities were compiled into a manual of guidance. The two basic approaches used in determining remediation criteria for contaminated sites are: (1) comparison of the concentrations of chemicals found on-site with broad regional or national soil and water quality objectives developed for the chemicals involved, and (2) site-specific risk assessment. Toxicity tests are used to test organisms such as earthworms, lettuce seeds, or larval fish directly in the soil, water or sediment suspected of being contaminated. The effects of any contamination on the survival, growth, reproduction, and behaviour of the test organisms are then evaluated. The manual provides guidance in: (1) using toxicity assessments within the regulatory framework of site decommissioning, (2) performing a toxicity assessment, and (3) developing site-specific criteria for a risk assessment. 18 refs., 3 tabs., 5 figs

  8. Confidence Limits for Hazardous Concentrations Based on Logistically Distributed NOEC Toxicity Data

    NARCIS (Netherlands)

    Aldenberg T; Slob W

    1991-01-01

    This paper deals with the calculation of Hazardous Concentrations of toxic substances from small sets of laboratory toxicity data, e.g. NOECs. A procedure due to Van Straalen and Denneman, as adapted from Kooijman (case n=1), in which one seeks a concentration that protects 95% of the biological

  9. Toxicity Data to Determine Refrigerant Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  10. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  11. Rethink potential risks of toxic emissions from natural gas and oil mining.

    Science.gov (United States)

    Meng, Qingmin

    2018-09-01

    Studies have showed the increasing environmental and public health risks of toxic emissions from natural gas and oil mining, which have become even worse as fracking is becoming a dominant approach in current natural gas extraction. However, governments and communities often overlook the serious air pollutants from oil and gas mining, which are often quantified lower than the significant levels of adverse health effects. Therefore, we are facing a challenging dilemma: how could we clearly understand the potential risks of air toxics from natural gas and oil mining. This short study aims at the design and application of simple and robust methods to enhance and improve current understanding of the becoming worse toxic air emissions from natural gas and oil mining as fracking is becoming the major approach. Two simple ratios, the min-to-national-average and the max-to-national-average, are designed and applied to each type of air pollutants in a natural gas and oil mining region. The two ratios directly indicate how significantly high a type of air pollutant could be due to natural gas and oil mining by comparing it to the national average records, although it may not reach the significant risks of adverse health effects according to current risk screening methods. The min-to-national-average and the max-to-national-average ratios can be used as a direct and powerful method to describe the significance of air pollution by comparing it to the national average. The two ratios are easy to use for governments, stakeholders, and the public to pay enough attention on the air pollutants from natural gas and oil mining. The two ratios can also be thematically mapped at sampled sites for spatial monitoring, but spatial mitigation and analysis of environmental and health risks need other measurements of environmental and demographic characteristics across a natural gas and oil mining area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  13. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  14. Determination of toxic and essential element concentrations in foodstuffs from local market

    International Nuclear Information System (INIS)

    Surtipanti; Suwirma; Yumiarti; June, M.; Syaifudin, S.

    1989-01-01

    Determination of toxic and essential elements concentrations in foodstuffs from local market in Jakarta. Concentration of toxic essential elements, such as, As, Hg, Cr, Pb, Cu, and Zn, in rice, corn bean, small green peas, wheat, vegetables, fruits, tea and coffee, have been determined. As, Hg, Sb, Cr, Se, and Zn, were determined using neutron activation analysis, after being irradiated at TRIGA-MARK II reactor, while Pb and Cu were determined using atomic absorption spectrophotometer. The results obtained were lower than the maximum permissible concentration allowed. (author). 8 refs

  15. Defect Functionalization of MoS2 nanostructures as toxic gas sensors: A review

    Science.gov (United States)

    Ramanathan, A. A.

    2018-02-01

    Toxic gas sensing plays an important role in many parts of our life from environmental protection, human health, agriculture to biomedicine. The importance of detecting toxic gases in the environment cannot be minimised in today’s highly polluted world and the reality of global warming. Carbon monoxide and NO gas are highly toxic air pollutants and can cause serious health problems. Therefore, materials able to detect these toxic gases are urgently needed. Doping and defect substitution is a versatile and new tool for changing the chemical and electronic properties of 2D layered materials and boosting the applications of these materials. Molybdenum disulphide (MoS2) as a 2D layered material has unique properties and applications due its semiconducting nature, bandgap and layered structure. In the past decade, although, extensive research of Graphene as a gas sensor was conducted, the zero bandgap limited its potential and applicability. This is overcome in MoS2 nanostructures (MSNs) and the current focus is defect engineering of MSNs. The large surface to volume ratio, bandgap and cheapness makes MSNs very attractive for gas sensor applications. The idea is fuelled by the recent finding of Ding et al [16] of successful doping strategies on monolayer MoS2 for enhanced NO detection. Moreover, the work of Luo et al [17] shows that substitutional doping is the new way of boosting and engineering the properties of ML MoS2. A short and focused report in this exciting field is presented in this review.

  16. Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel

  17. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  18. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  19. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  20. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingxiangyu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Fernández-Cruz, María Luisa; Connolly, Mona [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain); Conde, Estefanía; Fernández, Marta [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain); Schuster, Michael [Department of Chemistry, Technische Universität München, Garching 85747 (Germany); Navas, José María, E-mail: jmnavas@inia.es [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain)

    2015-02-01

    Here we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity. However, CuNPs cytotoxicity was not affected by co-incubation with medium containing only zinc ions, indicating the increase in toxicity might be attributed to the particle form of ZnONPs. Transmission electron microscopy (TEM) revealed the presence of CuNPs and ZnONPs inside the cells co-exposed to both types of NP and outflow of cytoplasm through the damaged cell membrane. Inductively coupled plasma mass spectrometry (ICP-MS) determined an increase in the concentration of zinc and a decrease in that of copper in co-exposed cells. On the basis of these results, we propose that accumulation of large numbers of ZnONPs in the cells alters cellular membranes and the cytotoxicity of CuNPs is increased. - Highlights: • ZnONPs at non-toxic concentrations increased the toxicity of CuNPs in vitro. • ZnONPs of larger size provoked a stronger synergistic effect with CuNPs. • The synergistic effect was attributed to the particle fraction of ZnONPs.

  1. An assessment of whole effluent toxicity testing as a means of regulating waters produced by the oil and gas industry

    International Nuclear Information System (INIS)

    Hill, S.L.; Bergman, H.L.

    1993-01-01

    Approximately 500 million barrels of produced water are discharged to Wyoming's surface waters by the oil and gas industry. This discharges are of two types: direct and indirect. The direct discharges have been issued NPDES permits requiring whole effluent toxicity testing. Toxicity testing requirements have not been incorporated into permits written for indirect discharges because of the applicability of toxicity testing for regulating these waters has not been determined. Preliminary testing has shown that most produced waters are toxic at the point of discharge because of high concentrations of hydrogen sulfide, but that the toxicity of an indirect discharge is often lost before it reaches a receiving stream. Thus, whole effluent toxicity testing of an indirect discharge may be overly stringent, resulting in treatment or reinjection of the water or closure of the well. Any of these options would have severe economic consequences for oil producers and the state's agricultural industry. The purpose of this study was to determine whether whole effluent toxicity testing actually predicts the in-stream effects of indirect discharges on water quality and benthic invertebrate populations. The authors will report the results of short-term ambient toxicity tests and in-stream bioassessments performed upstream and downstream of six indirect discharges located in four drainages in Wyoming

  2. Sub-chronic toxicity of low concentrations of industrial volatile organic pollutants in vitro

    International Nuclear Information System (INIS)

    McDermott, Catherine; Allshire, Ashley; Pelt, Frank N.A.M. van; Heffron, James J.A.

    2007-01-01

    Organic solvents form an important class of pollutants in the ambient air and have been associated with neurotoxicity and immunotoxicity in humans. Here we investigated the biological effects of sub-chronic exposure to industrially important volatile organic solvents in vitro. Jurkat T cells were exposed to toluene, n-hexane and methyl ethyl ketone (MEK) individually for 5 days and solvent exposure levels were confirmed by headspace gas chromatography. A neuroblastoma cell line (SH-SY5Y) was exposed to toluene for the same period. Following exposure, cells were harvested and toxicity measured in terms of the following endpoints: membrane damage (LDH leakage), perturbations in intracellular free Ca 2+ , changes in glutathione redox status and dual-phosphorylation of MAP kinases ERK1/2, JNK and p38. The results show that sub-chronic exposure to the volatile organic solvents causes membrane damage, increased intracellular free calcium and altered glutathione redox status in both cell lines. However, acute and sub-chronic solvent exposure did not result in MAP kinase phosphorylation. Toxicity of the solvents tested increased with hydrophobicity. The lowest-observed-adverse-effect-levels (LOAELs) measured in vitro were close to blood solvent concentrations reported for individuals exposed to the agents at levels at or below their individual threshold limit values (TLVs)

  3. Assessment of concentrations of trace and toxic heavy metals in soil ...

    African Journals Online (AJOL)

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy ...

  4. Apollo Soyuz mission, toxic gas entered cabin during earth landing sequence

    Science.gov (United States)

    1975-01-01

    A postflight analysis is presented of the sequence which caused toxic gas to enter the cabin during repressurization for 30 seconds from manual deployment of the drogue parachutes at 18,550 feet to disabling of the reaction control system at 9600 feet. Results and conclusions are discussed.

  5. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  6. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Rapid and sensitive determination of deuterium concentration by gas chromatography

    International Nuclear Information System (INIS)

    Takahashi, Tomiki; Ohokoshi, Sumio; Shinriki, Nariko; Sato, Toshio

    1984-01-01

    Gas chromatographic determination of hydrogen isotopes D 2 and HD has hitherto been carried out with a molecular sieve column kept at -195 0 C under the H 2 carrier gas. However, the amount of D 2 in hydrogen gas containing low HD concentration of less than 5 % can be practically neglected judging from the equilibrium constant of H 2 -D 2 exchange reaction. Therefore, there is no need to separate HD from D 2 . As an improvement, in this paper, the gas chromatographic determination of HD in low concentration ( 2 as a carrier gas enabled us to enhance the cell current of TCD drastically, hence gave rise to high sensitivity of HD detection. The limit of determination of the concentration of HD was 0.01%. In the case of the higher concentration (>5%) of HD in hydrogen gas, D 2 and HD have been separated and determined by the method described above, but this method takes more than ten minutes. Therefore, we designed a new gas chromatographic analysis of the HD-D 2 mixture with an activated alumina column at -195 0 C under the H 2 carrier gas (330 ml/min). The advantages of this method are in (1) rapid analysis (in 1 min), (2) no need of the rigid activation temperature ((110--250) 0 C), (3) no change of the relative molar sensitivity of HD to D 2 at the various flow rates of H 2 carrier gas ((100--300)ml/min). (author)

  8. Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships.

    Science.gov (United States)

    Imani, Sahand; Buscher, Hergen; Marriott, Debbie; Gentili, Sheridan; Sandaradura, Indy

    2017-10-01

    To determine the existence of concentration-toxicity relationships for common β-lactam antibiotic adverse effects and define thresholds above which toxicity is more likely. Retrospective review of consecutive patients treated with piperacillin, meropenem or flucloxacillin who underwent therapeutic drug monitoring (TDM) at St Vincent's Hospital (Sydney, Australia) between January 2013 and December 2015. Adverse events investigated included neurotoxicity, nephrotoxicity, hepatotoxicity and opportunistic Clostridium difficile infection. Toxicity was measured using observational grading criteria, clinical assessment and relevant serum biomarkers. These findings were correlated with trough TDM measurements at the time of toxicity presentation. TDM results from 378 patients (piperacillin = 223, meropenem = 94 and flucloxacillin = 61) were investigated. There was no difference in baseline patient characteristics across antibiotic groups. A statistically significant elevation in mean serum trough concentrations (Cmin) was found in patients diagnosed with neurotoxicity (piperacillin, P 361.4 mg/L; meropenem, Cmin >64.2 mg/L; flucloxacillin, Cmin >125.1 mg/L) or nephrotoxicity (piperacillin, Cmin >452.65 mg/L; meropenem, Cmin >44.45 mg/L) varied across antibiotics. Our data reveal an association between toxic concentrations for a number of β-lactam agents and neurotoxic/nephrotoxic effects. We have defined threshold concentrations above which these toxicities become more likely. Clinicians should balance concerns for therapeutic efficacy with potential toxicity when considering aggressive therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Development of multicomponent parts-per-billion-level gas standards of volatile toxic organic compounds

    International Nuclear Information System (INIS)

    Rhoderick, G.C.; Zielinski, W.L. Jr.

    1990-01-01

    This paper reports that the demand for stable, low-concentration multicomponent standards of volatile toxic organic compounds for quantifying national and state measurement of ambient air quality and hazardous waste incineration emissions has markedly increased in recent years. In response to this demand, a microgravimetric technique was developed and validated for preparing such standards; these standards ranged in concentration from several parts per million (ppm) down to one part per billion (ppb) and in complexity from one organic up to 17. Studies using the gravimetric procedure to prepare mixtures of different groups of organics. including multi-components mixtures in the 5 to 20 ppb range, revealed a very low imprecision. This procedure is based on the separate gravimetric introduction of individual organics into an evacuated gas cylinder, followed by the pressurized addition of a precalculated amount of pure nitrogen. Additional studies confirmed the long-term stability of these mixtures. The uncertainty of the concentrations of the individual organics at the 95% confidence level ranged from less than 1% relative at 1 ppm to less than 10% relative at 1 ppb. Over 100 primary gravimetric standards have been developed, validated, and used for certifying the concentrations of a variety of mixtures for monitoring studies

  10. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  11. assessment of concentrations of trace and toxic heavy metals in soil

    African Journals Online (AJOL)

    Windows User

    pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy ... Keywords: Soil, Vegetables, Manyoni Uranium Deposit, Toxic Elements, EDXRF. ... fine radioactive particles prone to wind and.

  12. STUDIES OF CHOSEN TOXIC ELEMENTS CONCENTRATION IN MULTIFLOWER BEE HONEY

    Directory of Open Access Journals (Sweden)

    Ewa Popiela

    2011-04-01

    Full Text Available 72 544x376 Normal 0 21 false false false  The aim of the study was to determine the bioaccumulation level of chosen toxic elements (Zn, Cu, Pb, As and Cd in multiflower honey collected from Brzeg area. Biological material (honey was mineralized using the microwave technique at an elevated pressure in the microprocessor station of pressure in the type Mars 5. Quantitative analysis of elements (As, Cd, Cu, Pb and Zn was performed by plasma spectrometry method using a Varian ICP-AES apparatus. The presence of toxic elements was determined in examined biological materials. The elements fallowed the fallowing decreasing order with respect to their content of honey: Zn>Cu>Pb>As>Cd. The average concentrations of studied elements observed in multi-flower honey were as follows: 6.24 mg.kg-1 of zinc, 2.75 mg.kg-1 of copper, 0.53, 0.071, 0.042 mg.kg-1of lead, arsenic and cadmium, respectively. Lead was the most problematic in bee honey because its average content exceeded the maximum acceptable concentration. Additionally, this metal concentration was 60% higher in studied samples than allowable standard of lead content.doi:10.5219/134 

  13. Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children

    Directory of Open Access Journals (Sweden)

    Lisa K. Sykes

    2012-12-01

    Full Text Available Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg, among subjects diagnosed with an autism spectrum disorder (ASD in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX approved the present study. Qualifying study participants (n = 18 were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor’s Data (a CLIA-approved laboratory. CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.

  14. An empirical comparison of effective concentration estimators for evaluating aquatic toxicity test responses

    Energy Technology Data Exchange (ETDEWEB)

    Bailer, A.J.; Hughes, M.R.; Denton, D.L.; Oris, J.T.

    2000-01-01

    Aquatic toxicity tests are statistically evaluated by either hypothesis testing procedures to derive a no-observed-effect concentration or by inverting regression models to calculate the concentration associated with a specific reduction from the control response. These latter methods can be described as potency estimation methods. Standard US Environmental Protection Agency (USEPA) potency estimation methods are based on two different techniques. For continuous or count response data, a nominally nonparametric method that assumes monotonic decreasing responses and piecewise linear patterns between successive concentration groups is used. For quantal responses, a probit regression model with a linear dose term is fit. These techniques were compared with a recently developed parametric regression-based estimator, the relative inhibition estimator, RIp. This method is based on fitting generalized linear models, followed by estimation of the concentration associated with a particular decrement relative to control responses. These estimators, with levels of inhibition (p) of 25 and 50%, were applied to a series of chronic toxicity tests in a US EPA region 9 database of reference toxicity tests. Biological responses evaluated in these toxicity tests included the number of young produced in three broods by the water flea (Ceriodaphnia dubia) and germination success and tube length data from the giant kelp (Macrocystis pyrifera). The greatest discrepancy between the RIp and standard US EPA estimators was observed for C. dubia. The concentration-response pattern for this biological endpoint exhibited nonmonotonicity more frequently than for any of the other endpoint. Future work should consider optimal experimental designs to estimate these quantities, methods for constructing confidence intervals, and simulation studies to explore the behavior of these estimators under known conditions.

  15. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  16. THE EFFECT OF DISTILLATE STORING DISTILLED FROM FRUCTOSE SYRUPS TOWARD ITS ACETALDEHYDE CONCENTRATION MEASURED BY GAS CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Maria Monica Sianita Basukiwardojo

    2010-06-01

    Full Text Available Acetaldehyde is a compound of aldehyde group that is very volatile and toxic. This compound can be found in fructose syrups used in carbonate beverages. The syrups had been distilled then analysed using gas chromatography. The concentration of acetaldehyde was 289.78 g/g in the distillates kept for one week, 295.30 g/g in those kept for two weeks, 429.45 g/g in those kept for three weeks, and 449.38 g/g in those kept for four weeks. The optimum column temperature was programmed with initial temperature of 40 oC held on for four minutes, then increasing by 40 oC/minute to 200 oC. It can be concluded that the longer the distillates have been kept, the greater the concentration of acetaldehyde in the distillates. A further research to investigate the present of microbe in the distillates and the effect of pH should be conducted   Keywords: acetaldehyde, fructose syrup, distillates, gas chromatography.

  17. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  18. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  19. Concentration and toxicity of sea-surface contaminants in Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.T.; Crecelius, E.A.; Kocan, R.

    1986-04-01

    The Marine Research Laboratory conducted studies during CY 1985 to evaluate the effects of sea-surface contamination on the reproductive success of a valued marine species. Microlayer and bulk water samples were collected from a rural bay, central Puget Sound, and three urban bays and analyzed for a number of metal and organic contaminants as well as for densities of neuston and plankton organisms. Fertilized neustonic eggs of sand sole (Psettichthys melanostictus) were exposed to the same microlayer samples during their first week of embryonic and larval development. Also, we evaluated the effects of microlayer extracts on the growth of trout cell cultures. Compared to rural sites, urban bays generally contained lower densities of neustonic flatfish eggs during the spawning season. Also, in contrast to the rural sites or the one central Puget Sound site, approximately half of the urban bay microlayer samples resulted in significant increases in embryo mortality (up to 100%), kyphosis (bent spine abnormalities) in hatched larvae, increased anaphase aberrations in developing embryos, and decreased trout cell growth. The toxic samples generally contained high concentrations of polycyclic aromatic and/or chlorinated hydrocarbons and/or potentially toxic metals. In some cases, concentrations of contaminants on the sea surface exceeded water-quality criteria by several orders of magnitude. Several samples of subsurface bulk water collected below highly contaminated surfaces showed no detectable contamination or toxicity.

  20. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  1. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  2. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    Science.gov (United States)

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-08-15

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.

  3. The molecular basis of simple relationships between exposure concentration and toxic effects with time.

    Science.gov (United States)

    Tennekes, Henk A; Sánchez-Bayo, Francisco

    2013-07-05

    Understanding the toxicity of chemicals to organisms requires considering the molecular mechanisms involved as well as the relationships between exposure concentration and toxic effects with time. Our current knowledge about such relationships is mainly explained from a toxicodynamic and toxicokinetic perspective. This paper re-introduces an old approach that takes into account the biochemical mode of action and their resulting biological effects over time of exposure. Empirical evidence demonstrates that the Druckrey-Küpfmüller toxicity model, which was validated for chemical carcinogens in the early 1960s, is also applicable to a wide range of toxic compounds in ecotoxicology. According to this model, the character of a poison is primarily determined by the reversibility of critical receptor binding. Chemicals showing irreversible or slowly reversible binding to specific receptors will produce cumulative effects with time of exposure, and whenever the effects are also irreversible (e.g. death) they are reinforced over time; these chemicals have time-cumulative toxicity. Compounds having non-specific receptor binding, or involving slowly reversible binding to some receptors that do not contribute to toxicity, may also be time-dependent; however, their effects depend primarily on the exposure concentration, with time playing a minor role. Consequently, the mechanism of toxic action has important implications for risk assessment. Traditional risk approaches cannot predict the impacts of toxicants with time-cumulative toxicity in the environment. New assessment procedures are needed to evaluate the risk that the latter chemicals pose on humans and the environment. An example is shown to explain how the risk of time-dependent toxicants is underestimated when using current risk assessment protocols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  5. Determination of natural in vivo noble-gas concentrations in human blood.

    Directory of Open Access Journals (Sweden)

    Yama Tomonaga

    Full Text Available Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  6. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  7. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    Science.gov (United States)

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  8. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater)

    Energy Technology Data Exchange (ETDEWEB)

    Stamper, D.M. [NAVSEA Carderrock Div., West Bethesda, MD (United States). Biological Sciences Group; Montgomery, M.T. [Naval Research Laboratory, Washington, DC (United States). Marine Biochemistry Section

    2008-08-15

    Oily waste water from ships occurs when materials leak, spill, or are washed off the decks and drain into the bilge compartments of ships. The wastes include diesel fuel, coolants, and engine, transmission, and hydraulic oils. Treatments for oily waste water in the United States Navy are based on a combination of density separation and ceramic membrane ultrafiltration techniques, which may not meet planned regulations that will require lower levels of oil pollutants. This study tested the biodegradability and toxicity of low concentrations of oily waste water in order to establish the feasibility of using a combined shipboard oily and sanitary waste water treatment system. The toxic effects of diesel fuel and other components of the waste water were also tested. The study showed that diluting the oily effluent with the sanitary waste stream resulted in waste water with low enough oil content to meet the anticipated changes in waste water regulations. The study also showed that the low concentrations of waste water were catabolized in the presence of the sanitary waste stream. A modified PolyTox assay was used to test the waste water samples. Results of the study showed that heterotrophic bacterial production rates did not show any toxic effects. The addition of detergent in the samples had no impact on toxicity levels. It was concluded that combining oil and sanitary waste water in a single biological treatment system is a feasible option for ensuring the future regulations are met. 37 refs., 2 tabs., 4 figs.

  9. The variation of particle gas-borne concentration with time in a gas cooled reactor

    International Nuclear Information System (INIS)

    Reed, J.; Hall, D.; Reeks, M.W.

    1985-01-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  10. The variation of particle gas-borne concentration with time in a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J; Hall, D; Reeks, M W [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  11. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  12. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  13. Parametric Analysis of the Exergoeconomic Operation Costs, Environmental and Human Toxicity Indexes of the MF501F3 Gas Turbine

    Directory of Open Access Journals (Sweden)

    Edgar Vicente Torres-González

    2016-08-01

    Full Text Available This work presents an energetic, exergoeconomic, environmental, and toxicity analysis of the simple gas turbine M501F3 based on a parametric analysis of energetic (thermal efficiency, fuel and air flow rates, and specific work output, exergoeconomic (exergetic efficiency and exergoeconomic operation costs, environmental (global warming, smog formation, acid rain indexes, and human toxicity indexes, by taking the compressor pressure ratio and the turbine inlet temperature as the operating parameters. The aim of this paper is to provide an integral, systematic, and powerful diagnostic tool to establish possible operation and maintenance actions to improve the gas turbine’s exergoeconomic, environmental, and human toxicity indexes. Despite the continuous changes in the price of natural gas, the compressor, combustion chamber, and turbine always contribute 18.96%, 53.02%, and 28%, respectively, to the gas turbine’s exergoeconomic operation costs. The application of this methodology can be extended to other simple gas turbines using the pressure drops and isentropic efficiencies, among others, as the degradation parameters, as well as to other energetic systems, without loss of generality.

  14. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  15. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  16. Effects of biochar addition on toxic element concentrations in plants

    DEFF Research Database (Denmark)

    Peng, Xin; Deng, Yinger; Peng, Yan

    2018-01-01

    Consuming food contaminated by toxic elements (TEs) could pose a substantial risk to human health. Recently, biochar has been extensively studied as an effective soil ameliorant in situ because of its ability to suppress the phytoavailability of TEs. However, despite the research interest......, the effects of biochar applications to soil on different TE concentrations in different plant parts remain unclear. Here, we synthesize 1813 individual observations data collected from 97 articles to evaluate the effects of biochar addition on TE concentrations in plant parts. We found that (1) the experiment...... type, biochar feedstock and pyrolysis temperature all significantly decreased the TE concentration in plant parts; (2) the responses of Cd and Pb concentrations in edible and indirectly edible plant parts were significantly more sensitive to the effect of biochar than the Zn, Ni, Mn, Cr, Co and Cu...

  17. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  18. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores

    Directory of Open Access Journals (Sweden)

    Vargas-Cordero Iván

    2017-12-01

    Full Text Available Two sectors, Itata and Valdivia, which are located in the Chilean margin were analysed by using seismic data with the main purpose to characterize the gas hydrate concentration. Strong lateral velocity variations are recognised, showing a maximum value in Valdivia offshore (2380 ms−1 above the BSR and a minimum value in the Itata offshore (1380 m·s−1 below the BSR. In both of the sectors, the maximum hydrate concentration reaches 17% of total volume, while the maximum free gas concentration is located Valdivia offshore (0.6% of total volume in correspondence of an uplift sector. In the Itata offshore, the geothermal gradient that is estimated is variable and ranges from 32 °C·km−1 to 87 °C·km−1, while in Valdivia offshore it is uniform and about 35 °C·km−1. When considering both sites, the highest hydrate concentration is located in the accretionary prism (Valdivia offshore and highest free gas concentration is distributed upwards, which may be considered as a natural pathway for lateral fluid migration. The results that are presented here contribute to the global knowledge of the relationship between hydrate/free gas presence and tectonic features, such as faults and folds, and furnishes a piece of the regional hydrate potentiality Chile offshore.

  19. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  20. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T.; Doodeman, C.J.A.M.; Doornekamp, A.; Pol, J.J.C. van der; Bedaux, J.J.M.; Gestel, C.A.M. van (Vrije Univ., Amsterdam (Netherlands))

    1994-11-01

    Time-dependent toxicity in bioassays is usually explained in terms of uptake and elimination kinetics of the toxicant. By comparing different species with essentially different accumulation kinetics, a firm test of this concept may be made. This article compares the sensitivity of six soil arthropods, the collembolans Orchesella cincta and Tomocerus minor, the oribatid mite Platynothrus peltifer, the isopods Porcellio scaber and Oniscus asellus, and the diplopod Cylindroiulus britannicus, when exposed to cadmium in the food. Survival was determined at various time intervals; accumulation of cadmium in the animals was measured at one time interval. Kinetic-based toxicity models were fitted to the data, and estimates were obtained for lethal body concentration, uptake rate constant, elimination rate constant, and ultimate LC50. Two different accumulation patterns could be discerned; these were correlated with time-survival relationships. One, species that have the possibility to eliminate cadmium will reach an equilibrium for the internal concentration and also an ultimate LC50. Two, species that are unable to eliminate cadmium but store it in the body will have an ultimate LC50 equal to zero. For these species the time in which the lethal body concentration is reached is more important. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. It is concluded that knowledge of the accumulation pattern is indispensable for the evaluation of species' sensitivities to toxicants.

  1. Device for measuring the tritium concentration in a measuring gas

    International Nuclear Information System (INIS)

    Koran, P.

    1987-01-01

    The measuring gas is brought into contact via a measuring gas path with a diaphragm permeable to water, which separates the measuring gas path from a counter gas path leading to a proportional detector. The measuring gas path and the counter gas path are in counterflow in the area of diaphragm. The preferably hose diaphragm consists of a well-known ion exchange material, which can be used for gas drying purposes, which is permeable to water and tritium compounds similar to water, but is impermeable to other gases and liquids contained in air, particularly rare gases. In this way, the tritium concentration can be measured with great rare gas suppression. (orig./HP) [de

  2. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    Science.gov (United States)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  3. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Giuseppe Vecchio

    Full Text Available The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs of different sizes (5, 15, 40, and 80 nm in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES, while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN. We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.

