WorldWideScience

Sample records for tough2 unsaturated ground

  1. Application of TOUGH to hydrologic problems related to the unsaturated zone site investigation at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Lakewood, CO (United States); Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-03-01

    To date, TOUGH and TOUGH2 have been the principal codes used by the U.S. Geological Survey in their investigation of the hydrology of the unsaturated zone at Yucca Mountain. Examples of some applications of the TOUGH and TOUGH2 codes to flow and transport problems related to the Yucca Mountain site investigation are presented, and the slight modifications made to the codes to implement them are discussed. These examples include: (1) The use of TOUGH in a simple fracture network model, with a discussion of an approach to calculate directional relative permeabilities at computational cells located at fracture intersections. These simulations illustrated that, under unsaturated conditions, the locations of dominant pathways for flow through fracture networks are sensitive to imposed boundary conditions; (2) The application of TOUGH to investigate the possible hydrothermal effects of waste-generated heat at Yucca Mountain using a dual-porosity, dual-permeability treatment to better characterize fracture-matrix interactions. Associated modifications to TOUGH for this application included implementation of a lookup table that can express relative permeabilities parallel and transverse to the fracture plane independently. These simulations support the continued use of an effective media approach in analyses of the hydrologic effects of waste-generated heat; and (3) An investigation of flow and tracer movement beneath a wash at Yucca Mountain in which a particle tracker was used as a post-processor. As part of this study, TOUGH2 was modified to calculate and output the x-,y- and z- sequence of tuffs overlying the potential repository site will result in the formation of capillary barriers that locally promote considerable lateral flow, thereby significantly decreasing the magnitude of fluxes form peak values at the ground surface and delaying the arrival of surface-derived moisture at the potential repository horizon.

  2. Software qualification of selected TOUGH2 modules

    International Nuclear Information System (INIS)

    Wu, Y.S.; Ahlers, C.F.; Fraser, P.; Simmons, A.; Pruess, K.

    1996-10-01

    The purpose of this package of reports is to provide all software baseline documents necessary for the software qualification of the single-phase Gas (EOS1G), Effective Continuum Method (ECM), Saturated/Unsaturated Flow (EOS9), and Radionuclide Transport (T2R3D) modules of TOUGH2, a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media. This report contains the following sections: (1) Requirements Specification, (2) Design Description, (3) Software Validation Test Plan and Report, (4) Software User Documentation, and (5) Appendices. These sections comprise sequential parts of the Software Life Cycle, and are not intended to stand alone but should be used in conjunction with the TOUGH User's Guide (Pruess, 1987), TOUGH2--A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow (Pruess, 1991), and the above-referenced TOUGH2 software qualification document. The qualification package is complete with the attached Software Identification Form and executable source code for the single-phase Gas, Effective Continuum method, Saturated/Unsaturated Flow, and Radionuclide Transport modules of TOUGH2

  3. Parametric analysis of a TOUGH2 model for the unsaturated zone at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y.; Mishra, S.; Dunlap, B. [CRWMS M& O/INTERA, Inc., Las Vegas, NV (United States)

    1995-03-01

    Yucca Mountain in Nevada is currently being investigated for suitability as a potential site for the disposal of high-level radioactive waste and spent nuclear fuel. As the most important natural barrier against radionuclide migration to the accessible environment, the unsaturated zone at Yucca mountain is a key constituent in assessing the ambient geohydrology. A three-dimensional site-scale TOUGH2 model of the unsaturated zone is currently under development by Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS) consists of six hydrogeologic units - TCw (Tiva Canyon welded), PTn (Paintbrush nonwelded), TSw (Topopah Spring welded), TSv (Topopah Spring welded-vitrophyre), CHnz (Calico Hills nonwelded-vitric), and CHnz (Calico Hills nonwelded-zeolitic), which are further subdivided into seventeen layers to represent additional lithologic detail. Based on the work of Klavetter and Peters, the fractured units TCw and TSw are treated as equivalent continua with specified threshold saturation for triggering fracture flow.

  4. Modifications and additions to selected TOUGH2 modules

    International Nuclear Information System (INIS)

    Wu, Y.S.; Mishra, A.K.

