WorldWideScience

Sample records for toughened epoxy nanocomposites

  1. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  2. Mechanical properties of hybrid SiC/CNT filled toughened epoxy nanocomposite

    Science.gov (United States)

    Ratim, S.; Ahmad, S.; Bonnia, N. N.; Yahaya, Sabrina M.

    2018-01-01

    Mechanical properties of epoxy nanocomposites filled single filler have been extensively studied by various researchers. However, there are not much discovery on the behavior of hybrid nanocomposite. In this study, single and hybrid nanocomposites of toughened epoxy filled CNT/SiC nanoparticles were investigated. The hybrid nanocomposites samples were prepared by combining CNT and SiC nanoparticles in toughened epoxy matrix via mechanical stirring method assisted with ultrasonic cavitations. Epoxy resin and liquid epoxidized natural rubber (LENR) mixture were first blend prior to the addition of nanofillers. Then, the curing process of the nanocomposite samples were conducted by compression molding technique at 130°C for 2 hours. The purpose of this study is to investigate the hybridization effect of CNT and SiC nanoparticles on mechanical properties toughened epoxy matrix. The total loading of single and hybrid nanofillers were fixed to 4% volume are 0, 4C, 4S, 3S1C, 2S2C, and 1S3C. Mechanical properties of hybrid composites show that the highest value of tensile strength achieved by 3S1C sample at about 7% increment and falls between their single composite values. Meanwhile, the stiffness of the same sample is significantly increased at about 31% of the matrix. On the other hand, a highest flexural property is obtained by 1S3C sample at about 20% increment dominated by CNT content. However, the impact strength shows reduction trend with the addition of SiC and CNT into the matrix. The hybridization of SiC and CNT show highest value in sample 1S3C at about 3.37 kJ/m2 of impact energy absorbed. FESEM micrograph have confirmed that better distributions and interaction observed between SiC nanoparticles and matrix compared to CNT, which contributed to higher tensile strength and modulus.

  3. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  4. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    Science.gov (United States)

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  5. Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sue, H.-J.; Gam, K.T.; Bestaoui, N.; Clearfield, A.; Miyamoto, M.; Miyatake, N.

    2004-01-01

    The fracture behaviors of α-zirconium phosphate (α-ZrP) based epoxy nanocomposites, with and without core-shell rubber (CSR) toughening, were investigated. The state of exfoliation and dispersion of α-ZrP nanofiller in epoxy were characterized using X-ray scattering and various microscopy tools. The level of enhancement in storage moduli of epoxy nanocomposite against neat epoxy is found to depend on the state of exfoliation of α-ZrP as well as the damping characteristics of the epoxy matrix. The fracture process in epoxy nanocomposite is dominated by preferred crack propagation along the weak intercalated α-ZrP interfaces, and the presence of α-ZrP does not alter the fracture toughness of the epoxy matrix. However, the toughening using CSR can significantly improve the fracture toughness of the nanocomposite. The fracture mechanisms responsible for such a toughening effect in CSR-toughened epoxy nanocomposite are rubber particle cavitation, followed by shear banding of epoxy matrix. The ductility and toughenability of epoxy do not appear to be affected by the incorporation of α-ZrP. Approaches for producing toughened high performance polymer nanocomposites are discussed

  6. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites

    International Nuclear Information System (INIS)

    Mandhakini, M.; Chandramohan, A.; Jayanthi, K.; Alagar, M.

    2014-01-01

    Highlight: • The toughness of the epoxy is improved with C8e-BMI. • Conduction through ohmic contact chain takes the leading mechanism for electrical conduction instead of tunneling with 5 wt% CB. • The phase segregation between epoxy/C8 e-BMI improves the toughness of the nanocomposite. • Both toughening and flexibilization effect is responsible for improvement in impact strength. • The largest challenge of appropriate balance between the electrical conductivity and mechanical behavior is attained in a cost effective manner. - Abstract: The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact

  7. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B. Optical microscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, and wide-angle X-ray diffraction (WAXD analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 30B nanocomposites, and cured toughened epoxy/Cloisite 30B nanocomposites. Mixing process was performed by mechanical stirring. Poly(etheramine was used as the curing agent. The detailed TEM images revealed co-continuous and dispersed spherical rubber in the epoxy-rubber blend, suggesting a new proposed mechanism of phase separation. High-magnification TEM analysis showed good interactions between rubber and Cloisite 30B in the ternary system. Also, it was found that rubber particles could enhance the separation of silicates layers. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. No distinct exfoliated silicates were observed by TEM. Aggregates of layered silicates (tactoids were observed by SEM and EDX, in addition to TEM at low magnification. EDX analysis confirmed the presence of organic and inorganic elements in the binary and ternary epoxy systems containing Cloisite 30B.

  8. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Goyat, M.S., E-mail: goyatmanjeetsingh@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Suresh, Sumit; Bahl, Sumit [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Halder, Sudipta [Department of Mechanical Engineering, National Institute of Technology, Silchar, 788010, Assam (India); Ghosh, P.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India)

    2015-09-15

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  9. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    International Nuclear Information System (INIS)

    Goyat, M.S.; Suresh, Sumit; Bahl, Sumit; Halder, Sudipta; Ghosh, P.K.

    2015-01-01

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  10. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.

    Science.gov (United States)

    Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing

    2018-01-10

    Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation

  11. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anandh [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Saha, Mrinal C., E-mail: msaha@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2011-01-25

    Rubber toughened epoxy/CNT nanocomposites were manufactured at different weight percents between 0 and 1% of multiwall carbon nanotube (MWNT) using a high intensity ultrasonic liquid processor with a titanium probe. Mechanical properties of manufactured dog bone samples were measured in tension and the results indicated a maximum of 23% increase in the elastic modulus at 0.6% by weight of MWNT. However, the fracture strength showed a maximum decrease of about 11% as a function of increasing MWNT loading. Scanning Electron Microscopy (SEM) images from the neat samples revealed a distinct circular pit at the top left edge of the specimen with an overall tearing deformation causing the fracture paths. Comparatively, all nanocomposite samples on an average seemed to show a prominent brittle fracture with little or no evidence of circular pit formation. The amount of tearing deformation seemed to be enhanced in the nanocomposite specimens as compare to the neat ones. Finally, Transmission Electron Microscopy images indicated that different states of dispersion exist in all of the nanocomposite samples. The data showed that agglomeration of nanotubes increases as a function of weight percent. In addition to mechanical property characterization, thermal conductivity of all the samples was determined as a function of temperature between 30 deg. C and 100 deg. C using the 3{omega} method. The tested samples showed an almost 16% increase in thermal conductivity. The minimal enhancement in thermal conductivity has been analyzed from the standpoint of the Effective Medium Theory. Interfacial thermal resistances exhibit no order of magnitude changes explaining the conductivity results.

  12. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites

    International Nuclear Information System (INIS)

    Balakrishnan, Anandh; Saha, Mrinal C.

    2011-01-01

    Rubber toughened epoxy/CNT nanocomposites were manufactured at different weight percents between 0 and 1% of multiwall carbon nanotube (MWNT) using a high intensity ultrasonic liquid processor with a titanium probe. Mechanical properties of manufactured dog bone samples were measured in tension and the results indicated a maximum of 23% increase in the elastic modulus at 0.6% by weight of MWNT. However, the fracture strength showed a maximum decrease of about 11% as a function of increasing MWNT loading. Scanning Electron Microscopy (SEM) images from the neat samples revealed a distinct circular pit at the top left edge of the specimen with an overall tearing deformation causing the fracture paths. Comparatively, all nanocomposite samples on an average seemed to show a prominent brittle fracture with little or no evidence of circular pit formation. The amount of tearing deformation seemed to be enhanced in the nanocomposite specimens as compare to the neat ones. Finally, Transmission Electron Microscopy images indicated that different states of dispersion exist in all of the nanocomposite samples. The data showed that agglomeration of nanotubes increases as a function of weight percent. In addition to mechanical property characterization, thermal conductivity of all the samples was determined as a function of temperature between 30 deg. C and 100 deg. C using the 3ω method. The tested samples showed an almost 16% increase in thermal conductivity. The minimal enhancement in thermal conductivity has been analyzed from the standpoint of the Effective Medium Theory. Interfacial thermal resistances exhibit no order of magnitude changes explaining the conductivity results.

  13. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    OpenAIRE

    Yuhana, N. Y.; Ahmad, S.; Kamal, M. R.; Jana, S. C.; Bahri, A. R. Shamsul

    2012-01-01

    A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B). Optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and wide-angle X-ray diffraction (WAXD) analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 3...

  14. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    Science.gov (United States)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  15. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    Science.gov (United States)

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties

    International Nuclear Information System (INIS)

    Balakrishnan, Harintharavimal; Hassan, Azman; Wahit, Mat Uzir; Yussuf, A.A.; Razak, Shamsul Bahri Abdul

    2010-01-01

    The objective of the study is to develop a novel toughened polylactic acid (PLA) nanocomposite. The effects of linear low density polyethylene (LLDPE) and organophilic modified montmorillonite (MMT) on mechanical, thermal and morphological properties of PLA were investigated. LLDPE toughened PLA nanocomposites consisting of PLA/LLDPE blends, of composition 100/0 and 90/10 with MMT content of 2 phr and 4 phr were prepared. The Young's and flexural modulus improved with increasing content of MMT indicating that MMT is effective in increasing stiffness of LLDPE toughened PLA nanocomposite even at low content. LLDPE improved the impact strength of PLA nanocomposites with a sacrifice of tensile and flexural strength. The tensile and flexural strength also decreased with increasing content of MMT in PLA/LLDPE nanocomposites. The impact strength and elongation at break of LLDPE toughened PLA nanocomposites also declined steadily with increasing loadings of MMT. The crystallization temperature and glass transition temperature dropped gradually while the thermal stability of PLA improved with addition of MMT in PLA/LLDPE nanocomposites. The storage modulus of PLA/LLDPE nanocomposites below glass transition temperature increased with increasing content of MMT. X-ray diffraction and transmission electron microscope studies revealed that an intercalated LLDPE toughened PLA nanocomposite was successfully prepared at 2 phr MMT content.

  17. Facile fabrication of epoxy-TiO2 nanocomposites: A critical analysis of TiO2 impact on mechanical properties and toughening mechanisms.

    Science.gov (United States)

    Goyat, M S; Rana, S; Halder, Sudipta; Ghosh, P K

    2018-01-01

    Optimized ultrasonic assisted dispersion of un-functionalized titanium dioxide (TiO 2 ) nanoparticles (0.5-20wt%) into epoxy resin is reported. The investigation shows that there is a direct relation among nanoparticles content, inter-particle spacing and cluster size of the particles on the glass transition temperature (T g ) and tensile properties of the prepared nanocomposites. A significant improvement in tensile strength and modulus with minimal detrimental effect on the toughness was observed for the prepared composites, where compared to pristine epoxy resins, about 26% and 18% improvement in tensile strength and strain-to-break %, respectively, was observed for 10wt% particles loading, whereas a maximum improvement of about 54% for tensile toughness was observed for 5wt% particles loaded resins. The investigations found that a strong particle-matrix interface results in the enhancement of the mechanical properties due to leading toughening mechanisms such as crack deflection, particle pull out and plastic deformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.

    Science.gov (United States)

    Kuo, Pei-Yu; Barros, Luizmar de Assis; Yan, Ning; Sain, Mohini; Qing, Yan; Wu, Yiqiang

    2017-12-01

    Although there is a growing interest in utilizing nanocellulose fibres (NCFs) based composites for achieving a higher sustainability, mechanical performance of these composites is limited due to the poor compatibility between fibre reinforcement and polymer matrices. Here we developed a bio-nanocomposite with an enhanced fibre/resin interface using a hybrid-toughened epoxy. A strong reinforcing effect of NCFs was achieved, demonstrating an increase up to 88% in tensile strength and 298% in tensile modulus as compared to neat petro-based P-epoxy. The toughness of neat P-epoxy was improved by 84% with the addition of 10wt% bio-based E-epoxy monomers, which also mitigated the amount of usage of bisphenol A (BPA). The morphological analyses showed that the hybrid epoxy improved the resin penetration and fibre distribution significantly in the resulting composites. Thus, our findings demonstrated the promise of developing sustainable and high performance epoxy composites combing NCFs with a hybrid petro-based and bio-based epoxy resin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  20. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    International Nuclear Information System (INIS)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan; Cheng, Jue; Zhang, Junying

    2013-01-01

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T g and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar

  1. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Cheng, Jue, E-mail: chengjue@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Junying, E-mail: zjybuct@gmail.com [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-02-20

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T{sub g} and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar.

  2. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites.

    Science.gov (United States)

    Sahu, Megha; Narashimhan, Lakshmi; Prakash, Om; Raichur, Ashok M

    2017-04-26

    In the present study, noncovalently functionalized tungsten disulfide (WS 2 ) nanosheets were used as a toughening agent for epoxy nanocomposites. WS 2 was modified with branched polyethyleneimine (PEI) to increase the degree of interaction of nanosheets with the epoxy matrix and prevent restacking and agglomeration of the sheets in the epoxy matrix. The functionalization of WS 2 sheets was confirmed through Fourier transform infrared spectroscopy and thermogravimetric analysis. The exfoliation of the bulk WS 2 was confirmed through X-ray diffraction and various microscopic techniques. Epoxy nanocomposites containing up to 1 wt % of WS 2 -PEI nanosheets were fabricated. They showed a remarkable improvement in fracture toughness (K IC ). K IC increased from 0.94 to 1.72 MPa m -1/2 for WS 2 -PEI nanosheet loadings as low as 0.25 wt %. Compressive and flexural properties also showed a significant improvement as incorporation of 0.25 wt % of WS 2 -PEI nanosheets resulted in 43 and 65% increase in the compressive and flexural strengths of epoxy nanocomposites, respectively, compared with neat epoxy. Thermal stability and thermomechanical properties of the WS 2 -PEI-modified epoxy also showed a significant improvement. The simultaneous improvement in the mechanical and thermal properties could be attributed to the good dispersion of WS 2 -PEI nanosheets in the matrix, intrinsic high strength and thermal properties of the nanosheets, and improved interaction of the WS 2 nanosheets with the epoxy matrix owing to the presence of PEI molecules on the surface of the WS 2 nanosheets.

  3. Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO2 nanocomposites.

    Science.gov (United States)

    Goyat, M S; Ghosh, P K

    2018-04-01

    Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  5. Isocyanate toughening of pCBT/organoclay nanocomposites with exfoliated structure and enhanced mechanical properties

    Directory of Open Access Journals (Sweden)

    T. Abt

    2014-12-01

    Full Text Available Cyclic butylene terephthalate (CBT® is an interesting matrix material for the preparation of nanocomposites due to its very low, water-like melt viscosity which favours clay exfoliation. Nevertheless, polymerized CBT (pCBT is inherently brittle. This paper reports the preparation of isocyanate-toughened nanocomposites made from CBT and organo-modified montmorillonite. The role of the organoclay as reinforcement and the polymeric isocyanate (PMDI as toughening agent on the properties of pCBT was studied. The organoclay increased the stiffness and strength by up to 20% whereas the PMDI improved the deformation behaviour. However, the PMDI did not affect the degree of clay dispersion or exfoliation and flocculated-intercalated structures were observed. The compatibility between the pCBT matrix and clay was further increased by preparing PMDI-tethered intercalated organoclay. The modified organoclay then exfoliated during ring-opening polymerization and yielded true pCBT/clay nanocomposites. This work demonstrates that reactive chain extension of CBT with a polyfunctional isocyanate is an effective method to obtain toughened pCBT nanocomposites. Moreover, isocyanates can enhance the compatibility between pCBT and nanofiller as well as the degree of exfoliation.

  6. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  7. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  8. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  9. Performance of epoxy-nanocomposite under corrosive environment

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Nanocomposite materials consisting of polymeric matrix materials and natural or synthetic layered minerals like clay are currently an expanding field of study because these new materials often exhibit a wide range of improved properties over their unmodified starting polymers. Epoxy/organoclay nanocomposites have been prepared by intercalating epoxy into the organoclay via direct mixing process. The clay exfoliation was monitored by X-ray diffraction (XRD and transmission electron microscopy (TEM. Water diffusion and sulfuric acid corrosion resistance of epoxy-based nanocomposites were evaluated. Diffusion was studied through epoxy samples containing up to 6 phr (parts per hundred resin of an organically treated montmorillonite. The diffusion of the environmental solution was measured by noting the increase in weight of the samples as a function of immersion time in these solutions at 80°C. The effect of the degree of exfoliation of the organoclay on water barrier and corrosion resistance was specifically studied. The data have been compared to those obtained from the neat epoxy resin to evaluate the diffusion properties of the nanocomposites. The flexural strength of the epoxy/organoclay nanocomposites samples made was examined to compare their mechanical performance under corrosive conditions as a function of immersion time and temperature. It was found, that the organoclay was mainly intercalated with some exfoliation and that addition of the organoclay yields better flexural strength retention under immersion into sulfuric acid.

  10. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  11. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    International Nuclear Information System (INIS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-01-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments. (paper)

  12. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  13. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    Science.gov (United States)

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols

    Directory of Open Access Journals (Sweden)

    Fatemeh Shiravand

    2014-05-01

    Full Text Available Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP, have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT, and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  15. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols.

    Science.gov (United States)

    Shiravand, Fatemeh; Hutchinson, John M; Calventus, Yolanda; Ferrando, Francesc

    2014-05-30

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para -amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF₃·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF₃·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  16. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  17. Toughened nanocomposites of polyamide-6 and polyepichlorohydrin elastomer: mechanical and morphological properties

    International Nuclear Information System (INIS)

    Pinotti, Caio A.; Goncalves, Maria C.; Felisberti, Maria I.

    2009-01-01

    Blends of polyamide 6, P A6, and polyepichlorohydrin elastomer, PE Pi, nano composites of P A6 and OMMT and toughened nano composites, P A6/PE Pi/OMMT were prepared by twin-screw extrusion. Nanocomposites of P A6 and organophilic clay presented morphology of exfoliated clay with the presence of some tactoids, which were investigated by XRD and TEM. The blends P A6/PE Pi are immiscible with morphology of elastomer disperse phase. The size of the elastomer phase in the PA6 matrix and a better distribution of these phase were achieved with the incorporation of the clay in the ternary nanocomposites. Toughened nano composites presented increases in Young's modulus, Izod impact strength and yield stress, comparing with the blends of P A6 and polyepichlorohydrin elastomer. (author)

  18. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  19. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  20. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  1. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    Science.gov (United States)

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  2. Epoxy-silicate nanocomposites: Cure monitoring and characterization

    International Nuclear Information System (INIS)

    Hussain, Farzana; Chen, Jihua; Hojjati, Mehdi

    2007-01-01

    Epoxy-clay nanocomposites were prepared with organically modified layered clay with varying clay contents (1-8 wt.%). Neat resin and nanocomposite were characterized using different techniques. At first, the effect of nanoclay concentration on the cure behaviour was investigated using an on-line dielectric cure monitoring technique. Differential scanning calorimetry (DSC) was used to verify the dielectric measurement results. Furthermore, mechanical and thermal properties were studied using tensile test and Dynamic Mechanical Analysis (DMA), respectively. Experimental results showed that properties of the epoxy were changed evidently because of the nanoclay loading. The tensile modulus of the nanocomposites increased by 47%, however, no improvement in tensile strength and glass transition temperature (T g ) was observed. Fracture surface of the tensile samples were analyzed by Scanning Electron Microscope (SEM). The nanocomposites structures were characterized with Wide Angle X-Ray Diffraction (WAXD) and Transmission Electron Microscopy (TEM), which revealed the intercalated morphology of clay layers in the epoxy resin systems

  3. Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lan-Hui Sun

    2011-01-01

    Full Text Available There is a lack of systematic investigations on both mechanical and electrical properties of carbon nanofiber (CNF-reinforced epoxy matrix nanocomposites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nanocomposites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nanocomposites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nanocomposite with a 1.0 wt% CNFs. The alternate-current (AC electrical properties of the CNF/epoxy nanocomposites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt% (0.058 vol% CNFs and by ten orders of magnitude for nanocomposites with CNF volume fractions higher than 1.0 wt% (0.578 vol%. The percolation threshold (i.e., the critical CNF volume fraction is found to be at 0.057 vol%.

  4. Corrosion Protection of Steel by Epoxy-Organoclay Nanocomposite Coatings

    OpenAIRE

    Domna Merachtsaki; Panagiotis Xidas; Panagiotis Giannakoudakis; Konstantinos Triantafyllidis; Panagiotis Spathis

    2017-01-01

    The purpose of the present work was to study the corrosion behavior of steel coated with epoxy-(organo) clay nanocomposite films. The investigation was carried out using salt spray exposures, optical and scanning electron microscopy examination, open circuit potential, and electrochemical impedance measurements. The mechanical, thermomechanical, and barrier properties of pristine glassy epoxy polymer and epoxy-clay nanocomposites were examined. The degree of intercalation/exfoliation of clay ...

  5. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    Science.gov (United States)

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  6. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  7. Fabrication and characterization of TiO2-epoxy nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Amit; Islam, Muhammad S.

    2008-01-01

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO 2 (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO 2 in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed

  8. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  9. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    International Nuclear Information System (INIS)

    Islam, M.S.; Masoodi, R.; Rostami, H.

    2013-01-01

    Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  10. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  11. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  12. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    National Research Council Canada - National Science Library

    Liaw, Benjamin; Delale, Feridun

    2007-01-01

    ... No. DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. Dr. Basavaraju B. Raju of U.S...

  13. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    Science.gov (United States)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  14. Syntheses and characterization of novel P/Si polysilsesquioxanes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Chiu Yiechan; Liu Fangyi; Ma, C.-C.M.; Chou, I.-C.; Riang Linawati; Chiang, C.-L.; Yang, J.-C.

    2008-01-01

    Phosphorus-containing polysilsesquioxane (PSSQ) was introduced into diglycidyl ether of bisphenol A epoxy (DGEBA) to generate a novel P/Si PSSQ nanocomposite. A series of nanocomposites was fabricated by changing the content of the 2-(diphenylphosphino)ethyltriethoxysilane (DPPETES) monomer or P/Si PSSQ cured with DGEBA epoxy and modified epoxy. The structure, thermal properties and flame-retardancy of the P/Si PSSQ nanocomposites were characterized by FT-IR, solid-state 29 Si NMR, thermogravimetric analysis (TGA) and limited oxygen index (LOI) instruments. The nano-sizes of the particles in P/Si PSSQ were approximately 30-50 nm, and the polarity of nanocomposites might generate the nanophase-separated structure from transmission electron microscopy (TEM). The urethane-like side group of the modified epoxy and the fabrication of oligomers in the curing reaction affected the T d5 values of nanocomposites. TGA and LOI results indicated that the char yield (29 wt%) increased and the nanocomposites were not very flammable (LOI = 30). The hybrid materials also exhibited high thermal stability, good flame-retardance and a lack of phase separation

  15. In-situ Elevated Temperature Mechanical Performance of MWCNT/epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Singh

    2017-03-01

    Full Text Available The present investigation has been focused on the effects of multi-walled carbon nanotube (MWCNT addition on the mechanical performance of epoxy under different in-service elevated temperature environments. Room temperature flexural test results revealed that addition of 0.1 wt. % MWCNT into epoxy resin resulted in modulus and strength enhancement of 21 % and 9 % respectively. With increase in service temperature, significant decrement in both modulus and strength was noticed for both materials (neat epoxy and MWCNT/epoxy nanocomposite, but the rate of degradation was found to be quite drastic for the nanocomposite. At 90 °C temperature, the CNT/epoxy nanocomposite exhibited inferior modulus and strength, which are 41 % and 59 % lower than neat epoxy respectively. The variation trend in elastic modulus with temperature obtained from both flexural testing and DMA for both these materials was also analyzed. It was found that addition of 0.1 % CNT in the epoxy reduced the glass transition temperature by about 16°C.

  16. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  17. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

    Science.gov (United States)

    Gong, Shanshan; Cui, Wei; Zhang, Qi; Cao, Anyuan; Jiang, Lei; Cheng, Qunfeng

    2015-12-22

    With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

  18. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

    Science.gov (United States)

    Moussa, S.; Namouchi, F.; Guermazi, H.

    2015-07-01

    Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

  19. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    Science.gov (United States)

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  20. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  1. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  2. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  3. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  4. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment

  5. Preparation and Various Characteristics of Epoxy/Alumina Nanocomposites

    Science.gov (United States)

    Kozako, Masahiro; Ohki, Yoshimichi; Kohtoh, Masanori; Okabe, Shigemitsu; Tanaka, Toshikatsu

    Epoxy/ alumina nanocomposites were newly prepared by dispersing 3, 5, 7, and 10 weight (wt) % boehmite alumina nanofillers in a bisphenol-A epoxy resin using a special two-stage direct mixing method. It was confirmed by scanning electron microscopy imaging that the nanofillers were homogeneously dispersed in the epoxy matrix. Dielectric, mechanical, and thermal properties were investigated. It was elucidated that nanofillers affects various characteristics of epoxy resins, when they are nanostructrued. Such nano-effects we obtained are summarized as follows. Partial discharge resistance increases as the filler content increases; e.g. 7 wt% nanofiller content creates a 60 % decrease in depth of PD-caused erosion. Weibull analysis shows that short-time electrical treeing breakdown time is prolonged to 265 % by 5 wt% addition of nanofillers. But there was more data scatter in nanocomposites than in pure epoxy. Permittivity tends to increase from 3.7 to 4.0 by 5 wt% nanofiller addition as opposed to what was newly found in the recent past. Glass transition temperature remains unchanged as 109 °C. Mechanical properties such as flexural strength and flexural modulus increase; e.g. flexural strength and flexural modulus are improved by 5 % and 8 % with 5 wt% content, respectively. Excess addition causes a reverse effect. It is concluded from permittivity and glass transition temperature characteristics that interfacial bonding seems to be more or less weak in the nanocomposite specimens prepared this time, even though mechanical strengths increase. There is a possibility that the nanocomposites specimens will be improved in interfacial quality.

  6. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    Science.gov (United States)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  7. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  8. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mubin, Muhammad Shamsul Huda

    2007-02-15

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration.

  9. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  10. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    Science.gov (United States)

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  11. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    Science.gov (United States)

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  13. Synthesis and characterization of rubbery epoxy/organoclay hectorite nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The present research investigates the morphology, the mechanical, and the viscoelastic properties of rubbery epoxy/clay nanocomposites synthesized by in situ polymerisation of a prepolymer diglycidyl ether of bisphenol-A crosslinked with an aliphatic diamine based on a polyoxypropylene backbone. The inorganic phase was hectorite, exchanged with octadecylammonium ions in order to give organophilic properties to the phyllosilicate. An ultrasonicator was used to disperse the silicate clay layer into epoxy-amine matrix. The morphology of epoxy-hectorite nanocomposites examined by transmission electron microscopy (TEM showed that mixed delamination or intercalation or microdispersion could occur depending on type of organoclay. Moreover, the mechanical and viscoelastic properties were found to be improved with only the treated hectorite.

  14. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  15. Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Bashar

    2014-01-01

    Full Text Available The effects of organic modifier and processing method on morphology and mechanical properties of epoxy-clay nanocomposites were investigated. In this study, the preparation of nanocomposites by exfoliation-adsorption method involved an ultrasonic mixing procedure, and mechanical blending was used for in situ intercalative polymerization. The microstructure study revealed that the organoclay, which was ultrasonically mixed with the epoxy, partially exfoliated and intercalated. In contrast, organoclay remained in phase-separated and flocculated state after the mechanical blending process. Tensile stiffness increased significantly for the nanocomposite prepared by ultrasonic dispersion method through realizing the reinforcing potential of exfoliated silicate layers. Nanocomposites with exfoliated and intercalated nanoclay morphology were ineffective in enhancing the fracture toughness whereas nanocomposites with phase-separated and flocculated morphology have improved crack resistance predominantly by crack deflecting and pinning mechanisms.