  4. Aplikasi Sistem Peringatan Dini Pada Kebocoran Gas Dan Asap Menggunakan Sensor Gas MQ-7 Dengan Program C

    Directory of Open Access Journals (Sweden)

    Aan Burhanudin

    2016-06-01

    Full Text Available Abstract - Health Safety and Environment (HSE in the development will be more accentuate on the prevention of occupational accidents and occupational diseases by identifying the potential to cause accidents and occupational diseases as well as anticipatory measures in case of accidents and occupational diseases. The working environment is directly in contact with toxic materials would be very harmful to the human body when exposed continuously. An environment or factory containing toxic gases as an example of CO, SO or LPG gas in certain concentrations can cause eye irritation or shortness of breath. Therefore we need an early warning system that can measure the concentration of these gases and may give a warning to workers associated with the concentration of the gas to the workers. The early warning system was made using three gas sensors, three heat sensors, LEDs and buzzer. Recitation and processing of the sensor is processed by a 16 bit microcontroller which will condition the room. In making such a system is used programmable fuzzy algorithms previously simulated with MATLAB, C Programming used as logic programming refers to the simulation results, miniature rooms created with three main space for workers in a hallway and an emergency exit. The results of such a system is in a room when the detected gas concentration exceeds the threshold, the system will activate the buzzer and will activated LED as the safest evacuation route directions. Keyword -- C Proframming, Fuzzy Logic, Matlab

  5. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  6. Toxicity to rainbow trout of spent still liquors from the distillation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, D W.M.

    1962-01-01

    From a survey of the literature on the toxicity of ammonium salts, phenol, cyanide, and sulphide to rainbow trout, and from determinations of the toxicity of sodium thiocyanate and sodium thiosulphate, it is postulated that the toxicity of spent still liquors from the distillation of coal should be due mainly to their content of ammonia and monohydric phenols. This is confirmed by experiments showing that the toxicity of an equivalent mixture of ammonium chloride and phenol is nearly as great as that of a spent liquor from a gas works, and that phenol is almost as toxic as mixtures of the monohydric phenols known to be present in such liquors. Experiments on the effect of pH value, hardness, dissolved-oxygen concentration and temperature on the threshold concentration of monohydric phenols are described and compared with similar data for ammonia. Experiments with ammonia and phenols suggest that a mixture of these substances is at its threshold concentration when AS/AT/+PS/PT=I,AS and PS being the concentrations of un-ionized ammonia and monohydric phenols in solution and AT and PT being the threshold concentrations of these substances when tested individually in the same dilution water. A method based on these experiments for predicting the toxicity of ammonia-phenol mixtures from the chemical composition of their solutions is described, and evaluated against laboratory determinations of the toxicity of spent liquors from a coke oven, and against the death or survival of trout held captive in a stream polluted with spent liquor from a gas works. It is concluded that the correspondence between the predicted and observed toxicities is good enough for the method to be used as a basis for assessing whether trout could live in a stream to which a particular spent still liquor was discharged, or when deciding what treatment the effluent should receive to make it safe for such fish after discharge.

  7. Toxic effects of zinc from trout farm sediments on ATP, protein, and hemoglobin concentrations of Limnodrilus hoffmeisteri.

    Science.gov (United States)

    Martinez-Tabche, L; Gutiérrez Cabrera, I; Gómez Oliván, L; Galar Martinez, M; Germán Faz, C

    2000-04-14

    Zinc (Zn) is a nutritionally essential metal, and deficiency results in severe health consequences to aquatic organisms. In this study toxicity data for Limnodrilus hoffmeisteri produced by Zn in systems using three natural sediments (trout farms: El Oyamel, El Truchón, and El Potrero) are presented. Hemoglobin, adenosine triphosphate (ATP), and protein concentrations were measured in L. hoffmeisteri exposed to spiked sediments, as indicators of exposure. Physicochemical characteristics of water and sediments were also considered. Zn concentrations were measured in water and sediment. El Oyamel, El Truchón, and El Potrero pond sediments did not have similar physicochemical characteristics. Zn concentrations of water obtained from the rustic ponds were near 0.4575 mg/L; however, this metal was always found to be higher in the sediments (0.0271-0.9754 mg/kg). The bioassay with worms demonstrated that pond sediments from El Oyamel, El Potrero, and El Truchón produced toxicity since ATP and protein concentrations were low compared to controls (organisms without metal). All spiked sediments had a significant reduction effect on ATP, protein, and hemoglobin concentrations. This investigation clearly shows that sediments of El Truchón, El Oyamel, and El Potrero possess toxicity potential. These results suggest the usefulness of these bioassays to evaluate the toxicity of sediments polluted with heavy metals.

  8. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  9. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  10. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  11. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  13. Recovery of anaerobic digestion after exposure to toxicants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Parkin, G.F.; Speece, R.E.

    1979-12-01

    The concept that methane fermentation cannot tolerate chronic or slug doses of toxicants has almost totally precluded methane fermentation as a viable contender for the treatment of industrial wastewaters. This study assayed a wide variety of toxicants, heavy metals, inorganic salts, organic chemicals, solvents, and antibiotics which are used in industrial processes and, therefore, appear in the industrial wastewaters therefrom. Toxicity was related to the reduction in methane production of a control containing no toxicant. The response of methane fermentation after exposure to a toxicant was assayed with unacclimated cultures as well as cultures which had been acclimated to increasing concentrations of the toxicant over long periods of time. The reversible nature of the toxicants was assayed by adding slug doses to plug flow anaerobic filters and recording gas production prior to, during, and after toxicant addition.

  14. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  15. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    Science.gov (United States)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  16. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  17. Development of a cost efficient methodology to perform allocation of flammable and toxic gas detectors applying CFD tools

    Energy Technology Data Exchange (ETDEWEB)

    Storch, Rafael Brod; Rocha, Gean Felipe Almeida [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Nalvarte, Gladys Augusta Zevallos [Det Norske Veritas (DNV), Novik (Norway)

    2012-07-01

    This paper is aimed to present a computational procedure for flammable and toxic gas detector allocation and quantification developed by DNV. The proposed methodology applies Computational Fluid Dynamics (CFD) simulations as well as operational and safety characteristics of the analyzed region to assess the optimal number of toxic and flammable gas detectors and their optimal location. A probabilistic approach is also used when applying the DNV software ThorEXPRESSLite, following NORSOK Z013 Annex G and presented in HUSER et al. 2000 and HUSER et al. 2001, when the flammable gas detectors are assessed. A DNV developed program, DetLoc, is used to run in an iterative way the procedure described above leading to an automatic calculation of the gas detectors location and number. The main advantage of the methodology presented above is the independence of human interaction in the gas detector allocation leading to a more precise and free of human judgment allocation. Thus, a reproducible allocation is generated when comparing several different analyses and a global criteria appliance is guaranteed through different regions in the same project. A case study is presented applying the proposed methodology. (author)

  18. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  19. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Krishnan Murugappan

    2015-10-01

    Full Text Available Commercially available Pt screen printed electrodes (SPEs have been employed as possible electrode materials for methylamine (MA and hydrogen chloride (HCl gas detection. The room temperature ionic liquid (RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([C2mim][NTf2] was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV, differential pulse voltammetry (DPV and square wave voltammetry (SWV, with no significant differences in the limits of detection (LODs between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases. The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL limits of the two gases (5 ppm for HCl and 10 ppm for MA, suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.

  20. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  1. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  2. Breathing Clean : Considering the Switch to Natural Gas Buses

    OpenAIRE

    Kojima, Masami

    2001-01-01

    In response to emerging epidemiological evidence of the toxicity of diesel vehicular emissions, there is growing interest in substituting conventional diesel with much cleaner natural gas in cities where ambient concentrations of particulate matter are markedly higher than what is internationally considered acceptable. This paper compares the performance of natural gas and conventional die...

  3. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  4. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  5. Toxic plasma concentration of ropivacaine after a paravertebral block in a patient suffering from severe hypoalbuminemia.

    Science.gov (United States)

    Calenda, Emile; Baste, Jean Marc; Hajjej, Ridha; Danielou, Eric; Peillon, Christophe

    2014-03-01

    A case of systemic ropivacaine toxicity from a continuous thoracic paravertebral block in an adult patient who received a lobectomy is presented. The catheter was placed by the surgeon. Eleven hours after the start of the infusion, the patient experienced an arrhythmia leading to death. The total venous plasma concentration of ropivacaine was high (3.2 μg/mL). Furthermore, the patient had severe hypoalbuminemia (albumin 24 g/L), which resulted in the increase of the unbound ropivacaine plasma concentration that was responsible for the toxic side effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Gas chromatography-mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran.

    Directory of Open Access Journals (Sweden)

    Mohana Krishna Reddy Mudiam

    Full Text Available Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil. Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.

  7. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  8. Single Oral Dose Toxicity Test of Blue Honeysuckle Concentrate in Mice

    Science.gov (United States)

    Park, Sang-In; Choi, Seung-Hoon; Song, Chang-Hyun; Park, Soo-Jin; Shin, Yong-Kook; Han, Chang-Hyun; Lee, Young Joon; Ku, Sae-Kwang

    2015-01-01

    The objective of this study was to obtain single oral dose toxicity information for concentrated and lyophilized powder of blue honeysuckle (Lonicera caerulea L., Caprifoliaceae; BHcL) in female and male ICR mice to aid in the process of developing natural origin medicinal ingredients or foods following proximate analysis and phytochemical profile measurement. The proximate analysis revealed that BHcL had an energy value of 3.80 kcal/g and contained 0.93 g/g of carbohydrate, 0.41 g/g of sugar, 0.02 g/g of protein, and 0.20 mg/g of sodium. BHcL did not contain lipids, including saturated lipids, trans fats, or cholesterols. Further, BHcL contained 4.54% of betaine, 210.63 mg/g of total phenols, 159.30 mg/g of total flavonoids, and 133.57 mg/g of total anthocyanins. Following administration of a single oral BHcL treatment, there were no treatment-related mortalities, changes in body weight (bw) or organ weight, clinical signs, necropsy or histopathological findings up to 2,000 mg/kg bw, the limited dosage for rodents of both sexes. We concluded that BHcL is a practically non-toxic material in toxicity potency. PMID:25874034

  9. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    Science.gov (United States)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  10. Acute toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters, to 13 aquatic species as defined in the laboratory

    Science.gov (United States)

    Harper, David D.; Farag, Aïda M.; Skaar, Don

    2014-01-01

    Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.

  11. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  12. Distribution and optical purity of methamphetamine found in toxic concentration in a civil aviation accident pilot fatality.

    Science.gov (United States)

    Chaturvedi, Arvind K; Cardona, Patrick S; Soper, John W; Canfield, Dennis V

    2004-07-01

    Toxicological evaluation of postmortem samples collected from a pilot involved in a unique fatal civil aircraft accident is described in this paper. A one-occupant airplane was substantially damaged upon colliding with terrain in poor visibility. Remains of the pilot were found outside the aircraft. Pathological examination revealed multiple blunt force injuries and vascular congestion. The fluorescence polarization immunoassay disclosed 8.0 microg/mL amphetamines in urine. Gas chromatographic/mass spectrometric analyses determined the presence of methamphetamine (1.13 microg/mL in blood and 59.2 microg/mL in urine) and amphetamine (0.022 microg/mL in blood and 1.50 microg/mL in urine). Methamphetamine was distributed throughout the body, including the brain. The amount of methamphetamine in gastric contents was 575-fold higher than that of amphetamine. The (+)- and (-)-forms of methamphetamine were present in equal proportions in gastric contents. The methamphetamine concentration found in blood was in the range sufficient to produce toxic effects, causing performance impairment.

  13. Determination of radon concentration in soil gas by gamma-ray spectrometry of olive oil

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish; Karunakara, N.

    2007-01-01

    Measurements of radon concentration in soil gas have been carried out using a bubbling system in which the soil gas is drawn through an active pumping to bubble a liquid absorber (olive oil) for the deposition of the soil gas in it. After the bubbling process, the absorber is then taken for gamma-ray measurements. Gamma-ray photopeaks from the 214 Pb and the 214 Bi radon progeny are considered for the detection of the 222 Rn gas to study the concentration levels for radon soil gas. Results for some field measurements were obtained and compared with results obtained using AlphaGuard radon gas monitor. The technique provides a possible approach for the measurements of radon soil gas with gamma-ray spectrometry

  14. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    Science.gov (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  15. Chemical concentrations, exposures, health risks by census tract from National Scale Air Toxics Assessment (NATA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentrations, exposures, health risks by census tract for the United States from National Scale Air Toxics Assessment (NATA). This dataset is associated...

  16. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2005-01-01

    The lower sensitivity of in vitro cytotoxicity assays currently restricts their use as alternative to the fish acute toxicity assays for hazard assessment of chemicals in the aquatic environment. In vitro cytotoxic potencies mostly refer to nominal concentrations. The main objective of the present study was to investigate, whether a reduced availability of chemicals in vitro can account for the lower sensitivity of in vitro toxicity test systems. For this purpose, the bioavailable free fractions of the nominal cytotoxic concentrations (EC 50 ) of chemicals determined with a cytotoxicity test system using Balb/c 3T3 cells and the corresponding free cytotoxic concentrations (ECu 50 ) were calculated. The algorithm applied is based on a previously developed simple equilibrium distribution model for chemicals in cell cultures with serum-supplemented culture media. This model considers the distribution of chemicals between water, lipids and serum albumin. The algorithm requires the relative lipid volume of the test system, the octanol-water partition coefficient (K ow ) and the in vitro albumin-bound fraction of the chemicals. The latter was determined from EC 50 -measurements in the presence of different albumin concentrations with the Balb/c 3T3 test system. Organic chemicals covering a wide range of cytotoxic potency (EC 50 : 0.16-527000 μM) and lipophilicity (log K ow : -5.0-6.96) were selected, for which fish acute toxicity data (LC 50 -values) from at least one of the three fish species, medaka, rainbow trout and fathead minnow, respectively, were available. The availability of several chemicals was shown to be extensively reduced either by partitioning into lipids or by serum albumin binding, or due to both mechanisms. Reduction of bioavailability became more important with increasing cytotoxic potency. The sensitivity of the Balb/c 3T3 cytotoxicity assay and the correspondence between in vivo and in vitro toxic potencies were increased when the free cytotoxic

  17. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  18. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks

    OpenAIRE

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian N. L.; Revitt, D. Mike

    2010-01-01

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelin...

  19. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    OpenAIRE

    Nosheen Mirza; Qaisar Mahmood; Mohammad Maroof Shah; Arshid Pervez; Sikander Sultan

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, applica...

  20. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300

    NARCIS (Netherlands)

    Meinhausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X

    2011-01-01

    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new

  1. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  2. Evaluating the gas content of coals and isolated maceral concentrates from the Paleocene Guasare Coalfield, Venezuela

    International Nuclear Information System (INIS)

    Berbesi, L.A.; Marquez, G.; Martinez, M.; Requena, A.

    2009-01-01

    This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH 4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C 1 , C 2 , C 3 ) and CO 2 yielded gas concentrations, plus δ 13 C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%R o ) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm 3 /g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ∼ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.

  3. Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Song, Taeksun; Lee, Myungsun; Jeon, Han-Seung; Park, Yumi; Dodd, Lori E; Dartois, Véronique; Follman, Dean; Wang, Jing; Cai, Ying; Goldfeder, Lisa C; Olivier, Kenneth N; Xie, Yingda; Via, Laura E; Cho, Sang Nae; Barry, Clifton E; Chen, Ray Y

    2015-11-01

    Long-term linezolid use is limited by mitochondrial toxicity-associated adverse events (AEs). Within a prospective, randomized controlled trial of linezolid to treat chronic extensively drug-resistant tuberculosis, we serially monitored the translational competence of mitochondria isolated from peripheral blood of participants by determining the cytochrome c oxidase/citrate synthase activity ratio. We compared this ratio with AEs associated with mitochondrial dysfunction. Linezolid trough concentrations were determined for 38 participants at both 600 mg and 300 mg doses. Those on 600 mg had a significantly higher risk of AE than those on 300 mg (HR 3·10, 95% CI 1·23-7 · 86). Mean mitochondrial function levels were significantly higher in patients before starting linezolid compared to their concentrations on 300 mg (P = 0·004) or 600 mg (P linezolid trough concentrations were associated with lower mitochondrial function levels (Spearman's ρ = - 0.48; P = 0.005). Mitochondrial toxicity risk increased with increasing linezolid trough concentrations, with all patients with mean linezolid trough > 2 μg/ml developing an AE related to mitochondrial toxicity, whether on 300 mg or 600 mg. Therapeutic drug monitoring may be useful to prevent the development of mitochondrial toxicity associated with long-term linezolid use.

  4. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    Science.gov (United States)

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  5. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  6. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  7. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health

    International Nuclear Information System (INIS)

    Aelion, C. Marjorie; Davis, Harley T.; McDermott, Suzanne; Lawson, Andrew B.

    2009-01-01

    Urban and rural areas may have different levels of environmental contamination and different potential sources of exposure. Many metals, i.e., arsenic (As), lead (Pb), and mercury (Hg), have well-documented negative neurological effects, and the developing fetus and young children are particularly at risk. Using a database of mother and child pairs, three areas were identified: a rural area with no increased prevalence of mental retardation and developmental delay (MR/DD) (Area A), and a rural area (Area B) and an urban area (Area C) with significantly higher prevalence of MR/DD in children as compared to the state-wide average. Areas were mapped and surface soil samples were collected from nodes of a uniform grid. Samples were analyzed for As, barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), Pb, manganese (Mn), nickel (Ni), and Hg concentrations and for soil toxicity, and correlated to identify potential common sources. ArcGIS was used to determine distances between sample locations and industrial facilities, which were correlated with both metal concentrations and soil toxicity. Results indicated that all metal concentrations (except Be and Hg) in Area C were significantly greater than those in Areas A and B (p ≤ 0.0001) and that Area C had fewer correlations between metals suggesting more varied sources of metals than in rural areas. Area C also had a large number of facilities whose distances were significantly correlated with metals, particularly Cr (maximum r = 0.33; p = 0.0002), and with soil toxicity (maximum r = 0.25; p = 0.007) over a large spatial scale. Arsenic was not associated with distance to any facility and may have a different anthropogenic, or natural source. In contrast to Area C, both rural areas had lower concentrations of metals, lower soil toxicity, and a small number of facilities with significant associations between distance and soil metals

  8. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  9. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  10. Assessment of sediment quality based on toxic equivalent benzo[a]Pyrene concentration

    International Nuclear Information System (INIS)

    King, T.L.; Lee, K.

    2004-01-01

    This study examined benzo[a]pyrene (B[a]P) as an indicator and its thresholds for polycyclic aromatic hydrocarbons (PAH) in sediments. The indicator, based on toxicity and carcinogenic effects, was selected to assess the marine environment and changes in marine environmental quality (MEQ) in Sydney Harbour, Nova Scotia. It was shown that the bioavailability of B[a]P and other PAHs is greatly affected by the quality and quantity of dissolved organic matter and organic carbon content. Two coal coke facilities were constructed on the shore of Sydney Harbour in the 19th century. For many years, the coke-ovens discharged toxic liquid effluent through the Tar Ponds into the harbour, contaminating the ground and surface water with arsenic, lead and other toxins. It also led to the accumulation of PAHs and polychlorinated biphenyls. A recent assessment of PAH contamination of Sydney Harbour has focused on the exposure of organisms to contaminants as well as the biological effects on the organisms. All samples collected from the South Arm of Sydney Harbour exceeded the upper threshold of established regulatory guidelines. Samples from the Northwest Arm were within regulatory limits, suggesting that industrial and municipal sources were the primary sources of pollution. PAH concentrations were used to identify sediments that exceed effects thresholds based on MEQ guidelines. The results were compared to actual observations of biological effects. Toxic equivalency factors were established for B[a]P and other PAHs in order to estimate cumulative exposure levels. The concentrations can be compared to regulatory sediment quality guidelines established in Canada and the United States for the protection of marine life. 34 refs., 6 tabs., 2 figs

  11. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m 3 , 0.01-0.54 ng/m 3 , and 0.05-3.58 ng/m 3 , respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m 3 , 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m 3 , 25%), fossil fuel combustion (0.92 μg/m 3 , 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10 -6 ), but below a tolerable risk (1 × 10 -4 ) and Alberta benchmark (1 × 10 -5 ). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gas Chromatic Mass Spectrometer

    Science.gov (United States)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  13. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Renganathan, B.; Sastikumar, D.; Srinivasan, R.; Ganesan, A.R.

    2014-01-01

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm 2 O 3 nanoparticles are act as sensor materials. • Sm 2 O 3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm 2 O 3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm 2 O 3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm 2 O 3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  14. Burnable gas concentration control device

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Sanada, Takahiro; Kuboniwa, Takao.

    1980-01-01

    Purpose: To provide connecting ports by doubling nitrogen gas injection pipes thereby to secure lengthiness of the device only by providing one nitrogen gas generator. Constitution: Nitrogen gas injection pipes are provided in two lines separately, and attachable and detachable connecting ports for feeding nitrogen gas connectable to a movable type nitrogen gas supply installation for the purpose of backing up the nitrogen gas generator. (Yoshihara, H.)

  15. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    Science.gov (United States)

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. THEORETICAL GAS CONCENTRATIONS ACHIEVING 100% FILL OF THE VITREOUS CAVITY IN THE POSTOPERATIVE PERIOD: A Gas Eye Model Study.

    Science.gov (United States)

    Williamson, Tom H; Guillemaut, Jean-Yves; Hall, Sheldon K; Hutter, Joseph C; Goddard, Tony

    2017-12-11

    To determine the concentrations of different gas tamponades in air to achieve 100% fill of the vitreous cavity postoperatively and to examine the influence of eye volume on these concentrations. A mathematical model of the mass transfer dynamics of tamponade and blood gases (O2, N2, and CO2) when injected into the eye was used. Mass transfer surface areas were calculated from published anatomical data. The model has been calibrated from published volumetric decay and composition results for three gases sulphahexafluoride (SF6), hexafluoroethane (C2F6), or perfluoropropane (C3F8). The concentrations of these gases (in air) required to achieve 100% fill of the vitreous cavity postoperatively without an intraocular pressure rise were determined. The concentrations were calculated for three volumes of the vitreous cavity to test whether ocular size influenced the results. A table of gas concentrations was produced. In a simulation of pars plana vitrectomy operations in which an 80% to 85% fill of the vitreous cavity with gas was achieved at surgery, the concentrations of the 3 gases in air to achieve 100% fill postoperatively were 10% to 13% for C3F8, 12% to 15% for C2F6, and 19% to 25% for SF6. These were similar to the so-called "nonexpansive" concentrations used in the clinical setting. The calculations were repeated for three different sizes of eye. Aiming for an 80% fill at surgery and 100% postoperatively, an eye with a 4-mL vitreous cavity required 24% SF6, 15% C2F6, or 13% C3F8; 7.2 mL required 25% SF6, 15% C2F6, or 13% C3F8; and 10 mL required 25% SF6, 16% C2F6, or 13% C3F8. When using 100% gas (e.g., used in pneumatic retinopexy), to achieve 100% fill postoperatively, the minimum vitreous cavity fill at surgery was 43% for SF6, 29% for C2F6, and 25% for C3F8 and was only minimally changed by variation in the size of the eye. A table has been produced, which could be used for surgical innovation in gas usage in the vitreous cavity. It provides concentrations

  17. Optimization of organic contaminant and toxicity testing analytical procedures for estimating the characteristics and environmental significance of natural gas processing plant waste sludges

    International Nuclear Information System (INIS)

    Novak, N.

    1990-10-01

    The Gas Plant Sludge Characterization Phase IIB program is a continuation of the Canadian Petroleum Association's (CPA) initiatives to characterize sludge generated at gas processing plants. The objectives of the Phase IIB project were to develop an effective procedure for screening waste sludges or centrifuge/leachate generated from sludge samples for volatile, solvent-soluble and water-soluble organics; verify the reproducibility of the three aquatic toxicity tests recommended as the battery of tests for determining the environmental significance of sludge centrifugates or leachates; assess the performance of two terrestrial toxicity tests in determining the environmental significance of whole sludge samples applied to soil; and to assess and discuss the reproducibility and cost-effectiveness of the sampling and analytical techniques proposed for the overall sludge characterization procedure. Conclusions and recommendations are provided for sludge collection, preparation and distribution, organic analyses, toxicity testing, project management, and procedure standardization. The three aquatic and two terrestrial toxicity tests proved effective in indicating the toxicity of complex mixtures. 27 refs., 3 figs., 59 tabs

  18. Aerosol ionization gas analyzer for continious detection of toxic compounds in industrial gaseous effluents

    International Nuclear Information System (INIS)

    Groze, Kh.; Dering, Kh.; Gleizberg, F.

    1979-01-01

    In is noted that the problem of the environment protection as well as protection of the personnel at their working places against influence of harmful substances in air, demands continious measuring of an increasing number of harmful substances with provision of high sensitivity and accuracy of measurements. The demands are listed to the gas analyzers developed for these purposes: flexibility towards solution of different problems of measurement; great number of the substances to be measured; acceptable threshold of determination of different substances concentration in air and small measurement error; simplicity of maintanance and technical service and high reliability in exploitation; economy of fabrication and application. The data are given for the aerosol ionization gas analyzer which, in many cases, met the requirements listed. In the gas analyzer described, the analysed substance is converted for measuring its concentration into an aerosol by means of the aerosol generator, especially designed for this substance or group of substances. The produced aerosol is introduced into an ionization chamber with build-in radiation source and caused decrease of the ionization current in it. According to the decrease of the ionization current, concentration of the harmful substance in air is determined. Characteristics and possibilities of the gas analyzer exploitation are given and discussed on the base of the results of determination of some harmful substances concentrations in air in the laboratory conditions and in the real conditions of industrial production and in the health protection system [ru

  19. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    International Nuclear Information System (INIS)

    Johnson, Andrew C.; Keller, Virginie; Dumont, Egon; Sumpter, John P.

    2015-01-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  20. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Andrew C., E-mail: ajo@ceh.ac.uk [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Keller, Virginie; Dumont, Egon [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Sumpter, John P. [Institute for the Environment, Brunel University, Uxbridge UB8 (United Kingdom)

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  1. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  2. Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests

    Directory of Open Access Journals (Sweden)

    Débora Rebechi

    2014-09-01

    Full Text Available Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE, alpha (EST-α and beta (EST-β esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

  3. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  4. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  5. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  6. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams.

    Science.gov (United States)

    Gardner, Kristin M; Royer, Todd V

    2010-01-01

    Contemporary information on road salt runoff is needed for management of water resources in regions experiencing urbanization and increased road density. We investigated seasonal Cl(-) concentrations among five streams in south-central Indiana that drained watersheds varying in degree of urbanization and ranging in size from 9.3 to 27 km(2). We also conducted acute toxicity tests with Daphnia pulex to assess the potential effects of the observed Cl(-) concentrations on aquatic life. Periods of elevated Cl(-) concentrations were observed during the winters of 2007-08 and 2008-09 at all sites except the reference site. The highest Cl(-) concentration observed during the study was 2100 mg L(-1) and occurred at the most urbanized site. The Cl(-) concentration at the reference site never exceeded 22 mg L(-1). The application of road salt caused large increases in stream Cl(-) concentrations, but the elevated Cl(-) levels did not appear to be a significant threat to aquatic life based on our toxicity testing. Only the most urbanized site showed evidence of salt retention within the watershed, whereas the other sites exported the road salt relatively quickly after its application, suggesting storm drains and impervious surfaces minimized interaction between soils and salt-laden runoff. During winter at these sites, the response in stream Cl(-) concentrations appeared to be controlled by the timing and intensity of road salt application, the magnitude of precipitation, and the occurrence of air temperatures that caused snowmelt and generated runoff.

  7. Bio-testing integral toxicity of corrosion inhibitors, biocides and oil hydrocarbons in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Chugunov, V.A.; Kholodenko, V.P.; Irkhina, I.A.; Fomchenkov, V.M.; Novikov, I.A. [State Research Center for Applied Microbiology, Obolensk, Moscow (Russian Federation)

    2004-07-01

    In recent years bioassays have been widely used for assessing levels of contamination of the environment. This is due to the fact that test-organisms provide a general response to toxicants present in samples. Based on microorganisms as test objects, it is possible to develop cheap, sensitive and rapid assays to identify environmental xenobiotics and toxicants. The objective of the research was to develop different microbiological assays for assessing integral toxicity of water environments polluted with corrosion inhibitors, biocides and hydrocarbons in oil- and gas-processing industry. Bio-luminescent, electro-orientational, osmo-optic and microorganism reducing activity assays were used for express evaluation of integral toxicity. They are found to determine promptly integral toxicity of water environments containing various pollutants (oil, oil products, corrosion inhibitors, biocides). Results conclude that the assays may be used for analyzing integral toxicity of water polluted with hydrocarbons, as well as for monitoring of water changes as a result of biodegradation of pollutants by microorganisms and their associations. Using a kit of different assays, it is also possible to evaluate ecological safety of biocides, corrosion inhibitors, and their compositions. Bioassays used as a kit are more effective than each assay individually, allowing one to get complete characterization of a reaction of bacterial test organisms to different environments. (authors)

  8. Human Health Risk Assessment of a landfill based on volatile organic compounds emission, immission and soil gas concentration measurements

    International Nuclear Information System (INIS)

    Martí, Vicenç; Jubany, Irene; Pérez, Consol; Rubio, Xavier; De Pablo, Joan; Giménez, Javier

    2014-01-01

    (acetic acid). The soil–gas measurements in piezometers around the landfill showed individual VOC values with a maximum 830 μg m −3 for dichlorodifluoromethane. With the obtained fluxes and concentrations in air and soil–gas, USEPA methodology and modeling was used to evaluate equivalent concentration in the scenarios considered. Toxicity values from IRIS database were used to finally obtain chemical risk indicators. Admissible risk indicators were obtained in all scenarios. The VOCs that contributed more to risk indexes in RH2 were trichloroethylene, trimethylbenzene, chloroform, 1,2-dichloroethane and carbon tetrachloride. The carcinogenic risk in RH7 was linked to the presence of benzene and chloroform. The comparison of the measurements of the present work with other landfills evidence that HHRA in ambient air would be needed in order to perform a correct landfill management

  9. Early change of thyroid hormone concentration after 131I treatment in patients with solitary toxic adenoma

    International Nuclear Information System (INIS)

    Pirnat, E.; Fidler, V.; Zaletel, K.; Gaberscek, S.; Hojker, S.