    1998-01-01

    The purpose of this report is to provide all software baseline documents necessary for the software qualification of the revised versions of the selected TOUGH2 modules, which include single-phase gas (EOS1G), effective continuum method (EOS3/ECM), saturated/unsaturated flow (EOS9), and radionuclide transport (T2R3D) modules of the TOUGH2 code. TOUGH2 is a numerical simulation code for multi-dimensional, coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media. This report augments the document Software Qualification of Selected TOUGH2 modules. This report contains the following sections: (1) requirement specifications and code development and (2) software validation test plan and results. These sections comprise sequential parts of Software Lifecycle, and should be used in conjunction with the TOUGH User's Guide, TOUGH2 documentation, TOUGH2 Software Qualification, and Software Qualification of Selected TOUGH2 modules. The version of TOUGH2 used with the software being qualified herein is the October 1996 Standard Version 1.2, as qualified in Wu et al. (1996) and housed at the Department of Energy's Energy Science and Technology Software Center (ESTSC) in Oak Ridge, Tennessee

  5. TOUGH2 User's Guide Version 2

    International Nuclear Information System (INIS)

    Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

    1999-01-01

    TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such as coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data

  6. TOUGH, Unsaturated Groundwater Transport and Heat Transport Simulation

    International Nuclear Information System (INIS)

    Pruess, K.A.; Cooper, C.; Osnes, J.D.

    1992-01-01

    1 - Description of program or function: A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO 2 ; water, air; water, air with vapour pressure lowering, and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH (Transport of Unsaturated Groundwater and Heat) is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase absorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat. 2 - Method of solution: All

  7. TOUGH2 User's Guide Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

    1999-11-01

    TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such as coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data.

  8. The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

    2003-01-01

    The TOUGH2/iTOUGH2 family of codes is being used to analyze various processes and phenomena in the unsaturated zone at the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Various models have been developed that help quantify properties of the volcanic tuffs, water flow, seepage into drifts, and thermally driven coupled processes arising from the heat emitted by radioactive waste. These models are based on various assumptions and approximations that are generally accepted in the literature, but can give rise to different degrees of uncertainty. Some of the key approaches utilized include the continuum approximation, the van Genuchten formulation, the active fracture model, and homogeneous sublayers. These and other approximations are presented separately for the five different models considered, and the resulting levels of uncertainty are discussed

  9. Enhancements to the TOUGH2 Simulator as Implemented in iTOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-01

    iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase, multicomponent flow and transport in fractured and porous media [Pruess, 1987, 1991, 2005, 2011; Falta et al., 1995; Pruess et al., 1999, 2002, 2012; Doughty, 2013]. The core of iTOUGH2 contains slightly modified versions of TOUGH2 modules. Most code modifications are editorial and do not affect the simulation results. As a result, standard TOUGH2 input files can be used in iTOUGH2, and identical results are obtained if iTOUGH2 is run in forward mode. However, a number of modifications have been made as described in this report. They enhance the functionality, flexibilitu, and eas-of-use of the forward simulator. This report complements the reports iTOUGH2 User's Guide, iTOUGH2 Command Referecne, and the collection of tutorial examples in iTOUGH2 Sample Problems.

  10. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  11. Wingridder - an interactive grid generator for TOUGH2

    International Nuclear Information System (INIS)

    Pan, Lehua

    2003-01-01

    The TOUGH (Transport Of Unsaturated Groundwater and Heat) family of codes has great flexibility in handling the variety of grid information required to describe a complex subsurface system. However, designing and generating such a grid can be a tedious and error-prone process. This is especially true when the number of cells and connections is very large. As a user-friendly, efficient, and effective grid generating software, WinGridder has been developed for designing, generating, and visualizing (at various spatial scales) numerical grids used in reservoir simulations and groundwater modeling studies. It can save mesh files for TOUGH family codes. It can also output additional grid information for various purposes in either graphic format or plain text format. It has user-friendly graphical user interfaces, along with an easy-to-use interactive design and plot tools. Many important features, such as inclined faults and offset, layering structure, local refinements, and embedded engineering structures, can be represented in the grid

  12. User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code

    International Nuclear Information System (INIS)

    Earth Sciences Division; Zhang, Keni; Zhang, Keni; Wu, Yu-Shu; Pruess, Karsten

    2008-01-01

    TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator is to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code. The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used

  13. TOUGH2 software qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Simmons, A.; Wu, Y.S.; Moridis, G.

    1996-02-01

    TOUGH2 is a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media. It belongs to the MULKOM ({open_quotes}MULti-KOMponent{close_quotes}) family of codes and is a more general version of the TOUGH simulator. The MULKOM family of codes was originally developed with a focus on geothermal reservoir simulation. They are suited to modeling systems which contain different fluid mixtures, with applications to flow problems arising in the context of high-level nuclear waste isolation, oil and gas recovery and storage, and groundwater resource protection. TOUGH2 is essentially a subset of MULKOM, consisting of a selection of the better tested and documented MULKOM program modules. The purpose of this package of reports is to provide all software baseline documents necessary for the software qualification of TOUGH2.

  14. TOUGH2 software qualification

    International Nuclear Information System (INIS)

    Pruess, K.; Simmons, A.; Wu, Y.S.; Moridis, G.