  16. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  17. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  18. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    Science.gov (United States)

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  19. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Deng Huayang; Cao Qi; Wang Xianyou; Chen Quanqi; Kuang Hao; Wang Xiaofeng

    2011-01-01

    Highlights: → We use the modified MWNTs as fillers fabricated epoxy nanocomposites. → The mechanical, thermal and dielectric properties of nanocomposites are measured. → The nanocomposites exhibited better mechanical and dielectric properties. - Abstract: The MWNTs were coated with polyaniline (PANI) by in situ chemical oxidation polymerization method. FTIR spectroscopy, scanning electron microscope (SEM) and X-ray diffraction (XRD) indicated that the MWNTs were coated with PANI. The MWNTs/epoxy nanocomposites were fabricated by using the solution blending method. Differential scanning calorimetry (DSC), tensile testing, HP 4294A impedance analyzer and SEM were used to investigate the properties of the nanocomposites. The results showed that the modified carbon nanotubes were well dispersed in the polymer matrix. The nanocomposites have enhancements in mechanical, thermal and dielectric properties compare with the neat epoxy resin. The nanocomposites were proven to be a good polymer dielectric material.

  20. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    Science.gov (United States)

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  1. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    Science.gov (United States)

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  2. Corrosion Behavior of Three Nanoclay Dispersion Methods of Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Wiwat Keyoonwong

    2012-01-01

    Full Text Available The aims of this study, firstly, to obtain high degree of clay exfoliation in the epoxy matrix by three dispersion methods such as normal mixing, shear mixing, and high-speed mixing and, secondly, to investigate corrosion behavior of epoxy/organoclay nanocomposite, immersion test, weight change, and penetration behavior were conducted. From the three mixing methods, the high-speed mixing method showed larger clay interlayer distance, smaller clay aggregate, and more homogeneity and expectedly resulted in high anticorrosive properties. Penetration depths of these nanocomposites showed a small difference; however, the most noticeable improvements in anticorrosion performance for epoxy/organoclay nanocomposites under high-speed mixing method were found to reduce penetration and weight uptake which are described via the model of nanoparticulate-filled structure and discussed in corrosion protection mechanism against environmental liquid penetration.

  3. Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi's techniques

    International Nuclear Information System (INIS)

    Rashmi; Renukappa, N.M.; Suresha, B.; Devarajaiah, R.M.; Shivakumar, K.N.

    2011-01-01

    Highlights: → Successful fabrication of OMMT filled epoxy nanocomposites by high-shear mixing mehod. → Systematic tribological behaviour of the nanocomposites was made using Taguchi method. → Worn surface morphologies of the samples were discussed for different wear mechanisms. → Generation of wear data for sliding/bearing parts for different industries. -- Abstract: The aim of the research article is to study the dry sliding wear behaviour of epoxy with different wt.% of organo-modified montmorillonite (OMMT) filled nanocomposites. An orthogonal array (L 9 ) was used to investigate the influence of tribological parameters. The results indicate that the sliding distance emerges as the most significant factor affecting wear rate of epoxy nanocomposites. Experimental results showed that the inclusion of 5 wt.% OMMT nanofiller increased the wear resistance of the epoxy nanocomposite significantly. Furthermore, the worn surfaces of the samples were analyzed by scanning electron microscopy (SEM) to study the wear mechanisms and to correlate them with the wear test results.

  4. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  5. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lik-ho Tam

    2017-10-01

    Full Text Available The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  6. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    Science.gov (United States)

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  7. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    Science.gov (United States)

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  8. Effect of epoxide equivalent on microstructure of epoxy/rectorite nanocomposite studied by positrons

    International Nuclear Information System (INIS)

    Liu, L.M.; Fang, P.F.; Zhang, S.P.; Wang, S.J.

    2005-01-01

    The epoxy/rectorite nanocomposites with different epoxide equivalent ranging from 188 to 1110 were prepared and the effects of epoxide equivalent on microstructure of materials were studied by X-ray diffraction (XRD) and positron annihilation lifetime spectroscope (PALS). In nanocomposites, the formation of exfoliated structure was observed from XRD pattern at epoxide equivalent >263. The PALS measurements reveal that the fractional free volume in nanocomposites was strongly affected by epoxide equivalent, in particular, the free-volume concentration was dramatically decreased with the increasing epoxide equivalent from 188 to 263, and the S parameter indicates the rectorite structure change and the high sensitivity of positron annihilation to the entry of rectorite into epoxy. These results indicate that positron annihilation characteristics are useful for study the microstructure of epoxy/rectorite nanocomposites

  9. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  10. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    Science.gov (United States)

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  11. Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Weidt, D; Figiel, Ł; Buggy, M

    2012-01-01

    This research aims ultimately at improving the impact performance of laminates by applying a coating of epoxy containing carbon nanotubes (CNTs). Here, 2D and 3D computational modelling was carried out to predict energy absorption characteristics of aligned CNT/epoxy nanocomposites subjected to macroscopic compression under different strain rates (quasi-static and impact rates). The influence of the rate-dependent matrix behaviour, CNT aspect ratio and CNT volume fraction on the energy absorption characteristics of the nanocomposites was evaluated. A strong correlation between those parameters was found, which provides an insight into a rate-dependent behaviour of the nanocomposites, and can help to tune their energy absorption characteristics.

  12. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    Science.gov (United States)

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  13. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    Science.gov (United States)

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  14. Cellulose whisker/epoxy resin nanocomposites.

    Science.gov (United States)

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  15. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  16. Non-isothermal cure and exfoliation of tri-functional epoxy-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Shiravand

    2015-08-01

    Full Text Available The non-isothermal cure kinetics of polymer silicate layered nanocomposites based on a tri-functional epoxy resin has been investigated by differential scanning calorimetry. From an analysis of the kinetics as a function of the clay content, it can be concluded that the non-isothermal cure reaction can be considered to consist of four different processes: the reaction of epoxy groups with the diamine curing agent; an intra-gallery homopolymerisation reaction which occurs concurrently with the epoxy-amine reaction; and two extra-gallery homopolymerisation reactions, catalysed by the onium ion of the organically modified clay and by the tertiary amines resulting from the epoxy-amine reaction. The final nanostructure displays a similar quality of exfoliation as that observed for the isothermal cure of the same nanocomposite system. This implies that the intra-gallery reaction, which is responsible for the exfoliation, is not significantly inhibited by the extra-gallery epoxy-amine cross-linking reaction.

  17. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  18. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers.

    Science.gov (United States)

    Townsend, James; Burtovyy, Ruslan; Aprelev, Pavel; Kornev, Konstantin G; Luzinov, Igor

    2017-07-12

    This research is focused on the fabrication and properties of epoxy nanocomposites containing magnetized SiC whiskers (MSiCWs). To this end, we report an original strategy for fabrication of magnetically active SiCWs by decorating the whiskers with magnetic (iron oxide) nanoparticles via polymer-polymer (poly(acrylic acid)/poly(2-vinyl pyridine)) complexation. The obtained whiskers demonstrated a substantial magnetic response in the polymerizing epoxy resin, with application of only a 20 mT (200 G) magnetic field. We also found that the whiskers chemically reacted with the epoxy resin, causing formation of an extended interphase near the boundary of the whiskers. The SiC whiskers oriented with the magnetic field demonstrated positive effects on the behavior of epoxy-based nanocomposites. Namely, the aligned MSiCWs enhanced the thermomechanical properties of the materials significantly above that of the neat epoxy and epoxy nanocomposite, with randomly oriented whiskers.

  19. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites.

    Science.gov (United States)

    Hamim, Salah U; Singh, Raman P

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.

  20. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    Science.gov (United States)

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  1. Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites.

    Science.gov (United States)

    Kim, Man Tae; Park, Ho Seok; Hui, David; Rhee, Kyong Yop

    2011-08-01

    In this study, the effects of a MWCNT treatment on the dispersion of MWCNTs in aqueous solution and the tensile properties of MWCNT/epoxy nanocomposites were investigated. MWCNTs were treated using acid and gum arabic, and MWCNT/epoxy nanocomposites were fabricated with 0.3 wt.% unmodified, oxidized and gum-treated MWCNTs. The dispersion states of the unmodified, oxidized, and Gum-treated MWCNTs were characterized in distilled water. The tensile strengths and elastic modulus of the three nanocomposites were determined and compared. The results indicated that the gum treatment produced better dispersion of the MWCNTs in distilled water and that gum-treated MWCNT/epoxy nanocomposites had a better tensile strength and elastic modulus than did the unmodified and acid-treated MWCNT/epoxy nanocomposites. Scanning electron microscope examination of the fracture surface showed that the improved tensile properties of the gum-treated MWCNT/epoxy nanocomposites were attributed to the improved dispersion of MWCNTs in the epoxy and to interfacial bonding between nanotubes and the epoxy matrix.

  2. Effect of Sonification Time on Synthesisi and Corrosion Resistance of Epoxy-Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    Niloufar Bahrami Panah

    2016-09-01

    Full Text Available In recent years many research works have been carried out on anti-corrosive nanocomposites coatings containing mineral reinforcements. The most important criteria in these attempts are polymerization method and the type of matrix and reinforcement of nanocomposites. In this regard, the physical and mechanical properties of the polymers in which a small amount of filler is used can be improved. In this research, an epoxy-clay nanocomposite was synthesized by in-situ polymerization method using a resin matrix based on bisphenol-A type epoxy and montmorillonite clay (Closite 15A. The treatment was used at different ultrasonic stirring times to disperse 1-4 weight percentages of clay particles into the matrix. The structure of synthesized epoxy-clay nanocomposite was studied by scanning electron microscopy and X-ray diffraction techniques. The average size of clay particles was determined by X-ray diffraction measurement. Then, anti-corrosion properties of epoxy-clay coatings, prepared under different ultrasonic durations and applied on carbon steel panels, were investigated by Tafel and electrochemical impedance spectroscopy techniques. For this purpose, the carbon steel panels coated with these coatings were immersed in 3.5% sodium chloride solution and tested at different immersion times. The results indicated that a nanocomposite containing 1% clay, synthesized, stirred 60 min ultrasonically, produced smaller particle size, lower corrosion current density and higher coating corrosion resistance than the other composite formulations. This nanocomposite provided superior protection against corrosion in sodium chloride solution.

  3. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material

    International Nuclear Information System (INIS)

    Barua, Shaswat; Dutta, Nipu; Karak, Niranjan; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K

    2014-01-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48–58 MPa) and elongation at break (11.9–16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration. (paper)

  4. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  5. The Effect of High Concentration and Small Size of Nanodiamonds on the Strength of Interface and Fracture Properties in Epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Yasir A. Haleem

    2016-06-01

    Full Text Available The concentration and small size of nanodiamonds (NDs plays a crucial role in the mechanical performance of epoxy-based nanocomposites by modifying the interface strength. Herein, we systemically analyzed the relation between the high concentration and small size of ND and the fracture properties of its epoxy-based nanocomposites. It was observed that there is a two-fold increase in fracture toughness and a three-fold increase in fracture energy. Rationally, functionalized-NDs (F-NDs showed a much better performance for the nanocomposite than pristine NDs (P-NDs because of additional functional groups on its surface. The F-ND/epoxy nanocomposites exhibited rougher surface in contrast with the P-ND/epoxy, indicating the presence of a strong interface. We found that the interfaces in F-ND/epoxy nanocomposites at high concentrations of NDs overlap by making a web, which can efficiently hinder further crack propagation. In addition, the de-bonding in P-ND/epoxy nanocomposites occurred at the interface with the appearance of plastic voids or semi-naked particles, whereas the de-bonding for F-ND/epoxy nanocomposites happened within the epoxy molecular network instead of the interface. Because of the strong interface in F-ND/epoxy nanocomposites, at high concentrations the de-bonding within the epoxy molecular network may lead to subsequent cracks, parallel to the parent crack, via crack splitting which results in a fiber-like structure on the fracture surface. The plastic void growth, crack deflection and subsequent crack growth were correlated to higher values of fracture toughness and fracture energy in F-ND/epoxy nanocomposites.

  6. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  7. The Role of Multi-wall Carbon Nanotubes on Fracture Mechanism of Epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Hooshiar Sadegian

    2008-12-01

    Full Text Available In order to investigate the role of multi-wall carbon nanotubes (MWCNTs on fracture mechanism of epoxy nanocomposites, a series of tensile standard specimens reinforced with different carbon nanotube contents (0, 0.3, 0.6 and 1 wt% were produced. The fracture surfaces of the produced nanocomposites were evaluated using scanning electron microscope (SEM. The results show that the surface fracture of epoxy nanocomposites comprised of three regions, i.e. mirror, transition and final propagation zones. The extension of all zones depends strongly on curing agent as well asMWCNTs content. The mirror zone is disappeared as curing agent and MWCNTs content increases, while the transition zone depends on the nucleation rate of secondary microcrack. The pattern of final propagation zone becomes coarser as MWCNTs are added to epoxy system.

  8. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Science.gov (United States)

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  9. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  10. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties

    International Nuclear Information System (INIS)

    Ulus, Hasan; Üstün, Tugay; Eskizeybek, Volkan; Şahin, Ömer Sinan; Avcı, Ahmet; Ekrem, Mürsel

    2014-01-01

    Highlights: • We studied the effects of BN nanoplatelets on tensile strength and elasticity modulus for polymer composites. • We investigated the synergetic effects of BN nanoplatelets and MWCNTs on tensile strength and elasticity modulus for polymer composites. • Fracture surfaces were examined by SEM analysis. - Abstract: In this study, production and mechanical properties of hybrid nanocomposites have been investigated. Hybrid nanocomposites are consisting of boron nitride nanoplatelets (BN) and multiwall carbon nanotubes (MWCNT) embedded in epoxy resin. The BN and MWCNT were mixed to epoxy resin in different weight fractions and mixtures were utilized for tensile test specimen production. The synthesized BN and produced hybrid nanocomposites were characterized by SEM, TEM, XRD, FT-IR and TGA analyses. The elasticity modulus and tensile strength values were obtained via tensile tests. The fracture morphologies were investigated after tensile test by means of scanning electron microscopy

  11. Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance

    Directory of Open Access Journals (Sweden)

    Juventino López-Barroso

    2018-03-01

    Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

  12. Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation.

    Science.gov (United States)

    Wei, Jiacheng; Saharudin, Mohd Shahneel; Vo, Thuc; Inam, Fawad

    2017-10-01

    It is generally recognized that dimethylformamide (DMF) and ethanol are good media to uniformly disperse graphene, and therefore have been used widely in the preparation of epoxy/graphene nanocomposites. However, as a solvent to disperse graphene, dichlorobenzene (DCB) has not been fully realized by the polymer community. Owing to high values of the dispersion component ( δ d ) of the Hildebrand solubility parameter, DCB is considered as a suitable solvent for homogeneous graphene dispersion. Therefore, epoxy/graphene nanocomposites have been prepared for the first time with DCB as a dispersant; DMF and ethanol have been chosen as the reference. The colloidal stability, mechanical properties, thermogravimetric analysis, dynamic mechanical analysis and scanning electron microscopic images of nanocomposites have been obtained. The results show that with the use of DCB, the tensile strength of graphene has been improved from 64.46 to 69.32 MPa, and its flexural strength has been increased from 97.17 to 104.77 MPa. DCB is found to be more effective than DMF and ethanol for making stable and homogeneous graphene dispersion and composites.

  13. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju

    2015-12-29

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized and used as a toughening agent in an epoxy thermoset. The incorporation of the epoxidized star polymer resulted in the formation of nanostructures and it was fixed by a crosslinking reaction. The formation of nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The mechanical properties such as toughness and tensile strength were considerably increased due to the nanostructures formed by reactive blending.

  14. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  15. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  16. Study on Tensile Properties of Nanoreinforced Epoxy Polymer: Macroscopic Experiments and Nanoscale FEM Simulation Prediction

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2013-01-01

    Full Text Available The effect of nanosilica contents on mechanical properties of the epoxy matrix with some nanoparticle aggregations was studied in macroscopic experiments and nanoscale simulation, particularly with regard to the effective modulus and ultimate stress. Three analytical models were used to obtain the effective elastic modulus of nanoparticle-reinforced composites. Based on Monte-Carlo method, the special program for the automatic generation of 2D random distribution particles without overlapping was developed for nanocomposite modeling. Weight fractions of nanoparticles were converted to volume fractions, in order to coordinate the content unit in the simulation. In numerical analysis, the weak interface strengthening and toughening mechanism was adopted. Virtual crack closure technique (VCCT and extended finite element method (XFEM were used to simulate phenomena of nanoparticle debonding and matrix crack growth. Experimental and simulation results show a good agreement with each other. By way of simulation, the weak interface toughening and strengthening mechanism of nanocomposites is confirmed.

  17. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites

    OpenAIRE

    Halil B. Kaybal; Hasan Ulus; Okan Demir; Ömer S. Şahin; Ahmet Avcı

    2018-01-01

    The influence of alumina (Al2O3) nanoparticles addition upon low-velocity impact behaviors of carbon fiber (CF) reinforced laminated epoxy nanocomposites have been investigated. For this purpose, different amounts of Al2O3 nanoparticles ranging from 1 to 5 wt% were added to the epoxy resin in order to observe the effect of nanoparticle loadings. CF reinforced epoxy based laminated nanocomposites were produced using Vacuum Assisted Resin Infusion Method (VARIM). The low velocity impact (LVI) t...

  18. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  19. Electrical and thermomechanical properties of epoxy-POSS nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Boček, J.; Matějka, Libor; Mentlík, V.; Trnka, P.; Šlouf, Miroslav

    2011-01-01

    Roč. 47, č. 5 (2011), s. 861-872 ISSN 0014-3057 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : POSS * epoxy nanocomposite * electrical/dielectrical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.739, year: 2011

  20. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  1. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    International Nuclear Information System (INIS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-01-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  2. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    International Nuclear Information System (INIS)

    Miyagawa, Hiroaki; Rich, Michael J.; Drzal, Lawrence T.

    2006-01-01

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T g is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites

  3. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of optically transparent epoxy matrix nanocomposites

    International Nuclear Information System (INIS)

    Esposito Corcione, C.; Manera, M.G.; Maffezzoli, A.; Rella, R.

    2009-01-01

    In this work optically transparent nanocomposites were prepared and characterized from an optical and morphological point of view. An organically modified boehmite was added at different concentrations in a diglycidyl ether of bisphenol A (DGEBA) epoxy matrix, hardened with a polyether diamine. Nanocomposites were characterized structurally by X-ray diffraction (XRD), optically by UV-Vis-NIR spectrophotometry and their morphology was investigated by Atomic Force Microscopy (AFM). Morphological investigation reveals the presence of boehmite particles dispersed in the epoxy matrix in different dimensions ranging from ten to hundreds of nanometers; some aggregation in the particles is the tendency noticed in the AFM images. The acquisition of multiple AFM images in different areas of the sample was used for a statistical analysis of the volumetric distribution of boehmite aggregates. The obtained result, (3.6 ± 0.3)%vol, is well comparable to thermogravimetric analysis.

  5. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  6. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    Science.gov (United States)

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading

    International Nuclear Information System (INIS)

    Rafiee, Mohammad A.; Yavari, Fazel; Rafiee, Javad; Koratkar, Nikhil

    2011-01-01

    In this study, we characterized the mechanical properties of fullerence (C 60 ) epoxy nanocomposites at various weight fractions of fullerene additives in the epoxy matrix. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. All of the above properties of the epoxy polymer were significantly enhanced by the fullerene additives at relatively low nanofiller loading fractions (∼0.1 to 1% of the epoxy matrix weight). By contrast, other forms of nanoparticle fillers such as silica, alumina, and titania nanoparticles require up to an order of magnitude higher weight fraction to achieve comparable enhancement in properties.

  8. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    Science.gov (United States)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  9. Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites

    Science.gov (United States)

    Hamim, Salah Uddin Ahmed

    2011-12-01

    Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).

  10. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    Science.gov (United States)

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  11. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    Directory of Open Access Journals (Sweden)

    Nadiim Domun

    2017-10-01

    Full Text Available In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs and boron nitride nanotubes (BNNTs were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  12. SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    N. Bahrami Panah

    2016-03-01

    Full Text Available The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy methods. The mean size of nanocomposite particles was 20-35 nm determined by scanning electron microscopy. The epoxy coatings containing the nanocomposites were applied over mild steel panels and their corrosion performance was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements in a 3.5 % sodium chloride solution. The results showed that epoxy coatings consisting of nanocomposite with 1 wt.% multi-walled carbon nanotube exhibited higher anticorrosive properties than other prepared coatings of different carbon nanotube contents, which could be due to the strong interaction between the mild steel surface and the conjugated nanocomposite.

  13. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.

    Science.gov (United States)

    Wang, Yu; Yang, Chunhui; Pei, Qing-Xiang; Zhang, Yingyan

    2016-03-01

    Owing to the superior thermal properties of graphene, graphene-reinforced polymer nanocomposites hold great potential as the thermal interface materials (TIMs) dissipating heat for electronic packages. However, this application is greatly hindered by the high thermal resistance at the interface between graphene and polymer. In this paper, some important aspects of the improvement of the thermal transport across the interface between graphene and epoxy in graphene-epoxy nanocomposites, including the effectiveness of covalent and noncovalent functionalization, isotope doping, and acetylenic linkage in graphene are systematically investigated using molecular dynamics (MD) simulations. The simulation results show that the covalent and noncovalent functionalization techniques could considerably reduce the graphene-epoxy interfacial thermal resistance in the nanocomposites. Among different covalent functional groups, butyl is more effective than carboxyl and hydroxyl in reducing the interfacial thermal resistance. Different noncovalent functional molecules, including 1-pyrenebutyl, 1-pyrenebutyric acid, and 1-pyrenebutylamine, yield a similar amount of reductions. Moreover, it is found that the graphene-epoxy interfacial thermal resistance is insensitive to the carbon isotope doping in graphene, while it can be reduced moderately by replacing the sp(2) bonds in graphene with acetylenic linkages.

  14. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    Science.gov (United States)

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-08

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m.

  15. Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete

    International Nuclear Information System (INIS)

    Shokrieh, Mahmood M.; Kefayati, Amir R.; Chitsazzadeh, Majid

    2012-01-01

    Highlights: ► Obtaining optimum sonication power and time to fabricate clay/epoxy nanocomposites. ► Improving the tensile and flexural moduli of clay/epoxy nanocomposites. ► Increasing the fracture toughness and compressive strength of nanocomposites. ► Nanoclay enhanced the tensile and compressive strengths of polymer concrete. ► Improving the fracture toughness of polymer concrete by addition of nanoclay. -- Abstract: In this research, the effects of adding modified nanoclay (Cloisite 30B) on the mechanical properties (tensile, compression, flexural and fracture toughness) of epoxy polymer (ML-506) were investigated. Subsequently, the mechanical properties of polymer concrete (PC) made of nanoclay/epoxy were also studied. The nanoclay dispersion was achieved by sonication technique. Therefore, optimum sonication output power and time for achieving the highest d-spacing of nanoclay layers were obtained. The X-ray diffraction (XRD) results indicated that changing sonication output power and time during fabrication process did not have any remarkable effects on increasing the d-spacing of clay layers. In all production processes, the d-spacing was increased from 18.4Å to about 42Å and thus the intercalated nanocomposites were fabricated. In addition to XRD, the dispersion state and the d-spacing of nanoclay particles were observed using a transmission electron microscope (TEM). Also, the effects of various filler contents on the mechanical properties, i.e., tensile, compression, flexural and fracture toughness of nanocomposite were investigated. The results of mechanical testing showed that enhancement in the tensile and flexural moduli, compressive strength and fracture toughness were gained by 12.5%, 13.3%, 7.4% and 25.5% respectively. On the other hand, tensile and flexural strengths as well as strain to failure were decreased. Scanning electron microscope (SEM) was also used to study the fracture mechanism of nanocomposites. Finally, by adding the

  16. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    Science.gov (United States)

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  17. Synthesis and Mechanical Properties Investigation of Nano TiO2/Glass/Epoxy Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salehi

    2015-10-01

    Full Text Available Mechanical properties of epoxy and glass/epoxy filled with 0.25, 0.5 and 1 vol% of TiO2 nanoparticles have been studied using tensile and three-point bending tests. For the TiO2/epoxy nanocomposites, the results showed that the strength and stiffness were improved, though the strain at ultimate strength point and breaking strain decreased. Moreover, the hybrid nanocomposites composed of 4 layers of woven E-glass fabric and TiO2/epoxy matrix were fabricated and cut onaxis and 45° off-axis by water jet. The results of tensile and three-point bending tests indicated a remarkable improvement in the strength and stiffness that could not be related to the mechanical improvement of the matrix. The samples containing 1 vol% nano TiO2 were improved relative to samples without the nanoparticles. The tensile strength of the on-axis and off-axis samples containing 1 vol% TiO2 increased by about 25.9% and 17.9%, in the order given, compared to that of the glass/epoxy specimens. In three-point bending test, the strength of the on-axis and off-axis specimens was improved 26% and 23.2%, respectively. In addition, the tensile stiffness of the onaxis and off-axis samples containing 1 vol% TiO2 increased, respectively, by about 14.4% and 17.5% compared to that of the glass/epoxy specimens. Also for the same on-axis and off-axis samples the three-point bending stiffness increased about 19.8% and 14.6%, respectively. The whole investigation on the microstructure of the hybrid nanocomposites illustrated that stronger interfaces between the fiber and TiO2/epoxy matrix were formed and improvement was noticed on mechanical properties of ternary composite compared to those of the fiber/epoxy composites. The analysis of damage zones of hybrid nanocomposites showed that the surface area of the damaged zone declined considerably due to the brittle behavior of TiO2-filled specimens but the area below the stress-strain curve, showing energy absorption during the test

  18. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Science.gov (United States)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  19. Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion

    International Nuclear Information System (INIS)

    Chakraborty, Amit K.; Plyhm, Tiia; Barbezat, Michel; Necola, Adly; Terrasi, Giovanni P.

    2011-01-01

    A systematic investigation of the dispersion of carbon nanotubes (CNTs), 1–6 nm in diameter and a few microns in length, in a bisphenol F-based epoxy resin has been presented. Several dispersing techniques including high-speed dissolver, ultrasonic bath/horn, 3-roll mill, etc. have been employed. Optical microscopy has been extensively used to systematically characterise the state of CNT dispersion in the epoxy resin during the entire processing cycle from mixing CNT with resin to adding and curing with hardener. Complimentary viscosity measurements were also performed at various stages of nanocomposite processing. A method to produce a good CNT dispersion in resin was established, but the state of CNT dispersion was found to be extremely sensitive to its physical and chemical environments. The cured nanocomposites were further tested for their thermo-mechanical properties by dynamic mechanical thermal analysis (DMTA), and for flexural and compressive mechanical properties. The measured properties of various nanocomposite plates were then discussed in view of the corresponding CNT dispersion.

  20. Improvement of Fracture Toughness in Epoxy Nanocomposites through Chemical Hybridization of Carbon Nanotubes and Alumina.

    Science.gov (United States)

    Zakaria, Muhammad Razlan; Abdul Kudus, Muhammad Helmi; Md Akil, Hazizan; Zamri, Mohd Hafiz

    2017-03-16

    The current study investigated the effect of adding a carbon nanotube-alumina (CNT-Al₂O₃) hybrid on the fracture toughness of epoxy nanocomposites. The CNT-Al₂O₃ hybrid was synthesised by growing CNTs on Al₂O₃ particles via the chemical vapour deposition method. The CNTs were strongly attached onto the Al₂O₃ particles, which served to transport and disperse the CNTs homogenously, and to prevent agglomeration in the CNTs. The experimental results demonstrated that the CNT-Al₂O₃ hybrid-filled epoxy nanocomposites showed improvement in terms of the fracture toughness, as indicated by an increase of up to 26% in the critical stress intensity factor, K 1 C , compared to neat epoxy.

  1. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers.