    2002-01-01

    Aim: In spite of extensive use of 131 I for treatment of hyperthyroidism, the results of early outcome are variable. In our prospective clinical study we tested whether 131 I induced necrosis causing clinical aggravation of hyperthyroidism and increasing the free thyroid hormone concentration in the serum of patients with solitary toxic adenoma not pretreated with antithyroid drugs. Patients and methods: 30 consecutive patients were treated with 925 MBq 131 I. Serum concentration of thyrotropin (TSH), free thyroxine (fT 4 ), free triiodothyronine (fT 3 ), thyroglobulin (Tg), and interleukin-6 (IL-6) were measured before and after application of 131 I. Results: After application of 131 I no clinical worsening was observed. FT 4 and fT 3 concentration did not change significantly within the first five days, whereas both of them significantly decreased after 12 days (p 131 I induced necrosis of thyroid cells was found. Therefore, the application of 131 I may be considered as a safe and effective treatment for patients with hyperthyroidism due to toxic adenoma. (orig.)

  10. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  11. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    Science.gov (United States)

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  12. Toxic effect evaluation of the lead acetate and chromium chloride on anaerobic bacterial metabolism

    International Nuclear Information System (INIS)

    Wills, Beatriz; Naranjo, Fernando

    2004-01-01

    The toxicity of trivalent chromium and lead to anaerobic sludge system was studied. Performed assay was tested in 60 mL serum vials, the toxicity test to succeed in two steps, first with formic acid and then whey powder as a substrate. Anaerobic toxicity assays were performed taking into account, methane gas production and oxidation-reduction potential (ORP) rate, these tests were considered a useful indicator for monitoring a anaerobic sludge suffering from toxicants, over 72 hours with metals dosage against the control. First of all, exploratory assays in order to know different chromium and lead concentrations were carried out. The assays degradation activity reduced methane by 50% that came into contact with 3.322 mg Cr 3 +/L and 1.415 mg Pb/L and 2.291 mg Cr 3 +/Land 1.982 mg Pb/L with formic acid and whey powder as a substrate respectively. Heavy metal concentrations that caused 50% inhibition of methanogenesis during whey and formic acid methanation indicated that toxicity decreased in order Pb>>Cr

  13. Absence of a relation between efavirenz plasma concentrations and toxicity-driven efavirenz discontinuations in the EuroSIDA study

    DEFF Research Database (Denmark)

    van Luin, Matthijs; Bannister, Wendy P; Mocroft, Amanda

    2009-01-01

    plasma concentrations were measured from patients in the EuroSIDA study starting EFV after 1 January 1999. Patients with a plasma concentration available were divided into those that discontinued EFV because of any toxicity or by the choice of the patient or physician within 2 years (TOXPC group...

  14. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  15. [Uncertainty evaluation of the determination of toxic equivalent quantity of polychlorinated dibenzo-p-dioxins and dibenzofurans in soil by isotope dilution high resolution gas chromatography and high resolution mass spectrometry].

    Science.gov (United States)

    Du, Bing; Liu Aimin; Huang, Yeru

    2014-09-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil samples were analyzed by isotope dilution method with high resolution gas chromatography and high resolution mass spectrometry (ID-HRGC/HRMS), and the toxic equivalent quantity (TEQ) were calculated. The impacts of major source of measurement uncertainty are discussed, and the combined relative standard uncertainties were calculated for each 2, 3, 7, 8 substituted con- gener. Furthermore, the concentration, combined uncertainty and expanded uncertainty for TEQ of PCDD/Fs in a soil sample in I-TEF, WHO-1998-TEF and WHO-2005-TEF schemes are provided as an example. I-TEF, WHO-1998-TEF and WHO-2005-TEF are the evaluation schemes of toxic equivalent factor (TEF), and are all currently used to describe 2,3,7,8 sub- stituted relative potencies.

  16. AN APPLICATION OF FLOW INJECTION ANALYSIS WITH GAS DIFFUSION AND SPECTROPHOTOMETRIC DETECTION FOR THE MONITORING OF DISSOLVED SULPHIDE CONCENTRATION IN ENVIRONMENTAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Malwina Cykowska

    2014-10-01

    Full Text Available The monitoring of the concentration of sulphide is very important from the environment point of view because of high toxicity of hydrogen sulphide. What is more hydrogen sulphide is an important pollution indicator. In many cases the determination of sulphide is very difficult due to complicated matrix of some environmental samples, which causes that most analytical methods cannot be used. Flow injection analysis allows to avoid matrix problem what makes it suitable for a wide range of applications in analytical laboratories. In this paper determination of dissolved sulphide in environmental samples by gas-diffusion flow injection analysis with spectrophotometric detection was presented. Used gas-diffusion separation ensures the elimination of interferences caused by sample matrix and gives the ability of determination of sulphides in coloured and turbid samples. Studies to optimize the measurement conditions and to determine the value of the validation parameters (e.g. limit of detection, limit of quantification, precision, accuracy were carried out. Obtained results confirm the usefulness of the method for monitoring the concentration of dissolved sulphides in water and waste water. Full automation and work in a closed system greatly reduces time of analysis, minimizes consumption of sample and reagents and increases safety of analyst’s work.

  17. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome.

    Science.gov (United States)

    Daldal, Hale; Beder, Bayram; Serin, Simay; Sungurtekin, Hulya

    2010-08-01

    Hydrogen sulfide (H(2)S) is a toxic gas with the smells of "rotten egg"; its toxic effects are due to the blocking of cellular respiratory enzymes leading to cell anoxia and cell damage. We report two cases with acute H(2)S intoxication caused by inhalation of H(2)S evaporated from the water of a thermal spring. Two victims were found in a hotel room were they could take a thermal bath. A 26-year-old male was found unconscious; he was resuscitated, received supportive treatment and survived. A 25-year-old female was found dead. Autopsy showed diffuse edema and pulmonary congestion. Toxicological blood analysis of the female revealed the following concentrations: 0.68 mg/L sulfide and 0.21 mmol/L thiosulfate. The urine thiosulfate concentration was normal. Forensic investigation established that the thermal water was coming from the hotel's own illegal well. The hotel was closed. This report highlights the danger of H(2)S toxicity not only for reservoir and sewer cleaners, but also for individuals bathing in thermal springs.

  18. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2009-07-01

    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  19. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  20. Toxicity of sediment pore water associated with offshore oil and gas platforms in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Carr, R.S.; Chapman, D.C.

    1993-01-01

    As a part of a multidisciplinary program to assess the long-term impacts of offshore petroleum production in the Gulf of Mexico, a series of sediment porewater toxicity tests were conducted. Sediments were samples from five petroleum production platforms along five radial transects. Pore water was extracted from the sediment using a pressure extraction device, centrifuged, and frozen for later toxicity testing and chemical analysis. The sea urchin (Arbacia punctulata) embryological development assay and fertilization assay were used to assess porewater toxicity. Significant decreases in normal development of embryos was observed at 14 stations and fertilization was reduced at three stations. All stations with reduced fertilization also showed impaired development in the embryological development assay. All but three toxic sites were within 150 m of the platform. The six most toxic stations were at one platform near the Flower Garden reef, occurring near the platform along three radii; toxicity was always greater at the first site on a radium than at the second. Toxicity is discussed in relation to metal and hydrocarbon concentrations in whole sediment and in pore water

  1. Mixture toxicity of wood preservative products in the fish embryo toxicity test.

    Science.gov (United States)

    Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja

    2012-06-01

    Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.

  2. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.

  3. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    Science.gov (United States)

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Prediction of Dissolved Gas Concentrations in Transformer Oil Based on the KPCA-FFOA-GRNN Model

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2018-01-01

    Full Text Available The purpose of analyzing the dissolved gas in transformer oil is to determine the transformer’s operating status and is an important basis for fault diagnosis. Accurate prediction of the concentration of dissolved gas in oil can provide an important reference for the evaluation of the state of the transformer. A combined predicting model is proposed based on kernel principal component analysis (KPCA and a generalized regression neural network (GRNN using an improved fruit fly optimization algorithm (FFOA to select the smooth factor. Firstly, based on the idea of using the dissolved gas ratio of oil to diagnose the transformer fault, gas concentration ratios are also used as characteristic parameters. Secondly, the main parameters are selected from the feature parameters using the KPCA method, and the GRNN is then used to predict the gas concentration in the transformer oil. In the training process of the network, the FFOA is used to select the smooth factor of the neural network. Through a concrete example, it is shown that the method proposed in this paper has better data fitting ability and more accurate prediction ability compared with the support vector machine (SVM and gray model (GM methods.

  5. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  6. Device for separating and concentrating rare gases containing krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    In orer to highly concentrate krypton by means of adsorption and desorption of activated carbon, in a device for continuously separating and concentrating rare gases containing krypton gas by means of adsorbing and desorbing operation of activated carbon, the device includes adsorbers arranged in parallel and more than two stages of adsorbers arranged in series with the first mentioned adsorbers with the amount of activated carbon filled successively reduced, and a cooling mechanism for cooling the adsorbers when adsorbed and a heating mechanism for heating the adsorbers when desorbed.

  7. Use of mass and toxicity balances in risk-based corrective action decisions at contaminated sites

    International Nuclear Information System (INIS)

    Sevigny, J.H.; Lintott, D.; Wrubleski, R.M.; Drury, C.R.

    1997-01-01

    The contaminated groundwater at a sour gas plant facility was studied to identify the chemicals of environmental concern. Simple mass balance principles were used to determine the proportion of organic carbon, organic nitrogen and Microtox R toxicity that can be attributed to two process chemicals that have contaminated several sour gas plants in western Canada. The two process chemicals are sulfolane and diisopropanolamine (DIPA). The organic carbon balance was calculated by determining the molar contribution of sulfolane and DIPA relative to the mass of carboxylic acid-corrected dissolved organic carbon. Organic carbon balances ranged from 44 to 96 per cent. The organic nitrogen balance was calculated by determining the molar contribution of DIPA relative to the mass of ammonium ion-corrected dissolved Kjeldahl nitrogen. The nitrogen balances were highly variable between 8 to 48 per cent for samples with organic nitrogen concentrations between 10 and 32 mg/L. The Microtox R toxicity balance was calculated by determining the proportions of toxicity that could be accounted for by pure phase sulfolane and DIPA. The Microtox R toxicity balance for samples that showed significant toxicity ranged from 71 to 122 per cent

  8. Use of mass and toxicity balances in risk-based corrective action decisions at contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, J.H. [Komex Consultants Ltd., Calgary, AB (Canada); Lintott, D. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wrubleski, R.M.; Drury, C.R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The contaminated groundwater at a sour gas plant facility was studied to identify the chemicals of environmental concern. Simple mass balance principles were used to determine the proportion of organic carbon, organic nitrogen and Microtox{sup R} toxicity that can be attributed to two process chemicals that have contaminated several sour gas plants in western Canada. The two process chemicals are sulfolane and diisopropanolamine (DIPA). The organic carbon balance was calculated by determining the molar contribution of sulfolane and DIPA relative to the mass of carboxylic acid-corrected dissolved organic carbon. Organic carbon balances ranged from 44 to 96 per cent. The organic nitrogen balance was calculated by determining the molar contribution of DIPA relative to the mass of ammonium ion-corrected dissolved Kjeldahl nitrogen. The nitrogen balances were highly variable between 8 to 48 per cent for samples with organic nitrogen concentrations between 10 and 32 mg/L. The Microtox{sup R} toxicity balance was calculated by determining the proportions of toxicity that could be accounted for by pure phase sulfolane and DIPA. The Microtox{sup R} toxicity balance for samples that showed significant toxicity ranged from 71 to 122 per cent.

  9. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  10. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  11. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-07-01

    Full Text Available The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890 and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700 were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value of radon concentration among the various types of water sources was found 14.7 ± 1.44 Bq/l in well water used for drinking and irrigation and minimum was found 5.37 ± 0.58 Bq/l in tap water used for drinking. Contribution of radon in drinking water to indoor air and age dependent associated annual effective doses were calculated from the measured radon concentration and were found less than lower limit of recommended action level. The activity concentrations of Ni > Pb > Cd > As > Cr were found higher for streams water as compared to wells and tap water. Values of radon concentration in well water were found higher than EPA recommended level and lower than WHO action level while the annual effective doses and level of toxic elements in water reported in this study were found lower than recommended level.

  12. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.

    Science.gov (United States)

    Gon Ryu, Sam; Wan Lee, Hae

    2015-01-01

    The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.

  13. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    Science.gov (United States)

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  14. Apparatus for measuring the concentration of a gas

    International Nuclear Information System (INIS)

    Manin, Ange.

    1974-01-01

    The apparatus described for measuring the concentration of a gas in an atmosphere is of the kind which has an ionization chamber with an internal radioactive source and associated electronics enabling the ionization current crossing the chamber to be measured. It includes at least one cylindrical metal grid forming an electrode brought to a high voltage in relation to a cylindrical collection electrode fitted to the axis of the grid coated with a radioactive deposit and, around this grid, a screen acting as a protective envelope. The radioactive deposit is tritiated titanium [fr

  15. Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

    Directory of Open Access Journals (Sweden)

    Lei Baiwei

    2016-10-01

    Full Text Available In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84 which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

  16. Early change of thyroid hormone concentration after {sup 131}I treatment in patients with solitary toxic adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Pirnat, E.; Fidler, V.; Zaletel, K.; Gaberscek, S.; Hojker, S. [Univ. Medical Centre Ljubljana, Dept. of Nuclear Medicine (Slovenia)

    2002-08-01

    Aim: In spite of extensive use of {sup 131}I for treatment of hyperthyroidism, the results of early outcome are variable. In our prospective clinical study we tested whether {sup 131}I induced necrosis causing clinical aggravation of hyperthyroidism and increasing the free thyroid hormone concentration in the serum of patients with solitary toxic adenoma not pretreated with antithyroid drugs. Patients and methods: 30 consecutive patients were treated with 925 MBq {sup 131}I. Serum concentration of thyrotropin (TSH), free thyroxine (fT{sub 4}), free triiodothyronine (fT{sub 3}), thyroglobulin (Tg), and interleukin-6 (IL-6) were measured before and after application of {sup 131}I. Results: After application of {sup 131}I no clinical worsening was observed. FT{sub 4} and fT{sub 3} concentration did not change significantly within the first five days, whereas both of them significantly decreased after 12 days (p<0.0001). Slight and clinically irrelevant increase in the level of the two thyroid hormones was observed in 9 patients. Furthermore, we observed a prolonged increase in Tg concentration and a transient increase in IL-6 concentration. Conclusion: Neither evidence of any clinical aggravation of hyperthyroidism nor any significant increase in thyroid hormone concentration by {sup 131}I induced necrosis of thyroid cells was found. Therefore, the application of {sup 131}I may be considered as a safe and effective treatment for patients with hyperthyroidism due to toxic adenoma. (orig.)

  17. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-08-01

    Full Text Available In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  18. Combination scattering of dissociating gas applied to measurements of temperature and concentration of components

    International Nuclear Information System (INIS)

    Pashkov, V.A.; Kurganova, F.I.; Grishchuk, M.Kh.

    1987-01-01

    The method to calculate the combination scattering power of the components of the dissociating N 2 O 4 ↔ 2NO 2 → 2NO+O 2 gas subjected to the laser radiation effect is given. The combination scattering power has been calculated for temperatures 400-600 K, pressures 1-3 MPa, with the neodymium laser (λ=1.06 μm) as a source and the possibility of measuring the local temperatures and concentration of the given gas components with the help of the combination scattering has been analysed. It follows from the calculated data that combination scattering power of N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas in excitation with the neodymium laser as a source is sufficient for detection. Gas temperature is likely to be measured with the minimum error relative to stokes and anti-stokes bands of the combination scattering, produced by nitrogen tetroxide. From calculated data it also follows that measurement of NO 2 concentration in the range 400-600 K is possible. At the same time combination scattering power, produced by NO and O 2 components is sufficient for measurement merely with the concentration of the components of the order of 10 18 molecules/cm 3 guaranteed in static conditions only at N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas temperature 500 K and higher

  19. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  20. Ultraviolet degradation of procymidone -structuralcharacterization by gas chromatography coupled with masss spectrometry and potential toxicity of photoproducts using in silico tests

    International Nuclear Information System (INIS)

    Rifai, A.; Jaber, F.; Souissi, Y.; Genty, Ch.; Bourcier, S.; Bouchonnet, S.; Clavaguera, C.

    2013-01-01

    RATIONALE: Procymidone is a dicarboximide fungicide mainly used for vineyard protection but also for different crops. The structural elucidation of by-products arising from the UV-visible photodegradation of procymidone has been investigated by gas chromatography coupled with mass spectrometry. The potential toxicities of photoproducts were estimated by in silico tests. METHODS: Aqueous solutions of procymidone were irradiated for up to 90 min in a self-made reactor equipped with a mercury lamp. Analyses were carried out on a gas chromatograph coupled with an ion trap mass spectrometer operated in electron ionization and methanol positive chemical ionization. Multistage collision-induced dissociation (CID) experiments were performed to establish dissociation pathways of ions. Toxicities of byproducts were estimated using the QSAR T.E.S.T. program. RESULTS: Sixteen photoproducts were investigated. Chemical structures were proposed mainly based on the interpretation of multistage CID experiments, but also on their relative retention times and kinetics data. These structures enabled photodegradation pathways to be suggested. Only three photoproducts remain present after 90 min of irradiation. Among them, 3,5-dichloroaniline presents a predicted rat LD50 toxicity about ten times greater than that of procymidone. CONCLUSIONS: 3,5-Dichloroaniline is the only photoproduct reported in previous articles. Eight by-products among the sixteen characterized might be as toxic, if not more, than procymidone itself considering the QSAR-predicted rat LD 50. (author)

  1. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  2. Effect of soil contaminant extraction method in determining toxicity using the Microtox(reg.) assay

    International Nuclear Information System (INIS)

    Harkey, G.A.; Young, T.M.

    2000-01-01

    This project examined the influence of different extraction methods on the measured toxicity of contaminated soils collected from manufactured gas plant (MGP) sites differing in soil composition and contaminant concentration. Aged soils from a number of MGP sites were extracted using a saline solution, supercritical fluid extraction (SFE), and Soxhlet extraction. Toxicity was assessed using two forms of Microtox tests: acute aqueous tests on saline and SFE soil extracts and solid-phase tests (SPTs) on soil particles. Microtox SPTs were performed on soils before and after SFE to determine resulting toxicity reduction. Three hypotheses were tested: (1) Toxicity of soil extracts is related to contaminant concentrations of the extracts, (2) measured toxicity significantly decreases with less vigorous methods of extraction, and (3) supercritical fluid extractability correlates with measured toxicity. The EC50s for SPTs performed before and after SFE were not different for some soils but were significantly greater after extraction for other soils tested. The most significant toxicity reductions were observed for soils exhibiting the highest toxicity in both preextraction SPTs and acute aqueous tests. Acute Microtox tests performed on SFE extracts showed significantly lower EC50s than those reported from saline-based extraction procedures. Toxicity of the soils measured by Microtox SPTs was strongly correlated with both SFE efficiency and measures of contaminant aging. Data from this project provide evidence of sequestration and reduced availability of polycyclic aromatic hydrocarbons (PAHs) from soils extracted via physiologically based procedures compared to vigorous physical extraction protocols

  3. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p toxicity was measured in one polar soil extract fraction, postbioremediation (p soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  4. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  5. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  6. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    Science.gov (United States)

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  7. A new method research of monitoring low concentration NO and SO2 mixed gas

    Science.gov (United States)

    Bo, Peng; Gao, Chao; Guo, Yongcai; Chen, Fang

    2018-01-01

    In order to reduce the pollution of the environment, China has implemented a new ultra-low emission control regulations for polluting gas, requiring new coal-fired power plant emissions SO2 less than 30ppm, NO less than 75ppm, NO2 less than 50ppm, Monitoring low concentration of NO and SO2 mixed gases , DOAS technology facing new challenges, SO2 absorb significantly weaken at the original absorption peak, what more the SNR is very low, it is difficult to extract the characteristic signal, and thus cannot obtain its concentration. So it cannot separate the signal of NO from the mixed gas at the wavelength of 200 230nm through the law of spectral superposition, it cannot calculate the concentration of NO. The classical DOAS technology cannot meet the needs of monitoring. In this paper, we found another absorption spectrum segment of SO2, the SNR is 10 times higher than before, Will not be affected by NO, can calculate the concentration of SO2 accurately, A new method of segmentation and demagnetization separation technology of spectral signals is proposed, which achieves the monitoring the low concentration mixed gas accurately. This function cannot be achieved by the classical DOAS. Detection limit of this method is 0.1ppm per meter which is higher than before, The relative error below 5% when the concentration between 0 5ppm, the concentration of NO between 6 75ppm and SO2 between 6 30ppm the relative error below 1.5%, it has made a great breakthrough In the low concentration of NO and SO2 monitoring. It has great scientific significance and reference value for the development of coal-fired power plant emission control, atmospheric environmental monitoring and high-precision on-line instrumentation.

  8. Radon soil-gas concentration and exhalation from mine tailings dams in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ongori, J.; Lindsay, R. [University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535 (South Africa); Newman, R. [Stellenbosch University, Department of Physics, Private Bag X1 Matieland 7602 (South Africa); Maleka, P. [iThemba LABS, Department of Nuclear Physics, P. O. Box 722, Somerset West 7129 (South Africa)

    2014-07-01

    In Africa as well as in the world, South Africa plays an important role in the mining industry which dates back almost 120 years. Mining activities in South Africa mainly take place in Gauteng Province. Every year million of tons of rocks are taken from underground, milled and processed to extract gold. The uranium bearing tailings are disposed in dumpsites. These tailings dumps contain considerable amounts of radium ({sup 226}Ra) and have therefore been identified as large sources of radon ({sup 222}Rn). Radon is a noble gas formed by the decay of radium which in turn is derived from the radioactive decay of uranium ({sup 238}U). Radon release from these tailings dumps pose health concerns for the surrounding communities. Radon soil gas concentrations and exhalations from a non-operational mine dump (Kloof) which belongs to Carletonville Gold Field, Witwatersrand, South Africa have been investigated. The continuous radon monitor, the Durridge RAD7 was used to measure {sup 222}Rn soil gas concentration in the tailings dump at five different spots. The radon soil gas concentration levels were measured at depths starting from 30 cm below ground/air interface up to 110 cm at intervals of 20 cm. The concentrations recorded ranged from 26±1 to 472±23 kBq.m{sup -3}. Furthermore, thirty four soil samples were taken from the spots where radon soil gas measurements were measured for laboratory-based measurement using the low background Hyper Pure Germanium (HPGe) gamma-ray detector available at the Environmental Radioactivity Laboratory (ERL), iThemba LABS, Western Cape Province. The soil samples were collected in the depth range 0-30 cm. After analysis the weighted average activity concentrations in the soils samples were 308±7 Bq.kg{sup -1}, 255±5 Bq.kg{sup -1} and 18±1 Bq.kg{sup -1} for {sup 238}U, {sup 40}K and {sup 232}Th, respectively. A number of factors such as the radium activity concentration and its distribution in soil grains, soil grain size, soil porosity

  9. Risk assessment of radon gas concentration for some selected offices of KNUST campus, Kumasi

    International Nuclear Information System (INIS)

    Bediako, Yaw Addo

    2013-11-01

    Radon (Rn-222) has been identified as an factor that could result in a health hazard by studies all around the world. The health risks can be minimised by preventing measures where radon is highly concentrated as in some mines or homes or offices. A study in the buildup concentration of the inert gas, will give us a better understanding of its possible pathways through soil into the air surrounding and offices where radon releases can become hazardous. Measuring the radon concentrations on campus, can help to deduce the radon flux to identify the problem areas for rehabilitation. An active method incorporating Trace level radon gas detection and continious monitoring method was used in this study to determine the radon concentration of the selected offices. Concentrations ranging from 0.010 to 0.498 pCi/I were detected, with the head of optometry and Visual Science recording the highest concentration of 0.498 pCi/I, while the head of Agricultural Engineering Department office with the least concentration of 0.010 pCi/I. Although these concentrations are generally low as compared with the EPA guidelines of an action level of 4 pCi/I, but no amount of radiation is said to be safe. (au)

  10. Air toxics emission from an IGCC process

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W; Hovath, A [Carbona Inc, Helsinki (Finland); Hinderson, A [Vattenfall Utveckling (Sweden); Nykaenen, J; Hoffren, H [Imatran Voima Oy, Vantaa (Finland); Nieminen, M; Kurkela, E [VTT, Espoo (Finland)

    1997-10-01

    The emissions of 12 toxic trace element from a coal-fired IGCC plant were calculated based on thermodynamic equilibrium in the gas phase and some of the results published. The theoretical calculations were extended to include some other fuels as well as mixture of some of these fuels. The combustion of the product gas in the gas turbine is also considered. These simulations correspond to gasification of the fuel at 850-1050 deg C (depending on the fuel) and 1823 bar pressure. The gas composition was taken from the measured data as far as possible. In the absence of experimental data, a computer code developed for the U-Gas gasifier was used to determine the fuel gas composition. The gas was then cooled to 550 deg C in the gas cooler and filtered at this same temperature and burned in the gas turbine with an air ratio of 3.2. The results of these simulations are compared with the measured data of an experimental program designed to measure the emissions of a few selected trace elements from a 15 MW,h pressurized fluidized bed gasification pilot plant. The pilot plant was equipped with an advanced hot gas cleanup train which includes a two fluidized-bed reactor system for high-temperature, high-pressure external sulfur removal and a filtration unit housing porous, rigid ceramic candle filters. The trace element concentrations in the fuel, bottom ash, and filter ash are determined and the results compared with EPA regulatory levels

  11. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P; Eriksson, G; Neuschuelz, D [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1998-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  12. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.; Eriksson, G.; Neuschuelz, D. [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1997-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  13. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  14. Impact of stream geomorphology on greenhouse gas concentration in a New York mountain stream

    Science.gov (United States)

    Philippe Vidon; Satish Serchan

    2016-01-01

    As increased greenhouse gas concentrations (GHG: N2O, CO2, CH4) in our atmosphere remain a major concern, better quantifying GHG fluxes from natural systems is essential. In this study, we investigate GHG concentrations in saturated riparian sediments (dry, wet, mucky), streambed hyporheic zone...

  15. Numerical predictions of the separation of heavy components inside the trace gas concentrator

    International Nuclear Information System (INIS)

    Mo, J.D.

    1995-01-01

    The component with a heavier molecular weight can be separated from the one with a lighter molecular weight in a binary mixture by applying an appropriate pressure gradient. A centrifugal force field effectively generates the required pressure gradient and a favorable flow field along the radial direction in a trace gas concentrator for such an application. This paper presents the numerical predictions of the mass separation inside a trace gas concentrator, which enriches Xenon in air. A Navier-Stokes solver in primitive variables using a pressure based algorithm has been applied to solve for the flow fields. Subsequently, the transport equations with a strong centrifugal field are solved for the mass concentration. This study is the continued effort for the proof-of-concept of centrifugal separation of components with a considerable difference in their molecular weight in a binary mixture. The significant effects of rotational speed, flow field, and the geometrical configuration on the mass separation are presented in this paper

  16. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation.

    Science.gov (United States)

    Weng, Jingxia; Jia, Huichao; Wu, Bing; Pan, Bingcai

    2018-01-01

    Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV 254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV 254 ) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conditions for the formation and atmospheric dispersion of a toxic, heavy gas layer during thermal metamorphism of coal and evaporite deposits by sill intrusion

    Science.gov (United States)

    Storey, Michael; Hankin, Robin K. S.