    1996-02-01

    TOUGH2 is a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media. It belongs to the MULKOM (open-quotes MULti-KOMponentclose quotes) family of codes and is a more general version of the TOUGH simulator. The MULKOM family of codes was originally developed with a focus on geothermal reservoir simulation. They are suited to modeling systems which contain different fluid mixtures, with applications to flow problems arising in the context of high-level nuclear waste isolation, oil and gas recovery and storage, and groundwater resource protection. TOUGH2 is essentially a subset of MULKOM, consisting of a selection of the better tested and documented MULKOM program modules. The purpose of this package of reports is to provide all software baseline documents necessary for the software qualification of TOUGH2

  15. Comparison of strongly heat-driven flow codes for unsaturated media

    International Nuclear Information System (INIS)

    Updegraff, C.D.

    1989-08-01

    Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs

  16. Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH

    International Nuclear Information System (INIS)

    Niemi, A.; Bodvarsson, G.S.; Pruess, K.

    1991-11-01

    As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user's manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented

  17. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. iTOUGH2 Universal Optimization Using the PEST Protocol

    International Nuclear Information System (INIS)

    Finsterle, S.A.

    2010-01-01

    iTOUGH2 (http://www-esd.lbl.gov/iTOUGH2) is a computer program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis [Finsterle, 2007a, b, c]. iTOUGH2 contains a number of local and global minimization algorithms for automatic calibration of a model against measured data, or for the solution of other, more general optimization problems (see, for example, Finsterle [2005]). A detailed residual and estimation uncertainty analysis is conducted to assess the inversion results. Moreover, iTOUGH2 can be used to perform a formal sensitivity analysis, or to conduct Monte Carlo simulations for the examination for prediction uncertainties. iTOUGH2's capabilities are continually enhanced. As the name implies, iTOUGH2 is developed for use in conjunction with the TOUGH2 forward simulator for nonisothermal multiphase flow in porous and fractured media [Pruess, 1991]. However, iTOUGH2 provides FORTRAN interfaces for the estimation of user-specified parameters (see subroutine USERPAR) based on user-specified observations (see subroutine USEROBS). These user interfaces can be invoked to add new parameter or observation types to the standard set provided in iTOUGH2. They can also be linked to non-TOUGH2 models, i.e., iTOUGH2 can be used as a universal optimization code, similar to other model-independent, nonlinear parameter estimation packages such as PEST [Doherty, 2008] or UCODE [Poeter and Hill, 1998]. However, to make iTOUGH2's optimization capabilities available for use with an external code, the user is required to write some FORTRAN code that provides the link between the iTOUGH2 parameter vector and the input parameters of the external code, and between the output variables of the external code and the iTOUGH2 observation vector. While allowing for maximum flexibility, the coding requirement of this approach limits its applicability to those users with FORTRAN coding knowledge. To make iTOUGH2 capabilities accessible to many application models

  19. Graphical user interface for TOUGH/TOUGH2 - development of database, pre-processor, and post-processor

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuya; Okabe, Takashi; Osato, Kazumi [Geothermal Energy Research and Development Co., Ltd., Tokyo (Japan)

    1995-03-01

    One of the advantages of the TOUGH/TOUGH2 (Pruess, 1987 and 1991) is the modeling using {open_quotes}free shape{close_quotes} polygonal blocks. However, the treatment of three-dimensional information, particularly for TOUGH/TOUGH2 is not easy because of the {open_quotes}free shape{close_quotes} polygonal blocks. Therefore, we have developed a database named {open_quotes}GEOBASE{close_quotes} and a pre/post-processor named {open_quotes}GEOGRAPH{close_quotes} for TOUGH/TOUGH2 on engineering work station (EWS). {open_quotes}GEOGRAPH{close_quotes} is based on the ORACLE{sup *1} relational database manager system to access data sets of surface exploration (geology, geophysics, geochemistry, etc.), drilling (well trajectory, geological column, logging, etc.), well testing (production test, injection test, interference test, tracer test, etc.) and production/injection history.{open_quotes}GEOGRAPH{close_quotes} consists of {open_quotes}Pre-processor{close_quotes} that can construct the three-dimensional free shape reservoir modeling by mouse operation on X-window and {open_quotes}Post-processor{close_quotes} that can display several kinds of two/three-dimensional maps and X-Y plots to compile data on {open_quotes}GEOBASE{close_quotes} and result of TOUGH/TOUGH2 calculation. This paper shows concept of the systems and examples of utilization.