    Science.gov (United States)

    Bruce, Alex N; Lieber, Danielle; Hua, Inez; Howarter, John A

    2014-04-01

    Montmorillonite was modified by three silane surfactants with different functionalities to investigate the role of surfactant structure on the properties of a final epoxy-organoclay nanocomposite. N-aminopropyldimethylethoxysilane (APDMES), an aminated monofunctional silane, was chosen as a promising surfactant for several reasons: (1) it will bond to silica in montmorillonite, (2) it will bond to epoxide groups, and (3) to overcome difficulties found with trifunctional aminosilane bonding clay layers together and preventing exfoliation. A trifunctional and non-aminated version of APDMES, 3-aminopropyltriethoxysilane (APTES) and n-propyldimethylmethoxysilane (PDMMS), respectively, was also studied to provide comparison to this rationally chosen surfactant. APDMES and APTES were grafted onto montmorillonite in the same amount, while PDMMS was barely grafted (nanocomposite gallery spacing was not dependent on the surfactant used. Different concentrations of APDMES modified montmorillonite yielded different properties, as concentration decreased glass transition temperature increased, thermal stability increased, and the storage modulus decreased. Storage modulus, glass transition temperature, and thermal stability were more similar for epoxy-organoclay composites modified with the same concentration of silane surfactant, neat epoxy, and epoxy-montmorillonite nanocomposite. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Zhang, W; Picu, R C; Koratkar, N

    2008-01-01

    Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e. length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy

  3. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    Science.gov (United States)

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  4. Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state

    OpenAIRE

    Siddiqui, Naveed A.; Li, Erin L.; Sham, Man-Lung; Tang, Ben Zhong; Gao, Shang Lin; Mäder, Edith; Kim, Jang-Kyo

    2010-01-01

    A study has been made of a concept of 'healing' coatings applied onto the brittle fibre surface to reduce the stress concentrations and thus to improve the reinforcing efficiency in a composite. Coatings made from neat epoxy and carbon nanotube (CNT) reinforced epoxy nanocomposite were applied onto the individual glass fibres as well as rovings. It is shown that the 0.3 wt.% CNT–epoxy nanocomposite coating gave rise to a significant increase in tensile strength of the single fibre for all gau...

  5. Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kourkoutsaki, T.; Logakis, E.; Kroutilová, Irena; Matějka, Libor; Nedbal, J.; Pissis, P.

    2009-01-01

    Roč. 113, č. 4 (2009), s. 2569-2582 ISSN 0021-8995 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposites * dielectric properties * rubbery epoxy networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.203, year: 2009

  6. Performance characterization of VGCF/epoxy nanocomposite sensors under static load cycles and in static structural health monitoring

    International Nuclear Information System (INIS)

    Hu, Bin; Hu, Ning; Cai, Yindi; Furukawa, Manabu; Matsushita, Makoto; Yuan, Weifeng; Cai, Yong; Yan, Cheng

    2013-01-01

    Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring. (paper)

  7. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  8. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite

    International Nuclear Information System (INIS)

    Ganjaee Sari, M.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S.

    2015-01-01

    Highlights: • Nanoclay particles were modified with polyester-amide hyperbranched polymer. • Epoxy/clay nanocomposites were prepared using modified clay particles. • Surface modification enhanced the clay particles exfoliation properties. • Surface modified clay particles enhanced corrosion resistance of the epoxy coating. - Abstract: Surface modification of nanoclay particles was carried out by various amounts of polyester-amide hyperbranched polymer (HBP). Thermal gravimetric analysis and X-ray diffraction analysis were performed to estimate the efficiency of the HPB grafting on the clay particles. Epoxy/clay nanocomposites were prepared by addition of 1 wt.% unmodified and modified clays. The corrosion protection properties of the nanocomposites were evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that surface modification of the clay particles by HBP caused significant enhancement of the epoxy coating corrosion resistance especially when the ‘polymer/clay’ ratios were 10/1 and 5/1

  9. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    Science.gov (United States)

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  10. Preparation and characterization of polyhedral oligomer silsesquioxane nanocomposites incorporated in epoxy resin

    International Nuclear Information System (INIS)

    Longhi, Marielen; Zini, Lucas Pandolphi; Birriel, Eliena Jonko; Kunst, Sandra Raquel; Zattera, Ademir Jose

    2015-01-01

    The incorporation of nanofiller in thermosetting like epoxy resin as has been studied in order to modify its properties. In this research, nanocomposites were obtained by incorporating 5% by weight of three polyhedral oligomeric silsesquioxane (POSS) with different number of functionalization: Glicidilisobutil-POSS, Triglicidilisobutil- POSS and Glicicil POSS in an epoxy matrix by sonification process. The nanocomposites were characterized by analysis of X-ray diffraction (DRX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The DRX analysis showed the characteristic peak of POSS and TEM images showed that there is a difference in the dispersion of nanocages for the difference in the number of epoxy groups on the POSS. The incorporation of Glicidilisobutil-POSS showed a significant increase in the glass transition temperature (Tg) value, and also that the most effective from the viewpoint of the dispersion, on the other hand, the Glycidyl-POSS had a greater influence on the thermal stability demonstrating that the dispersion medium is an important characteristic to define the most desirable properties. (author)

  11. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    OpenAIRE

    Patricia A. Saliba; Alexandra A. P. Mansur; Herman S. Mansur

    2016-01-01

    The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite w...

  12. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  13. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  14. Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yi Hua

    2015-06-01

    Full Text Available A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness of nanocomposites was much lower, which was in good agreement with the documented experimental observations. This work could shed some light on the design and manufacturing of resin nanocomposites.

  15. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Cheng Lihong; Zheng Liaoying; Li Guorong; Zeng Jiangtao; Yin Qingrui

    2008-01-01

    Silica/epoxy composites have been widely used in functional electric device applications. Silica nanoparticles, both unmodified and modified with the coupling agent KH-550, were used to prepare epoxy composites. Dielectric measurements showed that nanocomposites exhibit a higher dielectric constant than the control sample, and had more obvious dielectric relaxation characteristics. Results showed that particle surface properties have a profound effect on the dielectric behavior of the nanocomposites. These characteristics are attributed to the local ununiformity of the microstructure caused by the large interface area and the interaction between the filler and the matrix. This phenomenon is explained in terms of prolonging chemical chains created during the curing process. The mechanism is discussed with measurements of X-ray diffraction (XRD) and Fourier transform infrared (FTIR)

  16. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.; Low, I. M.

    2012-01-01

    Epoxy hybrid-nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission

  17. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    Science.gov (United States)

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  18. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  19. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Science.gov (United States)

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  20. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  1. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  2. Effect of aluminium particles on mechanical and morphological properties of epoxy nanocomposites

    Directory of Open Access Journals (Sweden)

    Bello Sefiu A.

    2017-01-01

    Full Text Available Bumper is a front or rear part of automobiles. It is designed and shaped to be impact absorbing and protecting automobiles from damage in low impact collisions. Initially, they were made from heavy steels, increasing the weight of automobiles and fuel consumption. Also, high impacts of steel bumpers on pedestrians during accidental collision cause fatalities and or disabilities. An effort to enhance fuel efficiency, safety, freedom of design and shape detailing, heavy alloys for automobile applications are now being replaced with polymeric composites. Aluminium micro particles and nanoparticles were prepared from aluminium cans through sand casting, lathe machine spinning, and ball milling techniques. Both types of aluminium particles were incorporated into a mixture of diglycidyl ether of bisphenol A (DGEBA, epoxy resin cured with amine base hardener (ABH. Phases of the epoxy polymer and composites were identified using Xray Diffraction (XRD. Spatial arrangement of the phases within the matrix and their elemental composition were examined using Scanning Electron Microscope with attached energy dispersive X-ray spectroscopy (SEM/EDX. Tensile, impact and micro hardness tests were conducted on the prepared epoxy/aluminium composites. Results of the XRD showed the presence of aluminium compounds/phases due to chemical reactions between aluminium particles and DGEBA/ABH system. SEM confirmed a homogeneous distribution of the phases within the epoxy matrix, and that there is a strong adhesion between the epoxy matrix and aluminium particles. Correlation between the mechanical properties of the prepared nanocomposite and the procured bumper materials exhibited a fair suitability of the prepared nanocomposites for automobile applications.

  3. Magnetic epoxy nanocomposites reinforced with hierarchical α-Fe2O3 nanoflowers: a study of mechanical properties

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Thumu, Udayabhaskararao

    2017-09-01

    In this work, we presented the potentiality of monodispersed 3D hierarchical α-Fe2O3 nanoflowers (α-Fe2O3) as reinforcement for epoxy polymer. α-Fe2O3 are synthesized through the thermal decomposition of iron alkoxide precursor in ethylene glycol. α-Fe2O3/epoxy nanocomposites (0.1 wt% of α-Fe2O3) show 109%, 59%, 13%, and 15% enhancement in impact (un-notched), impact (notched), flexural and tensile properties, respectively. The uniformly embedded α- Fe2O3 nanoflowers in epoxy polymer not only provide mechanical strength but also induced magnetic nature to the nanocomposite as observed from the Scanning electron microscopy and vibrating sample magnetometer.

  4. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    Science.gov (United States)

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahesh V. Hosur

    2013-08-01

    Full Text Available Common dispersion methods such as ultrasonic sonication, planetary centrifugal mixing and magnetic dispersion have been used extensively to achieve moderate exfoliation of nanoparticles in polymer matrix. In this study, the effect of adding three roll milling to these three dispersion methods for nanoclay dispersion into epoxy matrix was investigated. A combination of each of these mixing methods with three roll milling showed varying results relative to the unmodified polymer laminate. A significant exfoliation of the nanoparticles in the polymer structure was obtained by dispersing the nanoclay combining three roll milling to magnetic and planetary centrifugal mixing methods. This exfoliation promoted a stronger interfacial bond between the matrix and the fiber, which increased the final properties of the E-glass/epoxy nanocomposite. However, a combination of ultrasound sonication and three roll milling on the other hand, resulted in poor clay exfoliation; the sonication process degraded the polymer network, which adversely affected the nanocomposite final properties relative to the unmodified E-glass/epoxy polymer.

  6. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes.

    Science.gov (United States)

    Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K

    2018-01-03

    A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.

  7. Silane coupling agent for enhanced epoxy-iron oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamdy M. Naguib

    2018-01-01

    Full Text Available In this study, silane-treated Fe2O3 nanoparticles were successfully prepared using (3-aminopropyl triethoxysilane (APTES. The chemical structure and morphology of the obtained nanoparticles were investigated by several analysis techniques including FTIR, XRD, TEM and DLS. Both of untreated Fe2O3 (IO and silane-treated Fe2O3 (SIO nanoparticles were used in the preparation of epoxy nanocomposites with 5% by weight fraction. FTIR and XRD approved that SIO was successfully prepared with highly crystalline structure. TEM and DLS indicated the good dispersion of treated nanoparticles in the nanocomposite matrix, also the average particle size of nanofiller decreased to ∼200 nm after silane treatment. The dynamic properties for the prepared nanocomposites were studied using DMA and confirmed by nanoindentation technique. The results indicated that silane-treated nanoparticles can improve the hardness and Tg by 87.5% and 5 °C respectively at 5% weight fraction.

  8. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  9. Interlaminar Toughening of Fiber Reinforced Polymers

    Science.gov (United States)

    Bian, Dakai

    Modification in the resin-rich region between plies, also known as the interlaminar region, was investigated to increase the toughness of laminate composites structures. To achieve suitable modifications, the complexities of the physical and chemical processes during the resin curing procedure must be studied. This includes analyses of the interactions among the co-dependent microstructure, process parameters, and material responses. This dissertation seeks to investigate these interactions via a series of experimental and numerical analyses of the geometric- and temperature-based effects on locally interleaving toughening methods and further interlaminar synergistic toughening without interleaf. Two major weaknesses in composite materials are the brittle resin-rich interlaminar region which forms between the fiber plies after resin infusion, and the ply dropoff region which introduces stress concentration under loads. To address these weaknesses and increase the delamination resistance of the composite specimens, a dual bonding process was explored to alleviate the dropoff effect and toughen the interlaminar region. Hot melt bonding was investigated by applying clamping pressure to ductile thermoplastic interleaf and fiber fabric at an elevated temperature, while diffusion bonding between thermoplastic interleaf and thermoset resin is performed during the resin infusion. This method increased the fracture energy level and thus delamination resistance in the interlaminar region because of deep interleaf penetration into fiber bundles which helped confining crack propagation in the toughened area. The diffusion and precipitation between thermosets and thermoplastics also improved the delamination resistance by forming a semi-interpenetration networks. This phenomenon was investigated in concoctions of low-concentration polystyrene additive modified epoxy system, which facilitates diffusion and precipitation without increasing the viscosity of the system

  10. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  11. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  12. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Patricia A. Saliba

    2016-01-01

    Full Text Available The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite with the development of interfacial reactions between organic-inorganic and inorganic-inorganic components was observed. These hybrid nanostructures produced better integration between nanoparticles and epoxy matrix and improved mechanical properties that are expected to enhance the overall performance of the system against underwater corrosion.

  13. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    International Nuclear Information System (INIS)

    Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali; Ehsani, Morteza

    2013-01-01

    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP

  14. Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials.

    Science.gov (United States)

    Roy, Buddhadeb; Bharali, Pranjal; Konwar, B K; Karak, Niranjan

    2013-01-01

    Silver-embedded modified hyperbranched epoxy/clay nanocomposites were prepared at different wt.% of octadecyl amine-modified montmorillonite at a constant silver concentration (1 wt.%). UV-visible, XRD and TEM studies confirmed the formation of silver nanoparticles. Compared to the system without silver and clay, the gloss from 70° to 94°, scratch hardness from 4 to 5.8 kg, impact strength from 60 to 90 cm, tensile strength from 8.5 to 15.5 MPa, adhesive strength from 5 to 7.1 × 10(9)N/m, flexibility from >6 to nanocomposites showed antibacterial activity in well diffusion assays against Staphylococcus aureus (ATCC11632), Bacillus subtilis (ATCC11774), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC7814) and Klebsiella pneumoniae (ATCC10031). The results showed that these nanocomposites have potential to be used as antimicrobial materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    Science.gov (United States)

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  16. Nanocomposites based on epoxy resin and montmorillonite: effect of clay percent and dispersion state on thermomechanical properties

    International Nuclear Information System (INIS)

    Zaioncz, Soraia; Soares, Bluma G.

    2009-01-01

    Nanocomposites of epoxy resin modified with PMMA and montmorillonite organophilic were synthesized with clay content equal to 0.1, 1, 2.5, 5 and 7 (wt %). Dispersion state and the nano structure of materials has been investigated using small angle X-ray scattering (SAXS). The nanocomposites containing 0.1 (wt %) of clay showed an exfoliated morphology, while the nanocomposites with higher clay content (1 to 7 wt %) show that the dispersion state is less uniform and that large aggregates coexist with tactoids stacks of two or three platelets. The nano structure of materials was correlated with its thermomechanical properties obtained by DMTA. The results showed an increase in Tg of the materials to clay content of up to 5 wt % and an increase in the storage modulus for the epoxy matrix. (author)

  17. Analysis of sulphone based organic–inorganic hybrid epoxy nanocomposites for advanced engineering applications—Study of the mechanical, thermomechanical, XRD, EDS and physical properties

    International Nuclear Information System (INIS)

    Shree Meenakshi, K.; Pradeep Jaya Sudhan, E.; Menon, Prathibha G.

    2012-01-01

    Highlights: ► Novel sulphone based tetraglycidyl epoxy nanocomposites were developed for aerospace applications. ► Nano-reinforcements were incorporated and curing was done. ► Excellent results were obtained in the mechanical studies. The nanocomposites developed were flame retardant and hydrophobic. - Abstract: A study was made in the present investigation on sulphone containing tetraglycidyl epoxy nanocomposites to find its suitability for use in high performance applications. The synthesis and characterization of the sulphone tetraglycidyl epoxy resin denoted as ‘B’ was done as reported in our previous study. Nanoclay and POSS-amine nano-reinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as X and Y respectively. In our current research, we continue this research and study the mechanical, thermo-mechanical, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), viscosity, epoxy equivalent weight (EEW) and gel permeation chromatography (GPC) studies.

  18. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    International Nuclear Information System (INIS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-01-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected

  19. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  20. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhauf, Lukas [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Kuo, Yu-Ying; Bahk, Yeon Kyoung [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland); Nüesch, Frank [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Wang, Jing, E-mail: Jing.Wang@ifu.baug.ethz.ch [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland)

    2015-11-15

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  1. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  2. The influence of montmorillonite content on the kinetics of curing of epoxy nanocomposites

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2012-01-01

    Full Text Available In this work, the attention was paid at the investigation of montmorillonite dispersion in epoxy/amine systems due to improved final properties of the nanocomposites. The influence of different montmorillonite content on the kinetics of curing of epoxy/Jeffamine D-230 systems was followed by differential scanning calorimetry (DSC. The curing of epoxy nanocomposites was performed using dynamic regime at three different heating rates: 5, 10 and 20°C/min. Three isoconversional methods were applied: two integral (Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose methods and one differential (Friedman method. The presence of montmorillonite (MMT causes the beginning of curing at lower temperatures. The shape of the DSC curves has been changed by the addition of MMT, supporting the hypothesis of a change in the reaction mechanism. For hybrids with 3 and 5 wt.% of MMT, the Eα dependence is very similar to those found for the reference system (epoxy/Jeffamine D-230 for the curing degree less than 60%. The hybrid with 10 wt.% of MMT has lower energy activation in regard to the referent system without montmorillonite. Greater differences are observed in the second part of the reaction, where it is known that the curing process is more controlled by diffusion (α>0.60. The Ea value increases at the end of the reaction (α→1, which was observed for all systems, and is more pronounced in the presence of montmorillonite. [Projekat Ministarstva nauke Republike Srbije, br. III45022

  3. Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites.

    Science.gov (United States)

    Starost, Kristof; Frijns, Evelien; Van Laer, Jo; Faisal, Nadimul; Egizabal, Ainhoa; Elizextea, Cristina; Blazquez, Maria; Nelissen, Inge; Njuguna, James

    2017-10-15

    The risk assessment, exposure and understanding of the release of embedded carbon nanotubes (CNTs) and carbon nanofibers (CNFs) from commercial high performance composites during machining processes are yet to be fully evaluated and quantified. In this study, CNTs and CNFs were dispersed in epoxy matrix through calendaring process to form nanocomposites. The automated drilling was carried out in a specially designed drilling chamber that allowed elimination of background noise from the measurements. Emission measurements were taken using condensed particle counter (CPC), scanning mobility particle sizer (SMPS) and DMS50 Fast Particulate Size Spectrometer. In comparison to the neat epoxy, the study results revealed that the nano-filled samples produced an increase of 102% and 227% for the EP/CNF and EP/CNT sample respectively in average particle number concentration emission. The particle mass concentration indicated that the EP/CNT and EP/CNF samples released demands a vital new perspective on CNTs and CNFs embedded within nanocomposite materials to be considered and evaluated for occupational exposure assessment. Importantly, the increased concentration observed at 10nm aerosol particle sizes measurements strongly suggest that there are independent CNTs being released at this range. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of ultraviolet exposure effects on the surface properties of epoxy/graphene nanocomposite films on Mylar substrate

    Science.gov (United States)

    Clausi, Marialaura; Santonicola, M. Gabriella; Schirone, Luigi; Laurenzi, Susanna

    2017-05-01

    In this paper, we present a study of the effects generated by exposure to UV-C radiation on nanocomposite films made of graphene nanoplatelets dispersed in an epoxy matrix. The nanocomposite films, at different nanoparticle size and concentration, were fabricated on Mylar substrate using the spin coating process. The effects of UV-C irradiation on the surface hydrophobicity and on the electrical properties of the epoxy/graphene films were investigated using contact angle measurements and electrical impedance spectroscopy, respectively. According to our results, the UV-C irradiation selectively degrades the polymer matrix of the nanocomposite films, giving rise to more conductive and hydrophobic layers due to exposure of the graphene component of the composite material. The results presented here have important implications in the design of spacecraft components and structures destined for long-term space missions.

  6. Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel

    Directory of Open Access Journals (Sweden)

    H. Alhumade

    2016-12-01

    Full Text Available Epoxy-Graphene (E/G nanocomposites with different loading of graphene were prepared via in situ prepolymerization and evaluated as protective coating for Stainless Steel 304 (SS304. The prepolymer composites were spin coated on SS304 substrates and thermally cured. Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM were utilized to examine the dispersion of graphene in the epoxy matrix. Epoxy and E/G nanocomposites were characterized using X-ray diffraction (XRD and Fourier Transform Infrared (FTIR techniques and the thermal behavior of the prepared coatings is analyzed using Thermogravimetric analysis (TGA and Differential scanning calorimetry (DSC. The corrosion protection properties of the prepared coatings were evaluated using Electrochemical Impedance Spectroscopy (EIS and Cyclic Voltammetry (CV measurements. In addition to corrosion mitigation properties, the long-term adhesion performance of the coatings was evaluated by measuring the adhesion of the coatings to the SS304 substrate after 60 days of exposure to 3.5 wt% NaCl medium. The effects of graphene loading on the impact resistance, flexibility, and UV stability of the coating are analyzed and discussed. SEM was utilized to evaluate post adhesion and UV stability results. The results indicate that very low graphene loading up to 0.5 wt % significantly enhances the corrosion protection, UV stability, and impact resistance of epoxy coatings.

  7. Studies on Fracture Behavior of Epoxy/DWNT Nanocomposites by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Shahin Shadlou

    2012-12-01

    Full Text Available The nanoscale fracture behavior of epoxy-based nanocomposites reinforced with double-walled carbon nanotube (DWNT was investigated by molecular dynamics (MD simulations technique. In order to prepare a nanocomposite model including polymer and DWNT, the exact atomic structure of epoxy was adopted as in previous experimental studies made by authors. Tersoff and Amber potential, which are well known potentials, were used for simulation of polymer and DWNT, respectively. Among different available methods to simulate the cross-linking process, a technique was adopted with closer similarity to what happens in real conditions. Therefore, when some especial atoms of monomer and hardener molecules were closer than a specific potential distance, the chemical bonds were created between them. To verify the prepared model, a pull-out simulation was carried out and the results were compared with those of previous studies. It was found that although a rather wide range for interface strength has been presented by different researchers and different techniques, the strength obtained in this study is in the middle of this range. In addition, the fracture energy obtained from the simulations for pure epoxy was compared with that of experimental results and good agreement was obtained. To evaluate the effect of nanocomposite structure at nanometer scale, DWNT was modeled in three different angles relative to the loading direction, including 0°, 45°and 90°. It was found that when DWNT is parallel with the loading direction (i.e. 90° it has the least impact on the fracture energy. The maximum fracture energy was obtained when MWNT was at 45° relative to loading direction. These results were compared with the theories provided for conventional composites.

  8. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    Science.gov (United States)

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  9. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  10. Functionalization of Graphene Nanoplatelets Using Sugar Azide for Graphene/Epoxy Nanocomposites

    Science.gov (United States)

    2014-06-20

    supercapacitor electrode . Nanotechnology, 22, 295202(2011). doi:10.1088/0957-4484/22/29/295202 20. Leinonen H, Pettersson M, Lajunen M, Water-soluble...Azide for Graphene/Epoxy Nanocomposites Saswata Bose1, Lawrence T. Drzal 1* Dept of Chemical Engineering and Materials Science Composite Materials ...ORGANIZATION NAME(S) AND ADDRESS(ES) Dept of Chemical Engineering and Materials Science,Composite Materials and Structures Center,2100 Engineering

  11. The multifunctional role of ionic liquids in the formation of epoxy-silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Matějka, Libor; Schrekker, H. S.; Pleštil, Josef; Jigounov, Alexander; Brus, Jiří; Šlouf, Miroslav

    2011-01-01

    Roč. 21, č. 36 (2011), s. 13801-13810 ISSN 0959-9428 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : epoxy -silica nanocomposite * ionic liquids * sol–gel process Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.968, year: 2011

  12. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  13. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  14. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A

    2010-01-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  15. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2012-01-01

    Highlights: ► Comparison of DSC and DRS in the cure of epoxy nanocomposites. ► Dependence of exfoliation of nanocomposite on clay content. ► Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  16. Fracture and Toughening of Composites of Polymers and Nanoscale Inorganic and Organic Fillers

    National Research Council Canada - National Science Library

    Chung, Neal

    2001-01-01

    The objectives of the project were to investigate the mechanical properties and particularly the fracture mechanisms of a number of nanocomposites, and to discover possible approaches to their toughening...

  17. CNTs, Al2O3 and SiO2 Reinforced Epoxy: Tribological Properties of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M.A. Ramadan,

    2017-09-01

    Full Text Available The present work studied the effect of filling epoxy matrix by different types and concentrations of nanoparticles on the friction and wear behaviors. Various concentrations (0.2 %, 0.4 %, 0.6 %, 0.8 % and 1 wt.% of multi walled carbon nano tubes (MWCNTs, aluminum oxide (Al2O3, and silica (SiO2 nanoparticles were used to reinforce epoxy matrix. These epoxy nanocomposites are widely used as indoor flooring tiles in schools, boutiques, hospitals, offices, conference rooms, homes, trade fair stands and homes for the aged. Experiments involved sliding of the epoxy nanocomposite specimens against rotating steel disc at dry sliding condition. Experiments were carried out using a test rig of pin-on-disc, designed and manufactured for the test. The friction force was measured using load cell which connected with a digital screen to detect the friction force. All experiments were done at room temperature and carried out at constant normal load (7 N, constant speed (0.93 m/sec and constant running time (300 seconds. The worn surfaces were investigated with back scattered scanning electron microscopy (SEM. Based on the observations in the present work, it was found that addition of the tested filling nanoparticles have greatly affected the friction and highly improves wear resistance.

  18. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Aravand

    2014-08-01

    Full Text Available The state of carbon nanotube (CNT dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning electron microscopy, electrochemical impedance spectroscopy and dynamic mechanical analysis. The evolution of the CNT dispersion was assessed for two CNT/epoxy systems with distinctly different dispersion states induced by different storage time. Strong interactions between CNT clusters were revealed in the masterbatch with a longer storage time. Upon curing CNT clusters in this material formed a network-like structure. This network enhanced the elastic behaviour and specific conductivity of the resulting nanocomposite, leading to a partial electrical percolation after curing.

  19. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  20. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties.

    Science.gov (United States)

    De, Bibekananda; Gupta, Kuldeep; Mandal, Manabendra; Karak, Niranjan

    2015-11-01

    The present work demonstrated a transparent thermosetting nanocomposite with antimicrobial and photoluminescence attributes. The nanocomposites are fabricated by incorporation of different wt.% (1, 2 and 3) of a biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid (MITH-NH) in the hyperbranched epoxy matrix. MITH-NH is obtained by immobilization of 2-methyl-4-isothiazolin-3-one hydrochloride (MITH) at room temperature using sonication on OMMT-carbon dot reduced Cu2O nanohybid. The nanohybrid is prepared by reduction of cupric acetate using carbon dot as the reducing agent in the presence of OMMT at 70°C. The significant improvements in tensile strength (~2 fold), elongation at break (3 fold), toughness (4 fold) and initial thermal degradation temperature (30°C) of the pristine hyperbranched epoxy system are achieved by incorporation of 3wt.% of MITH-NH in it. The nanocomposites exhibit strong antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria and Candida albicans, a fungus. The nanocomposite also shows significant activity against biofilm formation compared to the pristine thermoset. Further, the nanocomposite films emit different colors on exposure of different wavelengths of UV light. The properties of these nanocomposites are also compared with the same nanohybrid without OMMT. Copyright © 2015. Published by Elsevier B.V.

  1. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khabaz, Fardin; Khare, Rajesh

    2014-05-14

    We have used amido-amine functionalized carbon nanotubes (CNTs) that form covalent bonds with cross-linked epoxy matrices to elucidate the role of the matrix-filler interphase in the enhancement of mechanical and thermal properties in these nanocomposites. For the base case of nanocomposites of cross-linked epoxy and pristine single-walled CNTs, our previous work (Khare, K. S.; Khare, R. J. Phys. Chem. B 2013, 117, 7444-7454) has shown that weak matrix-filler interactions cause the interphase region in the nanocomposite to be more compressible. Furthermore, because of the weak matrix-filler interactions, the nanocomposite containing dispersed pristine CNTs has a glass transition temperature (Tg) that is ∼66 K lower than the neat polymer. In this work, we demonstrate that in spite of the presence of stiff CNTs in the nanocomposite, the Young's modulus of the nanocomposite containing dispersed pristine CNTs is virtually unchanged compared to the neat cross-linked epoxy. This observation suggests that the compressibility of the matrix-filler interphase interferes with the ability of the CNTs to reinforce the matrix. Furthermore, when the compressibility of the interphase is reduced by the use of amido-amine functionalized CNTs, the mechanical reinforcement due to the filler is more effective, resulting in a ∼50% increase in the Young's modulus compared to the neat cross-linked epoxy. Correspondingly, the functionalization of the CNTs also led to a recovery in the Tg making it effectively the same as the neat polymer and also resulted in a ∼12% increase in the thermal conductivity of the nanocomposite containing functionalized CNTs compared to that containing pristine CNTs. These results demonstrate that the functionalization of the CNTs facilitates the transfer of both mechanical load and thermal energy across the matrix-filler interface.