    2010-05-01

    There is compelling evidence for massive discharge of volatiles, including toxic species, into the atmosphere at the end of the Permian. It has been argued that most of the gases were produced during thermal metamorphism of coal and evaporite deposits in the East Siberia Tunguska basin following sill intrusion (Retallack and Jahren, 2008; Svensen et al., 2009). The release of the volatiles has been proposed as a major cause of environmental and extinction events at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009) Here we consider the conditions required for the formation and dispersion of toxic, heavier than air, gas plumes, made up of a mixture of CO2, CH4, H2S and SO2 and formed during the thermal metamorphism of C- and S- rich sediments. Dispersion models and density considerations within a range of CO2/CH4 ratios and volatile fluxes and temperatures, for gas discharge by both seepage and from vents, allow the possibility that following sill emplacement much of the vast East Siberia Tunguska basin was - at least intermittently - covered by a heavy, toxic gas layer that was unfavorable for life. Dispersion scenarios for a heavy gas layer beyond the Siberian region during end-Permian times will be presented. REFERENCES G. J. Retallack and A. H. Jahren, Methane release from igneous intrusion of coal during Late Permian extinction events, Journal of Geology, volume 116, 1-20, 2008 H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 2009

  18. Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China

    Directory of Open Access Journals (Sweden)

    Ying-ju Li

    2018-01-01

    Full Text Available The health risk of potentially toxic elements (PTEs via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China. 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3 in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.

  19. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  20. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  1. Breath-by-breath analysis of expiratory gas concentration in chickens.

    Science.gov (United States)

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  2. Comparative measurements of soil gas radon concentration using thermoluminescent and track detectors

    Czech Academy of Sciences Publication Activity Database

    Turek, Karel; Gelev, M.; Dimov, I.

    2004-01-01

    Roč. 38, spec. iss. (2004), s. 843-846 ISSN 1350-4487 Institutional research plan: CEZ:AV0Z1048901 Keywords : soil gas * radon concentration * thermoluminescent detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.664, year: 2004

  3. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  4. Degradation of gas-liquid gliding arc discharge on Acid Orange II

    International Nuclear Information System (INIS)

    Yan, J.H.; Liu, Y.N.; Bo, Zh.; Li, X.D.; Cen, K.F.

    2008-01-01

    The effects of pH value, initial concentration of dye solution and temperature on the degradation efficiency of Acid Orange II (AO7) using gas-liquid gliding arc discharge were investigated. The influences of pH value and temperature on degradation efficiency were not apparent. Increasing initial solution concentration caused the decrease of degradation rate and the increase of absolute degradation quantity. Considering energy efficiency and absolute degradation quantity, the gas-liquid gliding arc discharge is fit for treating high concentration organic wastewater. A possible mineralization pathway was proposed through the analysis of intermediate products detected by gas chromatograph coupled with mass spectrophotometer (GC-MS) and ion chromatograph (IC). Hydroxyl radicals reacted with the azo linkage-bearing carbon of a hydroxy-substituted ring, leading to the cleavage of -C-N- and degradation of AO7. The solution biodegradability was significantly improved (BOD 5 /COD from 0.02 to 0.43). The toxicity of intermediate products was lower than that of the initial Acid Orange II

  5. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California

    Science.gov (United States)

    Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun

    2018-03-01

    Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

  6. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  7. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  8. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  9. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  10. Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Function, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C.; Zhao, F.J.; Stroud, J.L. [Soil Science Department, Centre for Soils and Ecosystems Function, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhang, H.; Fozard, S. [Division of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2010-10-15

    Four plant species (oilseed rape, Brassica napus L.; red clover, Trifolium pratense L.; ryegrass, Lolium perenne L.; and tomato, Lycopersicon esculentum L.) were tested on ten soils varying widely in soil properties to assess molybdenum (Mo) toxicity. A larger range (66-fold-609-fold) of added Mo concentrations resulting in 50% inhibition of yield (ED{sub 50}) was found among soils than among plant species (2-fold-38-fold), which illustrated that the soils differed widely in the expression of Mo toxicity. Toxicity thresholds based on soil solution Mo narrowed the variation among soils compared to thresholds based on added Mo concentrations. We conclude that plant bioavailability of Mo in soil depends on Mo solubility, but this alone did not decrease the variability in observed toxicity enough to be used in risk assessment and that other soil properties influencing Mo toxicity to plants need to be considered. - Mo toxicity thresholds varied widely in different soils and therefore soil properties need to be taken into account in order to assess the risk of Mo exposure.

  11. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  12. Analysis of problems and failures in the measurement of soil-gas radon concentration.

    Science.gov (United States)

    Neznal, Martin; Neznal, Matěj

    2014-07-01

    Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  14. Effluents of toxic and corrosion-active components at coke-oven gas combustion

    International Nuclear Information System (INIS)

    Mikhajlov, G.S.; Afanas'ev, Yu.O.; Plotnikov, V.A.; Iskhakov, Kh.A.; Tikhov, S.D.; Gaus, A.I.; Nagibin, P.D.

    1996-01-01

    Various modes of coke-coal gas combustion are studied and dependence of concentration of nitrogen sulfur oxides and carbon monoxides originating in smoke gases on the air excess delivered to the combustion chamber is determined. The lowest summary releases of hazardous substances are achieved by the excess air coefficients α > 1.2 relative to modes of coke-coal gas combustion with smoke gases recirculation. The quantity of sulfur does not depend on the mode of fuel combustion and is determined by the total sulfur content in the fuel. To prevent the corrosion of low-temperature heat exchange surfaces it is necessary to heat up the feed-water up to the temperature exceeding the temperature of the coal gases dew point by 10-15 deg C. 10 refs

  15. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Ilander, Aki; Vaeisaenen, Ari

    2007-01-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min -1 , auxiliary gas flow of 0.2 L min -1 and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min)

  16. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  17. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  18. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  19. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinsheng, E-mail: yinshengli@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Matthew, Cory [Institute of Agriculture & Environment, Massey University, Private Bag 11-222, Palmerston North 4442 (New Zealand); Cavanagh, Jo [Landcare Research, PO Box 40, Lincoln 7640 (New Zealand); Qiu, Jiangping [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-05

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg{sup −1}) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg{sup −1} soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg{sup −1} soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO{sub 2} production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  20. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    International Nuclear Information System (INIS)

    Li, Yinsheng; Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li; Matthew, Cory; Cavanagh, Jo; Qiu, Jiangping

    2016-01-01

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg"−"1) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg"−"1 soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg"−"1 soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO_2 production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  1. Radon in a Karstic Region School: Concentrations in Soil Gas and Indoors

    International Nuclear Information System (INIS)

    Vaupotic, J.; Kobal, I.; Barisic, D.; Lulic, S.

    1998-01-01

    The school presented in this paper exceeded instantaneous indoor radon concentration of 1000 Bqm -3 , obtained within the Slovene radon programme. Thus, additional measurements were performed and the radiation doses of teachers and pupils estimated. Radon concentrations between 1000 and 3000 Bqm -3 during teaching hours were found and the yearly effective doses from 0.75 to 1.1 mSv for the pupils and from 1.1 to 4.2 mSv for the teachers were calculated. In the soil gas radon and thoron concentration ranging from 70 to 150 kBqm -3 were obtained. The school was mitigated during summer 1998. (author)

  2. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers.

    Science.gov (United States)

    Johnson, Andrew C; Keller, Virginie; Dumont, Egon; Sumpter, John P

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6×9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2-3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1-1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  4. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  5. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  6. Emission of soil gas radon concentration around main central thrust in Ukhimath (Rudraprayag) region of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Aswal, Sunita; Kandari, Tushar; Bourai, A.A.; Ramola, R.C.; Sahoo, B.K.

    2016-01-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 . The data analysis clearly reveals anomalous values along the fault. (authors)

  7. CORRELATIONS BETWEEN HOMOLOGUE CONCENTRATIONS OF PCDD/FS AND TOXIC EQUIVALENCY VALUES IN LABORATORY-, PACKAGE BOILER-, AND FIELD-SCALE INCINERATORS

    Science.gov (United States)

    The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...

  8. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  9. Adaptive spatial-resolved gas concentration measurement using a micro-drone; Adaptive ortsaufgeloeste Gaskonzentrationsmessung mit einer Mikrodrohne

    Energy Technology Data Exchange (ETDEWEB)

    Bartholmai, Matthias; Neumann, Patrick [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe Mess- und Prueftechnik

    2011-07-01

    Gas emissions are crucial in many hazardous scenarios and can be threatening for persons close-by. The examination of such scenarios without endangering people was objective of a research project. Development and validation of a remote-controlled gas concentration measurement using a microdrone were carried out. (orig.)

  10. Assessment of concentrations of trace and toxic heavy metals in soil and vegetables grown in the vicinity of Manyoni uranium deposit in Tanzania

    International Nuclear Information System (INIS)

    Kapile, F.A.; Makundi, I.N.

    2016-01-01

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF).All vegetable samples were found to have higher concentrations (in μg/g) of trace elements such as Ni (67.3) in pea leaves, Cu (14.9) in pumpkin leaves, Fe (478.6), (200.5) and (337.1) in pea, pumpkin and spinach leaves respectively, than the maximum tolerable limits recommended by WHO/FAO. Mean concentration of Pb (1.6 μg/g) in pumpkin leaves collected from Miyomboni (area D) were observed to be higher than the safe limit of (0.3μg/g) set by Codex 2006. Toxic elements concentrations (in μg/g) such as Cd (10.4), Pb (23.2),Hg (4.1), Th (31.5) and U (23.9) were observed to be high in soil collected from Mitoo Mbuga and farming area. Therefore, vegetables in the vicinity of Manyoni uranium deposit can expose people to toxic elements which are detrimental to their health.A more detailed study involving other foodstuffs is needed to establish conclusive results.

  11. Rn-Gas Concentration and Working Level Measurements Using SSNTD in Uranium Exploration Galleries Allouga Mine, Sinai, Egypt

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Hassan, S.F.; Abdel-Kader, F.H.; El-Naggar, A.M.; Essia, H.M.; Abdel-Hafez, A.A.

    2008-01-01

    Measurements of Rn-gas concentrations and Working Level (WL), were carried out in the U-exploration galleries at El- Allouga Mine, Sinai, Egypt by passive techniques (SSNTD) during the four seasons ( Summer, Fall, Winter and Spring) using four different detector types: CR-39, MK, CN-85 and LR-115.Twenty eight (28) stations were chosen for this purpose reflecting different environmental conditions as measurement sites within the galleries. The Rn-gas concentrations , in the summer period ranged from 25.86 to 44.2 pCi/l in the ventilated stations and from 488.98 to 611.16 pCi/l in the non-ventilated stations. In the fall period , the average Rn-gas concentrations in the ventilated stations ranged from 31.61 to 56.36 pCi/l while in the non-ventilated stations from 457.61 to 621.52 pCi/l. In the winter period, the average Rn-gas concentrations in the ventilated stations ranged from 27.59 to 66.45 pCi/l while in the non- ventilated stations from 499.09 to 603.81 pCi/l. In the spring the Rn-gas concentrations ranged from 30.8 to 46.77 pCi/l in the ventilated stations, whereas, in the non-ventilated stations from 404.06 to 445.18 pCi/l. The (WL), in the summer period, ranged from 0.143 to 0.247 in the ventilated sector and from 4.408 to 5.497 in the non-ventilated stations .In fall, the( WL) ranged from 0.166 to 0.295 in the ventilated stations and from 4.123 to 5.624 in the non-ventilated stations. In the winter, the (WL) ranged from 0.105 to 0.37 in the ventilated stations and from 4.138 to 5.26 in the non-ventilated stations. In the spring, the (WL) in the ventilated stations ranged from 0.152 to 0.241 and from 3.696 to 4.087 in the non-ventilated stations. These results indicate that: i)The low measured Rn gas and (WL) values in the ventilated stations reflect the effect of variations in meteorological conditions on (WL) determination where the air flow carries the Rn-gas before it decays and the daughters are plated onto the SSNTD . ii) The larger ranges for Rn-gas

  12. Development of metal oxide gas sensors for very low concentration (ppb) of BTEX vapors

    Science.gov (United States)

    Favard, A.; Aguir, K.; Contaret, T.; Caris, L.; Bendahan, M.

    2017-12-01

    The control and analysis of air quality have become a major preoccupation of the last twenty years. In 2008, the European Union has introduced a Directive (2008/50/EC) to impose measurement obligations and thresholds to not exceed for some pollutants, including BTEX gases, in view of their adverse effects on the health. In this paper, we show the ability to detect very low concentrations of BTEX using a gas microsensor based on metal oxide thin-film. A test bench able to generate very low vapors concentrations has been achieved and fully automated. Thin metal oxides layers have been realized by reactive magnetron sputtering. The sensitive layers are functionalized with gold nanoparticles by thermal evaporation technique. Our sensors have been tested on a wide range of concentrations of BTEX (5 - 500 ppb) and have been able to detect concentrations of a few ppb for operating temperatures below 593 K. These results are very promising for detection of very low BTEX concentration for indoor as well as outdoor application. We showed that the addition of gold nanoparticles on the sensitive layers decreases the sensors operating temperature and increases the response to BTEX gas. The best results are obtained with a sensitive layer based on ZnO.

  13. In vitro Protoscolicidal Effects of Cinnamomum zeylanicum Essential Oil and Its Toxicity in Mice.

    Science.gov (United States)

    Mahmoudvand, Hossein; Mahmoudvand, Hormoz; Oliaee, Razieh Tavakoli; Kareshk, Amir Tavakoli; Mirbadie, Seyed Reza; Aflatoonian, Mohammad Reza

    2017-10-01

    This study investigates the scolicidal effects of Cinnamomum zeylanicum essential oil against the protoscoleces of hydatid cysts and its toxicity in the mice model. Gas chromatography/mass spectroscopy analyses were used to identify the constituents of essential oil. Protoscoleces were treated with different concentrations of the essential oil (6.25-100 µL/mL) in each test tube for 5-30 min. The viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). Forty-eight male NMRI mice were also used to determine the toxicity of C. zeylanicum essential oil (0.5-4 mL/kg). The main components were found to be cinnamaldehyde (91.8%), ρ metoxicinamate (1.57%), and α pinene (1.25%). Findings indicate that C. zeylanicum essential oil with the concentrations of 100 and 50 µL/mL killed 100% of protoscoleces after 5 min of exposure. Also, the lower concentrations of C. zeylanicum essential oil motivated a late protoscolicidal effect. The LD 50 value of intraperitoneal injection of C. zeylanicum essential oil was 2.07 mL/kg body weight after 48 h, and the maximum nonfatal dose was 1.52 mL/kg body weight. The results also showed that there was no significant toxicity following oral administration of C. zeylanicum essential oil for 2 weeks. The results exhibited the favorable scolicidal activity of C. zeylanicum , which could be applied as a natural scolicidal agent in hydatid cyst surgery. We evaluated the efficacy of Cinnamomum zeylanicum essential oil against hydatid cyst protoscolecesThe viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining)Forty-eight male NMRI mice were also used to determine the toxicity of C. zeylanicum essential oilC. zeylanicum with potent scolicidal activity could be applied as a natural scolicidal agent in surgery. Abbreviations used: GC/MS: Gas chromatography/mass spectrometry analysis; CE: Cystic echinococcosis; LD50: Lethal dose 50%; I.p: Intraperitoneally.

  14. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations.

    Science.gov (United States)

    Burgess, R M; Perron, M M; Cantwell, M G; Ho, K T; Serbst, J R; Pelletier, M C

    2004-11-01

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifying aquatic toxicants. For identifying ammonia toxicity, there are several possible methods including pH alteration and volatilization, Ulva lactuca addition, microbial degradation, and zeolite addition. Zeolite addition has been used successfully in freshwater systems to decrease ammonia concentrations and toxicity for several decades. However, zeolite in marine systems has been used less because ions in the seawater interfere with zeolite's ability to adsorb ammonia. The objective of this study was to develop a zeolite method for removing ammonia from marine waters. To accomplish this objective, we performed a series of zeolite slurry and column chromatography studies to determine uptake rate and capacity and to evaluate the effects of salinity and pH on ammonia removal. We also assessed the interaction of zeolite with several toxic metals. Success of the methods was also evaluated by measuring toxicity to two marine species: the mysid Americamysis bahia and the amphipod Ampelisca abdita. Column chromatography proved to be effective at removing a wide range of ammonia concentrations under several experimental conditions. Conversely, the slurry method was inconsistent and variable in its overall performance in removing ammonia and cannot be recommended. The metals copper, lead, and zinc were removed by zeolite in both the slurry and column treatments. The zeolite column was successful in removing ammonia toxicity for both the mysid and the amphipod, whereas the slurry was less effective. This study demonstrated that zeolite column chromatography is a useful tool for conducting marine water TIEs to decrease ammonia concentrations and characterize toxicity.

  15. EMISSION OF SOIL GAS RADON CONCENTRATION AROUND MAIN CENTRAL THRUST IN UKHIMATH (RUDRAPRAYAG) REGION OF GARHWAL HIMALAYA.

    Science.gov (United States)

    Aswal, Sunita; Kandari, Tushar; Sahoo, B K; Bourai, A A; Ramola, R C

    2016-10-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 The data analysis clearly reveals anomalous values along the fault. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  17. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  18. Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration

    Science.gov (United States)

    Alam, Noor; Pandey, K. M.

    2017-08-01

    In this paper, work has been carried out experimentally for the investigation of the effects of variation incurrent, voltage, temperature, chemical concentration and reaction time on the amount of hydroxy gas produced. Further effects on the overall electrolysis efficiency of advance alkaline water is also studied. The hydroxy gas (HHO) has been produced experimentally by the electrolysis of alkaline water with parallel plate electrode of 316L-grade stainless steel. The electrode has been selected on the basis of corrosion resistance and inertness with respect to electrolyte (KOH). The process used for the production of HHO is conventional as compared to the other production processes because of reduced energy consumption, less maintenance and low setup cost. From the experimental results, it has been observed that with increase in voltage, temperature and electrolyte concentration of alkaline solution, the production of hydroxy gas has increased about 30 to 40% with reduction in electrical energy consumption.

  19. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol

    International Nuclear Information System (INIS)

    Held, K.D.; Biaglow, J.E.

    1987-01-01

    The toxicity of the sulfhydryl-containing radioprotector dithiothreitol (DTT) has been studied in Chinese hamster V79 cells growing in monolayer. Under the conditions used here DTT causes a biphasic toxic response in which low concentrations of the drug (0.5 to 1.0 mM) are more toxic than are lower (0.2 mM) or higher (10 mM) concentrations. This response is similar to that seen by others with other sulfhydryl compounds. This DTT-induced toxicity is prevented by catalase, glutathione, and lowered temperatures. The toxicity is enhanced by some metal chelators (EDTA) but prevented by others (desferal). Metals (copper and iron) can either enhance or decrease the toxicity depending on their concentration and whether the exposure is in medium or in buffered salt solution. The results suggest a complex chain of chemical reactions and interactions with a role of H/sub 2/O/sub 2/ and perhaps . OH in this DTT toxicity. This is discussed

  20. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  1. Landfill gas (LFG) processing via adsorption and alkanolamine absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Ankur; Park, Jin-Won; Song, Ho-Jun; Park, Jong-Jin [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea); Maken, Sanjeev [Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, Haryana (India)

    2010-06-15

    Landfill gas (LFG) was upgraded to pure methane using the adsorption and absorption processes. Different toxic compounds like aromatics and chlorinated compounds were removed using granular activated carbon. The activated carbon adsorbed toxic trace components in the following order: carbon tetrachloride > toluene > chloroform > xylene > ethylbenzene > benzene > trichloroethylene {approx} tetrachloroethylene. After removing all trace components, the gas was fed to absorption apparatus for the removal of carbon dioxide (CO{sub 2}). Two alkanolamines, monoethanol amine (MEA) and diethanol amine (DEA) were used for the removal of CO{sub 2} from LFG. The maximum CO{sub 2} loading is obtained for 30 wt.% MEA which is around 2.9 mol L{sup -} {sup 1} of absorbent solution whereas for same concentration of DEA it is around 1.66 mol L {sup -} {sup 1} of solution. 30 wt% MEA displayed a higher absorption rate of around 6.64 x 10{sup -} {sup 5} mol L{sup -} {sup 1} min{sup -} {sup 1}. DEA displayed a higher desorption rate and a better cyclic capacity as compared to MEA. Methane obtained from this process can be further used in the natural gas network for city. (author)

  2. Activation of cGAS-dependent antiviral responses by DNA intercalating agents.

    Science.gov (United States)

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-01-09

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    Science.gov (United States)

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.

  4. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  5. Domestic gas contribution to natural radon concentration in Paraguay

    International Nuclear Information System (INIS)

    Coronel, G.; Sajo B, L.

    1996-01-01

    The technique for measuring the concentration of radon in gas sold commercially for domestic use is presented. It is shown that the contribution is not significant, 5.5±1.4 (Bq/m 3 ), nevertheless it could reach in some cases significant values of intervention (200 Bq/m 3 ). The results indicate that the additional dose to which the population is exposed is approximately 26% of the natural background calculated in approximately 0,28 mSv/year. By assuming a lineal proportionality between dose and risk, the increase of the possibility of catching lethal leukemia or cancer is 16 cases for every million of population. (authors). 8 refs., 1 fig

  6. Determination of leachate toxicity through acute toxicity using Daphnia pulex and anaerobic toxicity assays

    OpenAIRE

    Carabalí-Rivera, Y. S; Barba-Ho, L. E; Torres-Lozada, P

    2017-01-01

    ABSTRACT The municipal solid waste (MSW) of large cities, in particular the ones of developing countries, is mainly disposed in landfills (LFs), whose inadequate management generates the emission of greenhouse gases and the production of leachates with high concentrations of organic and inorganic matter and, occasionally heavy metals. In this study, the toxicity of the leachates from an intermediate-age municipal landfill was evaluated by ecotoxicity and anaerobic toxicity tests. The acute to...

  7. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  8. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    Science.gov (United States)

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  9. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  10. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-10-01

    Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Measured concentrations of combustion gases from the use of unvented gas fireplaces.

    Science.gov (United States)

    Francisco, P W; Gordon, J R; Rose, B

    2010-10-01

    Measurements of combustion product concentrations were taken in 30 homes where unvented gas fireplaces were used. Measurements of CO, CO(2), NO(x), NO(2) , O(2) (depletion), and water vapor were taken at 1-min interval. The analyzers were calibrated with certified calibration gases for each placement and were in operation for 3-4 days at each home. Measured concentrations were compared to published health-based standards and guidelines. The two combustion gases that exceeded published values were NO(2) and CO. For NO(2) , the Health Canada guideline of 250 ppb (1-h average) was exceeded in about 43% of the sample and the World Health Organization (WHO) guideline of 110 ppb (1-h average) was exceeded in 80% of the sample. Carbon monoxide levels exceeded the U.S. EPA 8-h average standard of 9 ppm in 20% of the sample. Moisture problems were not evident in the test homes. An analysis of the distribution of CO showed that the CO is dispersed throughout the home almost immediately upon operation of the fireplace and that the concentrations throughout the home away from the immediate vicinity of the fireplace are 70-80% of the level near the fireplace. Decay analysis of the combustion gases showed that NO was similarly stable to CO and CO(2) in the indoor environment but that both NO(2) and water vapor were removed from the air at much greater rates. Previous studies on unvented gas fireplaces have made assumptions of how they are operated by users. This article presents the results of field monitoring of 30 unvented gas fireplaces under normal operation, regardless of whether users follow industry recommendations regarding installation, usage patterns, and maintenance. The monitoring found that health-based standards and guidelines were exceeded for CO in 20% of homes and for NO(2) in most homes. There were no identified moisture problems in these homes. Nearly, half of the fireplaces were used at least once for longer than 2 h, counter to manufacturers' intended usage

  12. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    Science.gov (United States)

    Adam, Niklas; Mitchell, Julie; Pickering, Karen; Carrier, Chris; Vega, Letty; Muirhead, Dean

    2014-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  13. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  15. Toxicity of ozone and nitrogen dioxide to alveolar macrophages: comparative study revealing differences in their mechanism of toxic action

    NARCIS (Netherlands)

    Rietjens, I. M.; Poelen, M. C.; Hempenius, R. A.; Gijbels, M. J.; Alink, G. M.

    1986-01-01

    The toxicity of ozone and nitrogen dioxide is generally ascribed to their oxidative potential. In this study their toxic mechanism of action was compared using an intact cell model. Rat alveolar macrophages were exposed by means of gas diffusion through a Teflon film. In this in vitro system, ozone

  16. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  18. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  19. Impact of methanol and CNG fuels on motor-vehicle toxic emissions

    International Nuclear Information System (INIS)

    Black, F.; Gabele, P.

    1991-01-01

    The 1990 Clean Air Act Amendments require that the Environmental Protection Agency investigate the need for reduction of motor vehicle toxic emissions such as formaldehyde, acetaldehyde, benzene, 1,3-butadiene, and polycyclic organic matter. Toxic organic emissions can be reduced by utilizing the control technologies employed for regulated THC (NMHC) and CO emissions, and by changing fuel composition. The paper examines emissions associated with the use of methanol and compressed natural gas fuels. Both tailpipe and evaporative emissions are examined at varied ambient temperatures ranging from 20 C to 105 F. Tailpipe emissions are also examined over a variety of driving cycles with average speeds ranging from 7 to 48 mph. Results suggest that an equivalent ambient temperatures and average speeds, motor vehicle toxic emissions are generally reduced with methanol and compressed natural gas fuels relative to those with gasoline, except for formaldehyde emissions, which may be elevated. As with gasoline, tailpipe toxic emissions with methanol and compressed natural gas fuels generally increase when ambient temperature or average speed decreases (the sensitivity to these variables is greater with methanol than with compressed natural gas). Evaporative emissions generally increase when fuel volatility or ambient temperature increases (however, the relative contribution of evaporative sources to the aggregate toxic compound emissions is small)

  20. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  2. Fumonisin concentrations and in vivo toxicity of nixtamalized Fusarium verticillioides culture material: evidence for fumonisin-matrix interactions.

    Science.gov (United States)

    Burns, T D; Snook, M E; Riley, R T; Voss, K A

    2008-08-01

    The toxic potential of nixtamalized foods can be underestimated if, during cooking, reversible fumonisin-food matrix interactions reduce the amount of mycotoxin that is detected but not the amount that is bioavailable. Fusarium verticillioides culture material (CM) was nixtamalized as is (NCM) or after mixing with ground corn (NCMC). Additional portions were sham nixtamalized without (SCM) or with corn (SCMC). Nixtamalization and sham nixtamalization reduced FB(1); CM, NCM, and SCM diets contained 9.08, 2.08, and 1.19 ppm, respectively. FB(1) was further reduced in the NCMC (0.49 ppm) but not the SCMC (1.01 ppm) diets compared to their NCM and SCM counterparts. Equivalent weights of the cooked products, uncooked CM, corn (UC) or nixtamalized UC (NUC) were fed to rats for up to three weeks. Kidney lesions in the NCM-fed group were less severe than in the CM-fed, positive control group and no lesions were found in the NCMC and other groups. Group kidney sphinganine (biomarker of fumonisin exposure) concentrations decreased in the order: CM (absolute concentration (nmol/g)=600-800)>NCM (400-600)>SCM and SCMC (30-90)>NCMC, UC and NUC (<8). Together, these results suggest that mycotoxin-corn matrix interactions during nixtamalization reduce the bioavailability and toxicity of FB(1).

  3. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  4. Comparison between the measurements of Radon Gas Concentrations and γ-ray intensities in Exploring the Black Sands at El-Burullus Beach

    International Nuclear Information System (INIS)

    Abdel-Razek, Y.A; Bakhit, A.F

    2009-01-01

    Ten well-located monitoring stations along El-Burullus beach were chosen to measure radon gas concentrations in the beach sands below surface, and γ-ray intensities at 10 cm above the surface. These stations were chosen to represent apparent concentrations of the black sands. Sand samples were collected from the different stations and analyzed to study the relation between the concentrations of the heavy minerals and the measured radon concentrations or the measured γ-ray intensities at these stations. It was found that radon gas concentrations measured at 6:00 Pm were about 2.82 times those measured at 1 :00 Pm due to diurnal variation of temperature. Measurements of radon gas concentrations inside the beach sands are found to be more reliable in qualitative exploration of black sands than the measurements of γ-ray intensities above the shore sands due to the random arrangement of the layers of these sands below surface

  5. Ammonia concentration modeling based on retained gas sampler data

    International Nuclear Information System (INIS)

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste

  6. Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany

    International Nuclear Information System (INIS)

    Mandalakis, Manolis; Stephanou, Euripides G.