  2. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Frida, E-mail: roman@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Calventus, Yolanda, E-mail: calventus@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Colomer, Pere, E-mail: colomer@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Hutchinson, John M., E-mail: hutchinson@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Comparison of DSC and DRS in the cure of epoxy nanocomposites. Black-Right-Pointing-Pointer Dependence of exfoliation of nanocomposite on clay content. Black-Right-Pointing-Pointer Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  3. MWCNTs/P(St-co-GMA) composite nanofibers of engineered interface chemistry for epoxy matrix nanocomposites.

    Science.gov (United States)

    Özden-Yenigün, Elif; Menceloğlu, Yusuf Z; Papila, Melih

    2012-02-01

    Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.

  4. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    Science.gov (United States)

    Townsend, James

    the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.

  5. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  6. Nanocomposites with Liquid-Like Multiwalled Carbon Nanotubes Dispersed in Epoxy Resin without Solvent Process

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2014-01-01

    Full Text Available Liquid-like multiwall carbon nanotubes (MWNTs were prepared with as-received carboxylic MWNTs-COOH and poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-b-PPO-b-PEO through hydrogen bonding. The sample has liquid-like behavior above 58°C. The MWNTs content is 26.6 wt%. The liquid-like MWNTs nanofluids were incorporated into epoxy matrix with solvent-free process and dispersed well. When the liquid-like MWNTs nanofluids content is up to 1 wt%, the impact toughness of the nanocomposite is 153% higher than the pure epoxy matrix.

  7. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    OpenAIRE

    Aravand, Mohammadali; Lomov, Stepan Vladimirovitch; Verpoest, Ignace; Gorbatikh, Larissa

    2014-01-01

    The state of carbon nanotube (CNT) dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning ...

  8. Comparison of Dust Release from Epoxy and Paint Nanocomposites and Conventional Products during Sanding and Sawing

    DEFF Research Database (Denmark)

    Gomez, V.; Levin, Marcus; Saber, A. T.

    2014-01-01

    The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber...

  9. Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces.

    Science.gov (United States)

    Bell, Michael; Krentz, Timothy; Keith Nelson, J; Schadler, Linda; Wu, Ke; Breneman, Curt; Zhao, Su; Hillborg, Henrik; Benicewicz, Brian

    2017-06-01

    Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, π-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as π-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (L f ) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface on breakdown strength. Optimization of the investigated variables was shown to increase the AC dielectric breakdown strength of epoxy composites as much as 34% with only 2wt% silica loading. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    Science.gov (United States)

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  11. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    Directory of Open Access Journals (Sweden)

    Pilar Cortés

    2014-03-01

    Full Text Available Polymer layered silicate (PLS nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA epoxy resin as the matrix and organically modified montmorillonite (MMT as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt% were cured, both isothermally and non-isothermally, using a poly(ethyleneimine hyperbranched polymer (HBP, the cure kinetics being monitored by differential scanning calorimetry (DSC. The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS and transmission electron microscopy (TEM, and their mechanical properties were determined by dynamic mechanical analysis (DMA and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  12. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites.

    Science.gov (United States)

    Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M

    2016-04-12

    The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.

  13. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Directory of Open Access Journals (Sweden)

    Andrea Giovannelli

    2017-10-01

    Full Text Available The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  14. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    Science.gov (United States)

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  15. Corrosion protection and delamination mechanism of epoxy/carbon black nanocomposite coating on AA2024-T3

    NARCIS (Netherlands)

    Foyet, A.; Wu, T.H.; Kodentsov, A.; Ven, van der L.G.J.; With, de G.; Benthem, van R.A.T.M.

    2013-01-01

    The barrier property of a nanocomposite epoxy coating containing 1 or 1.25 vol% of carbon black (CB) applied on AA2024-T3 was investigated by using electrochemical impedance spectroscopy. Micro-electrochemical impedance spectroscopy and optical microscopy were also used to investigate the

  16. Effect of amine-terminated butadiene-acrylonitrile/clay combinations on the structure and properties of epoxy nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Rotrekl, Jakub; Kaprálková, Ludmila; Hromádková, Jiřina; Strachota, Adam

    2012-01-01

    Roč. 125, č. 5 (2012), s. 3477-3483 ISSN 0021-8995 R&D Projects: GA AV ČR IAA200500904 Institutional research plan: CEZ:AV0Z40500505 Keywords : epoxy nanocomposites * mechanical properties * microstructure Subject RIV: JI - Composite Materials Impact factor: 1.395, year: 2012

  17. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles

    Science.gov (United States)

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-01

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of

  18. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  19. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

    International Nuclear Information System (INIS)

    Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M.

    2004-01-01

    The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cracks and the damage was examined by scanning electron microscopy. These nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Interface debonding and sliding can thus occur in materials with microstructures approaching the atomic scale. Furthermore, for certain geometries a new mechanism of nanotube collapse in 'shear bands' occurs, rather than crack formation, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models are used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality. Three-dimensional FEM analysis indicates that matrix residual stresses on the order of 300 MPa are sustained in these materials without spontaneous cracking, suggesting that residual stress can be used to engineer enhanced performance. These nanoscale ceramic composites thus have potential for toughening and damage tolerance at submicron scales, and so are excellent candidates for wear-resistant coatings

  20. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2012-02-26

    Epoxy hybrid-nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission electron microscopy (TEM). The influences of RCF/HNTs dispersion on the mechanical properties and thermal properties of these composites have been characterized in terms of flexural strength, flexural modulus, fracture toughness, impact toughness, impact strength, and thermogravimetric analysis. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased because of the addition of HNTs into the epoxy matrix. Flexural strength, flexural modulus, fracture toughness, and impact toughness increased by 20.8, 72.8, 56.5, and 25.0%, respectively, at 1 wt% HNTs load. The presence of RCF dramatically enhanced flexural strength, fracture toughness, impact strength, and impact toughness of the composites by 160%, 350%, 444%, and 263%, respectively. However, adding HNTs to RCF/epoxy showed only slight enhancements in flexural strength and fracture toughness. The inclusion of 5 wt% HNTs into RCF/epoxy ecocomposites increased the impact toughness by 27.6%. The presence of either HNTs or RCF accelerated the thermal degradation of neat epoxy. However, at high temperature, samples reinforced with RCF and HNTs displayed better thermal stability with increased char residue than neat resin. © 2012 Society of Plastics Engineers.

  1. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  2. Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior.

    Science.gov (United States)

    Pécastaings, G; Delhaès, P; Derré, A; Saadaoui, H; Carmona, F; Cui, S

    2004-09-01

    The interfacial effects are critical to understand the nanocomposite behavior based on polymer matrices. These effects are dependent upon the morphology of carbon nanotubes, the type of used polymer and the processing technique. Indeed, we show that the different parameters, as the eventual surfactant use, the ultrasonic treatment and shear mixing have to be carefully examined, in particular, for nanotube dispersion and their possible alignment. A series of multiwalled nanotubes (MWNT) have been mixed with a regular epoxy resin under a controlled way to prepare nanocomposites. The influence of nanotube content is examined through helium bulk density, glass transition temperature of the matrix and direct current electrical conductivity measurements. These results, including the value of the percolation threshold, are analyzed in relationship with the mesostructural organization of these nanotubes, which is observed by standard and conductive probe atomic force microscopy (AFM) measurements. The wrapping effect of the organic matrix along the nanotubes is evidenced and analyzed to get a better understanding of the final composite characteristics, in particular, for eventually reinforcing the matrix without covalent bonding.

  3. Carbon Nanotube-Epoxy Nanocomposites: Correlation and Integration of Dynamic Impedance, Dielectric, and Mechanical Analyses

    Directory of Open Access Journals (Sweden)

    O. Moudam

    2013-01-01

    Full Text Available This study focuses on the characterization of MWNT-epoxy composites for different MWNT concentrations of 0–7 wt% by correlating different dynamic analysis techniques, including DMA, impedance, and DEA. An optimum composition was established at 0.1 wt% MWNTs corresponding to the best MWNT dispersion which resulted in the formation of an optimum MWNT network. The addition of this low fraction of MWNTs in epoxy resulted in stiffening the molecular structure and suppressing certain molecular transitions, raising the dielectric constant especially in the low-to-medium frequency range, raising the electrical conductivity especially at the high frequencies, and increasing the electromagnetic shielding effectiveness. The 0.1% MWNT-epoxy nanocomposite switched the electromagnetic shielding behaviour from being a very effective absorber at low frequencies to being an effective reflector at high frequencies. Finally, the Nyquist plot derived from the dynamic impedance spectroscopy proved most useful at providing evidence of multiple size distribution of MWNT agglomerates.

  4. Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection.

    Science.gov (United States)

    Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    Zinc molybdate (ZM) is a safer anticorrosive additive for cooling systems when compared with chromates and lead salts, due to its insolubility in aqueous media. For most molybdate pigments, their molybdate anion (MoO 4 -2 ) acts as an anionic inhibitor and its passivation capacity is comparable with chromate anion (CrO 4 -2 ). To alleviate the environmental concerns involving chromates-based industrial protective coatings, we have proposed new alternative in this work. We have synthesized ZM nanocrystals via ultrasound-assisted process and encapsulated them within an epoxy/PDMS coating towards corrosion protection. The surface morphology and mechanical properties of these ZM doped epoxy/PDMS nanocomposite coatings is exhaustively discussed to show the effect of ZM content on protective properties. The presence of ZM nanocrystals significantly contributed to the corrosion barrier performance of the coating while the amount of ZM nanocrystals needed to prepare an epoxy coating with optimum barrier performance was established. Beyond 2 wt% ZM concentration, the siloxane-structured epoxy coating network became saturated with ZM pigments. This further broadened inherent pores channels, leading to the percolation of corrosion chloride ions through the coating. SEM evidence has revealed proof of surface delamination on ZM3 coating. A model mechanism of corrosion resistance has been proposed for ZM doped epoxy/PDMS nanocomposite coatings from exhaustive surface morphological investigations and evidence. This coating matrix may have emerging applications in cooling systems as anticorrosive surface paints as well as create an avenue for environmental corrosion remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  6. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  7. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    International Nuclear Information System (INIS)

    Zvetkov, V.L.; Djoumaliisky, S.; Simeonova-Ivanova, E.

    2013-01-01

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix

  8. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    Energy Technology Data Exchange (ETDEWEB)

    Zvetkov, V.L., E-mail: zvetval@yahoo.com [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria); Djoumaliisky, S.; Simeonova-Ivanova, E. [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria)

    2013-02-10

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix.

  9. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  10. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  11. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    Science.gov (United States)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  12. A study on resistance to ultraviolet radiation of POSS-TiO2/epoxy nanocomposites

    Science.gov (United States)

    Peng, Dequn; Qin, Wei; Wu, Xiaohong

    2015-06-01

    Ultraviolet (UV) radiation is a severe space environmental factor, which is harmful to the durability of the polymeric materials of the spacecraft. For this reason, a novel POSS-TiO2/EP nanocomposite was synthesized by incorporating the POSS-TiO2 organic-inorganic hybrid into the epoxy (EP) resin. The effects of UV radiation on EP resin and on POSS-TiO2/EP nanocomposites were investigated in a ground-based simulator that simulates space radiation conditions. Compared with EP resin, the value of bend strength for 5.0 wt% POSS-TiO2/EP varied in a small range before and after UV radiation. Meanwhile, a typical tough feature was observed from the SEM photo for POSS-TiO2/EP nanocomposite after UV exposure. This result indicated that the POSS-TiO2/EP exhibited the excellent properties of anti-space ultraviolet radiation. The thermo gravimetric (TG) results showed that the addition of POSS-TiO2 improved the thermal-stability of EP resin matrix. The synthesized nanocomposites in this work could be used in the satellites to enhance their adaptability to the space environment and extend their service life.

  13. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  14. Microstructure of polymer-clay nanocomposites studied by positrons

    International Nuclear Information System (INIS)

    Wang, S.J.; Liu, L.M.; Fang, P.F.; Chen, Z.; Wang, H.M.; Zhang, S.P.

    2007-01-01

    The epoxy-rectorite nanocomposites with different rectorite contents, epoxide equivalent were prepared and its microstructure was studied by positron annihilation and X-ray diffraction (XRD). At low rectorite content (0-2.0%), the free volume size in nanocomposites is nearly the same, but its concentration decreases with increasing content; the exfoliated structure was observed by XRD and interfacial layer formation between rectorite platelets and epoxy matrix was probed by positrons. Comparing with epoxy-montmorillonite, the exfoliated structure and interfacial layers are easier formed in epoxy-rectorite nanocomposites

  15. Barium ferrite/epoxy resin nanocomposite system: Fabrication, dielectric, magnetic and hydration studies

    Directory of Open Access Journals (Sweden)

    A. Kanapitsas

    2016-03-01

    Full Text Available Composite systems of epoxy resin and barium ferrite nanoparticles have been prepared, and studied varying the content of the inclusions. Morphology of prepared samples has been examined via scanning electron microscopy and X-ray diffraction spectra, while electrical and magnetic properties were investigated by means of broadband dielectric spectroscopy, and magnetization tests respectively. Finally, water vapor sorption measurements were conducted in order to study the water sorption dynamics of the system. Electron microscopy images revealed the successful fabrication of nanocomposites. Dielectric permittivity increases with filler content, while three relaxation processes were detected in the relative spectra. These processes are attributed to interfacial polarization, glass to rubber transition of the matrix, and re-orientation of polar side groups of the polymer’s chain. Magnetization and magnetic saturation increase with magnetic nano-powder content. Nanocomposites absorb a small amount of water, not exceeding 1.7 wt%, regardless filler content, indicating their hydrophobic character.

  16. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    Science.gov (United States)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  17. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  18. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  19. Chemical changes and tensile and electrical properties of epoxy ...

    African Journals Online (AJOL)

    The properties of epoxy rsesin can be improved by the use of nanofiller such as carbon black (CB), The nanocomposite was synthesized by dispersion via sonication and shear mixing. The morphology, surface chemistry and the structure of CB and the epoxy/CB nanocomposites were investigated using XPS, FTIR, FESEM, ...

  20. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2013-04-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  1. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2012-01-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  2. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Wichmann, Malte H G; Buschhorn, Samuel T; Boeger, Lars; Schulte, Karl; Adelung, Rainer

    2008-01-01

    In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.

  3. Influence of Macro-Topography on Damage Tolerance and Fracture Toughness of 0.1 wt % Multi-Layer Graphene/Clay-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-07-01

    Full Text Available Influence of topographical features on mechanical properties of 0.1 wt % Multi-Layer Graphene (MLG/clay-epoxy nanocomposites has been studied. Three different compositions were made: (1 0.1 wt % MLG-EP; (2 0.1 wt % clay-EP and (3 0.05 wt % MLG-0.05 wt % clay-EP. The objective of making hybrid nanocomposites was to determine whether synergistic effects are prominent at low weight fraction of 0.1 wt % causing an improvement in mechanical properties. The topographical features studied include waviness (Wa, roughness average (Ra, root mean square value (Rq and maximum roughness height (Rmax or Rz. The Rz of as-cast 0.1 wt % MLG-EP, clay-EP and 0.05 wt % MLG-0.05 wt % clay-EP nanocomposites were 43.52, 48.43 and 41.8 µm respectively. A decrease in Rz values was observed by treating the samples with velvet cloth and abrasive paper 1200P while increased by treating with abrasive papers 320P and 60P. A weight loss of up to 16% was observed in samples after the treatment with the abrasive papers. It was observed that MLG is more effective in improving the mechanical properties of epoxy than nanoclay. In addition, no significant improvement in mechanical properties was observed in hybrid nanocomposites indicating that 0.1 wt % is not sufficient to generate conspicuous synergistic effects.

  4. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

  5. Tuning the adhesion between polyimide substrate and MWCNTs/epoxy nanocomposite by surface treatment

    Science.gov (United States)

    Bouhamed, Ayda; Kia, Alireza Mohammadian; Naifar, Slim; Dzhagan, Volodymyr; Müller, Christian; Zahn, Dietrich R. T.; Choura, Slim; Kanoun, Olfa

    2017-11-01

    MWCNTs/epoxy nanocomposite thin films are coated on the polyimide (PI) flexible substrate, to be used as a strain sensor. Previous studies showed that the adhesion between polyimide and other materials are very poor. In this work, two approaches, oxygen plasma cleaning and simple solvent cleaning are performed for activation of the polyimide surface. In order to understand the impact of both cleaning techniques, the physicochemical properties of PI are measured and characterized using contact angle measurements (CAMs), X-ray photoelectron spectroscopy(XPS), and atomic force microscopy (AFM). In addition, the adhesion properties of PI/[MWCNTs/epoxy] systems by varying surface treatment time are investigated and evaluated using force-distance measurements by AFM. The results illustrate that the activated surface exhibits higher surface energy for oxygen plasma cleaning in comparison with the solvent cleaning method. The improvement can be related to the increase of oxygen concentration, which is accompanied by the enhancement of the polar component to 53.79 mN/m due to the formation of functional groups on the surface and the change of the substrate surface roughness from 1.72 nm to 15.5 nm. As a result, improved adhesion was observed from force-distance measurement between PI/[MWCNTs/epoxy] systems due to oxygen plasma effects.

  6. Epoxy-silica nanocomposite interphase control using task-specific ionic liquids via hydrolytic and non-hydrolytic sol-gel processes

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Perchacz, Magdalena; Ponyrko, Sergii; Donato, Katarzyna Zawada; Schrekker, H. S.; Beneš, Hynek; Matějka, Libor

    2015-01-01

    Roč. 5, č. 111 (2015), s. 91330-91339 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-05146S; GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : epoxy-silica nanocomposite * sol-gel processes * ionic liquids Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  7. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  8. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    Science.gov (United States)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  9. Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

    International Nuclear Information System (INIS)

    Kim, Byungjoo; Bae, Kyongmin; An, Kayhyeok; Park, Soojin

    2012-01-01

    Aluminum oxide (Al 2 O 3 ) nanofibers were treated thermally under an ammonia (NH 3 ) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of Al 2 O 3 /epoxy nanocomposites. The micro-structural and morphological properties of the NH 3 -assisted thermally-treated Al 2 O 3 nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and N 2 /77 K isothermal adsorptions. From the results, the formation of AlN on Al 2 O 3 nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified Al 2 O 3 nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated Al 2 O 3 /epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers

  10. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    Science.gov (United States)

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  11. Polyamide 4,6 nanocomposites with and without the use of a maleated polyolefin elastomer as a toughener

    International Nuclear Information System (INIS)

    Chiu, Fang-Chyou; Deng, Tsung-Lin

    2011-01-01

    In this study, polyamide 4,6 (PA 4,6)-based nanocomposites were successfully prepared using a twin screw extruder. A commercial organo-montmorillonite (denoted as 30B) and a commercial maleated polyolefin elastomer (denoted as POEMA) served as the reinforcing filler and toughener, respectively. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results confirmed the nano-scaled dispersion of 30B in the composites. Nevertheless, the presence of POEMA slightly depreciated the dispersibility of 30B. Polarized light microscope (PLM) observations showed that the inclusions of 30B and POEMA led to the formation of diffused/broken PA 4,6 spherulites. Differential scanning calorimetry (DSC) results indicated that the addition of 30B retarded the crystallization of PA 4,6; the addition of POEMA led to a similar retardation effect on PA 4,6 crystallization. Interesting melting behaviors associated mainly with the crystal annealing of PA 4,6 upon heating were observed for the fast-cooled samples. The presence of POEMA was noted to hamper the annealing process of PA 4,6 crystals. The thermal stability enhancement of PA 4,6 in the presence of 30B was further raised to a higher extent when POEMA was included in the matrix. The rigidity, including the storage/Young's/flexural moduli, of PA 4,6 significantly increased after adding 30B. These properties, however, declined after the additional incorporation of POEMA. The PA 4,6/POEMA/30B nanocomposites basically displayed balanced impact strength between those of the neat PA 4,6 and PA 4,6/POEMA blends.

  12. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez

    2013-08-01

    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  13. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Science.gov (United States)

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  14. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    International Nuclear Information System (INIS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-01-01

    Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  15. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    Science.gov (United States)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  16. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    Science.gov (United States)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  17. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2013-01-01

    Highlights: • The nanocomposite with low content of clay displayed improved thermal properties. • The vitrification was observed in the isothermal curing. • Dielectric relaxations outside and inside of the clay galleries were detected. - Abstract: The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isothermal cure process, and it was found that the nanocomposite with a low clay content (2 wt%), denoted EDM2, shows improved thermal properties with respect to the unreinforced resin (denoted ED), while the nanocomposite with a higher clay content (5 wt%), denoted EDM5, displayed inferior properties. The cure kinetics were analysed by different methods, and it was observed that the activation energy and kinetic parameters of EDM2 were lower compared to the other two systems. Examination of the nanostructure of the cured EDM2 nanocomposite showed partial exfoliation, while the EDM5 system retains an intercalated nanostructure. In the DRS studies of the curing process of the EDM2 system, two dielectric relaxations were detected, which are associated with the molecular mobility in the curing reaction which takes place both outside and inside the clay galleries

  18. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    Science.gov (United States)

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  20. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties

    Directory of Open Access Journals (Sweden)

    H. Maka

    2014-10-01

    Full Text Available Epoxy nanocomposites with commercial carbon nanotubes (CNT or graphene (GN have been prepared using phosphonium ionic liquid [trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl phosphinate, IL-f]. IL-f served simultaneously as nanofiller dispersing medium and epoxy resin catalytic curing agent. An influence of IL-f/epoxy weight ratio (3, 6 and 9/100, phr, carbon nanofiller type and content on viscosity of epoxy compositions during storage at ambient temperature was evaluated. Curing process was controlled for neat and CNT or GN modified epoxy compositions (0.25-1.0 wt.% load using differential scanning calorimetry and rheometry. Epoxy nanocomposites exhibited slightly increased glass transition temperature values (146 to 149°C whereas tan δ and storage modulus decreased (0.30 to 0.27 and 2087 to 1070 MPa, respectively as compared to reference material. Crosslink density regularly decreased for composites with increasing CNT content (11 094 to 7 020 mol/m3. Electrical volume resistivity of the nanocomposites was improved in case of CNT to 4•101 Ω•m and GN to 2•105 Ω•m (nanofiller content 1 wt.%. Flame retardancy was found for modified epoxy materials with as low GN and phosphorus content as 0.25 and 0.7 wt.%, respectively (increase of limiting oxygen index to 26.5%.

  1. Fate of nanoparticles during life cycle of polymer nanocomposites

    International Nuclear Information System (INIS)

    Nguyen, T; Pellegrin, B; Bernard, C; Gu, X; Gorham, J M; Stutzman, P; Stanley, D; Shapiro, A; Byrd, E; Hettenhouser, R; Chin, J

    2011-01-01

    Nanoparticles are increasingly used in consumer and structural polymeric products to enhance a variety of properties. Under the influence of environmental factors (e.g., ultraviolet, moisture, temperature) and mechanical actions (e.g., scratching, vibrations, abrasion), nanoparticles could potentially release from the products and thus have negative effects on the environment, health and safety. The fate of nanoparticles in polymer nanocomposites during their exposure to UV environment has been investigated. Epoxy polymer containing multi-walled carbon nanotubes (MWCNTs) and silica nanoparticles were studied. Specially-designed cells containing nanocomposite specimens were irradiated with UV radiation between 295 nm and 400 nm. Chemical degradation, mass loss and surface morphology of the epoxy nanocomposites, and release of nanoparticles were measured. Epoxy containing MWCNTs exposed to UV radiation degraded at a much slower rate than the unfilled epoxy or the epoxy/nanosilica composite. Photodegradation of the matrix resulted in substantial accumulation of nanoparticles on the composite surfaces. Silica nanoparticles were found to release into the environment, but MWCNTs formed a dense network on the composite surface, with no evidence of release even after prolonged exposure. Conceptual models for silica nanoparticle release and MWCNT retention on the surface during UV exposure of nanocomposites are presented.

  2. Preparation and characterization of polyhedral oligomer silsesquioxane nanocomposites incorporated in epoxy resin; Elaboracao e caracterizacao de nanocompositos de oligomero poliedrico de silsesquioxano incorporados na resina epoxidica

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, Marielen; Zini, Lucas Pandolphi; Birriel, Eliena Jonko; Kunst, Sandra Raquel; Zattera, Ademir Jose, E-mail: marielen_longhi@hotmail.com [Universidade de Caxias do Sul (LPOL/UCS), RS (Brazil). Laboratorio de Polimeros; Pistor, Vinicius [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2015-07-01

    The incorporation of nanofiller in thermosetting like epoxy resin as has been studied in order to modify its properties. In this research, nanocomposites were obtained by incorporating 5% by weight of three polyhedral oligomeric silsesquioxane (POSS) with different number of functionalization: Glicidilisobutil-POSS, Triglicidilisobutil- POSS and Glicicil POSS in an epoxy matrix by sonification process. The nanocomposites were characterized by analysis of X-ray diffraction (DRX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The DRX analysis showed the characteristic peak of POSS and TEM images showed that there is a difference in the dispersion of nanocages for the difference in the number of epoxy groups on the POSS. The incorporation of Glicidilisobutil-POSS showed a significant increase in the glass transition temperature (Tg) value, and also that the most effective from the viewpoint of the dispersion, on the other hand, the Glycidyl-POSS had a greater influence on the thermal stability demonstrating that the dispersion medium is an important characteristic to define the most desirable properties. (author)

  3. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  4. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  5. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  6. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    Science.gov (United States)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  7. Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity.

    Science.gov (United States)

    Luo, Xiaohu; Zhong, Jiawen; Zhou, Qiulan; Du, Shuo; Yuan, Song; Liu, Yali

    2018-05-17

    The design and preparation of an excellent corrosion protection coating is still a grand challenge and is essential for large-scale practical application. Herein, a novel cationic reduced graphene oxide (denoted as RGO-ID + )-based epoxy coating was fabricated for corrosion protection. RGO-ID + was synthesized by in situ synthesis and salification reaction, which is stable dispersion in water and epoxy latex, and the self-aligned RGO-ID + -reinforced cathodic electrophoretic epoxy nanocomposite coating (denoted as RGO-ID + coating) at the surface of metal was prepared by electrodeposition. The self-alignment of RGO-ID + in the coatings is mainly attributed to the electric field force. The significantly enhanced anticorrosion performance of RGO-ID + coating is proved by a series of electrochemical measurements in different concentrated NaCl solutions and salt spray tests. This superior anticorrosion property benefits from the self-aligned RGO-ID + nanosheets and the quaternary-N groups present in the RGO-ID + nanocomposite coating. Interestingly, the RGO-ID + also exhibits a high antibacterial activity toward Escherichia coli with 83.4 ± 1.3% antibacterial efficiency, which is attributed to the synergetic effects of RGO-ID + and the electrostatic attraction and hydrogen bonding between RGO-ID + and E. coli. This work offers new opportunities for the successful development of effective corrosion protection and self-antibacterial coatings.

  8. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  9. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    Science.gov (United States)

    Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil

    2017-12-01

    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.

  10. Influence of hematite nanorods on the mechanical properties of epoxy resin

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2017-01-01

    Full Text Available The mechanical properties of nanocomposites obtained by incorporation of fairly uniform hematite nanorods (α-Fe2O3 NRs into epoxy resin were studied as a function of the content of the inorganic phase. A thorough microstructural characterization of the α-Fe2O3 NRs and the nanocomposites was performed using transmission electron microscopy (TEM and atomic force microscopy (AFM. The TEM measurements revealed rod-like morphology of the nanofiller with a uniform size distribution (8.5 nm×170 nm, diameter×length. High-magnification TEM and AFM measurements indicated agglomeration of α-Fe2O3 NRs embedded in the epoxy resin. Stress at break, strain at break, elastic modulus and tensile toughness of the nanocomposites were compared with the data obtained for pure epoxy resin. Significant influence of nanofiller on the mechanical properties of epoxy resin, as well as on the glass transition temperature, could be noticed for samples with low contents of the inorganic phase (up to 1 wt. %. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45020

  11. The influence of value of intensity of constant electric field on structure, thermal physic and conductivity nanocomposites epoxy resin-oxide metal

    International Nuclear Information System (INIS)

    Vilensky, V.O.; Demchenko, V.I.