    2007-01-01

    Atmospheric concentrations of polychlorinated biphenyls (PCBs) were measured in 14 successive daytime and nighttime air samples collected from Melpitz, a rural site in eastern Germany. The average total concentration of PCBs was 110+/-80pgm -3 and they were predominately present in the gas phase (∼95%). Composition of individual congeners closely resembled those of Clophen A30 and Aroclor 1232. Partial vapor pressures of PCBs were well correlated with temperature and the steep slopes obtained from Clausius-Clapeyron plots (-4500 to -8000) indicated that evaporation from adjacent land surfaces still controls the atmospheric levels of these pollutants. Particle-gas partitioning coefficients (K P ) of PCBs were well correlated with the respective sub-cooled vapor pressures (P L o ), but the slopes obtained from logK P versus logP L o plots (-0.16 to -0.59) deviated significantly from the expected value of -1. Overall, gas-particle partitioning of PCBs was better simulated by Junge-Pankow than octanol/air partition coefficient-based model

  7. Ionisation detectors as monitors of toxic compounds in air

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1994-01-01

    Beta particles cause ionisation in gas mixtures. The ions produced provide information on the concentration and identity of trace compounds in ambient air. Modern ionisation detectors use ion mobilities to monitor toxic compounds. Chemical solvent, phosphororganic compounds, PCB and many other toxins can be detected using ion mobility detectors (IMD) in the ppb range or lower. Ion mobility detectors have large potential in industry and research because of their sensitivity, specificity, fast response and relatively low cost. Portable devices and fixed installations are possible. The paper discusses the following topics: (1) ionisation sources in IMD: 63 Ni, 3 H, photoionization and corona discharge, (2) basic principles of ion production, (3) ion collection in IMD, (4) design, gas supply, automatic identification and quantification of IMD data, and (5) selected applications. Advantages and problems with this new type of nuclear analytical instrument are also discussed. (author). 2 refs., 9 figs., 3 tabs

  8. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  9. Model equations for Calculating Rn-gas Concentrations in Air of Uranium Exploratory Tunnels, Allouga, West-Central Sinai , Egypt

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Soliman, S.F.H.; Abd El-Kader, F.H.; El-Naggar, A.M.; Eissa, H.M.; Abd El-Hafez, A.A.

    2001-01-01

    Gabal Allouga area is located some 40 km due east from Abu Zenima town on the east coast of the Gulf of Suez, West-Central Sinai, Egypt. A network of exploratory tunnels totaling 670m in length and approximately 2x2 m in cross section, were excavated within a paleosol clayey bed. They host (Fe, Mn)-, Cu-, and U-mineralizations. Portions of the tunnels are naturally ventilated and others portions are non-ventilated and show ground water seepage through fractures. Model equations were developed for calculating the Rn-gas concentrations in the air of the tunnels under dry conditions where Rn-gas transport is mainly by air flow through porous media as well as for wet conditions where Rn-gas transport is mainly by ground water flow into the tunnels. Under dry conditions the model calculated Rn-gas concentrations(15.2-60.6 PCi/1) are consistent with measured values by active techniques (3.26-22.85 pCi/1) and by SSNTD techniques (19-69.1 pCi/1) when the Rn-emanation coefficient (alpha= 0.05-0.2), the emanating rock thickness (X=10 cm) and U-concentration averages 30 ppm. Under wet and non-ventilated conditions the model calculated Rn-gas concentrations (159-1248 pCi/1) are consistent with the measured values by active techniques (231-1348 pCi/1) and by SSNTD techniques (144-999pCi/1), when the Rn-emanation coefficient (alpha=0.1-0.25), the ground water flow (F=0.04-0.10 ml/s -1 cm -2 ) and U-concertrations (100-250ppm)

  10. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-13

    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  11. Alteration of natural "3"7Ar activity concentration in the subsurface by gas transport and water infiltration

    International Nuclear Information System (INIS)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R.

    2016-01-01

    High "3"7Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of "3"7Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict "3"7Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating "3"7Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for "3"7Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural "3"7Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of "3"7Ar activity concentrations. The influence of soil water content on "3"7Ar production is shown to be negligible to first order, while "3"7Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. - Highlights: • "3"7Ar in the subsurface as a key evidence to detect underground nuclear explosions. • Numerical modeling of "3"7Ar production and transport in variably saturated soil. • Large uncertainty on predicting "3"7Ar activity concentration in soil gas. • Control of subsurface "3"7Ar temporal variability by water infiltration events. • Limited influence of soil water content on "3"7Ar production.

  12. RPC gas recovery by open loop method

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Avinash [Alpha Pneumatics, 11, Krishna Kutir, Madanlal Dhigra Road, Panch Pakhadi (India)], E-mail: alpha_pneumatics@hotmail.com

    2009-05-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S{sub 2}F{sub 10} produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF{sub 6} is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  13. RPC gas recovery by open loop method

    International Nuclear Information System (INIS)

    Joshi, Avinash

    2009-01-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S 2 F 10 produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF 6 is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  14. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  15. The noble gas concentrations of the Martian meteorites GRV 99027 and paired NWA 7906/NWA 7907

    Science.gov (United States)

    Stephenson, Peter C.; Lin, Yangting; Leya, Ingo

    2017-12-01

    Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event 5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of 5 Ma favored by Cartwright et al. for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of 1.3 Ga is in accord with Cartwright et al. For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86-88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.

  16. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  17. Investigation of MTBE and aromatic compound concentrations at a gas service station.

    Science.gov (United States)

    Lin, Chi-Wen; Chiang, Song-Bor; Lu, San-Ju

    2005-06-01

    Methyl tert-butyl ether (MTBE) has been used as a fuel additive at levels of 2-11% in Taiwan for the past decade. The purpose of this additive is to enhance the octane, replace the use of lead-based anti-knock gasoline additives and reduce aromatic hydrocarbons. However, it is possible that oxygenated fuel has a potential health impact. To determine the air quality impact of MTBE, measurements were made of ambient MTBE and other gasoline constituents at a service station. Additionally, environmental conditions (wind speed, wind direction, and temperature, etc.) that could affect concentrations of emission constituents were measured. Gas samples were analyzed for target MTBE and volatile organic compounds, e.g., benzene and toluene. Ambient samples were collected using Tenax adsorbent tubes for mass spectrometric analysis at a service station located in Changhua County, Taiwan. The resulting measured ambient air concentrations were compared with Taiwan's regulatory standards for hazardous air pollutants. Subsequently, the factors controlling the formation of high-VOC levels at the service station and in the residential neighborhoods were identified. Additionally, the results can provide the Environmental Protection Agency (EPA) of Taiwan with useful information and prompt them to mandate this gas service station to install a refueling vapor recovery system.

  18. Concentrations and geographical variations of selected toxic elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: evaluation of risk assessment.

    Science.gov (United States)

    Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M

    2012-05-01

    Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements.

  19. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  20. Evaluation of off-gas characteristics in vitrification process of ion-exchange resin

    International Nuclear Information System (INIS)

    Park, S. C.; Kim, H. S.; Yang, K. H.; Yun, C. H.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9 Nm 3 /h at the burning rate of 40 kg/h. And the composition of off-gas was evaluated as CO 2 (41.4%), Steam (40.0%), O 2 (13.3%), NO (3.6%), and SO 2 (1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3 Nm 3 /h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin. (author)

  1. Comparative systemic toxicity of ropivacaine and bupivacaine in nonpregnant and pregnant ewes.

    Science.gov (United States)

    Santos, A C; Arthur, G R; Wlody, D; De Armas, P; Morishima, H O; Finster, M

    1995-03-01

    Ropivacaine is a new amide local anesthetic, having therapeutic properties similar to those of bupivacaine but with a wider margin of safety. Bupivacaine is probably the most commonly used drug in obstetric epidural analgesia, even though laboratory studies have suggested that pregnancy increases the cardiotoxicity of bupivacaine but not of other local anesthetics. The current study was designed to reevaluate, in a random and blinded fashion, the systemic toxicity of bupivacaine and ropivacaine in nonpregnant and pregnant sheep. Chronically prepared nonpregnant and pregnant ewes were randomized to receive an intravenous infusion of ropivacaine or bupivacaine at a constant rate of 0.5 mg.kg-1.min-1 until circulatory collapse. The investigators were blinded to the identity of local anesthetic. Heart rate, arterial blood pressure, and cardiac rhythm were monitored throughout the study. Arterial blood samples were obtained before infusion and at the onset of toxic manifestations, which appeared in the following sequence: convulsions, hypotension, apnea, and circulatory collapse. Serum drug concentrations and protein binding were determined. Blood pH and gas tensions were measured. There were no significant differences between non-pregnant and pregnant animals in the doses or serum concentrations of either drug required to elicit toxic manifestations. In nonpregnant animals, similar doses and serum concentrations of ropivacaine and bupivacaine were associated with the onset of convulsions and circulatory collapse. In pregnant ewes, greater doses of ropivacaine as compared to bupivacaine were required to produce convulsions (7.5 +/- 0.5 vs. 5.0 +/- 0.6 mg.kg-1) and circulatory collapse (12.9 +/- 0.8 vs. 8.5 +/- 1.2 mg.kg-1). The corresponding serum concentrations of ropivacaine were similar to those of bupivacaine. Pregnancy did not affect the serum protein binding of either drug. The proportion of animals manifesting a malignant ventricular arrhythmia as the terminal

  2. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  3. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    Science.gov (United States)

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  5. VORICONAZOLE TOXICITY IN MULTIPLE PENGUIN SPECIES.

    Science.gov (United States)

    Hyatt, Michael W; Georoff, Timothy A; Nollens, Hendrik H; Wells, Rebecca L; Clauss, Tonya M; Ialeggio, Donna M; Harms, Craig A; Wack, Allison N

    2015-12-01

    Aspergillosis is a common respiratory fungal disease in penguins managed under human care. Triazole antifungal drugs, including itraconazole, are most commonly used for treatment; however, itraconazole treatment failures from drug resistance are becoming more common, requiring newer treatment options. Voriconazole, a newer triazole, is being used more often. Until recently, no voriconazole pharmacokinetic studies had been performed in penguins, leading to empiric dosing based on other avian studies. This has led to increased anecdotal reporting of apparent voriconazole toxicity in penguins. This report describes 18 probable and 6 suspected cases of voriconazole toxicity in six penguin species from nine institutions: 12 African penguins (Spheniscus demersus), 5 Humboldt penguins (Spheniscus humboldti), 3 Magellanic penguins (Spheniscus magellanicus), 2 gentoo penguins (Pygoscelis papua papua), 1 macaroni penguin (Eudyptes chrysolophus), and 1 emperor penguin (Aptenodytes forsteri). Observed clinical signs of toxicity included anorexia, lethargy, weakness, ataxia, paresis, apparent vision changes, seizure-like activity, and generalized seizures. Similar signs of toxicity have also been reported in humans, in whom voriconazole therapeutic plasma concentration for Aspergillus spp. infections is 2-6 μg/ml. Plasma voriconazole concentrations were measured in 18 samples from penguins showing clinical signs suggestive of voriconazole toxicity. The concentrations ranged from 8.12 to 64.17 μg/ml, with penguins having plasma concentrations above 30 μg/ml exhibiting moderate to severe neurologic signs, including ataxia, paresis, and seizures. These concentrations were well above those known to result in central nervous system toxicity, including encephalopathy, in humans. This case series highlights the importance of species-specific dosing of voriconazole in penguins and plasma therapeutic drug monitoring. Further investigation, including pharmacokinetic studies, is

  6. Uncertainties in gas dispersion at the Bruce heavy water plant

    International Nuclear Information System (INIS)

    Alp, E.; Ciccone, A.

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H 2 S, and its combustion product SO 2 . In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H 2 S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs

  7. Uncertainties in gas dispersion at the Bruce heavy water plant

    Energy Technology Data Exchange (ETDEWEB)

    Alp, E; Ciccone, A [Concord Environmental Corp., Downsview, ON (Canada)

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H{sub 2}S, and its combustion product SO{sub 2}. In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H{sub 2}S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs.

  8. From the Cover: Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration.

    Science.gov (United States)

    Pérez-Gómez, Anabel; Cabrera-García, David; Warm, Davide; Marini, Ann M; Salas Puig, Javier; Fernández-Sánchez, Maria Teresa; Novelli, Antonello

    2018-01-01

    Domoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+. The enhanced neurotoxic effect of DOM was fully prevented by AMPA/KA receptor antagonist, while N-methyl-D-aspartate-receptor-mediated neurotoxicity did not seem to be involved, as the absence of extracellular Na+ failed to potentiate GLU excitotoxicity under the same experimental conditions. Lowering of extracellular Na+ concentration to 60 mM eliminated extracellular recording of spontaneous electrophysiological activity from cultured neurons grown on a multi electrode array and prevented DOM stimulation of the electrical activity. Although changes in the extracellular Na+ concentration did not alter the magnitude of the rapid increase in intracellular Ca2+ levels associated to DOM exposure, they did change significantly the contribution of voltage-sensitive calcium channels (VScaCs) and the recovery time to baseline. The prevention of Ca2+ influx via VSCaCs by nifedipine failed to prevent DOM toxicity at any extracellular Na+ concentration, while the reduction of extracellular Ca2+ concentration ameliorated DOM toxicity only in the absence of extracellular Na+, enhancing it in physiological conditions. Our data suggest a crucial role for extracellular Na+ concentration in determining excitotoxicity by DOM. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Toxicity of effluents from gasoline stations oil-water separators to early life stages of zebrafish Danio rerio.

    Science.gov (United States)

    Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M

    2017-07-01

    Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity

    International Nuclear Information System (INIS)

    Davies, N.A.Nicola A.; Hodson, M.E.Mark E.; Black, S.Stuart

    2003-01-01

    The current OECD acute worm toxicity test does not relate well to ambient conditions. - In a series of experiments the toxicity of lead to worms in soil was determined following the draft OECD earthworm reproduction toxicity protocol except that lead was added as solid lead nitrate, carbonate and sulphide rather than as lead nitrate solution as would normally be the case. The compounds were added to the test soil to give lead concentrations of 625-12500 μg Pb g -1 of soil. Calculated toxicities of the lead decreased in the order nitrate>carbonate>sulphide, the same order as the decrease in the solubility of the metal compounds used. The 7-day LC 50 (lethal concentration when 50% of the population is killed) for the nitrate was 5321±275 μg Pb g -1 of soil and this did not change with time. The LC 50 values for carbonate and sulphide could not be determined at the concentration ranges used. The only parameter sensitive enough to distinguish the toxicities of the three compounds was cocoon (egg) production. The EC 50 s for cocoon production (the concentration to produce a 50% reduction in cocoon production) were 993, 8604 and 10246 μg Pb g -1 of soil for lead nitrate, carbonate and sulphide, respectively. Standard toxicity tests need to take into account the form in which the contaminant is present in the soil to be of environmental relevance

  11. Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    Directory of Open Access Journals (Sweden)

    J. Douglas Goetz

    2017-02-01

    Full Text Available The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4, ethane, carbon monoxide (CO, nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS measured volatile organic compounds (VOC including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region.

  12. Municipalities in Western Norway concentrate on natural gas

    International Nuclear Information System (INIS)

    2001-01-01

    Only one percent of the natural gas from the Norwegian gas fields is currently used in Norway and it is a national goal that 10 percent of the gas produced shall be used for domestic purposes. Western Norway should pioneer this development, as this is where the gas is brought on land. ''Vestlandsroeret AS'' is a project in which sixteen municipalities - including the city Bergen - and eleven companies plan to develop infrastructure which will provide for transport of the gas to customers and markets in Western Norway. The article also discusses environmental considerations, public opinion, the utilization of waste heat and extensive development of cod culture

  13. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  14. Radon Gas Concentration Measurement In Soil For Some Holy Positions In Al-Najaf Al-Ashraf Governorate

    International Nuclear Information System (INIS)

    Hasan, K.H.; Hussain, H.H.

    2014-01-01

    In this search we measurement Radon gas concentration in the soil of holy positions in Al-Najaf Al-Ashraf city.We choice it for honorable position in all the world and, because millions of peoples and religious sciences students visit it.we selected 23 positions .By using a short-term way in modern technology its (RAD7) to measured concentration for depths (10,30,50,70)cm in all the holy positions.All the concentration in position studies within the range allowed of the global

  15. Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Schossler, Patricia [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany); Schripp, Tobias, E-mail: tobias.schripp@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Salthammer, Tunga [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Bahadir, Muefit [Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany)

    2011-09-01

    The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called 'alternative' plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p{sub 0} and octanol-air partitioning coefficients K{sub OA} were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients K{sub p} and fractions can widely differ due to the uncertainty in the predicted p{sub 0} and K{sub OA} values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a

  16. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  18. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    Science.gov (United States)

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Handheld Multi-Gas Meters Market Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Gustavious [Brigham Young Univ., Provo, UT (United States); Wald-Hopkins, Mark David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Obrey, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Akhadov, Valida Dushdurova [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-23

    Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the chemical monitored. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. To provide emergency responders with information on handheld multi-gas meters, the System Assessment and Validation for Emergency Responders (SAVER) Program conducted a market survey. This market survey report is based on information gathered between November 2015 and February 2016 from vendors, Internet research, industry publications, an emergency responder focus group, and a government issued Request for Information (RFI) that was posted on the Federal Business Opportunities website.

  20. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors.

    Science.gov (United States)

    Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-02-01

    Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to

  1. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  2. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing

    NARCIS (Netherlands)

    Busquet, F.; Strecker, R.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T.; Carr, G.J.; Cenijn, P.H.; Fochtman, P.; Gourmelon, A.; Hübler, N.; Kleensang, A.; Knöbel, M.; Kussatz, C.; Legler, J.; Lillicrap, A.; Martínez-Jerónimo, F.; Polleichtner, C.; Rzodeczko, H.; Salinas, E.; Schneider, K.E.; Scholz, S.; van den Brandhof, E.J.; van der Ven, L.T.; Walter-Rohde, S.; Weigt, S.; Witters, H.; Halder, M.

    2014-01-01

    A The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were

  3. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    Directory of Open Access Journals (Sweden)

    Gérard Valérie A

    2010-03-01

    Full Text Available Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA capped have been investigated with pheochromocytoma 12 (PC12 cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA stabilised CdTe QDs (gel and non - gel were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly

  5. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2010-03-25

    Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA) stabilised CdTe QDs (gel and non - gel) were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation) were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly susceptible to

  6. Toxicity of Single and Mixed Contaminants in Seawater Measured with Acute Toxicity Bioassays

    Directory of Open Access Journals (Sweden)

    A.R. Fernandez-Alba

    2002-01-01

    Full Text Available Different types of organic pollutants commonly detected in seawater have been evaluated by acute toxicity bioassays. Vibrio fischeri, Daphnia magna, and Selenastrum capricornotum were selected to test toxic effects of individual compounds and mixtures of these compounds, obtaining EC50 values in the range of 0.001 to 28.9 mg/l. In the case of mixtures, synergistic toxic responses were seen for a clear majority of the cases (>60%. Mixtures containing methyl-tertiary-butyl ether (MTBE exhibit accelerated processes that result in a change in concentration required to produce a toxic effect; for example, in the case of mixtures containing MTBE and Diuron and Dichlofluanid.

  7. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  8. Determination of Polychlorinated Diben-p-dioxins and Dibenzofurans in Flue Gas by High Resolution Gas Chromatography Coupled with High Resolution Spectrometry

    International Nuclear Information System (INIS)

    Chen, T.; Yan, J. H.; Li, X. D.; Cen, K. F.

    2007-01-01

    In 1988 the first municipal solid waste (MSW) incinerator plant was built in Shenzhen, China. Since then Beijing, Shanghai and other big cities have built a few MSW incineration plants. MSW incineration has gradually been used in some cities of China due to its advantages such as significant volume reduction (about 90%), mass reduction (about 70%), and toxicity reduction of the waste and energy recovery. However, MSW incineration is sometimes considered to the general public as the secondary pollution source, because of concerns about is toxic combustion byproducts (TCBs). Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are the most toxic compounds among the TCBs. In this paper, PCDD/Fs in flue gas produced from a MSW incinerator were isokinetically withdrawn and collected in a multi component sampling train. Then the PCDD/Fs samples were extracted, concentrated and cleaned up step by step. Finally, the determination of PCDD/Fs was carried out by high-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC/HRMS). The two PCDD/Fs emission levels were the similar, which was 0.115 and 0.096ng TEQ/Nm3 although different sampling time. The PCDD/Fs emission levels were lower than the PCDD/Fs emission regulation in China (1.0 ng TEQ / Nm3) and close to the developed countries' regulations, i.e., 0.1ng TEQ/Nm3. 2,3,4,7,8-Pentachlorodibenzofuran (2,3,4,7,8-PeCDF) was the dominant congener of the total TEQ

  9. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T; Aalto, P; Kulmala, M; Rannik, U; Vesala, T [Helsinki Univ. (Finland). Dept. of Physics; Hari, P; Pohja, T [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  10. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T.; Aalto, P.; Kulmala, M.; Rannik, U.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics; Hari, P.; Pohja, T. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1995-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  11. Fluoroacetate-mediated toxicity of fluorinated ethanes.

    Science.gov (United States)

    Keller, D A; Roe, D C; Lieder, P H

    1996-04-01

    A series of 1-(di)halo-2-fluoroethanes reported in the literature to be nontoxic or of low toxicity were found to be highly toxic by the inhalation route. Experiments were performed that showed the compounds, 1,2-difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane to be highly toxic to rats upon inhalation for 4 hr. All four compounds had 4-hr approximate lethal concentrations of difluoroethane (commonly referred to as HFC-152a) has very low acute toxicity with a 4-hr LC50 of > 400,000 ppm in rats. Rats exposed to the selected toxic fluoroethanes showed clinical signs of fluoroacetate toxicity (lethargy, hunched posture, convulsions). 1,2-Difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane were shown to increase concentrations of citrate in serum and heart tissue, a hallmark of fluoroacetate intoxication. 19F NMR analysis confirmed that fluoroacetate was present in the urine of rats exposed to each toxic compound. Fluorocitrate, a condensation product of fluoroacetate and oxaloacetate, was identified in the kidney of rats exposed to 1,2-difluoroethane. There was a concentration-related elevation of serum and heart citrate in rats exposed to 0-1000 ppm 1,2-fluoroethane. Serum citrate was increased up to 5-fold and heart citrate was increased up to 11-fold over control citrate levels. Metabolism of 1,2-difluoroethane by cytochrome P450 (most likely CYP2E1) is suspected because pretreatment of rats or mice with SKF-525F, disulfiram, or dimethyl sulfoxide prevented or delayed the toxicity observed in rats not pretreated. Experimental evidence indicates that the metabolism of the toxic fluoroethanes is initiated at the carbon-hydrogen bond, with metabolism to fluoroacetate via an aldehyde or an acyl fluoride. The results of these studies show that 1-(di)halo-2-fluoroethanes are highly toxic to rats and should be considered a hazard to humans unless demonstrated otherwise.

  12. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  13. Influence of sol concentration on CdO nanostructure with gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Jeevitesh K. [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Pathak, Trilok K. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kumar, Vinod [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi (India); Purohit, L.P., E-mail: lppurohit@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2017-07-01

    Highlights: • CdO thin films are prepared by spin coater of precursor solution of different molarity. • Nano-structure of CdO is cauliflower like change with concentration. • Relation of strain and crystal size with conductivity as a function of molarity. • A CdO thin film shows nitrogen sensing at room temperature. - Abstract: The effect of sol concentration has been investigated on the sol-gel derived CdO nanostructures to optimize the optical and electrical properties enhancing gas sensing properties at low temperatures. X-ray diffraction patterns show that 0.5 M CdO film has cubic structure (111) preferred orientation with 34 nm particle size. Scanning electron micrographs indicated concentration dependent surface morphology. The optical band gap energy for highly transparent thin films increases from 1.9 eV to 2.34 eV as molarity was increased from 0.2 M to 1.0 M. The photoluminescence spectra of the samples have a violet to blue emission peak centred at 435 nm. J-V characteristics show that thin film of 0.5 M has conductivity 1.41 × 10{sup −3} S/m. The sensor characteristic such as response curve, sensor response, response time and recovery time were measured for optimized thin film at different operating temperatures. The sensor response was found 20% near room temperature (32 °C) and proportional to temperature. Fastest response time 10 s and recovery time 20 s were observed near room temperature. The resistivity of sensor was found to decrease in presence of gas attribute to more charge carriers with flower like morphology. Our study is encouraging to get faster response by CdO thin films near room temperature.

  14. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  15. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  16. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  17. Airborne concentrations of toxic metals resulting from the use of low melting point lead alloys to construct radiotherapy shielding

    International Nuclear Information System (INIS)

    McCullough, E.C.; Senjem, D.H.

    1981-01-01

    Determinations of airborne concentrations of lead, cadmium, bismuth, and tin were made above vessels containing a fusible lead alloy (158 0 F melting point) commonly used for construction of radiotherapy blocks. Fume concentrations were determined by collection on a membrane filter and analysis by atomic absorption spectrophotometry. Samples were obtained for alloy temperatures of 200 0 , 400 0 , and 600 0 F. In all instances, concentrations were much lower than the applicable occupational limits for continuous exposure. The results of this study indicate that the use of a vented hood as a means of reducing air concentrations of toxic metals above and near vessels containing low temperature melting point lead allows commonly used in construction of radiotherapy shields appears unjustifiable. However, proper handling procedures should be observed to avoid entry into the body via alternate pathways (e.g., ingestion or skin absorption). Transmission data of a non-cadmium containing lead alloy with a melting point of 203 0 F was ascertained and is reported on

  18. Experimental and theoretical investigations on the release and propagation of heavy gas; Experimentelle und theoretische Untersuchungen zur Schwergasfreisetzung und -ausbreitung

    Energy Technology Data Exchange (ETDEWEB)

    Rauchegger, Christian

    2013-06-01

    The hazardous potential of accidental heavy gas releases, especially those involving flammable and toxic gases, is widely known. In order to predict the area in which these gases are in hazardous concentrations, an estimation of the dispersion of these gases must be carried out. While the hazardous area for flammable heavy gases is determined by the lower explosion limit (ca. > 1 vol.%), the release of toxic heavy gases can result in a much larger hazardous area, as toxic gases, even in very low concentrations (ca. < 3000 ppm), have the potential to be highly damaging. The VDI guideline 3783, which is considered as state-of-the-art in Germany, can be used to estimate the dispersion of heavy gases. However, VDI 3783 gives no method for the prediction of the height and width of a heavy gas cloud, which are both required for quantitative risk analysis as well as for a possible coupling of a Lagrangian particle model with the VDI 3783 heavy gas dispersion model. Therefore, further calculation methods were used to describe these dimensions and were evaluated against, experimental studies of the length, width and height of the heavy and neutral gas field. The influence of the source height on the heavy gas dispersion was also investigated. It was found that elevating the source leads to a reduction of the length of the heavy gas area. Once the source reaches a critical height, a heavy gas area at ground level no longer exists. Therefore, for release heights above the critical height, heavy gas dispersion effects can be neglected and the calculation of the heavy gas area according to VDI 3783 part 2 is therefore no longer necessary. The release of heavy gases can occur from a process plant as well as from a standard gas bottle. For the release of heavy gases from standard gas bottles, a mathematical model has been developed to predict the time-dependent mass flow. This model takes into account the time-dependent temperature distribution of the bottle wall, and contains a

  19. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  20. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  1. Results of gas exposure experiments for determination of HF concentrations injurious to plants

    Energy Technology Data Exchange (ETDEWEB)

    Guderian, R

    1971-01-01

    Gas exposure experiments were performed under greenhouse conditions to determine the effects of hydrogen fluoride on the growth capacity, yield and quality of plants. Damage to plants was assessed after HF concentrations of 0.85-25 ..mu..g/m/sup 3/. The effects of definite HF quantities on plants are described and relative sensitivities of 17 deciduous trees, 9 evergreens, 24 agricultural garden plants and 17 ornamental plants are presented. 2 references, 7 tables.

  2. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  3. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  4. Gas chromatography–triple quadrupole mass spectrometry for the determination of atmospheric polychlorinated naphthalenes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jin, Jing [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Xueli; Li, Yun; Shah, Syed Mazhar [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China)

    2014-09-15

    Highlights: • Atmospheric PCNs were detected by isotope-dilution GC–MS/MS. • The pollution levels of PCNs covering from mono- to octa-CNs were investigated comprehensively in air samples. • The dioxin-like toxicity and human exposure levels of PCNs in air samples were estimated. - Abstract: Atmospheric polychlorinated naphthalenes (PCNs) ranging from mono-CNs to octa-CNs were detected using isotope-dilution gas chromatography coupled with triple quadrupole mass spectrometry (GC–MS/MS). The developed instrumental method was successfully applied to the determination of PCNs in technical products. It was observed that there were significant differences in concentrations, homologue profiles, chlorinated contents and total toxic equivalents (∑TEQs) of PCNs for four Halowax products. Subsequently, the validation of the analytical method was evaluated for the determination of PCNs in air samples in terms of method detection limit (MDL), recovery and matrix effect. The results demonstrated that this method could provide satisfactory sensitivity and adequate selectivity with lower cost. It was conducted to comprehensively evaluate the levels, composition patterns, ∑TEQs, and daily intake exposure of PCNs in indoor and outdoor air samples. Concentrations and ∑TEQs of PCNs in air samples ranged 47.7–832.7 pg m{sup −3} and 1.31–5.99 fg m{sup −3}, respectively, and the predominant homologues were di- and tri-CNs in the gas phase. The results indicated that this analytical method was useful for the accurate and specific evaluation of dioxin-like toxicity and human exposure levels of PCNs in the atmosphere.

  5. Hydrogen peroxide ingestion associated with portal venous gas and treatment with hyperbaric oxygen: a case series and review of the literature.

    Science.gov (United States)

    French, Loren Keith; Horowitz, B Zane; McKeown, Nathanael J

    2010-07-01

    Ingestion of concentrated hydrogen peroxide (H(2)O(2)) has been associated with venous and arterial gas embolic events, hemorrhagic gastritis, gastrointestinal bleeding, shock, and death. Although H(2)O(2) is generally considered a benign ingestion in low concentrations, case reports have described serious toxicity following high concentration exposures. Hyperbaric oxygen (HBO) has been used with success in managing patients suffering from gas embolism with and without manifestations of ischemia. Poison center records were searched from July 1999 to January 2010 for patients with H(2)O(2) exposure and HBO treatment. Cases were reviewed for the concentration of H(2)O(2), symptoms, CT scan findings of portal gas embolism, HBO treatment, and outcome. RESULTS; Eleven cases of portal gas embolism were found. Ages ranged from 4 to 89 years. All but one ingestion was accidental in nature. In 10 cases 35% H(2)O(2) was ingested and in 1 case 12% H(2)O(2) was ingested. All abdominal CT scans demonstrated portal venous gas embolism in all cases. Hyperbaric treatment was successful in completely resolving all portal venous gas bubbles in nine patients (80%) and nearly resolving them in two others. Ten patients were able to be discharged home within 1 day, and one patient had a 3.5-day length of stay. HBO was successful in resolving portal venous gas embolism from accidental concentrated H(2)O(2) ingestions.

  6. [Advance in study on zearalenone's toxicity and determination].

    Science.gov (United States)

    He, Qing-Hua; Xu, Yang

    2005-07-01

    The article is intended to introduce the zearalenone's toxicity, determination methods and prevention. Zearalenone is one of the most widely distributed mycotoxins produces by Fusarium Species, it is harm to animals and human. And it can induce human liver cancer,carcinoma of tesis esophagus cancer. Now we use high-performance liquid chromatography, gas chromatography, thin layer chromatography, non-toxicity determinations to detect it.

  7. Plants as useful vectors to reduce environmental toxic arsenic content.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  8. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  9. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions.

    Science.gov (United States)

    Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M

    2017-06-28

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.

  10. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  11. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay

    Science.gov (United States)

    Keating, James E.; Zorn, Bryan T.; Kochar, Tavleen K.; Wolfgang, Matthew C.; Glish, Gary L.; Tarran, Robert

    2018-01-01

    The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition. PMID:29584716

  12. Concentration fluctuations in gas releases by industrial accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Chatwin, P.C.; Joergensen, H.E.; Mole, N.; Munro, R.J.; Ott, S.

    2002-05-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statistical analyses and surface-layer scaling. The statistical moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of these moments is universal with a gaussian core and exponential tails. The instantaneous plume width is fluctuating with a log-normal distribution. The position of the instantaneous plume centre-line is modelled by a normal distribution and a Langevin equation, by which the meander effect on the time-averaged plume width is predicted. Fixed-frame statistics are modelled by convolution of moving-frame statistics and the probability distribution for the plume centreline. The distance-neighbour function generalized for higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools are based on Karhunen-Loeve expansion and Fourier transformations using iterative or correlation-distortion techniques. The input to the simulation is the probability distribution of the individual processes, assumed stationary, and the cross-correlations of all signal combinations. The use in practical risk assessment is illustrated by implementation of a typical heavy-gas dispersion model, enhanced for prediction and simulation of concentration fluctuations. (au)

  13. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    International Nuclear Information System (INIS)

    Diaz, Dolores; Ford, Kevin A.; Hartley, Dylan P.; Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung; Peng, Jing; Zheng, Zhong; Merchant, Mark; Sutherlin, Daniel P.; Gaudino, John J.; Kaus, Robert; Lewin-Koh, Sock C.; Choo, Edna F.; Liederer, Bianca M.; Dambach, Donna M.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.

  14. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  15. Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca.

    Science.gov (United States)

    Morrison, Shane A; McMurry, Scott T; Smith, Loren M; Belden, Jason B

    2013-07-01

    Fungicide application rates on row crop agriculture have increased across the United States, and subsequently, contamination of adjacent wetlands can occur through spray drift or field runoff. To investigate fungicide toxicity, Hyalella azteca amphipods were exposed to 2 fungicide formulations, Headline and Stratego, and their active strobilurin ingredients, pyraclostrobin and trifloxystrobin. Water-only exposures resulted in similar median lethal concentration (LC50; 20-25 µg/L) values for formulations and strobilurin ingredients, suggesting that toxicity is due to strobilurin ingredients. These values were below concentrations that could occur following spray drift over embedded cropland wetlands. When fungicides were added to overlying water of sediment-water microcosms, toxicity was reduced by 500% for Headline and 160% for Stratego, compared with water-only exposures, based on the total amount of fungicide added to the systems. In addition, when fungicides were added to sediment prior to the addition of water, the reduction in toxicity was even greater, with no toxicity occurring at environmentally relevant levels. Differences in toxicity among exposure groups were explained by dissipation from water as toxicity values based on measured water concentrations were within 20% between all systems. The present study reinforces previous studies that Headline and Stratego are toxic to nontarget aquatic organisms. However, the presence of sediment is likely to ameliorate some toxicity of fungicide formulations, especially if spraying occurs prior to wetland inundation. Copyright © 2013 SETAC.

  16. Comparison and avoidance of toxicity of penetrating cryoprotectants.

    Directory of Open Access Journals (Sweden)

    Edyta A Szurek

    Full Text Available The objective of this study was to elucidate the toxicity of widely used penetrating cryoprotective agents (CPAs to mammalian oocytes. To this end, mouse metaphase II (M II oocytes were exposed to 1.5 M solutions of dimethylsulfoxide (DMSO, ethylene glycol (EG, or propanediol (PROH prepared in phosphate buffered saline (PBS containing 10% fetal bovine serum. To address the time- and temperature-dependence of the CPA toxicity, M II oocytes were exposed to the aforementioned CPAs at room temperature (RT, ∼23°C and 37°C for 15 or 30 minutes. Subsequently, the toxicity of each CPA was evaluated by examining post-exposure survival, fertilization, embryonic development, chromosomal abnormalities, and parthenogenetic activation of treated oocytes. Untreated oocytes served as controls. Exposure of MII oocytes to 1.5 M DMSO or 1.5 M EG at RT for 15 min did not adversely affect any of the evaluated criteria. In contrast, 1.5 M PROH induced a significant increase in oocyte degeneration (54.2% and parthenogenetic activation (16% under same conditions. When the CPA exposure was performed at 37°C, the toxic effect of PROH further increased, resulting in lower survival (15% and no fertilization while the toxicity of DMSO and EG was still insignificant. Nevertheless, it was possible to completely avoid the toxicity of PROH by decreasing its concentration to 0.75 M and combining it with 0.75 M DMSO to bring the total CPA concentration to a cryoprotective level. Moreover, combining lower concentrations (i.e., 0.75 M of PROH and DMSO significantly improved the cryosurvival of MII oocytes compared to the equivalent concentration of DMSO alone. Taken together, our results suggest that from the perspective of CPA toxicity, DMSO and EG are safer to use in slow cooling protocols while a lower concentration of PROH can be combined with another CPA to avoid its toxicity and to improve the cryosurvival as well.

  17. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  18. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants.

    Science.gov (United States)

    Shah, Asad; Wu, Xiuwen; Ullah, Abid; Fahad, Shah; Muhammad, Riaz; Yan, Lei; Jiang, Cuncang

    2017-11-01

    Boron (B) deficiency and toxicity are the major factors that affect plant growth and yield. The present study revealed the effect of B deficiency and toxicity on plant growth, morphology, physiology, and cell structure. A hydroponic culture experiment was conducted with five B levels, B deficient (B0), sufficient (B20, B10, B40) and toxic (B100). Our results show that both B deficient as well as excess level inhibit plant growth. In B deficiency, the major visible symptoms were appeared in roots, while B excess burned the leaf margin of older leaves. The antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) decreased at B deficiency and also decreased up to some extent at B excess, while in sufficient treatments, the higher antioxidant enzymes were found at B20. In addition, the MDA concentration decreased at B deficiency and increased with B concentration. Moreover, the photosynthetic rate, transpiration rate, stomatal conductance, leaf gas exchange and intercellular CO 2 were reduced at both B deficiency as well as excess and higher at sufficient B20 treatment significantly. The chlorophyll and carotenoid content increased at B20 treatment, while decreased at B deficiency and excess. The middle lamellae of cell wall were found thick at B excess and normal at B20. The current study revealed that B deficiency as well as excess concentration affect plant growth and various morpho-physiological processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    Science.gov (United States)

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  20. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren

    2014-01-01

    We report bulk gas concentrations of O2, N2, and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2, and 1.09% Ar. Most previous studies suggest that convective transport is the main...... driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. There- fore, diffusive transport was the main driver of gas migration. By analyzing the temporal...... evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  1. The unique field experiments on the assessment of accident consequences at industrial enterprises of gas-chemical complexes

    International Nuclear Information System (INIS)

    Belov, N.S.; Trebin, I.S.; Sorokovikova, O.

    1998-01-01

    Sour natural gas fields are the unique raw material base for setting up such large enterprises as gas chemical complexes. The presence of high toxic H 2 S in natural gas results in widening a range of dangerous and harmful factors for biosphere. Emission of such gases into atmosphere during accidents at gas wells and gas pipelines is of especial danger for environment and first of all for people. Development of mathematical forecast models for assessment of accidents progression and consequences is one of the main elements of works on safety analysis and risk assessment. The critical step in development of such models is their validation using the experimental material. Full-scale experiments have been conducted by the All-Union Scientific-Research institute of Natural Gases and Gas Technology (VNIIGAZ) for grounding of sizes of hazard zones in case of the severe accidents with the gas pipelines. The source of emergency gas release was the working gas pipelines with 100 mm dia. And 110 km length. This pipeline was used for transportation of natural gas with significant amount of hydrogen sulphide. During these experiments significant quantities of the gas including H 2 S were released into the atmosphere and then concentrations of gas and H 2 S were measured in the accident region. The results of these experiments are used for validation of atmospheric dispersion models including the new Lagrangian trace stochastic model that takes into account a wide range of meteorological factors. This model was developed as a part of computer system for decision-making support in case of accident release of toxic gases into atmosphere at the enterprises of Russian gas industry. (authors)

  2. Evaluation of toxic action of fluorides on agricultural plants

    Directory of Open Access Journals (Sweden)

    V. N. Grishko

    2007-03-01

    Full Text Available The toxicity of potassium fluoride, sodium fluoride and ammonium fluoride for pea, maize, oat and onion was studied. It was found that the level of the toxic influence had grown with increase of fluoride concentration in the media of growth (from 5 to 100 mg of F–/l. By increase of the toxic influence the agricultural crops are disposed in the following row: oat < onion < maize < pea. Ammonium fluoride demonstrates lesser toxicity, than potassium and sodium fluorides. Under low concentrations of fluoride compounds (5 and 10 mg of F–/l stimulation of roots growth is noted only for the oat.

  3. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  4. Blood gas sample spiking with total parenteral nutrition, lipid emulsion, and concentrated dextrose solutions as a model for predicting sample contamination based on glucose result.

    Science.gov (United States)

    Jara-Aguirre, Jose C; Smeets, Steven W; Wockenfus, Amy M; Karon, Brad S

    2018-05-01

    Evaluate the effects of blood gas sample contamination with total parenteral nutrition (TPN)/lipid emulsion and dextrose 50% (D50) solutions on blood gas and electrolyte measurement; and determine whether glucose concentration can predict blood gas sample contamination with TPN/lipid emulsion or D50. Residual lithium heparin arterial blood gas samples were spiked with TPN/lipid emulsion (0 to 15%) and D50 solutions (0 to 2.5%). Blood gas (pH, pCO2, pO2), electrolytes (Na+, K+ ionized calcium) and hemoglobin were measured with a Radiometer ABL90. Glucose concentration was measured in separated plasma by Roche Cobas c501. Chart review of neonatal blood gas results with glucose >300 mg/dL (>16.65 mmol/L) over a seven month period was performed to determine whether repeat (within 4 h) blood gas results suggested pre-analytical errors in blood gas results. Results were used to determine whether a glucose threshold could predict contamination resulting in blood gas and electrolyte results with greater than laboratory-defined allowable error. Samples spiked with 5% or more TPN/lipid emulsion solution or 1% D50 showed glucose concentration >500 mg/dL (>27.75 mmol/L) and produced blood gas (pH, pO 2 , pCO 2 ) results with greater than laboratory-defined allowable error. TPN/lipid emulsion, but not D50, produced greater than allowable error in electrolyte (Na + ,K + ,Ca ++ ,Hb) results at these concentrations. Based on chart review of 144 neonatal blood gas results with glucose >250 mg/dL received over seven months, four of ten neonatal intensive care unit (NICU) patients with glucose results >500 mg/dL and repeat blood gas results within 4 h had results highly suggestive of pre-analytical error. Only 3 of 36 NICU patients with glucose results 300-500 mg/dL and repeat blood gas results within 4 h had clear pre-analytical errors in blood gas results. Glucose concentration can be used as an indicator of significant blood sample contamination with either TPN

  5. PO.RA project. An analysis on gas radon concentrations in soil versus fluctuations in the groundwater table

    International Nuclear Information System (INIS)

    Serentha', C.; Torretta, M.

    2001-01-01

    Man is daily exposed to natural radiation, mainly due to cosmic rays and natural radioactive elements, whose most important radioactive daughters are 222 Rn (radon) and 220 Rn (thoron). Being these ones gaseous, they can spread through the ground, reaching the atmosphere and accumulating in rooms, where their concentrations may be very high. As radon exhalation is strongly connected with the hydrogeological features of the environment, this study tried to find a relationship between fluctuations in the groundwater table and gas radon concentrations in soil, in order to try estimates of indoor radon concentrations [it

  6. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  7. Liquefied petroleum gas (LPG) poisoning: report of two cases and review of the literature.

    Science.gov (United States)

    Fukunaga, T; Yamamoto, H; Tanegashima, A; Yamamoto, Y; Nishi, K

    1996-10-25

    Two autopsy cases of men who died while connecting a liquefied petroleum gas (LPG) pipe are reported. Their blood concentrations of propane (the main content of LPG) were 0.12 and 3.40 mg/100 g, respectively. The cause of death after exposure of LPG has generally been considered to be asphyxia from hypoxia. The large differences in the blood propane levels found here and reported in the literature, however, suggest that direct toxic effects of propane poisoning may be the cause of death in some cases. Propane concentrations and the cause of death are reviewed and discussed.

  8. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    Energy Technology Data Exchange (ETDEWEB)

    Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.

  9. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  10. Specific toxicity of 5-thio-D-glucose to hypoxic cells

    International Nuclear Information System (INIS)

    Schulz, R.J.; Bongiorni, P.

    1984-01-01

    The toxicity of 5-thio-D-glucose (5TG) to mammalian cells in culture has been studied with respect to oxygen tension, concentration, and temperature. At 37 0 C and at 5 mM concentration of the drug in normal growth medium, survival is 10 -3 for 4-hr exposure to 5 ppm O 2 ; this increases to 0.5 for 24-hr exposure to 200 ppm O 2 . The relationship between survival and oxygen tension is nonlinear with the greatest change occurring between 50 and 100 ppm. The drug is essentially nontoxic to aerated cells. Drug toxicity increases with concentration up to about 5 mM at which point a plateau is reached. The effect of elevated temperature is to reduce the time required to obtain a specific level of survival, but temperatures as high as 42 0 C had only a slight effect on drug toxicity for oxygen tensions higher than 100 ppm. The effect of D-glucose on the toxicity of 5TG was studied, and an inverse relationship was established. At D-glucose concentrations greater than 20 mM the toxicity of 5TG was nullified regardless of oxygen tension or 5TG concentration

  11. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    Science.gov (United States)

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  12. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  13. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  14. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  15. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition.

    Science.gov (United States)

    Bielská, Lucie; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo; Höss, Sebastian

    2017-10-01

    The study investigates the role of biochar and/or compost in mitigating the toxic effects of pyrene in soils using reproduction of nematodes and porewater concentration as measures of pyrene toxicity and bioavailability, respectively. Two soils were spiked with increasing levels of pyrene to achieve a concentration-response relationship for the reproduction of Caenorhabditis elegans. The observed EC50 values (pyrene concentration causing 50% inhibition of reproduction) were 14mg/kg and 31mg/kg (dry mass) for these soils, corresponding to equilibrium porewater concentrations of 37μg/L and 47μg/L, respectively. Differences in organic carbon content were not sufficient to explain the variability in toxicity between the different soils. Soils causing a significant inhibition of reproduction were further amended with 10%-compost, 5%-biochar, or both, and the effects on reproduction and porewater concentration determined. Combined addition of compost and biochar was identified as the most effective strategy in reducing pyrene concentration in soil porewater, which was also partly reflected in soil toxicity. However, porewater concentrations predicted only 52% of pyrene toxicity to nematodes, pointing to particle-bound or dietary exposure pathways. Capsule: Amending pyrene-spiked soil with biochar and compost effectively reduced pyrene porewater concentrations and toxicity to nematodes, which were significantly related. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  17. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M. [Process Safety and Environmental Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308 (Australia); Dlugogorski, Bogdan Z., E-mail: Bogdan.Dlugogorski@newcastle.edu.au [Process Safety and Environmental Protection Research Group, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2011-03-15

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography ({mu}GC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  18. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    International Nuclear Information System (INIS)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M.; Dlugogorski, Bogdan Z.

    2011-01-01

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography (μGC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  19. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  20. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test

    International Nuclear Information System (INIS)

    Davies, N.A.Nicola A.; Hodson, M.E.Mark E.; Black, S.Stuart

    2003-01-01

    Timing of lead addition and worms to soil affects the response of the worms to soil affects the response of the worms to lead. - Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC 50 s for 14 and 28 days were 5311 and 5395 μg Pb g -1 soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 μg Pb g -1 soil . The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 μg g -1 soil accumulated lead at a faster rate (3.16 μg Pb g -1 tissue day -1 ) than those in the 3000 μg g -1 soil (2.21 μg Pb g -1 tissue day -1 ). The third experiment was a timed experiment with worms cultivated in soil containing 7000 μg Pb g -1 soil . Soil and lead nitrate solution were mixed and stored at 20 deg. C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration

  1. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    Science.gov (United States)

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Toxicity of tritium

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Among radionuclides of importance in atomic energy, 3 H has relatively low toxicity. The main health and environmental worry is the possibility that significant biological effects may follow from protracted exposure to low concentrations in water. To examine this possible hazard and measure toxicity at low tritium concentrations, chronic exposure studies were done on mice and monkeys. During vulnerable developmental periods animals were exposed to 3 HOH, and mice were exposed also to 60 Co gamma irradiation and energy-related chemical agents. The biological endpoint measured was the irreversible loss of female germ cells. Effects from tritium were observed at surprisingly low concentrations where 3 H was found more damaging than previously thought. Comparisons between tritium and gamma radiation showed the relative biological effectiveness (RBE) to be greater than 1 and to reach approximately 3 at very low exposures. For perspective, other comparisons were made: between radiation and chemical agents, which revealed parallels in action on germ cells, and between pre- and postnatal exposure, which warn of possible special hazard to the fetus from both classes of energy-related byproducts

  3. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Gaetano Scamarcio

    2006-10-01

    Full Text Available Various applications, such as pollution monitoring, toxic-gas detection, noninvasive medical diagnostics and industrial process control, require sensitive and selectivedetection of gas traces with concentrations in the parts in 109 (ppb and sub-ppb range.The recent development of quantum-cascade lasers (QCLs has given a new aspect toinfrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLsare attractive spectroscopic sources because of their excellent properties in terms of narrowlinewidth, average power and room temperature operation. In combination with these lasersources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity,compact sensor platform, fast time-response and user friendly operation. This paper reportsrecent developments on quantum cascade laser-based photoacoustic spectroscopy for tracegas detection. In particular, different applications of a photoacoustic trace gas sensoremploying a longitudinal resonant cell with a detection limit on the order of hundred ppb ofozone and ammonia are discussed. We also report two QC laser-based photoacousticsensors for the detection of nitric oxide, for environmental pollution monitoring andmedical diagnostics, and hexamethyldisilazane, for applications in semiconductormanufacturing process.

  4. Determination of toxic and essential elements in seafood

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Yune Mellawati, T.

    1990-01-01

    Indonesia has only a list of the maximum permissible concentration of toxic elements in water stated in a national legislation. Therefore, it is important to study the toxic elements content in fish and shellfish, because these marine organisms are good biological indicators. The interesting elements to be analyzed are toxic elements, i.e. As, Cd, Cr, Hg, Pb, Sb and Se, and essential elements, i.e., Zn and Cu. As, Cr, Hg, Sb, Se and Zn can be determined by Neutron Activation Analysis (NAA), while Cd, Cu and Pb by Atomic Absorption Spectrometry (AAS). The determination of such elements in foodstuff i.e. rice, corn, green pea, wheat, vegetables, fruits, tea and coffee have been done previously. The major purpose of this work is to know whether the concentration of toxic elements in marine organisms is approaching or exceeding the maximum permissible concentration as stated by International legislation. 7 refs, 5 tabs

  5. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  6. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  7. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  8. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 2. Variability of measurement parameters under toxicant-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Grillitsch, B.; Vogl, C.; Wytek, R.

    1999-12-01

    Spontaneous locomotor behavior of semiadult zebra fish (Brachydanio rerio) was recorded under sublethal short-term exposure to the anionic technical surfactant, linear alkylbenzene sulfonate (C{sub 10-13}-LAS) and cadmium in single compound tests using an automated video-monitoring and object-tracing system. Vertical position and swimming velocity in the horizontal and vertical directions were used as behavioral measurement parameters. Data were analyzed by different statistical methods. In pairwise comparisons, consistent, statistically significant, and toxicant-induced alterations of locomotor behavior were observed only for test concentrations, which also caused aspectoric symptoms of intoxication. This comparatively low sensitivity of the behavioral indication criteria was related to high variation in the measurement parameters and corresponding high, minimum detectable, statistically significant, and toxicant-induced deviations. In contrast, results obtained by regression analysis showed significant trends in locomotor activity over the range of toxicant concentrations tested. Thus, the findings support the inappropriateness of no observed effect concentrations and the lowest observed effect concentrations as summary measures of toxicity and indicate that the regression analysis approach is superior to the analysis of variance approach.

  9. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  10. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  11. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  12. Effects of annealing gas and drain doping concentration on electrical properties of Ge-source/Si-channel heterojunction tunneling FETs

    Science.gov (United States)

    Bae, Tae-Eon; Wakabayashi, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Improvement in the performance of Ge-source/Si-channel heterojunction tunneling FETs (TFETs) with high on-current/off-current (I on/I off) ratio and steep subthreshold swing (SS) is demonstrated. In this paper, we experimentally examine the effects of gas ambient [N2 and forming gas (4% H2/N2)] and a doping concentration in the drain regions on the electrical characteristics of Ge/Si heterojunction TFETs. The minimum SS (SSmin) of 70.9 mV/dec and the large I on/I off ratio of 1.4 × 107 are realized by postmetallization annealing in forming gas. Also, the steep SSmin and averaged SS (SSavr) values of 64.2 and 78.4 mV/dec, respectively, are obtained in low drain doping concentration. This improvement is attributable to the reduction in interface state density (D it) in the channel region and to the low leakage current in the drain region.

  13. How to accurately assay the algal toxicity of pesticides with low water solubility

    International Nuclear Information System (INIS)

    Ma Jianyi; Chen Jianmeng

    2005-01-01

    A novel method for assaying and calculating the toxicity of water-insoluble pesticides to green algae has been put forward in this work. First, a solvent is selected for use in bioassays; there should be a detailed screening to identify a solvent with inherently low toxicity to the test organism. Second, the EC 50 is determined for selected pesticides by measuring the toxicity of various concentrations of each of the selected pesticides in a fixed concentration of selected solvent. Third, concentrations of the selected solvent are varied and the EC 50 of each pesticide tested is assayed at a fixed concentration. Fourth, several suitable groups of solvent concentrations are selected and the corresponding EC 50 values of tested pesticides are considered to establish the linear regression equation. Letting the solvent concentration be zero, one calculates the corresponding EC 50 value, which corresponds to the inherent toxicity of the tested pesticide. - A new method is described for assaying the toxicity of water insoluble pesticides

  14. Toxicity identification evaluations of produced-water effluents

    International Nuclear Information System (INIS)

    Sauer, T.C.; Costa, H.J.; Brown, J.S.; Ward, T.J.

    1997-01-01

    Toxicity identification evaluations (TIEs) were performed on 14 produced-water (PW) samples of various salinities from inland and offshore oil- and gas-production facilities operated by different companies in Wyoming, Texas, California, and Louisiana (USA) to evaluate the efficacy of TIE procedures in determining potential toxicants in PW effluents. The research involved acute (24- and 48-h) freshwater and marine toxicity tests on whole PW and PW fractions generated by standard US Environmental Protection Agency and PW-specific fractionation schemes. Factors influencing PW TIEs were investigated, such as the effect of salinity in selecting fractionation manipulations, the effect of toxicity test replication (i.e., reproducibility) in distinguishing changes in toxicities between whole PW and its fractions, and the suitability of different test species in PW TIEs. The results obtained and lessons learned from conducting these PW TIEs are presented in this article. Components, or fractions, contributing to toxicity differed for each PW with no specific fraction being consistently toxic. For most PW samples, toxicity attributed to any one fraction represented only part of the toxicity of the whole sample. However, no more than two fraction types were identified as potential toxicants in any sample. Potential toxicants identified during this study, besides salinity, included acidic and basic organic compound class fractions, particulates removed by filtration at pH 11, ammonia, hydrocarbons, hydrogen sulfide, material removed by pH change, and volatile compounds

  15. Acute toxicity of ingested fluoride.

    Science.gov (United States)

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve. Copyright © 2011 S. Karger AG, Basel.

  16. Influence of the method of fluoride administration on toxicity and fluoride concentrations in Japanese quail

    Science.gov (United States)

    Fleming, W.J.; Schuler, C.A.

    1988-01-01

    Young Japanese quail (Coturnix japonica) were administered NaF for 16 d either in their diet or by esophageal intubation. Based on the total fluoride ion (Emg F-) intake over the l6-d experimental period, fluoride administered by intubation was at least six times more toxic than that fed in the diet. Dietary concentrations of 1,000 ppm F- (Emg F- for 16 d = approx. 144) produced no mortality, whereas intubated doses produced 73% or greater mortality in all groups administered 54 mg F- /kg/d or more (Emg F- for 16 d _ approx. 23 mg). GraphIc companson of the regression of log F- ppm in femurs/mg F- intake showed that fluoride levels in the femurs of quail administered fluoride by intubation were higher than in those administered fluoride in the diet.

  17. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs

  18. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  19. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds

    International Nuclear Information System (INIS)

    Siegler, Katie; Phillips, Bryn M.; Anderson, Brian S.; Voorhees, Jennifer P.; Tjeerdema, Ron S.

    2015-01-01

    California's Stream Pollution Trends program (SPoT) assesses long-term water quality trends, using 100 base-of-the-watershed sampling sites. Annual statewide sediment surveys from 2008 to 2012 identified consistent levels of statewide toxicity (19%), using the freshwater amphipod Hyalella azteca. Significant contaminant trends included a decrease in PCBs, stable concentrations of metals and PAHs, and a statewide increase in detections and concentrations of pyrethroid pesticides. The pyrethroid pesticide bifenthrin was detected in 69% of samples (n = 410). Detection of toxicity increased in a subset of samples tested at a more environmentally relevant test temperature (15 °C), and the magnitude of toxicity was much greater, indicating pyrethroid pesticides as a probable cause. Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. Principal components analysis related pyrethroids, metals and total organic carbon to urban land use. - Highlights: • Toxicity and contaminant concentrations were higher in urban dominated watersheds. • Average and range of total pyrethroid concentrations increased between 2008 and 2012. • Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. - Detections and concentrations of current use pesticides are increasing in California urban watersheds, while legacy organochlorine contaminants are decreasing statewide.

  20. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... stable exposure concentrations of triclosan (log Kow 4.8) in a 6-week multigeneration test with the benthic copepod Nitocra spinipes. The tests were performed in 10 mL vials casted with 1000 mg of silicone (DC 1-2577). Based on a previous pilot study, three triclosan concentrations were selected...... and tested (15 μg L-1; 30 μg L-1; 60 μg L-1) as well as a control (no triclosan). At test beginning, each vial contained 12 individuals consisting of 3 individuals from four different life stages. The test includes feeding with phytoplankton three times a week, which can lead to declining freely dissolved...