    2009-01-01

    Influence of constant electric field on structure, specific thermal capacity, thermomechanical properties and electrical conduction nanocomposites on a basis epoxy resin and fillers Fe 2 O 3 , Al 2 O 3 is investigated. The received results show, that application of constant electric field gives the chance to influence level of perfection of crystal structure filler (Fe 2 O 3 ) in structure to a composite, thus the size of crystals decreases from 18.0 nm (for initial samples of composites) to 7.7 nm (for the composites generated under the influence of CEF). Nanocomposites generated in CEF characterization the higher values of a electrical conduction

  12. The Effect of Ultrasonic Treatment on Thermal Stability of the Cured Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available The effect of ultrasonic treatment on thermal stability of binary systems containing epoxy and organic chemically modified montmorillonite (Cloisite 30B was studied. Differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, transmission electron microscopy (TEM, and wide angle X-ray diffraction (WAXD analysis were utilized. The mixing of epoxy and Cloisite 30B nanocomposites was performed by mechanical stirring, followed by 1 or 3-hour ultrasonic treatment, and polyetheramine as the curing agent. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. The d0 spacings for silicate in cured sample prepared at 1- and 3-hour duration of ultrasonic treatment were about 21 and 18 Å, respectively. This shows that shorter duration or ultrasonic treatment may be preferable to achieve higher d0 spacing of clay. This may be attributed to the increase in viscosity as homopolymerization process occurred, which restricts silicate dispersion. The 1-hour sonicated samples seem to be more thermally stable during the glass transition, but less stable during thermal decomposition process.

  13. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  14. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  15. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  16. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  17. Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields

    International Nuclear Information System (INIS)

    Lee, M.K.; Lee, J.K.; Kim, J.W.; Lee, G.J.

    2014-01-01

    High functional epoxy nanocomposites with three different filler materials, i.e., B 4 C, PbO, and Al(OH) 3 , were fabricated using an effective fabrication method consisting of an ultrasonic dispersion of nanoparticles in low-viscosity hardener and a subsequent mixing of a hardener-nanoparticle colloid with epoxy resins. It was confirmed that this approach provided not only an uniform dispersion but also an excellent wetting with enhanced interfacial adhesion of nano-particulate fillers within the matrix. By incorporating those three fillers, a synergistic effect was verified in multiple properties such as mechanical strength properties, thermal degradation, flame retardancy, and radiation shielding performance

  18. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.

    Science.gov (United States)

    Gomez, Virginia; Levin, Marcus; Saber, Anne T; Irusta, Silvia; Dal Maso, Miikka; Hanoi, Roberto; Santamaria, Jesus; Jensen, Keld A; Wallin, Håkan; Koponen, Ismo K

    2014-10-01

    The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber. The temporal evolution of the aerosol concentration and size distribution were measured simultaneously. The morphology of collected dust by scanning electron microscopy was different depending on the type of nanocomposites: particles from carbon nanotubes (CNTs) nanocomposites had protrusions on their surfaces and aggregates and agglomerates are attached to the paint matrix in particles emitted from alkyd paints. We observed no significant differences in the particle size distributions when comparing sanding dust from nanofiller containing products with dust from conventional products. Neither did we observe release of free nanomaterials. Instead, the nanomaterials were enclosed or partly enclosed in the matrix. A source strength term Si (cm(-3) s(-1)) that describes particle emission rates from continuous sources was introduced. Comparison between the Si parameters derived from sanding different materials allows identification of potential effects of addition of engineered nanoparticles to a composite. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites.

    Science.gov (United States)

    Abraham, Eldho; Kam, Doron; Nevo, Yuval; Slattegard, Rikard; Rivkin, Amit; Lapidot, Shaul; Shoseyov, Oded

    2016-10-05

    This work presents an environmentally friendly, iodine-catalysed chemical modification method to generate highly hydrophobic, optically active cellulose nanocrystals (CNC). The high degree of ester substitution (DS=2.18), hydrophobicity, crystalline behaviour and optical activity of the generated acetylated CNC (Ac-CNC) were quantified by TEM, FTIR, solid 13C NMR, contact angle, XRD and POM analyses. Ac-CNC possessing substantial enhancement in thermal stability (16.8%) and forms thin films with interlayer distance of 50-150 nm, presenting cavities suitable for entrapping nano and micro particles. Generated Ac-CNC proved as an effective reinforcing agent in hydrophobic polymer matrices for fabricating high performance nanocomposites. When integrated at a very low weight percentage (0.5%) in an epoxy matrix, Ac-CNC provided for a 73% increase in tensile strength and a 98% increase in modulus, demonstrating its remarkable reinforcing potential and effective stress transfer behaviour. The method of modification and the unique properties of the modified CNC (hydrophobicity, crystallinity, reinforcing ability and optical activity) render them a novel bionanomaterial for a range of multipurpose applications.

  20. Clever House Made by Using a New Kind of the Nanocomposites

    Directory of Open Access Journals (Sweden)

    Andrey Ponomarev

    2016-01-01

    Full Text Available The materials of this paper concern a new nanocomposites perspective for construction. The development of research in the field of production and application of nanocomposite materials has made it possible to develop building materials, having high exploitation characteristics. One of such materials is a polydisperse armed water soluble epoxy composite coat, named “EpoxyPAN.” This material consists of the water soluble epoxy resin filled by the high strength inorganic fillers and the unique nanocarbon particles, astralenes and nanoporous microfiber. It was found that EpoxyPAN is possible to be used as effective water protection coating and simultaneously as effective electromagnetic waves absorber. The physical and exploitation properties of this nanocomposite and the possible ways of its applications for the Clever House constructions are also described in this paper.

  1. Effect of mixing sequence on the curing of amine-hardened epoxy/ alumina nanocomposites as assessed by optical refractometry

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available High performance refractometry has been proven to be a useful tool to elucidate the isothermal curing process of nanocomposites. As a model system an amine-hardening epoxy filled with non-surface-treated alumina nanoparticles was selected. The tremendous resolution of this experimental technique is used to study morphological changes within nanocomposites via the refractive index. It is shown that these morphological changes are not simply due to the curing process but also depend on the sequence of mixing the nanoparticles either first into the resin or first into the hardener. Independent of the resin/hardener composition, the type of the mixing sequence discriminates systematically between two distinct refractive index curves produced by the curing process. The difference between the two refractive index curves increases monotonically with curing time, which underlines the importance of the initial molecular environment of the nanoparticles.

  2. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    Science.gov (United States)

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  3. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  4. Improvement of fatigue resistance of epoxy composite with microencapsulated epoxy-SbF5 self-healing system

    Directory of Open Access Journals (Sweden)

    X. J. Ye

    2017-11-01

    Full Text Available Rapid retardation and arresting of fatigue crack are successfully realized in the epoxy composite containing microencapsulated epoxy and ethanol solution of antimony pentafluoride-ethanol complex (SbF5·HOC2H5/HOC2H5. The effects of (i microcapsules induced-toughening, (ii hydrodynamic pressure crack tip shielding offered by the released healing agent, and (iii polymeric wedge and adhesive bonding of cured healing agent account for extension of fatigue life of the material. The two components of the healing agent can quickly react with each other soon after rupture of the microcapsules, and reconnect the crack only 20 seconds as of the test. The applied stress intensity range not only affects the healing efficiency, but also can be used to evaluate the healing speed. The present work offers a very fast healing system, and sets up a framework for characterizing speed of self-healing.

  5. Dielectric response, functionality and energy storage in epoxy nanocomposites: Barium titanate vs exfoliated graphite nanoplatelets

    International Nuclear Information System (INIS)

    Patsidis, A.C.; Kalaitzidou, K.; Psarras, G.C.

    2012-01-01

    Barium titanate/epoxy and exfoliated graphite nanoplatelets/epoxy nanocomposites were prepared and studied varying the filler content. Morphological characteristics were examined via scanning electron microscopy, while structural changes occurring in barium titanate as a function of temperature were investigated by means of X-ray diffraction. Broadband dielectric spectroscopy was employed for determining the dielectric response of the prepared systems. Based on the conducted analysis it was found that three relaxation processes are present in the spectra of the examined materials. From the slower to the faster one, these are interfacial polarization, glass to rubber transition of the polymer matrix, and rearrangement of polar side groups of the polymer chain. Systems' functionality and energy storing efficiency were assessed in terms of dielectric reinforcing function. Finally, the energy density of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. -- Graphical abstract: Systems' functionality, electrical relaxations and energy storing efficiency were assessed in terms of dielectric permittivity, electric modulus and dielectric reinforcing function (G). Further, the energy density (U) of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. Highlights: ► Relaxation phenomena were found to be present in all studied systems. ► Two processes emanate from the polymer matrix (α-mode and β-mode). ► Systems' electrical heterogeneity gives rise to interfacial polarization. ► BaTiO 3 /epoxy composites exhibit functional behavior due to structural changes. ► xGnP/epoxy

  6. Characterization of organobentonite used for polymer nanocomposites

    International Nuclear Information System (INIS)

    Lee, J.Y.; Lee, H.K.

    2004-01-01

    Montmorillonite-rich clay was fractionated from bentonite mined from Kampo area in Korea, and it was treated with many cationic organo-surfactant. The chemical and physical characteristics of them are investigated, and epoxy nanocomposites were also studied. To calculate the exchanged content of organo-surfactant, thermogravimetric was carried out and interlayer distance was measured by wide-angle X-ray diffractometer. The interlayer distance for MMT-III, HDA-M, ODA-M, CTMA-M, and ODTMA-M were 1.21, 1.53, 1.57, 2.04, and 2.07 nm. All organobentonites were delaminated in the epoxy matrix forming the epoxy/organobentonite nanocomposites with various contents. Tensile strength and Young's modulus were modified by loading the organobentonite

  7. Toughening and healing of composites by CNTs reinforced copolymer nylon micro-particles

    Science.gov (United States)

    Kostopoulos, V.; Kotrotsos, A.; Tsokanas, P.; Tsantzalis, S.

    2018-02-01

    In this work, nylon micro-particles, both undoped and doped with multiwall carbon nanotubes played the role of the self-healing agent into carbon fibre/epoxy composites (CFRPs). These micro-particles were blended with epoxy matrix and the resulting mixture was used for the composites fabrication. Three types of composites were manufactured; the reference CFRP and the modified CFRPs with undoped and doped nylon micro-particles. After manufacturing, these composites were tested under mode I and II fracture loading conditions and it was shown that the interlaminar fracture toughness characteristics of both nylon modified composites were significantly increased. After first fracture, healing process was activated for the tested nylon modified samples and revealed high fracture toughness characteristics recovery. Morphology examinations supported the results and elucidated the involved toughening and failure mechanisms. Finally, the in-plane mechanical and thermo-mechanical properties of all the composites were characterized for identifying possible knock-down effects due to the nylon modification of composites.

  8. A Nanomechanical Approach on the Measurement of the Elastic Properties of Epoxy Reinforced Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    G. Mansour

    2013-09-01

    Full Text Available The mechanical behavior of nanocomposite materials with multiwallcarbon nanotube ( MWCNT reinforcements is investigated in the present paper. Epoxy nanocomposites with different weight percentages of carbon nanotubes have been characterized following tensile tests and nanoindentations. The objective of this work was to investigate the efficiency of the reinforcement provided by nanotubes and to examine the agreement between the mechanical properties of the epoxynanocomposites obtained via a macroscale and nanoscale experimentalmethods. Higher increase in modulus was accomplished at weight fraction of nanotube reinforcement of 1 %. The modulus as measured by the tensile tests differed an average of 18% with the results obtained from the nanoindentations, however by utilizing a proper calibration method the resulting data were corrected to only a 3% difference. The modulus results obtained from the experiments were compared with the Halpin - Tsai model and with the Thostenson - Chou model accounting for the outer layer interactions of the nanotube with the hosting matrix. A relatively good agreement was found between the models and the experiments.

  9. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  10. Influence of the Organophilisation Process on Properties of the Bentonite Filler and Mechanical Properties of the Clay/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rapacz-Kmita A.

    2016-06-01

    Full Text Available In this comparative study, the influence of the organophilisation process on the properties of resulting organobentonite fillers and their capability to improve the mechanical properties of clay/polymer nanocomposites were investigated. The organobentonites were obtained by activation with the use of two organic quaternary ammonium salts (QAS with alkyl chains of significantly different lengths. The organophilisation resulted in an increase in the interlayer space of clays, which was confirmed by XRD analysis. The obtained organofillers were used to produce nanoclay/epoxy resin composites and the effects of alkyl chain length on the resulting properties of composites were compared based on the examination of mechanical behaviour and morphology, and a composite filled with the non organophilised bentonite was used as a reference material. It was demonstrated that the organophilisation process using distearyldimethyl ammonium chloride salt with a longer alkyl chain (C18-C20 created a more superior conditions for the compatibility of nanofiller with a polymer matrix, resulting in a 25 % increase in the bending strength of the epoxy composite material filled with 3 %wt of the organophilised bentonite, comparing to neat epoxy.

  11. Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jie Lian

    2011-12-01

    Full Text Available Plasma nanocoating of allylamine were deposited on the surfaces of multi-walled carbon nanotubes (MWCNTs to provide desirable functionalities and thus to tailor the surface characteristics of MWCNTs for improved dispersion and interfacial adhesion in epoxy matrices. Plasma nanocoated MWCNTs were characterized using scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HR-TEM, surface contact angle, and pH change measurements. Mechanical testing results showed that epoxy reinforced with 1.0 wt % plasma coated MWCNTs increased the tensile strength by 54% as compared with the pure epoxy control, while epoxy reinforced with untreated MWCNTs have lower tensile strength than the pure epoxy control. Optical and electron microscopic images show enhanced dispersion of plasma coated MWCNTs in epoxy compared to untreated MWCNTs. Plasma nanocoatings from allylamine on MWCNTs could significantly enhance their dispersion and interfacial adhesion in epoxy matrices. Simulation results based on the shear-lag model derived from micromechanics also confirmed that plasma nanocoating on MWCNTs significantly improved the epoxy/fillers interface bonding and as a result the increased composite strength.

  12. Viscoelastic properties of graphene-based epoxy resins

    Science.gov (United States)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  13. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites.

    Science.gov (United States)

    Li, Yan; Zhang, Han; Crespo, Maria; Porwal, Harshit; Picot, Olivier; Santagiuliana, Giovanni; Huang, Zhaohui; Barbieri, Ettore; Pugno, Nicola M; Peijs, Ton; Bilotti, Emiliano

    2016-09-14

    Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.

  14. A novel fabrication of a high performance SiO(2)-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO(2)-GO nanohybrids.

    Science.gov (United States)

    Haeri, S Z; Ramezanzadeh, B; Asghari, M

    2017-05-01

    In this study it has been aimed to enhance the thermal resistance of epoxy coating through incorporation of SiO 2 -GO nanohybrids. SiO 2 -GO nanohybrids were synthesized through one-step sol-gel route using a mixture of Tetraethylorthosilane (TEOS) and 3-Aminopropyl triethoxysilane (APTES) silanes. The SiO 2 -GO nanohybrids were prepared at various hydrolysis times of 24, 48 and 72h. Then 0.2wt.% of GO and SiO 2 -GO nanohybrids were separately incorporated into the epoxy coating. Results revealed that amino functionalized SiO 2 nanoparticles with particle size around 20-30nm successfully synthesized on the basal plane of GO. Results showed significant improvement of dispersion and interfacial interactions between nanohybrids and epoxy composite arising from covalent bonding between the SiO 2 -GO and the epoxy matrix. It was found that the thermal resistance of SiO 2 -GO nanohybrids and SiO 2 -GO/Epoxy nanocomposite was noticeably higher than GO and epoxy matrix, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Kejing Yu

    2016-05-01

    Full Text Available The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM and optical microscopy (OM. The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials.

  16. Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    2017-03-01

    Full Text Available Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for these ternary compounds were controlled by particle toughening, phase-transformation toughening and fiber-reinforced toughening, as well as texture toughening. Based on the various toughening mechanisms in MAX phase, models of SiC particles and fibers toughening Ti3SiC2 are established to predict and explain the toughening mechanisms. The modeling work provides insights and guidance to fabricate MAX phase-related composites with optimized microstructures in order to achieve the desired mechanical properties required for harsh application environments.

  17. Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC

    KAUST Repository

    Alamri, H.

    2012-04-06

    Three different approaches have been applied and investigated to enhance the thermal and mechanical properties of epoxy resin. Epoxy system reinforced with either recycled cellulose fibers (RCF) or nanosilicon carbide (n-SiC) particles as well as with both RCF and n-SiC has been fabricated and investigated. The effect of RCF/n-SiC dispersion on the mechanical and thermal properties of these composites has been characterized. The fracture surface morphology and toughness mechanisms were investigated by scanning electron microscopy. The dispersion of n-SiC particles into epoxy nanocomposites was studied by synchrotron radiation diffraction and transmission electron microscopy. Results indicated that mechanical properties increased as a result of the addition of n-SiC. The presence of RCF layers significantly increased the mechanical properties of RCF/epoxy composites when compared with neat epoxy and its nanocomposites. The influence of the addition of n-SiC to RCF/epoxy composites in mechanical properties was found to be positive in toughness properties. At high temperatures, thermal stability of neat epoxy increased due to the presence of either n-SiC particles or RCF layers. However, the presence of RCF accelerated the thermal degradation of neat epoxy as well as the addition of n-SiC to RCF/epoxy samples increased the rate of the major thermal degradation. © 2012 Wiley Periodicals, Inc.

  18. On the Effect of Nanoparticle Surface Chemistry on the Electrical Characteristics of Epoxy-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Celia Yeung

    2016-04-01

    Full Text Available The effect of nanosilica surface chemistry on the electrical behavior of epoxy-based nanocomposites is described. The nanosilica was reacted with different volumes of (3-glycidyloxypropyltrimethoxysilane and the efficacy of the process was demonstrated by infrared spectroscopy and combustion analysis. Nanocomposites containing 2 wt % of nanosilica were prepared and characterized by scanning electron microscopy (SEM, AC ramp electrical breakdown testing, differential scanning calorimetry (DSC and dielectric spectroscopy. SEM examination indicated that, although the nanoparticle dispersion improved somewhat as the degree of surface functionalization increased, all samples nevertheless contained agglomerates. Despite the non-ideal nature of the samples, major improvements in breakdown strength (from 182 ± 5 kV·mm−1 to 268 ± 12 kV·mm−1 were observed in systems formulated from optimally treated nanosilicas. DSC studies of the glass transition revealed no evidence for any modified interphase regions between the nanosilica and the matrix, but interfacial effects were evident in the dielectric spectra. In particular, changes in the magnitude of the real part of the permittivity and variations in the interfacial α′-relaxation suggest that the observed changes in breakdown performance stem from variations in the polar character of the nanosilica surface, which may affect the local density of trapping states and, thereby, charge transport dynamics.

  19. Synthesis of Polyimides in Molecular-Scale Confinement for Low-Density Hybrid Nanocomposites.

    Science.gov (United States)

    Isaacson, Scott G; Fostvedt, Jade I; Koerner, Hilmar; Baur, Jeffery W; Lionti, Krystelle; Volksen, Willi; Dubois, Geraud; Dauskardt, Reinhold H

    2017-11-08

    In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).

  20. Surface morphology and dewettability of self-organized thermosets involving epoxy and POSS-capped poly(ethylene oxide) telechelics

    International Nuclear Information System (INIS)

    Wang, Lei; Zheng, Sixun

    2012-01-01

    A heptaphenyl polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) (POSS-capped PEO) telechelics was synthesized via the Huisgen 1,3-dipolar cycloaddition between 3-azidopropylheptaphenyl POSS and α,ω-dialkynyl-terminated poly(ethylene oxide). The organic–inorganic amphiphile was incorporated into epoxy to obtain the organic–inorganic nanocomposites. The morphology of the nanocomposites was investigated by means of atomic force microscopy (AFM) and dynamic mechanical thermal analysis (DMTA). It was found that the epoxy thermosets containing POSS-capped PEO telechelics were microphase-separated. The formation of the nanophases in the thermosets followed a self-assembly mechanism. The static contact angle measurements show that the nanocomposites displayed a significant enhancement in surface hydrophobicity as well as reduction in surface free energy. The improvement in surface dewettability was ascribed to the enrichment of POSS cages at the surface of the nanocomposites and the formation of the specific surface morphology as evidenced by X-ray photoelectron spectroscopy (XPS) and surface atomic force microscopy (AFM). -- Highlights: ► POSS-capped PEO telechelics was synthesized via click chemistry approach. ► The organic–inorganic amphiphile can be self-assembled into the nanophases in epoxy. ► The hybrid nanocomposites were successfully prepared via a self-assembly approach. ► The nanocomposites displayed a significant enhancement in surface hydrophobicity.

  1. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    International Nuclear Information System (INIS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-01-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  2. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  3. Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Wang, Zhikun; Lv, Qiang; Chen, Shenghui; Li, Chunling; Sun, Shuangqing; Hu, Songqing

    2016-03-23

    Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.

  4. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films

    International Nuclear Information System (INIS)

    Xing Weiyi; Jie Ganxin; Song Lei; Wang Xin; Lv Xiaoqi; Hu Yuan

    2011-01-01

    This paper reported the UV-curing flame retardant film, which consisted of epoxy acrylate resin (EA) used as an oligomer, tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA) used as flame retardant (FR). The flame retardancy and thermal properties of films were reinforced by using alpha-zirconium phosphate (α-Zr (HPO 4 ) 2 H 2 O, α-ZrP). The morphology of nanocomposite film was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the organophilic α-ZrP (OZrP) layers were dispersed well in epoxy acrylate resin. Microscale Combustion Calorimeter (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TGA-IR) were used to characterize the flame retardant property and thermal stability. It was found that the incorporation of TAEP and TGICA can reduce the flammability of EA. Moreover, further reductions were observed due to the addition of OZrP. The char residue for systems with or without OZrP was also explored by scanning electron microscopy (SEM).

  5. A novel methodology for self-healing at the nanoscale in CNT/epoxy composites

    Science.gov (United States)

    Quigley, E.; Datta, S.; Chattopadhyay, A.

    2016-04-01

    Self-healing materials have the potential to repair induced damage and extend the service life of aerospace or civil components as well as prevent catastrophic failure. A novel technique to provide self-healing capabilities at the nanoscale in carbon nanotube/epoxy nanocomposites is presented in this paper. Carbon nanotubes (CNTs) functionalized with the healing agent (dicyclopentadiene) were used to fabricate self-healing CNT/epoxy nanocomposite films. The structure of CNTs was considered suitable for this application since they are nanosized, hollow, and provide a more consistent size distribution than polymeric nanocapsules. Specimens with different weight fractions of the functionalized CNTs were fabricated to explore the effect of weight fraction of functionalized CNTs on the extent of healing. Optical micrographs with different fluorescent filters showed partial or complete healing of damage approximately two to three weeks after damage was induced. Results indicate that by using CNTs to encapsulate a healing agent, crack growth in self-healing CNT/epoxy nanocomposites can be retarded, leading to safer materials that can autonomously repair itself.

  6. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    Science.gov (United States)

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  7. High temperature strengthening of zirconium-toughened ceramics

    International Nuclear Information System (INIS)

    Claussen, N.

    1986-01-01

    Transformation-toughened (i.e. ZrO/sub 2/-toughened) ceramics represent a new class of high performance ceramics with spectacular strength properties at low and intermediate temperatures. However, at temperatures above about 700 0 C, most of these tough oxide-base ceramics can no longer be used as load-bearing engineering parts because of characteristic deficiencies. The aim of the present paper is to provide and discuss microstructural design strategies which may enable ZrO/sub 2/-toughened ceramics to be applied at higher temperatures. From the various strategies suggested, three appear to show good prospects, namely (a) the prevention of glassy intergranular films, (b) the addition of hard high modulus particles and (c) whikser or fibre reinforcement. Experimental approaches are presented from some ZrO/sub 2/-toughened ceramics, elg. tetragonal ZrO/sub 2/ polycrystals and ZrO/sub 2/-toughened cordierite, spinel and mullite

  8. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  9. Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing.

    Directory of Open Access Journals (Sweden)

    M. Zarrelli

    2012-07-01

    Full Text Available Two different routes, namely solvent aided dispersion and direct mixing, were employed to disperse Multi-Walled Carbon Nanotubes (MWNTs into a mono-component epoxy system used as matrix for advanced composites. In the first route, MWCNTs were diluted in three different solvents (acetone, sodium dodecyl sulfate and ethanol and then mixed with the matrix by tip sonication. In the second case, carbonaceous nanoparticles were added directly into the hosting system and dispersion was carried out by using three different techniques (mechanical stirring, magnetic agitation and tip sonication. The effects of the solvents and agitation energy were investigated by optical microscopy at micron level, in order assess the more efficient dispersion procedure for the considered epoxy system. It was demonstrated that parameters associated with direct mixing rather than solvent solubility govern MWCNT dispersion. Optical analysis of the nanocomposite morphology evidenced a very low density of MWCNTs micron sized aggregates in the case of direct mixed tip sonicated samples if compared to those obtained by solution aided dispersion. In addition, nanocomposites obtained by sonication showed the lowest density of MWCNTs micron sized aggregates, also when compared with mechanically and magnetically stirred system. Dynamic Mechanical Analysis (DMA and Thermo-Mechanical Analysis (TMA results confirm the final result that among the considered direct mixing techniques, the direct tip sonication represents the most efficient route for MWCNT dispersion. Moreover, the mixing temperature of the hosting matrix system represents a fundamental feature in enhancing the MWCNT de-bundling and dispersion. Small X-ray Scattering analysis revealed that a nanosized structure of nanotubes is formed in the case of the tip sonicated samples that is heuristically correlated with both the maximum enhancement of mechanical modulus and the maximum reduction of thermal expansion coefficients.

  10. ORGANIC/INORGANIC HYBRID EPOXY NANOCOMPOSITES BASED ON OCTA(AMINOPHENYL)SILSESQUIOXANE

    Institute of Scientific and Technical Information of China (English)

    Hai-bo Fan; Rong-jie Yang; Xiang-mei Li

    2013-01-01

    Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin.A study on comparison of DGEBA/OAPS with DGEBA/4,4'-diaminodiphenyl sulfone (DDS) epoxy resins was achieved.Differential scanning calorimetry was used to investigate the curing reaction and its kinetics,and the glass transition of DGEBA/OAPS.Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins.The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy.Scanning electron microscopy was used to observe morphology of the two epoxy resins.The results indicated that OAPS had very good compatibility with DGEBA in molecular level,and could form a transparent DGEBA/OAPS resin.The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS.The DGEBA/OAPS resin didn't exhibit glass transition,but the DGEBA/DDS did,which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points.Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin.Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield,but its initial decomposition temperature seemed to be lowered.

  11. Scheming of microwave shielding effectiveness for X band considering functionalized MWNTs/epoxy composites

    Science.gov (United States)

    Bal, S.; Saha, S.