  1. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  2. Thin-film culturing technique allowing rapid gas-liquid equilibration (6 sec) with no toxicity to mammalian cells

    International Nuclear Information System (INIS)

    Koch, C.J.

    1984-01-01

    A method is described for inoculating mammalian cells onto the central area of glass petri dishes. The medium depth above the cells is only 100 μm for an added medium volume of 1 ml and increases linearly and rapidly with additional medium. The theoretical time constant for equilibration of the medium with the gas is related to the square of the medium depth. The experimental time constant was measured in two different ways for large and small medium depths, giving excellent agreement with the theoretical values. Although the time constant is only 6 sec for the case of 1 ml of added medium, there is no drying out of the medium or toxicity to the cells because of a large reservoir of medium in the meniscus at the periphery of the dish

  3. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    Science.gov (United States)

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests.

    Science.gov (United States)

    Kungolos, A; Emmanouil, C; Tsiridis, V; Tsiropoulos, N

    2009-08-01

    Three commonly used test organisms of different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) were exposed to selected agrochemicals (fosthiazate, metalaxyl-M, imidacloprid) and copper, in single doses or in binary mixtures. The toxicity of each single compound varied up to two orders of magnitude, depending on the test species examined. V. fischeri was the most sensitive test organism regarding fosthiazate and metalaxyl-M, indicating an IC(50) value of 0.20 mg/L (0.17-0.25 mg/L) and 0.88 mg/L (0.35-1.57 mg/L), respectively. Imidacloprid was the least toxic compound, indicating an EC(50) value on D. magna of 64.6 mg/L (43.3-122.5 mg/L) and an IC(50) value on V. fischeri of 226 mg/L (159-322 mg/L), while for imidacloprid at a concentration of 1000 mg/L the effect on P. subcapitata was lower than 50%. Copper was the most toxic compound towards all test organisms exhibiting the highest toxic effect on P. subcapitata, with an IC(50) value of 0.05 mg/L (0.003-0.008 mg/L). The toxic effects of the binary mixtures have been compared to the theoretically expected effect, resulting from a simple mathematical model based on the theory of probabilities. The independent action model was used in order to predict the theoretically expected effect. The interactive effects were mostly antagonistic or additive, while in few cases (interactive effects of metalaxyl-M and copper on V. fischeri) a synergistic mode of action was observed for some concentration combinations. Experiments showed that interactive effects of chemicals may vary depending on the test species used as well as on the chemicals and their respective concentrations. Although most of the concentrations of chemicals tested in this study are higher than the ones usually found in natural environment, the evaluation of their interactive toxic effects using a battery of bioassays may comprise a useful tool for the estimation of the environmental hazard of chemicals.

  5. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    Science.gov (United States)

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Gossypol Toxicity from Cottonseed Products

    Directory of Open Access Journals (Sweden)

    Ivana Cristina N. Gadelha

    2014-01-01

    Full Text Available Gossypol is a phenolic compound produced by pigment glands in cotton stems, leaves, seeds, and flower buds (Gossypium spp.. Cottonseed meal is a by-product of cotton that is used for animal feeding because it is rich in oil and proteins. However, gossypol toxicity limits cottonseed use in animal feed. High concentrations of free gossypol may be responsible for acute clinical signs of gossypol poisoning which include respiratory distress, impaired body weight gain, anorexia, weakness, apathy, and death after several days. However, the most common toxic effects is the impairment of male and female reproduction. Another important toxic effect of gossypol is its interference with immune function, reducing an animal’s resistance to infections and impairing the efficiency of vaccines. Preventive procedures to limit gossypol toxicity involve treatment of the cottonseed product to reduce the concentration of free gossypol with the most common treatment being exposure to heat. However, free gossypol can be released from the bound form during digestion. Agronomic selection has produced cotton varieties devoid of glands producing gossypol, but these varieties are not normally grown because they are less productive and are more vulnerable to attacks by insects.

  7. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Rancang Bangun Sistem Pengaman Kebocoran Gas LPG (Liquefied Petroleum Gas) Menggunakan Mikrokontroler

    OpenAIRE

    Ismai, Reza Lutfi; Suseno, Jatmiko Endro; Suryono, Suryono

    2017-01-01

    Design of LPG gas leakage safety system using microcontroller has been made in this research. The purpose of this research is to make LPG gas sensor circuit to detect LPG gas concentration and make automation systems for LPG gas leakage protection. LPG gas leakage protection system can be applied for the use of LPG gas safely. Component to detect LPG gas concentration use sensor MQ 5 which can gives resistance as the output value which can be converted into voltage through the voltage devider...

  9. Systemic toxicity of ropivacaine during ovine pregnancy.

    Science.gov (United States)

    Santos, A C; Arthur, G R; Pedersen, H; Morishima, H O; Finster, M; Covino, B G

    1991-07-01

    Ropivacaine is a new amide local anesthetic structurally related to bupivacaine and mepivacaine. Its potency and duration of action are similar to those of bupivacaine but its therapeutic index may be greater. Since pregnancy enhances the cardiotoxicity of bupivacaine, the current study was devised to compare the toxicity of ropivacaine in chronically instrumented nonpregnant and pregnant ewes during continuous intravenous infusion of the drug at the rate of 0.5 mg.kg-1.min-1. In all animals, symptoms of local anesthetic toxicity occurred in the usual order--convulsions, hypotension, apnea, and circulatory collapse. There were no significant differences between the two groups of animals in the doses and plasma concentrations of ropivacaine associated with each toxic manifestations. For example, circulatory collapse occurred at a mean dose of 11.3 +/- 1.1 mg.kg-1 in nonpregnant and 12.4 +/- 0.9 mg.kg-1 in pregnant animals, with corresponding plasma concentrations of 7.3 +/- 0.3 and 9.6 +/- 2.1 micrograms.ml-1 (P = not significant). Protein binding of ropivacaine in the concentration range associated with toxic manifestations was similar in sera obtained from nonpregnant and pregnant ewes. In conclusion, ovine pregnancy does not enhance the systemic toxicity of ropivacaine, possibly because of an absence of gestation-related increase in the availability of free drug.

  10. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  12. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zhuang, Shulin; Zhang, Zhisheng; Zhang, Wenjing; Bao, Lingling; Xu, Chao; Zhang, Hu

    2015-01-01

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  13. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  14. Air toxics from heavy oil production and consumption

    International Nuclear Information System (INIS)

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-01-01

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis

  15. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  16. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  17. Contamination levels, toxicity profiles, and emission sources of polycyclic aromatic hydrocarbons (PAHs) in the soils of an emerging industrial town and its environs in the Southeastern Nigeria.

    Science.gov (United States)

    Ofomatah, Anthony C; Okoye, Chukwuma O B

    2017-11-09

    Polycyclic aromatic hydrocarbon (PAH) concentrations in Nnewi and its environs were determined. Soil samples were extracted by sonication using hexane:dichloromethane (3:1) mixture and determined by gas chromatography-flame ionization detection. The total PAHs concentrations (μg/kg) were 16.681 to 46.815, being three orders of magnitude lower than the maximum permissible level recommended by the Agency for Toxic Substances and Disease Registry (ATSDR). These concentrations followed this order: industrial ˃ farmlands ˃ commercial ˃ residential. Industrialized areas showed higher concentrations (p ˂ 0.05) than the other areas. Diagnostic ratios show that the major source of PAHs was the open burning of industrial and agricultural wastes, as shown by the occurrence of highest concentrations in the industrial areas, followed by agricultural areas. Benzo[a]pyrene equivalent values showed non-pollution and very low toxicity. Nevertheless, it was clear that industrialization has had some impact on the PAHs levels in soils and the total environment in this area and could be problematic with time, except with proper environmental management.

  18. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  19. Possibility of determining the concentration of the gas phase in a two-phase stream by an acoustical method

    Energy Technology Data Exchange (ETDEWEB)

    Butenko, A N; Potapenko, A E; Chistyakov, E S

    1976-01-01

    The method is based on the recording of the amplitude-frequency characteristics of a circular piezoelectric resonator (sensor) during movement of a stream of a two-phase medium. It is shown that the electrical voltage drop across the transducer and the natural oscillating frequency of the transducer depend on the concentration of the gas phase in the two-phase mixture, allowing an instrument to be developed for measurement of this concentration.

  20. The evolution of minor active and toxic gases in repositories

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.; Davies, A.A.; McGahan, D.J.; Rushbrook, P.E.

    1988-09-01

    This study has considered a number of toxic and active gases which could potentially form in relatively small amounts in a deep repository for radioactive wastes. It has been concluded that many of these would react under repository conditions or be highly soluble in groundwater. The minor amounts of the inert and relatively insoluble gas krypton-85 would dissolve in a small volume of repository water. The wide range of organic gases and vapours that could form in trace amounts has been shortened to a list of 21 by consideration of their toxicity, volatibility and extent of formation at a landfill site for non-radioactive waste. The amounts of the inert and inactive gas helium formed from α-particles and the decay of tritium will have only a very minor effect on the overall rate of gas production. (author)

  1. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  2. Lack of oil and gas resources leads to concentration on coal and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-20

    The Bulgarian energy sector is characterised by a marked shortage of domestic resources. The country has no oil to speak of, no gas, relatively little hydro potential compared with its neighbours, and the one resource it does have in fair abundance - coal - is of the poorest quality. This poverty of resources has led to an extraordinary dependence on the Soviet Union for supplies of every resource and for technology to utilise them. Most oil, all gas, some electricity and even significant quantities of coal are all imported from the USSR. There is little Bulgaria can do about its oil needs for the transport sector, but otherwise current policy is to concentrate development in the nuclear and coal sectors. One of the main thrusts of the energy policy is to continue expansion of coal, largely opencast lignite deposits, in order to feed thermal power stations and, when clean coal technology is developed, to use coal in CHP plants. The country uses a small amount of natural gas but no development is foreseen; instead district heating is considered a more efficient use of resources. 5 figs., 1 tab.

  3. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique.

    Science.gov (United States)

    Reddy, Y Ramana; Kumari, N Nalini; Monika, T; Sridhar, K

    2016-06-01

    A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  4. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment

    International Nuclear Information System (INIS)

    Mishra, Nitika; Ayoko, Godwin A.; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. - Highlights: • PAHs represent a major group of outdoor air pollutants. • Concentration levels of PAHS in urban schools ranged from 1.2 to 38 ng/m"3. • PCA–APCS technique used to identify sources of PAHs and their contributions. • Vehicular emissions (56%) were found to be the prominent sources of PAHs.

  5. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  6. Toxic metals' concentration in water of Kriveljska Reka and its tributaries and influence of water there

    International Nuclear Information System (INIS)

    Lukic, D.; Zlatkovic, S.; Vuckovic, M.; Jovanovic, R.

    2002-01-01

    Kriveljska reka is near Bor, a big mining basin in East Serbia. This river is formed from two not so big rivers: Cerova reka and Valja Mare. Kriveljska reka flow past village Veliki Krivelj. Veliki Krivelj is one of the most important mining strip in Bor area. Therefore, Kriveljska reka is the reception for waste waters of some sections of Mining Basin Bor, situated on its banks. We will present to you concentrations of 7 toxic metals, pH-value and chemical oxygen demand in 8 points at Kriveljska reka and waste waters' influence on quality of this river's water. Based on our results, we can conclude that waste waters from Mining Basin Bor contaminate Kriveljska reka and at last we have a dead river. (author)

  7. Natural gas leak mapper

    Science.gov (United States)

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  8. Gene expression change in human dental pulp cells exposed to a low-level toxic concentration of triethylene glycol dimethacrylate: an RNA-seq analysis.

    Science.gov (United States)

    Cho, Sung-Geun; Lee, Jin-Woo; Heo, Jung Sun; Kim, Sun-Young

    2014-09-01

    Dental composite resin restoration for defective tooth may lead unpolymerized resin monomers to be leached into dental pulp tissue. The aim of this study was to investigate the early gene expression change over time of human dental pulp cells (HDPCs) treated with a low-level toxic concentration of Triethylene Glycol Dimethacrylate (TEGDMA), a common dental resin monomer, by adopting the novel high-throughput transcriptome analysis of RNA-seq. The low-level toxic concentration of TEGDMA was determined through MTT assays with serially diluted concentrations. After the HDPCs were exposed to TEGDMA for 6, 12, 24 or 48 hr, the total RNA of the samples was prepared for RNA-seq. qRT-PCR for several genes was performed for validation of RNA-seq results. In the treated group, 1280 genes were differentially expressed compared with the control group. Five patterns of time-series gene expression profiles were identified through k-means clustering analysis. Angiogenesis, cell adhesion and migration, extracellular matrix organization, response to extracellular stimulus, inflammatory response and mineralization-related process were major gene ontology terms in functional annotation clustering. HMOX1, OSGIN1, SMN2, SRXN1 AKR1C1, SPP1 and TOMM40L were highly up-regulated genes, and WRAP53 and CCL2 were highly down-regulated genes over time. qRT-PCR for several genes exhibited a high level of agreement with RNA-seq. TEGDMA induced the HDPCs to show massive and dynamic gene expression changes over time. The previously suggested toxic mechanism of TEGDMA was not only verified, but new genes whose functions have yet to be determined were also found. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation.

    Science.gov (United States)

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz; Woźniak-Karczewska, Marta; Piotrowska-Cyplik, Agnieszka; Ławniczak, Łukasz; Szulc, Alicja; Zgoła-Grześkowiak, Agnieszka; Heipieper, Hermann J; Chrzanowski, Łukasz

    2018-01-01

    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P 66614 ][Br] and [P 66614 ][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Internal Concentration and Time Are Important Modifiers of Toxicity: The Case of Chlorpyrifos on Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Lee, Hyun-Jeoung; Kwon, Jung-Hwan

    2016-09-06

    The internal concentration of chemicals in exposed organisms changes over time due to absorption, distribution, metabolism, and excretion processes since chemicals are taken up from the environment. Internal concentration and time are very important modifiers of toxicity when biomarkers are used to evaluate the potential hazards and risks of environmental pollutants. In this study, the responses of molecular biomarkers, and the fate of chemicals in the body, were comprehensively investigated to determine cause-and-effect relationships over time. Chlorpyrifos (CP) was selected as a model chemical, and Caenorhabditis elegans was exposed to CP for 4 h using the passive dosing method. Worms were then monitored in fresh medium during a 48-h recovery regime. The mRNA expression of genes related to CYP metabolism (cyp35a2 and cyp35a3) increased during the constant exposure phase. The body residue of CP decreased once it reached a peak level during the early stage of exposure, indicating that the initial uptake of CP rapidly induced biotransformation with the synthesis of new CYP metabolic proteins. The residual chlorpyrifos-oxon concentration, an acetylcholinesterase (AChE) inhibitor, continuously increased even after the recovery regime started. These delayed toxicokinetics seem to be important for the extension of AChE inhibition for up to 9 h after the start of the recovery regime. Comprehensive investigation into the molecular initiation events and changes in the internal concentrations of chemical species provide insight into response causality within the framework of an adverse outcome pathway.

  11. Acute Toxicity Tests Of Brewery Effluent on the Ostracoda ...

    African Journals Online (AJOL)

    Mortality also varied with the concentrations. The toxic effect of brewery effluent on ostracoda, which plays an important role in the aquatic food chain and the possibility that they may be accumulating some of these toxic components, is a matter for concern. Keywords: Toxicity, rewery effluent, Ostracoda, Strandesia, ...

  12. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    Science.gov (United States)

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    National Research Council Canada - National Science Library

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  14. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    Science.gov (United States)

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz

    2018-01-01

    on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs...... ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria....

  16. Oxaliplatin-Related Ocular Toxicity

    Directory of Open Access Journals (Sweden)

    Marina Mesquida

    2010-11-01

    Full Text Available We report the case of a 52-year-old woman with advanced colorectal cancer who was treated with oxaliplatin on a FOLFOX schedule. After 3 cycles of chemotherapy, she started to complain of visual loss, altered color vision and neurological symptoms. Due to the suspicion of ocular and neurological toxicity, antineoplastic treatment was stopped. Her visual field showed a concentric bilateral scotoma and the electrooculogram test revealed severe impairment of the retinal pigment epithelium. Visual acuity, color vision and visual field recovered completely 8 months later, although electrooculogram remained abnormal. Ocular toxicity has been reported as an infrequent adverse event of oxaliplatin. Findings in this case indicate toxicity of this chemotherapeutic agent on the retinal pigment epithelium, which has not been reported before. This damage could be permanent, and it thus differs from previously described oxaliplatin-induced ocular toxicities, which are usually transient and reversible. With increasing use of oxaliplatin as first-line treatment in advanced colorectal cancer, we have to be aware of this possible toxicity.

  17. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  18. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  19. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game.

    Science.gov (United States)

    Birgisdottir, B E; Knutsen, H K; Haugen, M; Gjelstad, I M; Jenssen, M T S; Ellingsen, D G; Thomassen, Y; Alexander, J; Meltzer, H M; Brantsæter, A L

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n=111), and a random sample of controls (n=76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B(ln) 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B(ln) 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. © 2013 Elsevier B.V. All rights reserved.

  20. Ecotoxicogenomic assessment of diclofenac toxicity in soil

    International Nuclear Information System (INIS)

    Chen, Guangquan; Braver, Michiel W. den; Gestel, Cornelis A.M. van; Straalen, Nico M. van; Roelofs, Dick

    2015-01-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. - Highlights: • Diclofenac is toxic to the non-target soil invertebrate Folsomia candida. • Diclofenac mainly caused mortality and thus only indirectly affected reproduction. • Diclofenac mode of action in F. candida was checked with gene expression profiling. • Diclofenac significantly affected development, growth and immune related processes. • Diclofenac nervous system activity in F. candida was different from that in mammals. - Diclofenac is toxic to non-target soil invertebrates with a mode of action clearly different from mammalian toxicity

  1. Measurements for the determination of acid dew point and SO[sub 3] concentration in the flue gas of utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W.; Ebel, P.K. (RWE Energie AG, Bergheim (Germany))

    1991-10-01

    Until now, the well-known measuring systems for determining acid dewpoint have been applied primarily to flue gases from oil-fired combustion. Using an acid dewpoint measuring system which has now been available on the market for some time, it is possible to measure the acid dewpoint reliably and continuously in flue gas from coal-fired combustion, with low SO[sub 3] concentrations. This measuring system has also been used for flue gas from which the dust and sulphur have been removed as well as for untreated flue gas of conventional combustion systems with gas, oil, hard coal and brown coal firing and also in fluidized bed combustion systems. 6 refs., 11 figs., 2 tabs.

  2. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  3. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem; Kotek, Ayse; Arslan, Gungor; Topkan, Erkan (Dept. of Radiation Oncology, Baskent Univ. Faculty of Medicine, Adana (Turkey)), E-mail: hcemonal@hotmail.com; Unal, Birsel (Dept. of Biochemistry, Baskent Univ. Faculty of Medicine, Ankara (Turkey)); Yavuz, Aydin; Yavuz, Melek (Dept. of Radiation Oncology, Akdeniz Univ. Faculty of Medicine, Antalya (Turkey))

    2011-11-15

    Background. Radiotherapy (RT) for abdominal and pelvic malignancies often causes severe small bowel toxicity. Citrulline concentrations are known to decrease with intestinal failure. We thus evaluated the feasibility of plasma citrulline levels in predicting radiation-induced intestinal toxicity. Material and methods. Fifty-three patients (36 prostate cancer, 17 endometrial cancer) who received 45 Gy pelvic RT using conventional fractionation were prospectively evaluated. Patients with prostate cancer received an additional 25-30.6 Gy conformal boost. Plasma citrulline levels were assessed on day 0, mid- (week 3) and post-RT (week 8), and four months post-RT. Dose-volume histogram, citrulline concentration changes, and weekly intestinal toxicity scores were analyzed. Results. Mean age was 63 years (range: 43-81 years) and mean baseline citrulline concentration was 38.0 +- 10.1 mumol/l. Citrulline concentrations were significantly reduced at week 3 (27.4 +- 5.9 mumol/l; p < 0.0001), treatment end (29.9 +- 8.8 mumol/l; p < 0.0001), and four months post-treatment (34.3 +- 12.1; p 0.01). The following factor pairs were significantly positively correlated: Citrulline concentration/mean bowel dose during, end of treatment, and four months post-RT; dose-volume parameters/citrulline change groups; cumulative mean radiation dose/intestinal toxicity at end and four months post-RT; citrulline changes/intestinal toxicity during and end of RT. Citrulline concentration changes significantly differed during treatment according to RTOG intestinal toxicity grades (p < 0.0001). Although the citrulline changes differed significantly within RTOG intestinal toxicity grades (p = 0.003), the difference between Grade 0 and Grade 1 did not differ significantly at the end of the treatment. At four months after RT, no significant differences were apparent. Conclusion. Citrulline-based assessment scores are objective and should be considered in measuring radiation-induced intestinal toxicity

  4. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy

    International Nuclear Information System (INIS)

    Onal, Cem; Kotek, Ayse; Arslan, Gungor; Topkan, Erkan; Unal, Birsel; Yavuz, Aydin; Yavuz, Melek

    2011-01-01

    Background. Radiotherapy (RT) for abdominal and pelvic malignancies often causes severe small bowel toxicity. Citrulline concentrations are known to decrease with intestinal failure. We thus evaluated the feasibility of plasma citrulline levels in predicting radiation-induced intestinal toxicity. Material and methods. Fifty-three patients (36 prostate cancer, 17 endometrial cancer) who received 45 Gy pelvic RT using conventional fractionation were prospectively evaluated. Patients with prostate cancer received an additional 25-30.6 Gy conformal boost. Plasma citrulline levels were assessed on day 0, mid- (week 3) and post-RT (week 8), and four months post-RT. Dose-volume histogram, citrulline concentration changes, and weekly intestinal toxicity scores were analyzed. Results. Mean age was 63 years (range: 43-81 years) and mean baseline citrulline concentration was 38.0 ± 10.1 μmol/l. Citrulline concentrations were significantly reduced at week 3 (27.4 ± 5.9 μmol/l; p < 0.0001), treatment end (29.9 ± 8.8 μmol/l; p < 0.0001), and four months post-treatment (34.3 ± 12.1; p 0.01). The following factor pairs were significantly positively correlated: Citrulline concentration/mean bowel dose during, end of treatment, and four months post-RT; dose-volume parameters/citrulline change groups; cumulative mean radiation dose/intestinal toxicity at end and four months post-RT; citrulline changes/intestinal toxicity during and end of RT. Citrulline concentration changes significantly differed during treatment according to RTOG intestinal toxicity grades (p < 0.0001). Although the citrulline changes differed significantly within RTOG intestinal toxicity grades (p = 0.003), the difference between Grade 0 and Grade 1 did not differ significantly at the end of the treatment. At four months after RT, no significant differences were apparent. Conclusion. Citrulline-based assessment scores are objective and should be considered in measuring radiation-induced intestinal toxicity

  5. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  7. Radiation treatment of toxic chemicals

    International Nuclear Information System (INIS)

    Lee, M.J.; Jung, I.H.; Jo, S.K.

    2010-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to conduct by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator. Electron beam accelerator of 2.5 MeV energy and 100 kW power capacity was used to decompose of PCBs having been used as a commercial transformer oil for more than 30 years. The oil were irradiated with ∼ 0.1 percent of TEA (Triethyl Amin) to make chloride ion aparted off from the PCBs into precipitate at the conditions of normal temperature and pressure. The concentrations of PCBs were measured by GC (Gas Chromatography) with ECD (Electron Capture Detector) following the KS (Korean Standard) test procedure. Electron beam should be a useful tool for environmental conservation. Residual concentrations of PCBs after irradiation were depended on the absorption dose of electron beam energy. Advantages comparing to other methods such as

  8. Comparison of the radiological and chemical toxicity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose.

  9. Comparison of the radiological and chemical toxicity of lead

    International Nuclear Information System (INIS)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose

  10. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  11. 2011 NATA - Air Toxics Monitors

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes annual (2005 - 2013) statistics of measured ambient air toxics concentrations (in micrograms per cubic meter) and associated risk estimates for...

  12. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sook [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, University of Plymouth, Plymouth, Devon PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Institute of Green Environmental Research, University of Incheon, Incheon 406-840 (Korea, Republic of)

    2012-01-15

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 {mu}M phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC{sub 50} value of 2.70 {mu}M. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F{sub v}/F{sub m}) significantly declined with increasing phenol concentrations with resultant EC{sub 50} of 1.91 {mu}M and coefficients of variation (CVs) generated for the EC{sub 50} values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 {mu}M was found but declined markedly at higher concentrations. The significant correlation between the F{sub v}/F{sub m} and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  13. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    International Nuclear Information System (INIS)

    Park, Ji-Sook; Brown, Murray T.; Han, Taejun

    2012-01-01

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 μM phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC 50 value of 2.70 μM. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F v /F m ) significantly declined with increasing phenol concentrations with resultant EC 50 of 1.91 μM and coefficients of variation (CVs) generated for the EC 50 values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 μM was found but declined markedly at higher concentrations. The significant correlation between the F v /F m and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  14. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2013-01-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328

  15. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China.

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2011-07-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing-Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air-soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m³ and 114 ng/m³, respectively, with a median total PAH concentration of 349 ng/m³. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban-rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%-77% of the spatial variation in ambient air PAH concentrations. The annual median air-soil gas exchange flux of PAHs was 42.2 ng/m²/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air-soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air-soil gas exchange of PAHs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Unknown plant de-construction hazard -- Toxic COS and CS2 gas from torch cutting of pipe

    International Nuclear Information System (INIS)

    Martin, H.L.; Nutt, A.W.; Myers, B.L.; Hightower, J.O.

    1994-01-01

    An employee exhibited signs of illness after apparently inhaling fumes generated from a pipe that had been cut with a cutting torch. Identification and quantification of the hazardous air emission for reduction of risk via the Department of Energy Class B Investigation are described in this case study. The old hydrogen sulfide gas flare pipe in the heavy water plant of the Savannah River Site has been abandoned with one end open to atmosphere for almost twenty years. The pipe was being removed and cut into sections for disposal during an asbestos abatement project. It contained ash like corrosion deposits that smolder after torch cutting. Investigation revealed that burning of carbon and sulfur in the oxygen deficient atmosphere in the ash generated carbonyl sulfide (COS) and carbon disulfide (CS 2 ) gas, which vented when the pipe was moved by the injured construction rigger. This is believed to be the first well documented exposure and response of a human to high concentration COS gas. Sulfur dioxide (SO 2 ) gas is also generated during the cutting. SO 2 is almost impossible to inhale and has apparently prevented a similar injury during the cutting. SO 2 is almost impossible to inhale and has apparently prevented a similar injury during the many years of US and Canadian heavy water plant de-construction experience. Immediate water quench of the smoldering ash after each cut has eliminated the hazard of residual COS and CS 2 gas. This previously unrecognized industrial hazard may be encountered by other chemical and petroleum industries during torch cutting of pipes that contain similar deposits of iron oxide, iron sulfate, sulfur and carbon

  17. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    Collins, Sara J.; Russell, Ronald W.

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC 50 ) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  18. Determination of any gas composition using high energy molecular beams. Application to the simultaneous concentration measurement of ten pollutants in air

    International Nuclear Information System (INIS)

    Devienne, F.M.; Laugier, Lucette; Roustan, J.-C.; Clapier, Robert.

    1975-01-01

    A high energy argon beam collides the gas to be abalyzed in a special box. The ions formed are extracted and collide a target gas (such as argon) filling a collision chamber, some of them are dissociated. The number of these ions is measured by means of an electrostatic analyzer and an electron multiplier as detector. By this way, it is possible to measure the concentrations of ten or more gaseous pollutants in air in a time shorter than a minute. The method was applied to study the effluents of a jet; the concentrations in CO, NO, NO 2 , CO 2 and SO 2 were measured [fr

  19. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  20. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    Science.gov (United States)

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.

  1. Radioletic degradation of monocrotophos and toxicity of breakdown products

    International Nuclear Information System (INIS)

    Ghanem, I.; Shamma, M.; Al-Arfi, M.; Abu-Alnaser, A.