    2016-02-01

    Present typescript encompasses anextraordinary electrical and mechanical behaviors of carboxylic (-COOH) functionalized multiwall carbon nanotube (MWNTs)/epoxy composites at low wt.% (0,5, 0,75, 1wt.%). Functionalization on the surface of the nanotube assists MWNTs in dispersing it into epoxy polymer in a respectable manner, Fabricated composites are exposed to different characterization techniques in order to examine the overall physical properties, Microwave shielding effectiveness (SE) for X band (8-12 GHz) and the flexural properties have been premeditated to predict the electrical and mechanical performances. It was found that the total SE of the nanocomposites was increased with the positive gradient of MWNT contents, The best result was recorded for 1 wt.% MWNT loading (SE of about 51,72 dB).In addition, incorporation of nanofillers enhanced the flexural modulus, flexural strength and micro-hardness of the resulting composites while comparing with neat epoxy, Nanocomposites with 0,75 wt,% MWNT loading demonstrated an incrementof 101% in modulus than that of neat epoxy, Theincrement in mechanical properties was due to achievement of good dispersion quality, effective bonding between MWNTs and epoxy polymer analyzed by micrographs of fracture surfaces

  12. Scheming of microwave shielding effectiveness for X band considering functionalized MWNTs/epoxy composites

    International Nuclear Information System (INIS)

    Bal, S; Saha, S

    2016-01-01

    Present typescript encompasses anextraordinary electrical and mechanical behaviors of carboxylic (-COOH) functionalized multiwall carbon nanotube (MWNTs)/epoxy composites at low wt.% (0,5, 0,75, 1wt.%). Functionalization on the surface of the nanotube assists MWNTs in dispersing it into epoxy polymer in a respectable manner, Fabricated composites are exposed to different characterization techniques in order to examine the overall physical properties, Microwave shielding effectiveness (SE) for X band (8-12 GHz) and the flexural properties have been premeditated to predict the electrical and mechanical performances. It was found that the total SE of the nanocomposites was increased with the positive gradient of MWNT contents, The best result was recorded for 1 wt.% MWNT loading (SE of about 51,72 dB).In addition, incorporation of nanofillers enhanced the flexural modulus, flexural strength and micro-hardness of the resulting composites while comparing with neat epoxy, Nanocomposites with 0,75 wt,% MWNT loading demonstrated an incrementof 101% in modulus than that of neat epoxy, Theincrement in mechanical properties was due to achievement of good dispersion quality, effective bonding between MWNTs and epoxy polymer analyzed by micrographs of fracture surfaces (paper)

  13. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  14. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  15. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan; Robertson, Megan L.

    2016-12-13

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glass transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.

  16. Designing tough and fracture resistant polypropylene/multi wall carbon nanotubes nanocomposites by controlling stereo-complexity and dispersion morphology

    International Nuclear Information System (INIS)

    Das, Dibyendu; Satapathy, Bhabani K.

    2014-01-01

    Highlights: • New pathway to improve dispersion and toughness by tacticity modification. • >330% toughness enhancement in PP/MWCNT nanocomposites with stereo-complex PP. • Prominent dispersion and distribution morphology due to matrix stereocomplexity. • Tacticity induced “Semi-ductile-to-tough-to-quasi-brittle” transitions in the PP/MWCNT. • Two-fold reduced steady state CTOD rate in i-PP+s-PP/ MWCNT nanocomposites. - Abstract: A remarkable toughness enhancement (>330%) of multi wall carbon nanotubes (MWCNT) filled stereo-complex polypropylene (PP) matrix i.e. blend of isotactic-PP and syndiotactic-PP (70:30) with differences in stereo-regularity has been observed. The enhancement has been correlated to quantifiable morphological parameters such as free-space lengths concerning dispersion and relatively greater reduction in crystallite size/lamellar thickness. Systematic analysis of glass transition data and estimation of multi wall carbon nanotubes induced reduction in interfacial polymer chain immobilization reiterates susceptibility of polymer segments to ready-mobility. The extent of toughening has quantitatively been analyzed by fracture-energy partitioning, essential work of fracture (EWF), approach enabling the detection of a “semi-ductile-to-tough-to-quasi-brittle” transition in the MWCNT filled stereo-complex polypropylene. Real-time fracture kinetics analysis revealed toughening mechanism to be primarily blunting-assisted; an aspect also corroborated by extensive plastic flow without much energy dissipation in the inner fracture process zone. Thus the study establishes a new pathway of tacticity-defined matrix modification to toughen nanocomposites

  17. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    International Nuclear Information System (INIS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-01-01

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  18. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad, E-mail: ahmad_usk@yahoo.com [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Akbarinezhad, Esmaeil [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  19. Cytoxicity, dynamic and thermal properties of bio-based rosin-epoxy resin/ castor oil polyurethane/ carbon nanotubes bio-nanocomposites.

    Science.gov (United States)

    Huo, Li; Wang, Dan; Liu, Hongmei; Jia, Pan; Gao, Jungang

    2016-08-01

    In order to prepare bio-nanocomposites with no-cytotoxicity, the rosin-based epoxy resin (MPAER) and castor oil-based polyurethane (COPU) were synthesized and carbon nanotubes (CNTs) was used to enhance the properties of curing MPAER/COPU materials. The curing reaction, dynamic mechanical and thermal properties of this system were characterized by FTIR, NMR, DMA, TG et al. The cytotoxicity of materials is evaluated for HeLa cells using a MTT cell-viability assay. The results showed that COPU can cure MPAER and CNTs can increase effectively the properties of MPAER/COPU nanocomposites. The Tg of MPAER/COPU/CNTs has the highest value when CNTs content is 0.4 wt%, which is 52.4 °C higher than the pure MPAER/COPU. Thermal stability of the nanocomposites is enhanced by the addition of CNTs, the initial decomposition temperature Td5 of the sample No. 0.4 has increased from 284.5 to 305.2 °C, which is 20.7 °C higher than No. 0. The impact strength of the No. 0.4 film is 15 kg cm higher than the pure resin system. The survival rate of HeLa cells to the products is greater than 90% within 48 and 72 h, which demonstrate that this material has excellent biocompatibility and no obvious cytotoxicity for HeLa cells, which may be used in the medical treatment.

  20. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  1. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  2. Fatigue crack propagation in self-assembling nanocomposites

    Science.gov (United States)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  3. Fatigue crack propagation in self-assembling nanocomposites

    International Nuclear Information System (INIS)

    Klingler, Andreas; Wetzel, Bernd

    2016-01-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  4. The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Gwang-Seok Song

    2016-04-01

    Full Text Available A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs within the epoxy resin matrix while using silver nanowires (AgNWs as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc and 1-(2-cyanoethyl-2-ethyl-4-methylimidazole (imidazole. AgNPs were generated in situ during the curing of the epoxy resin through the thermal decomposition of the AgAc–imidazole complex, which was capable of reducing Ag+ to Ag by itself. The released imidazole acted as a catalyst to cure the epoxy. Additionally, after the curing process, the in situ-generated AgNPs were stabilized by the formed epoxy network. Therefore, by using the thermal decomposition method, uniformly dispersed AgNPs of approximately 100 nm were formed in situ in the epoxy matrix filled with AgNWs. It was observed that the nanocomposites containing in situ-formed AgNPs exhibited isotropic electrical properties in the epoxy resins in the presence of AgNWs.

  5. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  6. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    International Nuclear Information System (INIS)

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C.; Ambrogi, V.

    2014-01-01

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field

  7. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  8. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  9. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    International Nuclear Information System (INIS)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    2016-01-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  10. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    Science.gov (United States)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  11. Comparative Study of Mechanical Properties of MWCNTS/ Epoxy and SWCNTS/ Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Khansaa D. Salman

    2018-03-01

    Full Text Available  The single – walled carbon nanotubes (SWCNTs and multi – walled carbon nanotubes (MWCNTs embedded into resin matrix with different weight concentrations ranging about (0.1, 0.3, 0.5 and 1 wt. %, the nanocomposites are synthesized by casting method. The main applications of this nanocomposites are in the sensors, actuators, radar. Mechanical tests were done for this study such as: tensile test, bending test and hardness test. Also many examinations were utilized to define the microstructure like scanning electron microscopy (SEM, X-ray diffraction and Raman spectroscopy. The results of this work showed that obviously an improvement in mechanical properties of the processed nanocomposites such as young’s modulus, ultimate tensile strength, bending strength and Shore hardness. Also the micrographs of SEM demonstrated that SWCNTs and MWCNTs homogeneously dispersed into epoxy. On the other hand Raman spectra and XRD revealed that same results for SEM. Finally all the results for mechanical properties and microstructure evaluation show that SWCNTs give extremely higher values and properties than MWCNTs.

  12. Dielectric and Electrical Properties of WS2 Nanotubes/Epoxy Composites and Their Use for Stress Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    A. Sedova

    2017-01-01

    Full Text Available The dielectric and electrical characteristics of the semiconductive WS2 nanotubes/epoxy composites were studied as a function of the nanotubes concentration and the pressure applied during their molding. In addition, the ability of WS2 nanotubes to serve as stress sensors in epoxy based nanocomposites, for health-monitoring applications, was studied. The nanocomposite elements were loaded in three-point bending configuration. The direct current was monitored simultaneously with stress-strain measurements. It was found that, in nanocomposites, above the percolation concentrations of the nanotubes, the electrical conductivity increases considerably with the applied load and hence WS2 nanotubes can be potentially used as sensors for health monitoring of structural components.

  13. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  14. Toughening modification of poly(butylene terephthalate)/poly(ethylene terephthalate) blends by an epoxy-functionalized elastomer

    Science.gov (United States)

    Zhang, Weizhou; Wang, Kai; Yan, Wei; Guo, Weihong

    2017-10-01

    New toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) (40/60 wt%) blends were obtained by melting with Glycidyl methacrylate grafted poly(ethylene octane) copolymer (POE-g-GMA), varying the POE-g-GMA content up to 20 wt%, in a twin-screw extruder, followed by injection molding. The influence of POE-g-GMA on the properties of the PBT/PET blends was investigated by mechanical testing, Fourier transform infrared (FT-IR) analysis, gel fractions analysis, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The mechanical testing results indicated that the incorporation of POE-g-GMA led to increases in the notched impact strength and decreases in the tensile strength, flexural strength, and flexural modulus. When POE-g-GMA content reached 20 wt%, the notched impact strength (8.0 kJ m-2) was achieved for the PBT/PET/POE-g-GMA blends. FT-IR results proved that some PBT/PET/POE-g-GMA copolymers were produced, which improved the compatibility between POE-g-GMA and the PBT/PET matrix. The extent of crosslinking was observed by gel fraction measurements. DMA results further testified chain-extending and micro-crosslink reactions occurred between POE-g-GMA and PBT/PET blends. In addition, the reactions induced by POE-g-GMA affected the crystallization behavior of PBT/PET blends obviously, as observed from DSC results. By means of SEM observation of the impact fracture surface morphology, and the discussion of the micro-crosslink reaction process between the epoxide-containing elastomers and PBT/PET matrix, the toughening mechanism was proposed to be taken into account the shear yielding of PBT/PET matrix and cavitation of elastomer particles.

  15. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  16. Dielectric properties of carbon nanotubes/epoxy composites.

    Science.gov (United States)

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  17. Toughening of Zirconia composites

    International Nuclear Information System (INIS)

    Burlingame, N.H.

    1980-06-01

    The addition of a ZrO 2 dispersion can significantly enhance the toughness of a ceramic matrix material. The toughness improvement is due to a stress reduction at the tip of a propagating crack which is the result of a preferential martensitic transformation of ZrO 2 particles in the stress field of the crack. From thermodynamic considerations and experimental observations the toughening effect is show to be strongly dependent on the ZrO 2 particle size. The effect of variations in temperature, composition and matrix materials are demonstrated, and analyzed in respect to the resultant deviations in the particle size toughening effect

  18. Toughening of nanocelluose/PLA composites via bio-epoxy interaction: Mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangtao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bocharova, Vera [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tekinalp, Halil L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Cheng, Shiwang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisliuk, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokolov, Alexei P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ozcan, Soydan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-11-07

    While PLA possesses modest to good strength and stiffness, broader application is hindered by its brittle nature. The aim of this study was to develop strong and tough polymeric materials from renewable biomaterials and understand the underlying interactions and mechanisms. Cellulose nanofibrils (CNFs) and epoxidized soybean oil (ESO) were compounded with poly(lactic acid) (PLA) to create a PLA-CNF-ESO tertiary nanocomposite system. Tensile and dynamic mechanical analyses were performed to see how variations in ESO and CNF content affect mechanical properties such as strength, modulus, ductility, and toughness. It was found that at low CNF levels (10 wt %) the addition of ESO can improve the ductility of the nanocomposites 5- to 10-fold with only slight losses in strength and modulus, while at higher CNF levels (20 and 30 wt %), ESO exhibited little effect on mechanical properties, possibly due to percolation of CNFs in the matrix, dominating stress transfer. Therefore, it is important to optimize CNF and ESO amounts in composites to achieve materials with both high strength and high toughness. As a result, efforts have been made to understand the underlying mechanisms of the mechanical behavior of one class of these composites via thermal, dynamic mechanical, morphological, and Raman analyses.

  19. Wellbore Seal Repair Using Nanocomposite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheath cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus

  20. Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material

    Science.gov (United States)

    Barua, Shaswat; Chattopadhyay, Pronobesh; Phukan, Mayur M.; Konwar, Bolin K.; Karak, Niranjan

    2014-12-01

    Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms.

  1. Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material

    International Nuclear Information System (INIS)

    Barua, Shaswat; Karak, Niranjan; Chattopadhyay, Pronobesh; Phukan, Mayur M; Konwar, Bolin K

    2014-01-01

    Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms. (paper)

  2. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.

    Science.gov (United States)

    Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong

    2010-11-01

    In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.

  3. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  4. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.

    Science.gov (United States)

    Schlagenhauf, Lukas; Chu, Bryan T T; Buha, Jelena; Nüesch, Frank; Wang, Jing

    2012-07-03

    The abrasion behavior of an epoxy/carbon nanotube (CNT) nanocomposite was investigated. An experimental setup has been established to perform abrasion, particle measurement, and collection all in one. The abraded particles were characterized by particle size distribution and by electron microscopy. The abrasion process was carried out with a Taber Abraser, and the released particles were collected by a tube for further investigation. The particle size distributions were measured with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) and revealed four size modes for all measured samples. The mode corresponding to the smallest particle sizes of 300-400 nm was measured with the SMPS and showed a trend of increasing size with increasing nanofiller content. The three measured modes with particle sizes from 0.6 to 2.5 μm, measured with the APS, were similar for all samples. The measured particle concentrations were between 8000 and 20,000 particles/cm(3) for measurements with the SMPS and between 1000 and 3000 particles/cm(3) for measurements with the APS. Imaging by transmission electron microscopy (TEM) revealed that free-standing individual CNTs and agglomerates were emitted during abrasion.

  5. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    Science.gov (United States)

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.

  6. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    Science.gov (United States)

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  7. Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO2

    Directory of Open Access Journals (Sweden)

    Α. Bairaktari

    2013-10-01

    Full Text Available In this paper nanocomposite samples of epoxy resin and TiO2 nanoparticles were investigated with water droplets on their surface. A uniform electric field was applied and the behaviour of the water droplets was observed. Parameters that were studied were the water conductivity, the droplet volume, the number of droplets and the droplet positioning with respect to (w.r.t. the electrodes. All above mentioned parameters influence the flashover voltage of the samples. It is to be noted that – at least in some cases – the water droplet positioning w.r.t. the electrodes was more important in determining the flashover voltage than the droplet volume.

  8. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  9. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  10. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  11. Multifunctional Shear Pressed CNT Sheets for Strain Sensing and Composite Joint Toughening

    Science.gov (United States)

    2015-09-30

    thermoplastic films (with widely varying success), and various fiber - reinforced (e.g. glass, aramid, carbon ) interleaves. The latter category of interleaves... Article ID 746308, 25 pp. 7. Godwin, E. W.; Matthews, F. L. “A Review of the Strength of Joints in Fibre- Reinforced Plastics . Part 1. Mechanically...R.; Joshi, M. “A Review on Carbon Epoxy Nanocomposites.” J. Reinforced Plastics and Composites, 2009, 28, 461-487. 4. Air Force STTR Phase I

  12. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    Science.gov (United States)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  13. Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties—Part II

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2008-01-01

    carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.

  14. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study

    Science.gov (United States)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-10-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.

  15. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  16. Dynamic Behavior of Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chun-Yu Lai

    2013-06-01

    Full Text Available The influence of multi-walled carbon nanotubes (MWCNT on the structural dynamic behavior of MWCNT/epoxy nanocomposites was investigated. Two different types of MWCNTs, pristine MWCNT and functionalized MWCNT, were used in this study. Carboxylic acid-functionalized MWCNTs (MWCNT-COOH were obtained by oxidation pristine MWCNTs via sonication in sulfuric-nitric acid and characterized by Fourier transform infrared spectroscopy (FTIR. Dynamic behaviors of the MWCNT reinforced nanocomposite including the natural frequency and damping ratio were determined using free vibration test. Experimental results showed that the damping ratio of the nanocomposite decreases with the increase of the MWCNT addition, while the natural frequency is increasing with the increase of the MWCNT addition. Functionalized MWCNTs improved the interfacial bonding between the nanotubes and epoxy resin resulting in the reduction of the interfacial energy dissipation ability and enhancement of the stiffness.

  17. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  18. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Science.gov (United States)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  19. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave

    International Nuclear Information System (INIS)

    Yadav, S.N.; Kumar, Vijai; Verma, Sushil K.

    2006-01-01

    This work was to evaluate as to how mode II fracture toughness G II is affected by interleave having Kevlar fibre reinforcement in the fracture plane. Thermoset interleave and chopped Kevlar fibres were applied between the carbon/epoxy composite layers. An artificial crack starter was implanted in the mid-plane to initiate the fracture process. The following five different types of carbon fibre/epoxy composites were prepared and tested. (a) Base laminate without interleave (b) unreinforced interleave and (c) 0.5, 1.0 and 1.5 mg/cm 2 chopped Kevlar fibre reinforced interleave. Results obtained show that fracture toughness G IIC enhanced up to about two times in all the laminates. However, enhancement in fracture toughness G IIC was more effective in interleaved laminate than Kevlar reinforced interleaved because of large energy absorbing capabilities of interleaf. Mechanism of fracture and toughening were examined by using scanning electron microscope

  20. Effect of Mixing Condition on Rheological Behavior of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gholamhossein Sodeifian

    2012-12-01

    Full Text Available The effect of mixing on rheological behavior of 6% wt epoxy-clay nanocomposites was studied. The mixing processes were carried out by low shear mixer, homogenizer and ultrasonic and combination of different mixing techniques at medium and maximum power. All these methods led to intercalated structure. The XRD results showed that the ultrasonic has the best effect on dispersion while a low shear mixer has the least positive effect. Opposite to an ultrasonic mixing method, the homogenization process through maximum power does not change the dispersion state significantly. The best condition would be to use an ultrasonic mixer after a homogenizer, otherwise the reverse process may result in lower dispersion. Small amplitude oscillatory measurements were carried out on linear regime over 0.1-100 Hz. According to the fact that rheological responses are very sensitive to polymerparticle interactions and accessible surface area, the slope of storage modulus and shear thinning exponent of viscosity are proportional to the level of dispersion. This implies that more increases in intergallary height may lead to less terminal slope. The continuous relaxation profile and zero shear viscosity were generated by experimental data via computer software based on neural network approach. To check the validity of software, the experimental data were recovered with very low deviation using relaxation spectrum. The experimental observations showed that a solid-like behavior, as a result of better dispersion, can prevent the profile from falling especially at longertimes.

  1. Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    International Nuclear Information System (INIS)

    Abadyan, M.; Bagheri, R.; Kouchakzadeh, M.A.; Hosseini Kordkheili, S.A.

    2011-01-01

    Research highlights: → Two epoxy systems have been modified by combination of fine and coarse modifiers. → While both hybrid systems reveal synergistic K IC , no synergism is observed in tensile test. → It is found that coarse particles induce stress concentration in hybrid samples. → Stress concentration leads to fracture of samples at lower energy absorption levels. -- Abstract: In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM) simulation were utilized to study deformation mechanisms of hybrid systems in tensile test. It is found that coarse particles induce stress concentration in hybrid samples. This produces non-uniform strain localized regions which lead to fracture of hybrid samples at lower tensile loading and energy absorption levels.

  2. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  3. Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    The Huu Nguyen

    2018-01-01

    Full Text Available Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.

  4. Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2012-08-01

    Full Text Available A brand-new type of multifunctional nanocomposites with high DC conductivity and enhanced mechanical strength was fabricated. Ionic liquid functionalized Carbon Nanotubes (CNTs-IL were embedded into epoxy matrix with covalent bonding by the attached epoxy groups. The highest DC conductivity was 8.38 x 10-3 S.m-1 with 1.0 wt. (% loading of CNTs-IL and the tensile strength was increased by 36.4% only at a 0.5 wt. (% concentration. A mixing solvent was used to disperse CNTs-IL in the epoxy monomer. The dispersion and distribution of CNTs-IL in the polymer matrix were measured by utilizing both optical microscopy and scanning electron microscopy, respectively.

  5. Characterization and analysis of epoxy/clay nanotubes composites; Cacaterizacao e analise de compositos de epoxi, argila e nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2{Theta} = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  6. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Giuseppina Barra

    2017-09-01

    Full Text Available The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs with Polyhedral Oligomeric Silsesquioxane (POSS compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS to Tetraglycidyl Methylene Dianiline (TGMDA epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA, single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints.

  7. Spall Strength Measurements in Transparent Epoxy Polymers

    Science.gov (United States)

    Pepper, Jonathan; Rahmat, Meysam; Petel, Oren

    2017-06-01

    Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.

  8. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    Science.gov (United States)

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  9. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Fracture Toughness of an Epoxy Resin at Cryogenic Temperatures

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Schneider, J. A.

    2008-01-01

    This study investigates the effects of core-shell rubber (CSR) nanoparticles on the fracture toughness of an epoxy resin at liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace (Registered TradeMark) MX130 toughening agent were added to a commercially available EPON 862/W epoxy resin. Resulting fracture toughness was evaluated by the use of Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electric Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Up to nominal 4.6% addition of the CSR nanoparticles, resulted in a nearly 5 times increase in the measured breaking energy. However, further increases in the amount of CSR nanoparticles had no appreciable affect on the breaking energy.

  10. Characterization and analysis of epoxy/clay nanotubes composites

    International Nuclear Information System (INIS)

    Sene, Tarcisio S.; Kock, Thyago; Coelho, Luiz A.F.; Becker, Daniela

    2011-01-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2Θ = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  11. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

    Science.gov (United States)

    Siddabattuni, Sasidhar; Schuman, Thomas P; Dogan, Fatih

    2013-03-01

    The interface between the polymer and the particle has a critical role in altering the properties of a composite dielectric. Polymer-ceramic nanocomposites are promising dielectric materials for many electronic and power devices, combining the high dielectric constant of ceramic particles with the high dielectric breakdown strength of a polymer. Self-assembled monolayers of electron rich or electron poor organophosphate coupling groups were applied to affect the filler-polymer interface and investigate the role of this interface on composite behavior. The interface has potential to influence dielectric properties, in particular the leakage and breakdown resistance. The composite films synthesized from the modified filler particles dispersed into an epoxy polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, and leakage current measurements. The data indicate that significant reduction in leakage currents and dielectric losses and improvement in dielectric breakdown strengths resulted when electropositive phenyl, electron-withdrawing functional groups were located at the polymer-particle interface. At a 30 vol % particle concentration, dielectric composite films yielded a maximum energy density of ~8 J·cm(-3) for TiO2-epoxy nanocomposites and ~9.5 J·cm(-3) for BaTiO3-epoxy nanocomposites.

  12. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    Science.gov (United States)

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  13. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  14. Nanoclays for polymer nanocomposites, paints, inks, greases and ...

    Indian Academy of Sciences (India)

    Unknown

    An overview of nanoclays or organically modified layered silicates ... silicates; nanocomposites; rheological modifier; drug delivery; waste water. 1. ... enhance the rheological properties of the paint system. .... tems (thermoset and thermoplastic) including epoxy .... involves adding organoclay as a dry powder prior to, or.

  15. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition

    DEFF Research Database (Denmark)

    Saber, Anne Thoustrup; Mortensen, Alicja; Szarek, Jozef

    2016-01-01

    Background: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison.Methods: Mice recei...

  16. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    Science.gov (United States)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  17. Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon

    International Nuclear Information System (INIS)

    Li, Kuo-Yi; Kuan, Chen-Feng; Kuan, Hsu-Chiang; Chen, Chia-Hsun; Shen, Ming-Yuan; Yang, Jia-Ming; Chiang, Chin-Lung

    2014-01-01

    2-(Diphenylphosphino)ethyltriethoxy silane (DPPES) was grafted onto the surface of graphene oxide nanosheets (GON) via a condensation reaction. X-ray photoelectron spectroscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and Raman spectroscopy verify that DPPES did not only covalently bond to GON as a functionalization moiety, but partly restored its conjugated structure as a reducing agent. DPPES on graphene sheets oxide was observed by transmission electron microscopy, and contributed to the favorable dispersion of DPPES-GON in nonpolar toluene. Additionally, the flame retardancy and thermal stability of epoxy/DPPES-GON nanocomposites that contain various weight fractions of DPPES-GON were studied using the limiting oxygen index test, UL-94 test and by thermogravimetric analysis in nitrogen. The composites containing 10 wt% DPPES-GON can pass V-0 rating in UL-94 test. Adding 10 wt% DPPES-GON in epoxy greatly increased the char yield and LOI by 42% and 80%, respectively. Epoxy/DPPES-GON nanocomposites with phosphorus, silicon and graphene layer structures were found to exhibit much greater flame retardancy than neat epoxy. The synergistic effects among silicon, phosphorus and GON can improve the flame retardancy of epoxy resin. - Highlights: • Flame retardant was grafted on the surface of graphene oxide nanosheets (GON) by the condensation reaction. • The synergistic effect between silicon, phosphorus and GON improved the flame retardance of epoxy resin. • Epoxy composites have excellent flame retardance at low additive concentrations

  18. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  19. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  20. Load transfer of nanocomposite film on aluminum substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2018-01-01

    Nanocomposite films have attracted much attention in recent years. Depending on the composition of the film and fabrication method, a large range of applications has been employed for nanocomposite films. In this study, nanocomposite films reinforced with multi-walled carbon nanotubes (MWCNTs) were deposited on the aluminum substrate through hot press processing. A shear lag model and Euler beam theory were employed to evaluate the stress distribution and load carrying capability of the nanocomposite film subjected to tensile load and bending moment. The influence of MWCNT on the Young's modulus and load carrying capability of the nanocomposite film was investigated through a parametric study. The theoretical predictions were verified by comparison with experimental tests. A close agreement with difference less than 6% was achieved between the theoretical prediction and experimental measurements. The Young's modulus and load transfer of the nanocomposite film reinforced with MWCNTs increases with the increase of the MWCNT loading. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 20% in both the Young's modulus and load carrying capability.

  1. The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites

    NARCIS (Netherlands)

    Huijbregts, L.J.; Brom, H.B.; Brokken-Zijp, J.C.M.; Kemerink, M.; Chen, Z.; Goeje, de M.P.; Yuan, M.; Michels, M.A.J.

    2006-01-01

    Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-cond. relation in this composite and the deviation from its optimal

  2. Flame Retardancy of Chemically Modified Lignin as Functional Additive to Epoxy Nanocomposites

    Science.gov (United States)

    John A. Howarter; Gamini P. Mendis; Alex N. Bruce; Jeffrey P. Youngblood; Mark A. Dietenberger; Laura Hasburgh

    2015-01-01

    Epoxy printed circuit boards are used in a variety of electronics applications as rigid, thermally stable substrates. Due to the propensity of components on the boards, such as batteries and interconnects, to fail and ignite the epoxy, flame retardant additives are required to minimize fire risk. Currently, industry uses brominated flame retardants, such as TBBPA, to...

  3. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  4. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites – Insight study

    International Nuclear Information System (INIS)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-01-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance. - Highlights: • The γ-irradiation was used for structural modification of halloysite nanotubes. • Composite materials with irradiated HNTs showed improved mechanical properties. • The γ-irradiation treatment is a promising surface modification method.

  5. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  6. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite

    Science.gov (United States)

    John, Dina A.; Banerjee, Susanta; Bohannan, Gary W.; Biswas, Karabi

    2017-04-01

    Here, we propose the fabrication of a solid state fractional capacitor for which constant phase (CP) angles were attained in different frequency zones: 110 Hz-1.1 kHz, 10 kHz-118 kHz, and 230 kHz-20 MHz. The configuration makes use of epoxy resin as the matrix in which multi-walled carbon nanotubes (MWCNTs) are dispersed. Adhesive nature of the epoxy resin is utilized for binding the electrodes, which avoids the extra step for packaging. The fractional capacitive behavior is contributed by the distribution of time constants for the electron to travel from one electrode to the other. The distributive nature of the time constant is ensured by inserting a middle plate which is coated with a porous film of polymethyl-methacrylate in between the two electrodes. The phase angle trend for the configuration is studied in detail, and it is observed that as the % of carbon nanotubes (CNTs) loading increases, the CP angle increases from - 85 ° to - 45 ° in the frequency zones above 100 Hz. The developed device is compact and it can be easily integrated with the electronic circuits.

  7. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  8. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    Science.gov (United States)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  9. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  10. Multifunctional Nanocomposites for Improved Sustainability and Protection of Facilities

    Science.gov (United States)

    2015-05-01

    ballistic-resistant panels. Equipment needed for cur- ing the epoxy is more expensive, and the viscosity of the epoxy material is too high for use in common...fracture. It was concluded that the lower V50 of the clay -modified Nylon 6 nanocomposite was brittle and had lower toughness than that of the neat...levels (0.5, 1.0, 2.0, and 3.0 wt%) in the polyester matrix. Higher load- ing of the CNTs was attempted but was constrained by the viscosity increase of

  11. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    Science.gov (United States)

    2016-01-01

    the preforms. It is a low- viscosity 2-phased toughened epoxy resin system consisting of part A (resin mixture of diglycidylether epoxy toughener...Delamination resistant laminates by Z-fiber pinning. Composites: Part A. 2005;36:55–64. 6. Clay S, Pommer A. Z-pin stubble technology advanced research...characterization of montmorillonite clay -filled SC-15 epoxy. Materials Letters. 2006;60:869–873. Approved for public release; distribution is

  12. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  13. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  14. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    Science.gov (United States)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  15. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  16. 1D and 2D oxidized carbon nanomaterials on epoxy matrix: performance of composites over the same processing conditions

    Science.gov (United States)

    Ramos-Galicia, Lourdes; Martinez-Hernandez, Ana Laura; Fuentes-Ramirez, Rosalba; Velasco-Santos, Carlos

    2017-11-01

    Oxidized multi-walled carbon nanotubes and graphene oxide were evaluated as reinforcements of an epoxy resin. The composites were synthesized at concentrations of 0.1, 0.5, and 1.0 wt% under the same processing conditions. Nanocomposites with graphene oxide at 0.5 wt% present the highest mechanical properties, reaching up to ~180%, and ~760% of improvement in tensile strength and tensile toughness with respect to neat epoxy. Nevertheless, composites with oxidized nanotubes exhibit a tendency to improve mechanical properties as load increases. Storage moduli diminish due to cross-linking density reduction in all nanocomposites. Difference in thermal degradation are not observed in composites in comparison with matrix. Dimension play an important role in mechanical properties, because each nanoreinforcement has different performance with the concentration.

  17. Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu

    2018-05-01

    This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

  18. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    Science.gov (United States)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  19. Three-dimensional micro structured nanocomposite beams by microfluidic infiltration

    International Nuclear Information System (INIS)

    Lebel, L L; Paez, O A; Therriault, D; Aïssa, B; El Khakani, M A

    2009-01-01

    Three-dimensional (3D) micro structured beams reinforced with a single-walled carbon nanotube (C-SWNT)/polymer nanocomposite were fabricated using an approach based on the infiltration of 3D microfluidic networks. The 3D microfluidic network was first fabricated by the direct-write assembly method, which consists of the robotized deposition of fugitive ink filaments on an epoxy substrate, forming thereby a 3D micro structured scaffold. After encapsulating the 3D micro-scaffold structure with an epoxy resin, the fugitive ink was liquefied and removed, resulting in a 3D network of interconnected microchannels. This microfluidic network was then infiltrated by a polymer loaded with C-SWNTs and subsequently cured. Prior to their incorporation in the polymer matrix, the UV-laser synthesized C-SWNTs were purified, functionalized and dispersed into the matrix using a three-roll mixing mill. The final samples consist of rectangular beams having a complex 3D skeleton structure of C-SWNT/polymer nanocomposite fibers, adapted to offer better performance under flexural solicitation. Dynamic mechanical analysis in flexion showed an increase of 12.5% in the storage modulus compared to the resin infiltrated beams. The nanocomposite infiltration of microfluidic networks demonstrated here opens new prospects for the achievement of 3D reinforced micro structures

  20. The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites.

    Science.gov (United States)

    Huijbregts, L J; Brom, H B; Brokken-Zijp, J C M; Kemerink, M; Chen, Z; Goeje, M P de; Yuan, M; Michels, M A J

    2006-11-23

    Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature. Conducting atomic force microscopy (C-AFM) was applied to quantify the conductivity through the coating locally along the surface. This combination gives an excellent tool to visualize the particle network. We found that a large fraction of the crystals is organized in conducting channels of fractal building blocks. In this picture, a low percolation threshold automatically leads to a conductivity that is much lower than that of the filler. Since the structure-conductivity relation for the found network is almost optimal, a drastic increase in the conductivity of the coating cannot be achieved by changing the particle network, but only by using a filler with a higher conductivity level.

  1. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Yuchen; Ming, Peng; Zhang, Qi; Liu, Tianxi; Jiang, Lei; Cheng, Qunfeng

    2016-04-13

    Ultrastrong bioinspired graphene-based fibers are designed and prepared via synergistic toughening of ionic and covalent bonding. The tensile strength reaches up to 842.6 MPa and is superior to all other reported graphene-based fibers. In addition, its electrical conductivity is as high as 292.4 S cm(-1). This bioinspired synergistic toughening strategy supplies new insight toward the construction of integrated high-performance graphene-based fibers in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1, 0.2, 0.3, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. Electric conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were then performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of materials. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased from 1014 Ω•m of neat epoxy to 10 Ω•m with 0.4% CNT. The experimental results also indicate that the frequency dependent behavior of CNT/epoxy nanocomposite can be modeled by R-C circuit, permittivity of material increase with increasing of CNT content. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17°C increase in Tg. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.

  3. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). 1. Structure and morphology

    Czech Academy of Sciences Publication Activity Database

    Matějka, Libor; Strachota, Adam; Pleštil, Josef; Whelan, P.; Steinhart, Miloš; Šlouf, Miroslav

    2004-01-01

    Roč. 37, č. 25 (2004), s. 9449-9456 ISSN 0024-9297 R&D Projects: GA AV ČR IAA4050008 Grant - others:European Community's Human Potential Programme(XE) HPRN/CT-2002-00306 Institutional research plan: CEZ:AV0Z4050913 Keywords : POSS * epoxy network * structure of nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.898, year: 2004

  4. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.

    Science.gov (United States)

    Liu, Yan; Lin, Ziyin; Lin, Wei; Moon, Kyoung Sik; Wong, C P

    2012-08-01

    Tuning the surface wettability is of great interest for both scientific research and practical applications. We demonstrated reversible transition between superhydrophobicity and superhydrophilicity on a ZnO nanorod/epoxy composite film. The epoxy resin serves as an adhesion and stress relief layer. The ZnO nanorods were exposed after oxygen reactive ion etching of the epoxy matrix. A subsequent chemcial treatment with fluoroalkyl and alkyl silanes resulted in a superhydrophobic surface with a water contact angle up to 158.4° and a hysteresis as low as 1.3°. Under UV irradiation, the water contact angle decreased gradually, and the surface eventually became superhydrophilic because of UV induced decomposition of alkyl silanes and hydroxyl absorption on ZnO surfaces. A reversible transition of surface wettability was realized by alternation of UV illumination and surface treatment. Such ZnO nanocomposite surface also showed improved mechanical robustness.

  5. Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: Experimental and Density functional theory study

    Science.gov (United States)

    Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.

    2017-10-01

    In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.

  6. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    Science.gov (United States)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  7. Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness.

    Science.gov (United States)

    Verho, Tuukka; Karppinen, Pasi; Gröschel, André H; Ikkala, Olli

    2018-01-01

    Mollusk nacre is a prototypical biological inorganic-organic composite that combines high toughness, stiffness, and strength by its brick-and-mortar microstructure, which has inspired several synthetic mimics. Its remarkable fracture toughness relies on inelastic deformations at the process zone at the crack tip that dissolve stress concentrations and stop cracks. The micrometer-scale structure allows resolving the size and shape of the process zone to understand the fracture processes. However, for better scalability, nacre-mimetic nanocomposites with aligned inorganic or graphene nanosheets are extensively pursued, to avoid the packing problems of mesoscale sheets like in nacre or slow in situ biomineralization. This calls for novel methods to explore the process zone of biomimetic nanocomposites. Here the fracture of nacre and nacre-inspired clay/polymer nanocomposite is explored using laser speckle imaging that reveals the process zone even in absence of changes in optical scattering. To demonstrate the diagnostic value, compared to nacre, the nacre-inspired nanocomposite develops a process zone more abruptly with macroscopic crack deflection shown by a flattened process zone. In situ scanning electron microscopy suggests similar toughening mechanisms in nanocomposite and nacre. These new insights guide the design of nacre-inspired nanocomposites toward better mechanical properties to reach the level of synergy of their biological model.

  8. Mechanical properties of polypropylene/calcium carbonate nanocomposites

    Directory of Open Access Journals (Sweden)

    Daniel Eiras

    2009-01-01

    Full Text Available The aim of this work was to study the influence of calcium carbonate nanoparticles in both tensile and impact mechanical properties of a polypropylene homopolymer. Four compositions of PP/CaCO3 nanocomposites were prepared in a co-rotational twin screw extruder machine with calcium carbonate content of 3, 5, 7 and 10 wt. (% The tests included SEM analyzes together with EDS analyzer and FTIR spectroscopy for calcium carbonate, tensile and impact tests for PP and the nanocomposites. The results showed an increase in PP elastic modulus and a little increase in yield stress. Brittle-to-ductile transition temperature was reduced and the impact resistance increased with the addition of nanoparticles. From the stress-strain curves we determined the occurrence of debonding process before yielding leading to stress softening. Debonding stress was determined from stress-strain curves corresponding to stress in 1% strain. We concluded that the tensile properties depend on the surface contact area of nanoparticles and on their dispersion. Finally we believe that the toughening was due to the formation of diffuse shear because of debonding process.

  9. Percolation Phenomena For New Magnetic Composites And Tim Nanocomposites Materials

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2015-01-01

    Full Text Available This paper presents a theoretical investigation in order to obtain new composite and nanocomposite magnetic industrial materials. The effective conductivity and thermal effective conductivity have been predicted by adding various types and percentages of conductive particles (Al2O3, MgO, ZnO, Graphite etc. to the main matrices of Epoxy, Iron and Silicon for formulating new composite and nanocomposite industrial materials. The characterization of effective conductivity of new polymeric composites has been investigated with various applied forces, inclusion types and their concentrations. In addition, the effect of inclusion types and their concentrations on the effective thermal conductivities of thermal interface nanocomposite industrial materials has been explained and discussed.

  10. High frequency electromagnetic reflection loss performance of substituted Sr-hexaferrite nanoparticles/SWCNTs/epoxy nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Gordani, Gholam Reza, E-mail: gordani@gmail.com [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Ghasemi, Ali [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Saidi, Ali [Department of Materials Science and Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-10-01

    In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0–6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was −36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (<−20 dB). The results indicate that, this nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications. - Highlights: • We investigate the high frequency properties of Sr-hexaferrite/SWCNTs composite. • Saturation magnetization of nanocomposites is decreased with presence of SWCNTs. • The ferrite/CNTs nanocomposite sample covers whole X-band frequencies (8–12 GHz). • The ferrite/CNTs nanocomposite can be used as a potential magnetic loss material. • Nanocomposite contain 4 vol% of CNTs have shown greater than 99% of reflection loss.

  11. Nanosilica reinforced epoxy floor coating composites: preparation and thermophysical characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-01-01

    Full Text Available In this study, flooring grade epoxy/nanoSiO2 nanocomposites were prepared by in-situ polymerization method. Nano silica was treated by coupling agent in order to surface treating and introducing of reactive functional groups to achieving adequate bonding between polar inorganic nano particles and epoxy organic polymer. γ-Aminopropyltriethoxysilane (Amino A-100 was used as an effective and commercially available coupling agent and nano silica treated in acetone media. SEM observations of cured samples revealed that the nano silica was completely dispersed into polymer matrix into nanoscale particles. Thermal and physical properties of prepared samples were investigated and data showed improvements in physical and mechanical properties of the flooring samples in comparison with unfilled resin.

  12. A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs

    Science.gov (United States)

    Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.

    2015-09-01

    Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.

  13. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Mossety-Leszczak, B.; Strachota, Beata; Strachota, Adam; Steinhart, Miloš; Šlouf, Miroslav

    2015-01-01

    Roč. 72, November (2015), s. 238-255 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : liquid-crystalline epoxy resins * magnetic field orientation * nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  14. Tailored high performance shape memory epoxy–silica nanocomposites. Structure design

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Donato, Ricardo Keitel; Matějka, Libor

    2016-01-01

    Roč. 7, č. 3 (2016), s. 560-572 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GAP108/12/1459 Institutional support: RVO:61389013 Keywords : shape-memory polymer * epoxy-silica nanocomposite * shape-memory effect Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.375, year: 2016

  15. Relationships between nanostructure and dynamic-mechanical properties of epoxy network containing PMMA-modified silsesquioxane

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available A new class of organic-inorganic hybrid nanocomposites was obtained by blending PMMA-modified silsesquioxane hybrid materials with epoxy matrix followed by curing with methyl tetrahydrophthalic anhydride. The hybrid materials were obtained by sol-gel method through the hydrolysis and polycondensation of the silicon species of the hybrid precursor, 3-methacryloxypropyltrimethoxysilane (MPTS, simultaneously to the polymerization of the methacrylate (MMA groups covalently bonded to the silicon atoms. The nanostructure of these materials was investigated by small angle X-ray scattering (SAXS and correlated to their dynamic mechanical properties. The SAXS results revealed a hierarchical nanostructure consisting on two structural levels. The first level is related to the siloxane nanoparticles spatially correlated in the epoxy matrix, forming larger hybrid secondary aggregates. The dispersion of siloxane nanoparticles in epoxy matrix was favored by increasing the MMA content in the hybrid material. The presence of small amount of hybrid material affected significantly the dynamic mechanical properties of the epoxy networks.

  16. Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modified with vitamin B6

    OpenAIRE

    Radoman, Tijana S.; Džunuzović, Jasna V.; Grgur, Branimir; Gvozdenović, Milica M.; Jugović, Branimir; Miličević, Dejan S.; Džunuzović, Enis S.

    2016-01-01

    Novel TiO2-PANI core-shell nanocomposite, prepared by in situ oxidative polymerization of aniline in the presence of TiO2 nanoparticles surface modified with vitamin B6, was used to reinforce epoxy resin. The size of prepared TiO2 nanoparticles and TiO2-PANI nanocomposite were determined by a transmission electron microscopy (TEM). The surface modification of TiO2 nanoparticles was confirmed by FTIR and UV–vis spectroscopy, while the morphology of PANI and TiO2-PANI nanocomposite was investig...

  17. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.

    Science.gov (United States)

    Espinosa, Horacio D; Juster, Allison L; Latourte, Felix J; Loh, Owen Y; Gregoire, David; Zavattieri, Pablo D

    2011-02-01

    Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.

  18. Tunable reinforcement of epoxy-silica nanocomposites with ionic liquids

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Donato, Katarzyna Zawada; Schrekker, H. S.; Matějka, Libor

    2012-01-01

    Roč. 22, č. 19 (2012), s. 9939-9948 ISSN 0959-9428 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : nanocomposite * ionic liquid * tensile properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.968, year: 2011

  19. Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin

    International Nuclear Information System (INIS)

    Tcherbi-Narteh, A.; Hosur, M.V.; Triggs, E.; Jelaani, S.

    2013-01-01

    Diglycidyl ether of Bisphenol A (DGEBA) based SC-15 epoxy resin was modified with three different commercially available montmorillonite (MMT) nanoclay: Nanomer I.28E and Cloisite 10A and 30B. Cure behavior of nanocomposites was studied using a variety of techniques. Primary focus of this study was to investigate influence of different surface modifications of MMT nanoclay on rheological properties and cure behavior of SC-15 epoxy resin. By adding MMT to SC-15 epoxy resin, chemistry of the epoxy is altered leading to changes in rheological properties and ultimately enthalpy and activation energy of reactions. Addition of Nanomer I.28E delayed gelation, while Cloisite 10A and 30B accelerated gelation, regardless of the curing temperature. Activation energy of reaction was lower with the addition of Nanomer I.28E and Cloisite 10A and higher for Cloisite 30B compared to neat SC-15 epoxy composite.

  20. Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    Thi Tuyet Mai Phan

    2016-03-01

    Full Text Available The surface modification of synthesized nano-BaTiO3 particles was carried out using γ-aminopropyl trimethoxy silane (γ-APS in an ethanol/water solution. The modified particles were characterized by FTIR, TGA, surface charge analysis, and by dielectric constant measurement. The silane molecules were attached to the surface of BaTiO3 particles through SiOBaTiO3 bonds. The γ-APS grafted on BaTiO3 made the dielectric constant of the particles increase at frequencies ≥0.3 kHz in a wide range of temperature (25 °C–140 °C, due to the presence of NH2 groups. The dependence of the polarization vs. electrical field was measured in order to elucidate the dielectric behavior of the silane treated BaTiO3 in comparison to untreated BaTiO3. The nanocomposite based on epoxy resin containing BaTiO3 nanoparticles untreated and treated with γ-APS was also prepared and characterized. The results indicated that the γ-APS-modified BaTiO3 surfaces significantly enhanced the dielectric property of the nanocomposite.

  1. Effect of nanoclay on thermal, mechanical and liquid absorption properties of epoxy-clay nanocomposite

    International Nuclear Information System (INIS)

    Nguyen Cong Quyen; Nguyen Pham Duy Linh; Bui Chuong; Doan Thi Yen Oanh

    2015-01-01

    Composite materials based on epoxy DER 331 hot cured by MHHPA with several contents of nanoclay I28E were prepared and characterized by TEM and SEM. Results showed that the nanostructures were created in two levels: intercalated structure and nanoparticles (cluster). The interaction between nanoclay and epoxy matrix was evaluated by properties such as: liquid absorption, TGA and DMA. It was shown that nanostructures of cluster, as well as the hydrophobic behavior of material with the presence of nanoclay have dominant effect to liquid absorption. Otherwise, the thermal stability was affected mainly by intercalation structure. Results of DMA showed that the interaction of epoxy-clay was strongly destroyed at the temperature higher than material Tg. (author)

  2. Influence of MWCNTs addition on mechanical and thermal behaviour of epoxy/kenaf multi-scale nanocomposite

    Science.gov (United States)

    Noor, N. A. M.; Razak, J. A.; Ismail, S.; Mohamad, N.; Yaakob, M. Y.; Theng, T. H.

    2017-06-01

    This research was conducted to develop kenaf reinforced epoxy/MWCNTs multi-scale composite using kenaf fibre and MWCNTs as the reinforcement in epoxy as the hosted matrix. The composites were produced by using a combination of hand lay-up and vacuum bagging process. The selection of optimum composition of epoxy-MWCNTs is based on the MWCNTs loading and the resulted mixture viscosity. Lower resin viscosity is required to allow good wetting and interaction between matrix and filler, which will yielded superior final performance of the fabricated composites. Therefore, different loading of MWCNTs (0.0 wt. %, 0.5 wt. %, 1.0 wt. %, 3.0 wt. %, 5.0 wt. %, 7.0 wt. %) were used to investigate the mechanical and thermal properties of the composites. As a result, the epoxy/kenaf/MWCNTs multi-scale composite at 1.0 wt. % of MWCNTs addition had yielded substantial improvement by 15.54 % in tensile strength and 90.54 % in fracture toughness. Besides, the fracture surface morphology of the selected samples were analysed via scanning electron microscopy (SEM) observation to further support the reinforcement characteristic of epoxy/kenaf/MWCNTs multi-scale composite.

  3. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    Science.gov (United States)

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  4. Effects of intra- and inter-laminar resin content on the mechanical properties of toughened composite materials

    Science.gov (United States)

    Grande, Dodd H.; Ilcewicz, Larry B.; Avery, William B.; Bascom, Willard D.

    1991-01-01

    Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL.

  5. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  6. Tribological performance of the epoxy-based composite reinforced by WS2 fullerene-like nanoparticles and nanotubes

    International Nuclear Information System (INIS)

    Shneider, Mark; Dodiuk, Hanna; Kenig, Shmuel; Rapoport, Lev; Moshkovich, Alexey; Zak, Alla; Tenne, Reshef

    2013-01-01

    Recently large amounts of inorganic nanotubes (INT) and inorganic fullerene-like (IF) nanoparticles of WS 2 became available and methods for their dispersion in different media were developed. In the present work the tribological properties of epoxy composite compounded with tungsten disulfide particles of different sizes and morphologies, including quasi-spherical IF nanoparticles, one-dimensional INT as well as micron-size platelets (2H) were investigated. The coefficient of friction and wear loss were measured under dry contact conditions using different tribological rigs. Remarkable reduction in wear and also friction (under high load) was demonstrated for the IF/INT epoxy nanocomposite. The reduced wear is attributed in general to the reinforcement of the polymer matrix by nanoparticles and the simultaneous reduction of the epoxy brittleness. Contrarily, the friction of the neat epoxy sample and epoxy mixed with platelets was accompanied with strong wear and transfer of a polymer film onto the rubbed surfaces. These results are consistent with the recently reported improvements in the fracture toughness, peel and shear strength of the epoxy-nanoparticles (IF/INT) composites. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Effect of poly(oxyalkylene)amines on structure and properties of epoxide nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Rotrekl, Jakub; Kaprálková, Ludmila; Hromádková, Jiřina

    2012-01-01

    Roč. 125, č. 4 (2012), s. 2755-2763 ISSN 0021-8995 R&D Projects: GA AV ČR IAA200500904 Institutional research plan: CEZ:AV0Z40500505 Keywords : epoxy nanocomposites * mechanical properties * microstructure Subject RIV: JI - Composite Materials Impact factor: 1.395, year: 2012

  8. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  9. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Cryogenic Fracture Toughness of CSR Modified Epoxy

    Science.gov (United States)

    Wang, Jun; Magee, Daniel; Schneider, Judy; Cannon, Seth

    2009-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace(Registered TradeMark) MX130 and Kane Ace(Registered TradeMark) MX960 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles up to 13.8wt%, while at LN2 temperatures, it reached a plateau at much lower CSR concentration.

  10. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  11. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  12. Toughening of a Carbon-Fibre Composite Using Electrospun Poly(Hydroxyether of Bisphenol A Nanofibrous Membranes Through Inverse Phase Separation and Inter-Domain Etherification

    Directory of Open Access Journals (Sweden)

    Bronwyn Fox

    2011-11-01

    Full Text Available The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns of poly(hydroxyether of bisphenol A (phenoxy nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure and mode II (in-plane shear failure by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C.

  13. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.

    2012-01-01

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  14. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  15. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    National Research Council Canada - National Science Library

    Drummy, Lawrence F; Farmer, Karen; Tan, Ashley; Farmer, B. L; Vaia, Richard A; Koerner, Hilmar

    2005-01-01

    ...), a material of current interest for use in polymer nanocomposites, was characterized. Using both imaging theory and experiment, the procedures needed to generate lattice images from MMT were established...

  16. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    Science.gov (United States)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  17. Tribological performance of the epoxy-based composite reinforced by WS{sub 2} fullerene-like nanoparticles and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, Mark; Dodiuk, Hanna; Kenig, Shmuel [Shenkar College of Engineering and Design, Ramat Gan 52526 (Israel); Rapoport, Lev; Moshkovich, Alexey; Zak, Alla [Department of Science, Holon Academic Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Tenne, Reshef [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-11-15

    Recently large amounts of inorganic nanotubes (INT) and inorganic fullerene-like (IF) nanoparticles of WS{sub 2} became available and methods for their dispersion in different media were developed. In the present work the tribological properties of epoxy composite compounded with tungsten disulfide particles of different sizes and morphologies, including quasi-spherical IF nanoparticles, one-dimensional INT as well as micron-size platelets (2H) were investigated. The coefficient of friction and wear loss were measured under dry contact conditions using different tribological rigs. Remarkable reduction in wear and also friction (under high load) was demonstrated for the IF/INT epoxy nanocomposite. The reduced wear is attributed in general to the reinforcement of the polymer matrix by nanoparticles and the simultaneous reduction of the epoxy brittleness. Contrarily, the friction of the neat epoxy sample and epoxy mixed with platelets was accompanied with strong wear and transfer of a polymer film onto the rubbed surfaces. These results are consistent with the recently reported improvements in the fracture toughness, peel and shear strength of the epoxy-nanoparticles (IF/INT) composites. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available The influence of graphene oxides (GOs on the cure behavior and thermal stability of a tetrafunctional tetraglycidyl-4,4’-diaminodiphenylmethane cured with 4,4’-diaminodiphenylsulfone was investigated by using dynamic differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The dynamic DSC results showed that the initial reaction temperature and exothermal peak temperature decreased with the increase of GO contents. Furthermore, the addition of GO increased the enthalpy of epoxy cure reaction. Results from activation energy method showed that activation energies of GO/epoxy nanocomposites greatly decreased with the GO content in the latter stage, indicating that GOs significantly hindered the occurrence of vitrification. The oxygen functionalities, such as hydroxyl and carboxyl groups, on the surface of GOs acted as catalysts and facilitated the curing reaction and the catalytic effect increased with the GO contents. TGA results revealed that the addition of GOs decreased the thermal stability of epoxy.

  19. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  20. Feasibility of Using Multilayer Platelets as Toughening Agents

    Directory of Open Access Journals (Sweden)

    Yuan-Liang Chin

    2009-12-01

    Full Text Available It is known that the toughness of brittle ceramics can be improved significantly with the addition of hard platelets. In the present study, platelet-shape multilayer ceramic laminates are utilized as a toughening agent for alumina ceramics. They are prepared by laminating the BaTiO3-based ceramic tapes. Although the elastic modulus of the BaTiO3-based platelets is lower than that of the alumina matrix, and the platelets are also reactive to alumina at elevated temperatures, the weak platelets are found to exhibit the ability to deflect major matrix cracks by forming a large number of microcrack branches within the platelets, thus achieving the desired toughening effect.

  1. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  2. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  3. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    Science.gov (United States)

    Watters, Arianna L.; Palmese, Giuseppe R.

    2014-09-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.

  4. Rigid particle toughening of aliphatic polyketone

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2006-01-01

    The influence of precipitated calcium carbonate particles on the toughening behaviour of aliphatic polyketone has been studied. The calcium carbonate particles had a particle size of 0.7 mm and a stearic acid coating (1%). Composites of 0e31.5 vol% CaCO3 content have been compounded and injection

  5. Toughening of epoxy/ionic liquid networks with thermoplastics based on poly(2,6-dimethyl-1,4-phenylene ether) (PPE)

    Czech Academy of Sciences Publication Activity Database

    Nguyen, T. K. L.; Livi, S.; Soares, B. G.; Beneš, Hynek; Gérard, J. F.; Duchet-Rumeau, J.

    2017-01-01

    Roč. 5, č. 1 (2017), s. 1153-1164 ISSN 2168-0485 Institutional support: RVO:61389013 Keywords : additives * epoxy networks * ionic liquids Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.951, year: 2016

  6. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  7. High frequency electromagnetic reflection loss performance of substituted Sr-hexaferrite nanoparticles/SWCNTs/epoxy nanocomposite

    Science.gov (United States)

    Gordani, Gholam Reza; Ghasemi, Ali; saidi, Ali

    2015-10-01

    In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0-6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was -36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications.

  8. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer.

    Science.gov (United States)

    Hao, Mingyang; Wu, Hongwu; Qiu, Feng; Wang, Xiwen

    2018-03-07

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR @ -4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆ E a ) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure-properties relationship of the composites are the key points of this study.

  9. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  10. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    Science.gov (United States)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-12-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  11. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.; Low, I.M.; Alothman, Z.

    2012-01-01

    increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF

  12. A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites

    Science.gov (United States)

    Lance, D. G.; Nettles, A. T.

    1991-01-01

    A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.

  13. Structural changes in a clay-containing nanocomposite with a different moisture content caused by its deformation

    International Nuclear Information System (INIS)

    Fajtel'son, E.A.; Glaskova, T.I.; Korkhovm, V.P.; Aniskevich, A.N.