    2015-03-01

    Among sources of environmental pollution, pesticides contamination is wide spread and has become a source of concern. The organophosphorus pesticide, monocrotophos, is highly toxic compound and inhibits cholinesterase. It is very dangerous by all ways of exposure. Monocrotophos is used widely in Syria to control a variety of boring, chewing and sucking insects on various fruit and veditable crops. It is even, ellegally used to protect grapes in grape orchards from birds which is potentially hazaradous to both birds and the consumers of rthis crop. Monocrotophos is imported to Syria, and this is done according to a yearly plan to assess the amount needed of each pesticide. Such planning combined with variation in the incidence of pest infestation may lead to accummulation of pesticides from year to another, they become obsolete . Getting rid of such pesticides in the developing world is a problem, and Syria is no exception. There are various method of getting rid of obsolete pesticides ranging from containment to chemical methods of breaking down the pesticide. The present study aimed at assesing the feasiblity of using gamma radiation as a means to break down high concentrations of technical grade monocrotophos Several concentrations, 50, 200, and 400 mg/ml of technical grade monocrotophos were exposed to several doses of gamma radiation, namely, 0, 15, 45, 75, and 105 kGy. For each concentration tested percentages of monocrotophos breakdown increased with the increase of applied gamma radiation dose. However, the effect of gamma radiation dose was inversely related to monocrotophos concentration. The highest percentage of moncrotophos degradation was 60% and it was achieved by exposing 50 mg/ml of monocrotophos to 105 kGy of gamma radiation Breakdown products were identified using gas chromatography coupled with mass spectrometry GC-MS. Some identified products were dimethyl methyl phosphonate, phosphoric acid trimethyl and phosphoric acid dimethyl 1-methyl ethyl

  2. Determination of low concentrations of pyridine in piperidine by gas chromatography and infrared spectroscopy

    International Nuclear Information System (INIS)

    Perez Garcia, M. M.; Parellada Bellod, R.

    1979-01-01

    This paper describes the determination of low amounts of piperidine in pyridine in the concentration range of 0-5%. After an exhausting review of the bibliography on the column selection, the chromatographic separation and determination are made on the following column: 27% Pennwalt- 223; 4% KOH on Gas-Chrom R; 80-100 mesh with flame ionization detector. The retention indexes of both compounds and tho Rohrschneider constants of the phase used are calculated. The minimum detection limit achieved for piperidine is 0,25%. (Author) 25 refs

  3. Stabilising greenhouse gas concentrations at low levels. An assessment of options and costs

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, D.P.; Den Elzen, M.G.J.; Lucas, P.L.; Eickhout, B.; Strengers, B.J.; Van Ruijven, B.; Berk, M.M.; De Vries, H.J.M.; Wonink, S.J.; Van den Houdt, R.; Oostenrijk, R. [Netherlands Environmental Assessment Agency MNP, Bilthoven (Netherlands); Hoogwijk, M. [Ecofys, Utrecht (Netherlands); Meinshausen, M. [Potsdam Institute for Climate Impact Research PIK, Postdam (Germany)

    2006-10-15

    Preventing 'dangerous anthropogenic interference of the climate system' may require stabilisation of greenhouse gas concentrations in the atmosphere at relatively low levels such as 550 ppm CO2-eq. and below. Relatively few studies exist that have analysed the possibilities and implications of meeting such stringent climate targets. This report presents a series of related papers that address this issue - either by focusing on individual options or by presenting overall strategies at the global and regional level. The results show that it is technically possible to reach ambitious climate targets - with abatement costs for default assumptions in the order of 1-2% of global GDP. To achieve these lower concentration levels, global emissions need to peak within 15-20 years. The stabilisation scenarios use a large portfolio of measures, including energy efficiency but also carbon capture and storage, large scale application of bio-energy, reduction of non-CO2 gasses, increased use of renewable and/or nuclear power and carbon plantations.

  4. Assessment of aversion to different concentrations of CO2 gas by weaned pigs using an approach-avoidance paradigm

    Science.gov (United States)

    The objective of this study was to examine the aversiveness of carbon dioxide (CO2) to weaned pigs using approach-avoidance and condition place avoidance paradigms. A preference-testing device was custom designed with two connected chambers maintained at static gas concentrations. The control chambe...

  5. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  6. Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, A.V.P. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)]. E-mail: antoine.joubert@limos.uhp-nancy.fr; Lucas, L. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Garrido, F. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France)]. E-mail: f.garrido@brgm.fr; Joulian, C. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Jauzein, M. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)

    2007-08-15

    This study estimates the effect of environmental parameters on the mobility of four inorganic contaminants (As, Zn, Pb and Cd) in soils from three areas in the Ebro and Meuse River basins, within the context of global change. An experimental method, applicable to various soil systems, is used to measure the effect of four global-change-sensitive parameters (temperature, gas phase composition, pH and microbial activity). The aqueous phase of batch incubations was sampled regularly to monitor toxic element concentrations in water. Statistical processing enabled discrimination of the most relevant variations in dissolved concentrations measured at different incubation times and under different experimental conditions. Gas phase composition was identified as the most sensitive parameter for toxic element solubilization. This study confirms that total soil concentrations of inorganic pollutants are irrelevant when assessing the hazard for ecosystems or water resource quality. - An experimental method applicable for different soil systems enables the determination of the effect of environmental parameters, potentially affected by global change, on the mobilization of inorganic pollutants.

  7. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Directory of Open Access Journals (Sweden)

    Xiaoxi B Lin

    Full Text Available CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1 with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the

  8. Toxic metals in the atmosphere in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Schneidemesser, Erika von; Stone, Elizabeth A.; Quraishi, Tauseef A.; Shafer, Martin M.; Schauer, James J.

    2010-01-01

    Aerosol mass (PM 10 and PM 2.5 ) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4 μg m -3 ), Zn (12 μg m -3 ), Cd (0.077 μg m -3 ), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM 2.5 and smaller); in addition, Zn and Cd were largely (≥ 60%) water soluble. The 2007 annual average PM 10 mass concentration was 340 μg m -3 , which is well above the WHO guideline of 20 μg m -3 . Dust sources were found to contribute on average (maximum) 41% (70%) of PM 10 mass and 14% (29%) of PM 2.5 mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM 10 . These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.

  9. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    Science.gov (United States)

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the

  10. Laboratory Connections--Gas Monitoring Transducers Part III: Combustible Gas Sensors.

    Science.gov (United States)

    Powers, Michael H.; Dahman, Doug

    1989-01-01

    Describes an interface that uses semiconductor metal oxides to detect low gas concentrations. Notes the detector has long life, high stability, good reproducibility, low cost, and is able to convert the gas concentration to an electrical signal with a simple circuit. Theory, schematic, and applications are provided. (MVL)

  11. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  12. Radioactivity level and toxic elemental concentration in groundwater at Dei-Dei and Kubwa areas of Abuja, north-central Nigeria

    Science.gov (United States)

    Maxwell, O.; Wagiran, H.; Lee, S. K.; Embong, Z.; Ugwuoke, P. E.

    2015-02-01

    The activity concentrations of uranium and toxic elements in Dei-Dei borehole, Kubwa borehole, Water Board and hand-dug well water samples in Abuja area were measured using inductively coupled plasma mass spectrometry (ICP-MS) system. The results obtained were used to calculate human radiological risk over lifetime consumption by the inhabitants in the area. The activity concentrations of 238U in all the water supplies for drinking ranges from 0.849 mBq L-1 to 2.699 mBq L-1 with the highest value of 2.699 mBq L-1 noted at Dei-Dei borehole whereas the lowest value of 0.849 mBq L-1 was noted in Kubwa borehole. The highest annual effective dose from natural 238U in all the water samples was found in Dei-Dei borehole with a value of 8.9×10-5 mSv y-1 whereas the lowest value was noted in Kubwa borehole with a value of 2.8×10-5 mSv y-1. The radiological risks for cancer mortality were found distinctly low, with the highest value of 1.01×10-7 reported at Dei-Dei borehole compared to Kubwa borehole with a value of 3.01×10-8. The cancer morbidity risk was noted higher in Dei-Dei borehole with a value of 1.55×10-7 whereas lower value of 4.88×10-9 was reported in Kubwa borehole. The chemical toxicity risk of 238U in drinking water over a lifetime consumption has a value of 0.006 μg kg-1 day-1 in Dei-Dei borehole whereas lower value of 0.002 μg kg-1 day-1 was found in Kubwa borehole. Measured lead (Pb) and chromium (Cr) concentrations reported higher in Water Board compared to Dei-Dei and Kubwa borehole samples. Significantly, this study inferred that the 238U concentrations originate from granitic strata of the tectonic events in the area; thus, there was a trend of diffusion towards north to south and re-deposition towards Dei-Dei area.

  13. Growth and gas exchange in white pitaya under different concentrations of potassium and calcium

    Directory of Open Access Journals (Sweden)

    João Paulo Cajazeira

    Full Text Available ABSTRACT Agriculture in Brazil has improved at a fast pace in recent years, given the growing demand for quality and the need for new products. In this respect, white pitaya [Hylocereus undatus (Haw. Britton & Rose] has become a feasible alternative for Northeast farmers. The limiting factors include a small amount of data on plant mineral nutrition and crop growth (phenology. Therefore, this study goal was to evaluate the effect of different concentrations of potassium (K and calcium (Ca on crop development and gas exchange in white pitaya grown in the coastal region of the state of Ceará, in Brazil. Sixteen treatments with three repetitions were organized in a completely randomized block design and a 4 × 4 factorial arrangement. Treatments consisted of various concentrations of K (0; 125; 250 and 375 mg dm-3 and Ca (0, 53, 106, and 159 mg dm-3. Biometric characteristics and gas exchange were determined after 270 and 240 days of treatment, respectively. For morphometric characteristics, the most significant nutrient combination was 250 mg dm-3 of K and 159 mg dm-3 of Ca. Net photosynthesis was higher at the dose of 125 mg dm-3 of K and 0 mg dm-3 of Ca. Our results indicate that, for the environmental conditions under which the test was conducted, an optimum nutrient combination for the analyzed variables was 250 mg dm-3 K and 159 mg dm-3 Ca.

  14. Effect of Exhaust Gas Recirculation (EGR) on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    OpenAIRE

    Khalil Ibrahim Abaas

    2016-01-01

    Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a fo...

  15. Risk from a pressurized toxic gas system: Part 2, Dispersal consequences

    International Nuclear Information System (INIS)

    Brereton, S.J.; Altenbach, T.J.; Lane, S.G.; Martin, D.W.

    1995-02-01

    During the preparation of a Safety Analysis Report at the Lawrence Livermore National Laboratory. we studied the release of chlorine from a compressed gas experimental apparatus. This paper presents the second pan in a series of two papers on this topic. The first paper focuses on the frequency of an unmitigated release from the system; paper focuses the consequences of the release. The release of chlorine from the experimental apparatus was modeled as an unmitigated blowdown through a 0.25 inch (0.006.4 m) outside diameter tube. The physical properties of chlorine were considered as were the dynamics of the fluid flow problem. The calculated release rate was used as input for the consequence assessment. Downwind concentrations as a function of time were evaluated and then compared to suggested guidelines. For comparison purposes, a typical water treatment plant was briefly studied. The lower hazard presented by the LLNL operation becomes evident when its release is compared to the release of material from a water treatment plant, a hazard which is generally accepted by the public

  16. Risk from a pressurized toxic gas system: Part 2, Dispersal consequences

    International Nuclear Information System (INIS)

    Brereton, S.J.; Martin, D.; Lane, S.G.; Altenbach, T.J.

    1995-04-01

    During the preparation of a Safety Analysis Report at the Lawrence Livermore National Laboratory, we studied the release of chlorine from a compressed gas experimental apparatus. This paper presents the second part in a series of two papers on this topic. The first paper focuses on the frequency of an unmitigated release from the system; this paper discusses the consequences of the release. The release of chlorine from the experimental apparatus was modeled as an unmitigated blowdown through a 0.25 inch (0.0064 m) outside diameter tube. The physical properties of chlorine were considered as were the dynamics of the fluid flow problem. The calculated release rate was used as input for the consequence assessment. Downwind concentrations as a function of time were evaluated and then compared to suggested guidelines. For comparison purposes, a typical water treatment plant was briefly studied. The lower hazard presented by the LLNL operation becomes evident when its release is compared to the release of material from a water treatment plant, a hazard which is generally accepted by the public

  17. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  18. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    Science.gov (United States)

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-04-20

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  20. Marine toxicity and persistence of surfactants used in the petroleum producing industry

    International Nuclear Information System (INIS)

    Maddin, C.M.

    1991-01-01

    This paper presents a survey of marine toxicity and biodegradability data for surfactants used in the petroleum industry. Surfactants are key chemicals in the formulation of products such as emulsifiers, demulsifiers, dispersants and inhibitors. They are also used directly as foaming and defoaming agents. Because they function at low concentrations, below 1%, and have a tendency to adsorb on solid surfaces, their long-term environmental effects are minimal. In applications such as cementing, surfactants cannot migrate into the environment and, thus, have no bioavailability. The possibility of environmental contamination has caused well operators and regulatory agencies to require fish toxicity and persistence data for products used in servicing wells. This data has been organized for nonionic, anionic, cationic and amphoteric surfactants. Nonionic surfactants are toxic to fish at concentrations below 10 mg/L to over 2500 mg/L depending on their chemical compositions. Anionic surfactants are toxic to fish at concentrations under 1 mg/L to several hundred mg/L depending on their chemical compositions. cationic and amphoteric surfactants are generally toxic to fish at concentrations below 50 mg/L. Overall efforts are aimed at low toxicity and high biodegradability with the least compromise in product efficiency. This requires the continual testing and environmental evaluation of surfactants summarized herein

  1. The toxic effects of chlorophenols and associated mechanisms in fish

    International Nuclear Information System (INIS)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun

    2017-01-01

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  2. The toxic effects of chlorophenols and associated mechanisms in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun, E-mail: huangdj@lzu.edu.cn

    2017-03-15

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  3. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  4. Effect of mustard gas hydrolysis products on the development of water-bloom forming cyanobacteria

    Directory of Open Access Journals (Sweden)

    Zaytseva Tatyana

    2017-03-01

    Full Text Available Mustard gas and its hydrolysis products (MGHP belong to stable organochlorine compounds with high toxicity and broad spectrum of activity. Since the Second World War many aquatic ecosystems including the Baltic and the Adriatic Sea as well as the coastal waters of Japan, the USA, the UK, Australia have been contaminated with mustard gas due to the dumping of chemical weapon. Mustard gas and its hydrolysis products have a negative impact on aquatic life including microbiota. The aim of this work was to define the effect of MGHP on the growth, photosynthetic activity and synthesis of secondary metabolites by water-bloom forming cyanobacteria Trichormus variabilis, Aphanizomenon flos-aquae, Microcystis aeruginosa, Nodularia spumigena. Microbiological, chromatographic, spectrophotometric methods were used. The growth inhibition test with MGHP on cyanobacteria showed influence on the concentration EC50 within the range of 5.5 – 11.2 mg of organochlorine compounds (ОCC per liter. The synthesis of chlorophyll a was also decreased. It was shown that the chlorophyll synthesis was more sensitive to MGHP than the growth of cyanobacteria. NGHP induced enhanced excretion of exopolysaccharides. Low concentration of MGHP – 0.3 mg OCC/l - promoted the growth of toxigenic cyanobacterium Microcystis aeruginosa and increased microcystin-LR concentration in the environment. enhanced excretion of such metabolites as polysaccharides and cyanotoxins has a serious negative impact on water pollution due to MGHP.

  5. Steroid hormone concentrations and physiological toxicity of water ...

    African Journals Online (AJOL)

    Seven bioassays were used to determine oestradiol (E2), oestrone (E1) and testosterone (T) concentrations, as well as neurotoxicity, cytotoxicity and immunotoxicity, in water sampled during 2010 and 2011. Oestradiol and E1 concentrations of up to 7.2 pg ml–1 and 7.6 pg ml–1, respectively, were recorded. Testosterone ...

  6. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  7. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    International Nuclear Information System (INIS)

    Alsop, Derek; Wood, Chris M.

    2013-01-01

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na + loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC 50 , one third of the LC 01 ) to all copper treatments decreased the copper 96 h LC 50 by 58%, while sublethal copper exposure (6% of the copper LC 50 , 13% of the LC 01 ) decreased the cadmium 96 h LC 50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na + followed by K + (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na + and K + . Overall, whole body Na + loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of

  8. Determination of toxic elements in tobacco products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmad, S.; Chaudhry, M.S.; Qureshi, I.H.

    1979-01-01

    The concentration of 15 elements in various brands of cigarette tobacco and cigarette wrapping paper were determined using instrumental neutron activation analysis. The paper of some of the brands contains higher concentrations of toxic elements than the tobacco. The cigarette filter and the ash were also analyzed to determine the adsorption of toxic elements on the filter and their transference in smoke. The toxic effects of some of the elements have been briefly discussed. (author)

  9. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    Science.gov (United States)

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (pplants cytotoxicity decreased significantly (pplant extracts

  10. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  11. Petroleum hydrocarbon toxicity to corals: A review.

    Science.gov (United States)

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Diagnosis of toxic alcohols: limitations of present methods.

    Science.gov (United States)

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  13. Waste Load Allocation for Whole Effluent Toxicity to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-11-01

    A process is developed to determine a waste load allocation that will implement the narrative criteria for fish and wildlife propagation found in states' water quality standards. The waste load allocation to implement the narrative chronic criterion is determined to be percent effluent at a location in the receiving stream, as opposed to an effluent concentration derived from the numerical waste load allocation process. A typical narrative chronic criterion is "receiving streams shall not exhibit chronic toxicity outside the mixing zone," while a typical numerical chronic criterion is "receiving stream concentration shall not exceed 0.005 μg/L of chlordane outside the mixing zone." Toxicity tests are used to implement narrative criteria, while compliance with numerical criteria involves concentration measurements. It is shown that the appropriate percent effluent is inversely proportional to the dilution factor for chronic toxicity. An appropriate waste load allocation to implement the narrative acute criterion is 100% effluent. Waste load allocation for whole effluent toxicity is feasible. The required independent variables are available to regulatory agencies, and toxicity testing has become routine.

  14. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping

    2015-01-01

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO 2 quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO 2 quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO 2 quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO 2 shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO 2 quantum dots to detect low-concentration hazardous

  15. Toxicity and toxicokinetics of binary combinations of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    Science.gov (United States)

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    Petroleum hydrocarbons (PHCs) act via narcosis and are expected to have additive toxicity. However, previous work has demonstrated less-than-additive toxicity with PHC distillates and earthworms. A study was initiated to investigate this through toxicity and toxicokinetic studies with the earthworm Eisenia andrei. Three petroleum distillate fractions, F2 (>C10-C16), F3a (>C16-C23), and F3b (>C23-C34), were used in two binary combinations, F2F3a and F3aF3b. In the toxicity study, clean soil was spiked with equitoxic combinations of the two distillates ranging from 0.5 to 2.5 toxic units. In the toxicokinetic study, a binary combination consisting of one concentration of each distillate was used. On a soil concentration basis, the toxicity of the binary combinations of distillates was less than additive. Accumulation of the individual distillates, however, was generally reduced when a second distillate was present, resulting in lower body burden. This is thought to be due to the presence of a nonaqueous-phase liquid at the soil concentrations used. On a tissue concentration basis, toxicity was closer to additive. The results demonstrate that tissue concentrations are the preferred metric for toxicity for earthworms. They also demonstrate that the Canada-wide soil standards based on individual distillates are likely protective. Copyright © 2013 SETAC.

  16. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  17. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    Science.gov (United States)

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  18. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler

    International Nuclear Information System (INIS)

    Leem, Sa Hwan; Huh, Yong Jeong; Lee, Jong Rark

    2008-01-01

    Energy and environment become increasingly serious after the industrial revolution. The demand for gas as an ecofriendly energy source is also increasing. With the demand, the installation and the use of gas boilers have also increased, so the damage to human life by the waste gas (CO and CO 2 ) continues increasing every year. Hence, the aim of this study was to investigate the concentration of CO (Carbon Monoxide) by the length and the variation of the bent tube of the exhaust pipe by installing a boiler with the same method as a household boiler and to discover the harm to humans. For the effect of the length, the allowable concentration of CO is 50ppm, and the 3m of the once bent tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4m and 5m starts exceeding after 3 minutes. In addition, the 1m of three times bent tube starts exceeding the allowable concentration of CO after 3 minutes

  19. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  20. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  1. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  2. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  3. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  4. Synthesis of nano structures for use as toxic gas adsorbents

    International Nuclear Information System (INIS)

    Velazquez P, S.; Pacheco S, J.; Estrada M, N.; Vasquez N, C.; Garcia R, M.; Garduno A, M.; Torres R, C.; Garcia G, J.; Pacheco P, M.; Valdivia B, R.; Ramos F, F.; Cruz A, A.; Duran G, M.; Hidalgo P, M.

    2008-01-01

    The work described here is the study of adsorption of nitrogen oxides by carbon nano structures and its implementation in a plasma reactor used to treat toxic gases. By placing a bed of carbon nano structures to the plasma reactor outlet obtained and increase in the efficiency of degradation. (Author)

  5. Determination of toxic elements in foodstuffs in Vietnam

    International Nuclear Information System (INIS)

    Nguyen Van Minh; Le Thi Ngoc Trinh; Nguyen Giang; Le Tat Mua; Nguyen Mong Sinh

    2006-01-01

    The studying samples of this work have been collected from different areas of Vietnam including industrial areas in HCM city, Dongnai, Vungtau and non-industrial area, Dalat city. The concentrations of the toxic elements as: As, Hg, Cr, Co, Fe, Cu, Cd, Se, As, Zn, Pb in many foodstuff samples together with intercomparison sample which have been distributed by National Food Administration (Sweden) were analyzed by Instrumental Neutron Activation Analysis (INAA), Radiochemical Neutron Activation Analysis (RNAA); Atomic Absorption Spectrophotometer (AAS) and Anodic Stripping Voltammeter (ASV). The obtained results shown that the concentration of toxic elements in the collected samples from selected industrial areas of Vietnam are lower than the maximum permissible concentrations. (author)

  6. Do thyroid-stimulating immunoglobulins cause non-toxic and toxic multinodular goitre

    International Nuclear Information System (INIS)

    Brown, R.S.; Jackson, I.M.D.; Pohl, S.L.; Reichlin, S.

    1978-01-01

    The prevalence of serum thyroid-stimulating immunoglobulins, (T.S.I.) in a variety of thyroid diseases was determined in 96 patients and 35 normal controls. Significantly elevated levels of T.S.I. were found not only in patients with Graves' disease and Hashimoto's thyroiditis but also in those with non-toxic and multinodular goitre, whereas patients with a single autonomously functioning thyroid nodule, with subacute thyroiditis, and with 'hyperthyroiditis' had levels which did not differ from those in the controls. it is postulated that non-toxic multinodular goitre, like Graves' disease, may result from increased circulating T.S.I. which in some cases may be present in sufficient concentration to cause thyrotoxicosis. (author)

  7. Comparison of gas chromatographic and gravimetric methods for quantization of total fat and fatty acids in foodstuffs

    Directory of Open Access Journals (Sweden)

    Sabria Aued-Pimentel

    2010-01-01

    Full Text Available Different methods to determine total fat (TF and fatty acids (FA, including trans fatty acids (TFA, in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID, in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05 and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.

  8. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  9. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  10. The toxicity of uranyl nitrate on primary brain cell culture of L. Hoevenii

    International Nuclear Information System (INIS)

    Ismail Bahari; Fauziah Mohd Noor

    1995-01-01

    In Malaysia, uranium is indirectly being concentrated by mining and petroleum industries that have no relevance to its use. Concentration of uranium and the production of TENORM may give rise to radiological risk to workers and the environment. A study was conducted to determine the toxicity of a uranium compound, uranyl nitrate. For this purpose a primary brain cell culture derived from L. hoevenii was used. The nature of uranil nitrate toxicity was determined by comparing with the effects induced by mitomycin C and gamma radiation. The toxicity of these agents were measured by observing changes in Unschedule DNA Synthesis (UDS) and the induction of micronucleus. Result from the study showed that UO sub 2 sup 2+ is UDS positive and is toxic to the primary brain cells of L. hoevenii. It gives a response profile that is almost similar to that induced by gamma radiation and mitomycin C. We believed that a low concentration, UO sub 2 sup 2+ acts as a chemo toxic agent rather than as an ionising radiation. At higher concentration the toxicity of UO sub 2 sup 2+ comes from both its chemo toxic and radiation effects. Results of this study also show the ability of the primary culture to carry out repair on its DNA damaged by the UDS positive agents

  11. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, John [Department of Environmental Toxicology, University of California, Davis, CA (United States); Department of Environmental Studies, University of California, Santa Cruz, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: jwhunt@ucdavis.edu; Anderson, Brian [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: anderson@ucdavis.edu; Phillips, Bryn [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: bmphillips@ucdavis.edu; Tjeerdema, Ron [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: rstjeerdema@ucdavis.edu; Largay, Bryan [Largay Hydrologic Sciences, LLC, 160 Farmer Street Felton, CA 95018-9416 (United States)], E-mail: bryan.largay@sbcglobal.net; Beretti, Melanie [Resources Conservation District of Monterey County, 744-A La Guardia Street, Salinas, CA 93905 (United States)], E-mail: beretti.melanie@rcdmonterey.org; Bern, Amanda [California Regional Water Quality Control Board, Central Coast Region, 895 Aerovista Place, Suite 101, San Luis Obispo, CA 93401 (United States)], E-mail: abern@waterboards.ca.gov

    2008-11-15

    Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations. - Toxicity identification evaluations identified key pesticides in agricultural runoff, and their concentrations were reduced by farmer-installed vegetated treatment systems.

  12. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems

    International Nuclear Information System (INIS)

    Hunt, John; Anderson, Brian; Phillips, Bryn; Tjeerdema, Ron; Largay, Bryan; Beretti, Melanie; Bern, Amanda

    2008-01-01

    Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations. - Toxicity identification evaluations identified key pesticides in agricultural runoff, and their concentrations were reduced by farmer-installed vegetated treatment systems

  13. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  14. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Le Roux, Xavier; Uzu, Gaëlle; Calas, Aude; Richaume, Agnès

    2017-03-01

    Titanium-dioxide nanoparticles (TiO 2 -NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO 2 -NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO 2 -NPs at concentrations ranging from 0.05 to 500 mg kg -1  dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO 2 -NPs were measured in the spiking suspensions, as they can be important drivers of TiO 2 -NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO 2 -NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg -1 ) and the highest (100 and 500 mg kg -1 ) TiO 2 -NPs concentrations. Path analyses indicated that TiO 2 -NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO 2 -NPs impact on soil microorganisms.

  15. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Petra Doleželová

    2011-01-01

    Full Text Available Nitrite is a natural component of the nitrogen cycle in the environment. Although it usually occurs in low concentrations, elevated concentrations caused by effluents or affected nitrification process can lead to serious health deterioration of fish. Two aquarium fish zebrafish (Danio rerio and guppy (Poecilia reticulata are recommended to use as model organisms in toxicity tests. However, their sensitivity to nitrite can differ. The aim of this study was to define acute toxicity of nitrite by the semistatic method according to OECD No. 203 (Fish, Acute toxicity test. The series of 4 acute toxicity tests was performed, with 10 fish of both species used for each concentration and for the control. The 96hLC50 NO2- value for D. rerio and P. reticulata was 242.55 ± 15.79 mg·l-1 and 30.2 ± 8.74 mg·l-1, respectively. We have proved significant difference (p D. rerio and P. reticulata. The results showed different sensitivities to nitrites in tested fish species, which could be related to species-specific branchial chloride uptake mechanism. This is the first study on this fish species.

  16. Physiological and Nutritional Responses of Two Distinctive Quince (cydonia oblonga mill.) Rootstocks to Boron Toxicity

    International Nuclear Information System (INIS)

    Eraslan, F.; Kucukyumuk, Z.; Polat, M.; Yildirim, A.

    2016-01-01

    The effects of excess boron (B) on some physiological and nutritional parameters of two distinctive quince (Cydonia oblonga Mill.) rootstocks were investigated. Throughout the world, B toxicity is a widely faced problem of soil in arid and semi-arid environments. In a greenhouse study, boron was applied at the rates of 0 and 40 mg kg/sup -1/ soil to quince A and quince C rootstocks. Toxicity of B differentially affected studied parameters and rootstocks. Boron toxicity increased B concentrations of both rootstocks however the increase was more pronounced in quince A rootstock. SPAD readings, (SPAD-meter, Minolta 502 Co Ltd., Japan) as a measure of chlorophyll decreased under B toxicity. Boron toxicity increased membrane permeability and anthocyanin in both rootstocks. Al though, there is rootstocks difference, lipid peroxidation (MDA) and proline and TAA (non-enzymatic total antioxidant activity) increased in response to B toxicity. In general, quince C had lower MDA (Malondialdehyde) and TAA but lower level of proline as compared to quince A. Boron toxicity did not affect the concentrations of P, Ca, Zn and Cu however increased B and Mn concentrations. Magnesium (Mg), Mn and Fe concentrations of quince were found higher than that of quince C. Indicating a genotypic effect, quince A and quince C responded to B toxicity differentially. (author)

  17. Toxicity of carbon nanotubes: A review.

    Science.gov (United States)

    Francis, Arul Prakash; Devasena, Thiyagarajan

    2018-03-01

    Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.

  18. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  20. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms.

    Science.gov (United States)

    Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P

    2018-03-19

    The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.