    2010-01-01

    This paper presents the results of an investigation of the properties of a clay-containing nanocomposite with an epoxy binder under moisture-temperature and mechanical action. It has been established that whatever the moisture content, the nanocomposite crystallizes under the thermomechanical action (upon reaching the glasstransition temperature). When the nanocomposite is heated to 70 C, the restructuring process is reversible, and its heating to above 150 C leads to its amorphization. The presence of clay nanoparticles (up to 6 mass percent) does not influence the temperature of structural transitions of the nanocomposite and does not cause a substantial strengthening effect. The sorbed moisture plasticizes the nanocomposite and decreases its glasstransition temperature by 10 C. The specific features of the thermomechanical behavior of nanocomposites upon their tensile prestrain or creep are due to the formation of an oriented structure. Their crystallization begins at lower temperatures and with a higher degree of crystallinity than that of unloaded nanostructures. (authors)

  14. An implementation of 3D viscoelatic behavior for glass during toughening

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    The paper presents a derivation of an incremental formulation for the thermorheological material behavior of glass during the toughening process. The objective of this paper is to provide a constitutive relationship and a discussion for implementing a 3D thermo-viscoelastic material in a numerica......-Software ABAQUS. It has to be emphasized that other phenomena than stress relaxation are present during the toughening process, however, the purpose of this paper is only to provide a model for the thermo viscoelastic behavior....

  15. Microcracking and mechanical properties of Hafnia-Zirconia toughened alumina composites

    International Nuclear Information System (INIS)

    Li, H.P.S.; Stevens, R.

    1995-01-01

    Despite the remarkably similar crystal structures and phase transformations of HfO 2 and ZrO 2 , the tetragonal to monoclinic transformation temperature for HfO 2 takes place six hundred degrees higher than that for ZrO 2 . This suggests the potential for HfO 2 as an engineering material for use at elevated temperatures (>700 C). Alloying HfO 2 with ZrO 2 has been suggested a feasible high-temperature toughening strategy for ZrO 2 -toughened ceramics. The role of ZrO 2 as a second phase toughening agent for ceramic composites has long been recognised and a considerable number of studies reported. In contrast, HfO 2 -toughened ceramics, have not been investigated in detail. This paper gives an account of composite ceramics consisting of an Al 2 O 3 matrix, mixed with unstabilised (Zr-Hf)O 2 inclusions containing volume fractions, of 0, 1, 5, 10, 15, and 25 vol. %, developed to investigate the effects of the second phase content on the microstructure and mechanical properties. A simple cubic packing model of microcracking, based on an ''end-point'' thermodynamic approach, is discussed with respect to microcrack extension for a critical volume fraction of second phase content. The results show an Al 2 O 3 matrix containing 5 vol. % of Hf 0.25 Zr 0.75 O 2 inclusions to give the optimum properties. Using the packing model, the critical volume fraction is predicted at 10 vol. %, which is in a good agreement with experimental results. (orig.)

  16. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    International Nuclear Information System (INIS)

    Watters, Arianna L; Palmese, Giuseppe R

    2014-01-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10 −5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing. (paper)

  17. Toughening epoxy acrylate with polyurethane acrylates and hyper-branched polyester in three dimensional printing

    Science.gov (United States)

    Fang, Chao; Li, Ning; Liu, Yang; Lu, Gang

    2018-05-01

    In order to improve the toughness of epoxy acrylate (EA) in three dimensional printing (3D-printing), bifunctional polyurethane acrylate (PUA) and trifunctional PUA were firstly blended with EA. The multi-indicators orthogonal experiment, designed with the indicators of tensile strength, elongation at break and impact strength, was used to find out the optimal formulation. Then, hyper-branched polyesters (HBPs) was added to improve the toughness of the photocurable system. The microstructures of the cured specimens were characterized by optical microscopy and scanning electron microscopy. By analyzing their mechanical properties and microstructures, it was revealed that the best addition amounts of HBP are 10 wt%. Results indicated that their toughness improved a lot comparing with pure EA. The changes of mechanical properties were characterized by DMA. The addition of HBP could cause a loss in stiffness, elasticity modulus and thermostability.

  18. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  19. Functionalized graphene with polymer toughener as novel interface modifier for property-tailored poly(lactic acid)/graphene nanocomposites

    Science.gov (United States)

    In this work, an effective strategy for engineering the interfacial compatibility between graphene and polylactic acid (PLA) was developed by manipulating the functionalization of graphene and introducing an epoxy-containing elastomer modifier. Curing between the functional groups of the modified gr...

  20. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  1. Radar Absorbing Nanocomposites Based MultiLayered Graphene Platelets/Epoxy

    Directory of Open Access Journals (Sweden)

    F. Azizi

    2015-10-01

    Full Text Available Graphene nanostructures were synthesized by Hummer method. 1, 3, 5 and 7 wt% of graphene nanostructures were suspended in certain amount of acetone on a mechanical stirrer and stirred then added to epoxy resin. After 4 hours, solution and Graphene platelets (GPs were prepared. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM , Fourier transform infrared (FT-IR spectroscopy. The electromagnetic interference shielding was studied by reflection loss (RL. According to the results, the multilayered graphene  3% wt of has a completely smooth surface and its absorption average and maximum are reported as -13.5 dB and -30.3 dB.

  2. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  3. Toughening and creep in multiphase intermetallics through ...

    Indian Academy of Sciences (India)

    It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects.

  4. Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating

    International Nuclear Information System (INIS)

    Piazza, Diego; Lorandi, Natalia P.; Pasqual, Charles I.; Scienza, Lisete C.; Zattera, Ademir J.

    2011-01-01

    Highlights: → New materials for using as protective coatings for metal surfaces. → Development of nanostructured powder paints. → Characterization of the new material in the powder and coating form. → Development of a new material for use in the automotive industry, industrial production of appliances, furniture industry. → Development of new material using the process of mixing using a twin-screw extruder, followed by sintering process on a metal plate. - Abstract: The incorporation of nanoclays into coatings has been considered to be commercially favorable due to the improvements obtained in the barrier, thermal, and anticorrosion properties, among others, leading to the development of a new segment in the area of clean technologies: the application of nanocomposites to powder coatings. In this study, in order to compare the performance of a powder coating with the addition of a conventional load (barium sulfate) and a montmorillonite clay (MMT), two mixtures of commercial epoxy-based powder coating were prepared in the melt state, with the addition of 2 and 4% (w/w) of MMT, or 2 and 4% (w/w) of barium sulfate (BaSO 4 ). The thermal properties were investigated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the load dispersion and the morphology of the systems formed. The physical and anticorrosion properties of the coatings were also investigated. The interaction of the MMT with the polymeric matrix, associated to the aspect ratio, resulted in better barrier properties, thermal stability, and adhesion to the metal substrate.

  5. Topological Toughening of graphene and other 2D materials

    Science.gov (United States)

    Gao, Huajian

    It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.

  6. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  7. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  8. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available We have prepared a series of nano-sized aluminium nitride (nano-AlN/cycloaliphatic epoxy/trimethacrylate (TMPTMA systems and investigated their morphology, thermal conductivity, thermal stability and curing behavior. Experimental results show that the thermal conductivity of composites increases with the nano-AlN filler content, the maximum value is up to 0.47 W/(m.K. Incorporation of a small amount of the nano-AlN filler into the epoxy/TMPTMA system improves the thermal stability. For instance, the thermal degradation temperature at 5% weight loss of nano-AlN/epoxy/TMPTMA system with only 1 wt% nano-AlN was improved by ~8ºC over the neat epoxy/TMPTMA system. The effect of nano-AlN particles on the cure behavior of epoxy/TMPTMA systems was studied by dynamic differential scanning calorimetry. The results showed that the addition of silane treated nano-AlN particles does not change the curing reaction mechanism and silane treated nano-AlN particles could bring positive effect on the processing of composite since it needs shorter pre-cure time and lower pre-temperature, meanwhile the increase of glass transition temperature of the nanocomposite improves the heat resistance.

  9. Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN

    Science.gov (United States)

    Wang, Lulu; Tan, Yefa; Wang, Haitao; Gao, Li; Xiao, Chufan

    2018-05-01

    Carboxyl-terminated butadiene-co-acrylonitrile (CTBN) was used as the toughener to improve the mechanical performance and fracture toughness of diglycidyl ether of bisphenol F (DGEBF) by prereacted approach. The results show that the chemical bonding interface was formed between DGEBF and CTBN particles in the prepolymerization reaction process, which remarkably enhances the fracture toughness of the composites. Based on the qualitative and quantitative analyses, it shows the main toughening mechanisms are the plastic shear banding effect resulted from the plastic deformation of the EP matrix and the plastic void expansion because of the debonding of CTBN particles from the EP matrix.

  10. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  11. Toughened cyanate ester alloys via reaction-induced phase separation; Hanno yuhatsugataso bunkai ni yoru taishogekisei cyanate ester alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hirohata, T.; Kuroda, M.; Nishimura, A. [Sumitomo Electric Industries, Ltd., Osaka (Japan); Inoue, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-03-15

    For the purpose of toughening the matrices of fiber-reinforced plastics (FRPs), the effect of thermosetting/thermoplastic polymer alloys based on cyanate ester alloys is investigated. In the experiment, materials are heated and then allowed to set, which are mixtures of 87.0-43.5wt% of cyanate ester resin, 0-43.5wt% of epoxy resin, and 13.0wt% of soluble polyimide. FRP properties are examined by measuring the after-shock compressive strength, flexural elasticity and flaxural strength, and by performing morphology observation. It is then found that a cyanate ester/soluble polyimide system forms a polymer alloy with phase separation, that its glass transition temperature does not drop, and that the rupture strength is increased approximately twice. A carbon fiber-reinforced plastic (CFRP) incorporating this system is twice higher in after-shock compression strength than a CFRP incorporating a cyanate ester. The system withstands high temperatures, retaining at 200degC approximately 90% of the elastic modulus it exhibits at room temperature. 15 refs., 16 figs.

  12. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  13. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  14. Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, Diego [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Lorandi, Natalia P. [Corrosion and Surface Protection Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Pasqual, Charles I. [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Scienza, Lisete C. [Corrosion and Surface Protection Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Zattera, Ademir J., E-mail: ajzattera@terra.com.br [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil)

    2011-08-25

    Highlights: {yields} New materials for using as protective coatings for metal surfaces. {yields} Development of nanostructured powder paints. {yields} Characterization of the new material in the powder and coating form. {yields} Development of a new material for use in the automotive industry, industrial production of appliances, furniture industry. {yields} Development of new material using the process of mixing using a twin-screw extruder, followed by sintering process on a metal plate. - Abstract: The incorporation of nanoclays into coatings has been considered to be commercially favorable due to the improvements obtained in the barrier, thermal, and anticorrosion properties, among others, leading to the development of a new segment in the area of clean technologies: the application of nanocomposites to powder coatings. In this study, in order to compare the performance of a powder coating with the addition of a conventional load (barium sulfate) and a montmorillonite clay (MMT), two mixtures of commercial epoxy-based powder coating were prepared in the melt state, with the addition of 2 and 4% (w/w) of MMT, or 2 and 4% (w/w) of barium sulfate (BaSO{sub 4}). The thermal properties were investigated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the load dispersion and the morphology of the systems formed. The physical and anticorrosion properties of the coatings were also investigated. The interaction of the MMT with the polymeric matrix, associated to the aspect ratio, resulted in better barrier properties, thermal stability, and adhesion to the metal substrate.

  15. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  16. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  17. Volume Resistivity and Mechanical Behavior of Epoxy Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    M. F. Abdelkarim

    2015-04-01

    Full Text Available Electrical and mechanical properties of polymer composite materials are investigated through the determination of resistivity and hardness for composites samples. Epoxy composite samples have been prepared with different concentrations of certain inorganic fillers such as; Titanium dioxide (TiO2 and Silica (SiO2, of various size (micro, nano and hybrid to study the electrical and mechanical behavior. The volume resistivity reaches 3.23×1014 ohm.cm for the micro silica composite. Surface of composite material has been mechanically examined by hardness test. The results show that the resistivity of microcomposites and nanocmposites are increased with the decrease of filler concentration. But the resistivity of hybrid composites is increased with the increase of filler concentration. Maximum hardness value was obtained from hybrid silica composite with 0.1% filler concentration.

  18. Ternary and quaternary nanocomposites based on polystyrene, SBS, organically modified clay and silicone-polyether

    International Nuclear Information System (INIS)

    Kaneko, Manuela L.Q.A.; Lourenco, Emerson; Paiva, Raphael E.F.; Felisberti, Maria I.; Yoshida, Inez V.P.

    2009-01-01

    This work aims the study of toughened nanocomposites based on polystyrene (PS), poly(styrene-b-butadiene-b-styrene) (SBS), organically modified clay (C20A) and silicone-polyether, PDMS-POE. The intercalation of the copolymer PDMS-POE into the clay galleries increased the interlamellar distance, improving the exfoliation of the clay during the extrusion process of the materials. C20A/PDMS-POE nanocomposite, MC20A, was prepared by mechanical mixture using 1:1 wt% ratio. MC20A was incorporated into PS and PS/SBS blends using an extruder. The materials were characterized by X-ray diffraction and stress-strain mechanical tests. MC20A/PS/SBS, prepared by extrusion, showed an increase in the interlamellar distance, suggesting the intercalation of PS or SBS into the clay galleries. The PDMSPOE acted as a 'plasticizer' for PS and PS/SBS blend. However, this effect was not reverted by the clay addition. On the contrary, the 'plasticizer' effect was intensified by the clay maybe due to the slip characteristics of PDMS-POE associated with the lamella orientation. (author)

  19. Electrical properties of thin epoxy-based polymer layers filled with n-carbon black particles

    Science.gov (United States)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan

    2008-02-01

    The change of resistivity of the epoxy-based nanocomposite was studied in dependence on concentration of dispersed nanoparticles. The SU8 negative-tone photoresist was applied for the polymer matrix and the conductive carbon black powder for the fillings. The largest decrease of resistivity was obtained at 2-3 wt% of fillings whereas at loadings higher that 8 wt% it does not decreases further appreciably. The resistivity of the prepared nanocomposites becomes smaller after the UV-exposure. The applied nanofillings change the viscosity of the material but the spin-coating application still remains reliable and was approved to work well for concentrations of at least up to 3 wt%. The addition of nanofillings up to 2 wt% does not destroy the resolution of photolithography as seen on the standard test pattern with line widths from 2 to 10 μm.

  20. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  1. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    OpenAIRE

    Sepideh Zoghi; Ghasem Naderi; Gholam Reza Bakhshandeh; Morteza Ehsani; Shirin Shokoohi

    2013-01-01

    Nanocomposites based on butadiene rubber (BR), (0, 3, 5 and 7 phr) organoclay (Cloisite 15A) and (0, 10, 20, 30, 40 phr) powder coating wastes, i.e., epoxypolyester hybrid (EPH) were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90) and scorch time (t5) depicted a decrease in both...

  2. The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics

    International Nuclear Information System (INIS)

    Wang, Yanfei; Xiao, Ping

    2014-01-01

    The low fracture toughness of lanthanum zirconate (La 2 Zr 2 O 7 , LZ) greatly impedes its wide application as thermal barrier coatings (TBC). The 3 mol% Y 2 O 3 -stabilized tetragonal zirconia polycrystals (3Y-TZP) have been introduced to toughen the brittle LZ ceramics. The dispersive 3Y-TZP undergoes a simultaneous t–m transformation upon cooling below a critical volume fraction x of 3Y-TZP, above which its tetragonal phases can however be preserved. The different stabilities of 3Y-TZP second phases arise from a variation of residual tensile stress within them. The fracture toughness has been greatly improved by dispersing the tetragonal particulates (t-3YSZ) in the LZ matrix and the primary toughening mechanisms are phase transformations of the dispersive second phases and the residual compressive stress within the matrix. An anticipated increase of fracture toughness from the ferroelastic toughening and the residual compressive stress toughening highlights the great potentials to improve coating durability by depositing t′-3YSZ/LZ composite TBCs by the industrial non-equilibrium route

  3. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin

    International Nuclear Information System (INIS)

    Wu, Mingliang; Yuan, Xi; Luo, Hang; Chen, Haiyan; Chen, Chao; Zhou, Kechao; Zhang, Dou

    2017-01-01

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr 1−x Ti x )O 3 (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO 3 (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO 3 nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO 3 nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  4. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  5. Permanent antistatic phthalocyanine/epoxy nanocomposites – Influence of crosslinking agent, solvent and processing temperature

    NARCIS (Netherlands)

    Yuan, M.; Brokken-Zijp, J.C.M.; With, de G.

    2010-01-01

    Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and

  6. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Ribot, F.; Matějka, Libor; Whelan, P.; Starovoytova, Larisa; Pleštil, Josef; Steinhart, Miloš; Šlouf, Miroslav; Hromádková, Jiřina; Kovářová, Jana; Špírková, Milena; Strachota, Beata

    2012-01-01

    Roč. 45, č. 1 (2012), s. 221-237 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701; GA ČR GAP108/11/2151 Institutional research plan: CEZ:AV0Z40500505 Keywords : stannoxane * organic-inorganic hybrid * epoxy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  7. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Sepideh Zoghi

    2013-08-01

    Full Text Available Nanocomposites based on butadiene rubber (BR, (0, 3, 5 and 7 phr organoclay (Cloisite 15A and (0, 10, 20, 30, 40 phr powder coating wastes, i.e., epoxypolyester hybrid (EPH were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90 and scorch time (t5 depicted a decrease in both mentioned factors with increasing nanoclay content and EPH loading.Intercalation of elastomer chains into the silicate layers was determined by d-spacing values calculated according to the results of X-ray diffraction (XRD patterns. X-ray diffraction (XRD results reveal the intercalation of elastomer chains into the clay galleries. This phenomenon was also confirmed according to the scanning electron microscopy (SEM micrographs and mechanical properties of the nanocomposite samples which were observed to be improved with addition of nanoclay and EPH content.

  8. Inorganic-organic nanocomposites for optical coatings

    Science.gov (United States)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  9. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  10. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  11. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  12. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: Environmental and toxicological implications

    Energy Technology Data Exchange (ETDEWEB)

    Ging, James; Tejerina-Anton, Raul; Ramakrishnan, Girish [Materials Science and Engineering, Stony Brook University, Stony Brook, NY (United States); Nielsen, Mark; Murphy, Kyle [University of Dayton, Dayton, OH (United States); Gorham, Justin M.; Nguyen, Tinh [National Institute of Standards and Technology, Gaithersburg, MD (United States); Orlov, Alexander, E-mail: alexander.orlov@stonybrook.edu [Materials Science and Engineering, Stony Brook University, Stony Brook, NY (United States)

    2014-03-01

    Despite the fact that nanomaterials are considered potentially hazardous in a freely dispersed form, they are often considered safe when encapsulated into a polymer matrix. However, systematic research to confirm the abovementioned paradigm is lacking. Our data indicates that there are possible mechanisms of nanomaterial release from nanocomposites due to exposure to environmental conditions, especially UV radiation. The degradation of the polymer matrix and potential release of nanomaterials depend on the nature of the nanofillers and the polymer matrix, as well as on the nature of environmental exposure, such as the combination of UV, moisture, mechanical stress and other factors. To the best of our knowledge there is no systematic study that addresses all these effects. We present here an initial study of the stability of nanocomposites exposed to environmental conditions, where carbon nanotube (CNT) containing polymer composites were evaluated with various spectroscopic and microscopic techniques. This work discusses various degradation mechanisms of CNT polymer nanocomposites, including such factors as UV, moisture and mechanical damage. An in vivo ingestion study with Drosophila showed reduced survivorship at each dose tested with free amine-functionalized CNTs, while there was no toxicity when these CNTs were embedded in epoxy. In addition to developing new paradigms in terms of safety of nanocomposites, the outcomes of this research can lead to recommendations on safer design strategies for the next generation of CNT-containing products. - Highlights: • The UV-induced degradation of multiple carbon nanotube-epoxy composites is studied. • The toxicology of these materials is explored with a Drosophila model. • A life cycle analysis of carbon nanotube release from composites is proposed.

  13. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: Environmental and toxicological implications

    International Nuclear Information System (INIS)

    Ging, James; Tejerina-Anton, Raul; Ramakrishnan, Girish; Nielsen, Mark; Murphy, Kyle; Gorham, Justin M.; Nguyen, Tinh; Orlov, Alexander

    2014-01-01

    Despite the fact that nanomaterials are considered potentially hazardous in a freely dispersed form, they are often considered safe when encapsulated into a polymer matrix. However, systematic research to confirm the abovementioned paradigm is lacking. Our data indicates that there are possible mechanisms of nanomaterial release from nanocomposites due to exposure to environmental conditions, especially UV radiation. The degradation of the polymer matrix and potential release of nanomaterials depend on the nature of the nanofillers and the polymer matrix, as well as on the nature of environmental exposure, such as the combination of UV, moisture, mechanical stress and other factors. To the best of our knowledge there is no systematic study that addresses all these effects. We present here an initial study of the stability of nanocomposites exposed to environmental conditions, where carbon nanotube (CNT) containing polymer composites were evaluated with various spectroscopic and microscopic techniques. This work discusses various degradation mechanisms of CNT polymer nanocomposites, including such factors as UV, moisture and mechanical damage. An in vivo ingestion study with Drosophila showed reduced survivorship at each dose tested with free amine-functionalized CNTs, while there was no toxicity when these CNTs were embedded in epoxy. In addition to developing new paradigms in terms of safety of nanocomposites, the outcomes of this research can lead to recommendations on safer design strategies for the next generation of CNT-containing products. - Highlights: • The UV-induced degradation of multiple carbon nanotube-epoxy composites is studied. • The toxicology of these materials is explored with a Drosophila model. • A life cycle analysis of carbon nanotube release from composites is proposed

  14. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO{sub 3} nanoparticles in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yuan, Xi [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Luo, Hang, E-mail: xtluohang@163.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Haiyan; Chen, Chao; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2017-05-18

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO{sub 3} (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO{sub 3} nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO{sub 3} nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  15. Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique

    Directory of Open Access Journals (Sweden)

    S. B. Jagtap

    2013-04-01

    Full Text Available Epoxy/multiwall carbon nanotubes (MWCNT composites were prepared using sodium salt of 6-aminohexanoic acid (SAHA modified MWCNT and its effect properties of related composites were investigated. The composite prepared using a polar solvent, tetrahydrofuran exhibits better mechanical properties compared to those prepared using less polar solvent and without using solvent. The tensile properties and dynamic storage modulus was found to be increased as a result of modification of MWCNT with SAHA. This improvement in the tensile properties and dynamic mechanical properties of epoxy/MWCNT composite is a combined effect of cation-π interaction and chemical bonding. Fourier transform infrared spectroscopy (FTIR and Raman spectroscopy were used to explain cation-π interaction between SAHA with MWCNT and chemical bonding of SAHA with epoxy resin. The effect of modification of MWCNT on morphology of a nanocomposite was confirmed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The present approach does not disturb the ! electron clouds of MWCNT as opposed to chemical functionalization strategy.

  16. Isolation of Aramid Nanofibers for High Strength and Toughness Polymer Nanocomposites.

    Science.gov (United States)

    Lin, Jiajun; Bang, Sun Hwi; Malakooti, Mohammad H; Sodano, Henry A

    2017-03-29

    The development of nanoscale reinforcements that can be used to improve the mechanical properties of a polymer remains a challenge due to the long-standing difficulties with exfoliation and dispersion of existing materials. The dissimilar chemical nature of common nanofillers (e.g., carbon nanotubes, graphene) and polymeric matrix materials is the main reason for imperfect filler dispersion and, consequently, low mechanical performance of their composites relative to theoretical predictions. Here, aramid nanofibers that are intrinsically dispersible in many polymers are prepared from commercial aramid fibers (Kevlar) and isolated through a simple, scalable, and low-cost controlled dissolution method. Integration of the aramid nanofibers in an epoxy resin results in nanocomposites with simultaneously improved elastic modulus, strength, and fracture toughness. The improvement of these two mutually exclusive properties of nanocomposites is comparable to the enhancement of widely reported carbon nanotube reinforced nanocomposites but with a cost-effective and more feasible method to achieve uniform and stable dispersion. The results indicate the potential for aramid nanofibers as a new class of reinforcements for polymers.

  17. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  18. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites

    International Nuclear Information System (INIS)

    Ahmadi-Moghadam, B.; Sharafimasooleh, M.; Shadlou, S.; Taheri, F.

    2015-01-01

    Highlights: • A new functionalization strategy for GNPs, using trimethoxysilane is introduced. • Bond quality between GNP and silane agent is verified by the Raman spect. and TGA. • The functionaliz’n effects on mechanical properties of GNP/epoxy were investigated. • The functionaliz’n effects on the fracture mechanisms of GNP/epoxy investigated. • GNP dispersion quality is also evaluated using SEM micrographs and XRD. - Abstract: This study introduces a new strategy for functionalizing graphene nanoplatelets (GNPs) by bonding a silane agent to its structure. In order to evaluate the efficacy of the proposed method, epoxy resin specimens reinforced with silane modified GNPs (G-Si) are prepared at different weight contents of nanoparticles along with three other types of GNPs (unmodified GNP, graphene oxide GNP [GO], and amino functionalized GNP [G-NH 2 ]). The nanocomposites’ mechanical properties, such as the elastic modulus, ultimate strength, modulus of toughness and fracture toughness are evaluated and compared for different types of functionalization. Raman spectroscopy, thermo-gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) are employed to characterize the chemical and structural changes of the functionalized GNPs. The results show that nanocomposites containing G-Si and G-NH 2 provide the best results for most of the mentioned properties. The functionalization of GNPs gives the most promising results for fracture toughness of epoxy, showing an 82% increase, and scanning electron microscopy (SEM) micrographs and XRD analysis reveal that an improved dispersion status is obtained by GNP functionalization

  19. Electrical and thermal conductivities of Stycast 1266 epoxy/graphite composites

    International Nuclear Information System (INIS)

    Tien, Hoang; Park, Joonkyu; Han, Sanga; Ahmad, Muneer; Seo, Yongho; Shin, Koo

    2011-01-01

    Nanocomposites composed of graphene flakes and epoxy resin (Stycast 1266) were produced with different concentrations of graphene in the range of 0 to 15 wt.%. The direct-current conductivity of the composites complied with percolation behavior. The percolation threshold concentration pc from the conductivity measurement was estimated as 8 wt.%, and the critical exponent as t = 1.85 ± 0.23. The alternating-current conductivity of the composite increased monotonically as the frequency was increased in the range from 1 to 10 MHz. The thermal conductivity k also exhibited a similar percolation behavior, with highest value of k = 0.73 W/m·K for the 12-wt.% composite, which corresponds to a 350% enhancement of the thermal conductivity.

  20. The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites

    International Nuclear Information System (INIS)

    Yu, Liming; Li, Bo; Sheng, Leimei; An, Kang; Zhao, Xinluo

    2013-01-01

    Highlights: •The SmCo nanoparticles attached SWCNTs were prepared by dc arc discharge method. •The nano-composite prepared by a rare earth permanent magnet Sm 2 Co 17 as catalyst. •The SmCo attached SWCNT/epoxy composites have an excellent electromagnetic matching characteristics. •The reflection loss and bandwidth below −20 dB of the composite can reach −23.7 dB, 6.2 GHz, respectively. -- Abstract: The SmCo nanoparticles attached single wall carbon nanotubes (SmCo attached SWCNTs) were prepared by hydrogen dc arc discharge method using 2:17 type SmCo permanent powder as catalyst. The SmCo attached SWCNT/epoxy composites with different doping ratios were investigated in the frequency region of 2–18 GHz. The complex permittivity and permeability of the SmCo attached SWCNT/epoxy composites were calculated. The reflection loss properties were simulated by transmission line theory and the microwave absorptive mechanisms were discussed. The results indicate that, due to the better interfacial polarization absorption mechanism of SmCo attached SWCNTs and the electromagnetic (EM) matching of magnetic loss and dielectric loss, the microwave absorption properties of SmCo attached SWCNT/epoxy are evidently improved. When the SmCo attached SWCNTs is doped by 1 wt%, the composite display a larger and wider absorption peak, and the bandwidth of the reflection loss below −20 dB is larger than 6 GHz with the thickness of 3.3 mm. It is expected that the new SmCo attached SWCNT/epoxy composites will be a good microwave absorbing material for the applications in X band, Ku band, or even K band