  20. ITOUGH2: Solving TOUGH inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    ITOUGH2 is a program that provides inverse modeling capabilities for the TOUGH2 code. While the main purpose of ITOUGH2 is to estimate two-phase hydraulic properties of calibrating a TOUGH2 model to laboratory or field data, the information obtained by evaluating parameter sensitivities can also be used to optimize the design of an experiment, and to analyze the uncertainty of model predictions. ITOUGH2 has been applied to a number of laboratory and field experiments on different scales. Three examples are discussed in this paper, demonstrating the code`s capability to support test design, data analysis, and model predictions for a variety of TOUGH problems.

  1. TOUGH2 modeling. Pre- and post processing; TOUGH2 Modellierungen. Prae- und Postprozessing

    Energy Technology Data Exchange (ETDEWEB)

    Frieling, Gerd; Bracke, Guido

    2013-12-15

    GRS is modeling the two-phase flow in porous media using the program TOUGH2. The report describes the TOUGH2 program structure and the essential input parameters. Some of the important physical models are discussed for better understanding of the required data input. The data processing and visualization that is very specific for the GRS work flow Is described in detail. GRS has refined the standard modules EOS7 and EOS7R, the model extensions consider the rock convergence, time dependent boundary conditions and include the direction dependent diffusion or dispersion.

  2. Simulation of the Heber geothermal field, a TOUGH2/PC application

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.; Lippmann, M. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Ali Khan, M. [California Department of Conservation, Santa Rosa, CA (United States)

    1995-03-01

    A numerical simulation model for the Heber geothermal field in southern California is being developed under a technology transfer agreement between the Department of Energy/LBL and the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (Division). The two objectives of the cooperation are: (1) to train Division personnel in the use of the TOUGH2/PC computer code; and (2) to develop a module compatible with TOUGH2 to investigate the effects of production/injection operations on the ground surface subsidence-rebound phenomenon observed in the field. The compaction of the rock formation will be handled assuming an elastic behavior of the rock-fluid system. Considered will be changes in pore volume and in-grid block dimensions, as well as, the process by which the change in formation volume is transmitted to the surface (vertical deformation; subsidence and rebound).

  3. Use of TOUGH2 on small computers

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.; Pruess, K.; Moridis, G. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    TOUGH2/PC has been tested extensively on different PC platforms (486-33, 486-66, Pentium-90), with encouraging results. TOUGH2 performance has also been tested in other 32-bit computers as the MacIntosh Quadra 800, and a workstation IBM RISC 6000. Results obtained with these machines are compared with PCs` performance. PC results for 3-D geothermal reservoir models are discussed, including: (a) a Cartesian; and (b) a geothermal reservoir model with 1,411 irregular grid blocks. Also discussed are the results of the TOUGH2-compiler performance tests conducted on small computer systems. Code modifications required to operate on 32-bit computers and its setup in each machine environment are described. It is concluded that in today`s market PCs provide the best price/performance alternative to conduct TOUGH2 numerical simulations.

  4. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    Science.gov (United States)

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and

  5. TOUGH2-GRS version 1. User manual

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Martin; Eckel, Jens

    2016-07-15

    TOUGH2 is a code for the simulation of multi-phase flow processes in porous media that has been developed by the Lawrence Berkeley National Laboratory, California, USA. Since 1991, GRS has been using the code for process analyses and safety assessments for deep geological repositories and has extended the code by several processes that are relevant for repository systems. The TOUGH2 source code that has been developed further by GRS is referred to as TOUGH2-GRS. The present report presents code version 1.1.g, which was developed in project UM13 A 03400 sponsored by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB).

  6. More progress on tough graphs -- The Y2K report

    NARCIS (Netherlands)

    Bauer, D.; Broersma, Haitze J.; Schmeichel, E.

    2000-01-01

    We now know that not every $2$-tough graph is hamiltonian. In fact for every $\\epsilon > 0$, there exists a ($9/4 - \\epsilon$) - tough nontraceable graph. We continue our quadrennial survey of results that relate the toughness of a graph to its cycle structure.

  7. User's Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam reg-sign, a text-based database system, was chosen. WordPerfect 5.1 copyright is being used as a text-editor to input data records into askSam

  8. Proceedings of the TOUGH workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [ed.

    1990-09-01

    A workshop on applications and enhancements of the TOUGH/MULKOM family of multiphase fluid and heat flow simulation programs was held at Lawrence Berkeley Laboratory on September 13--14, 1990. The workshop was attended by 62 scientists from seven countries with interests in geothermal reservoir engineering, nuclear waste isolation, unsaturated zone hydrology, environmental problems, and laboratory and field experimentation. The meeting featured 21 technical presentations, extended abstracts of which are reproduced in the present volume in unedited form. Simulator applications included processes on a broad range of space scales, from centimeters to kilometers, with transient times from seconds to geologic time scales. A number of code enhancements were reported that increased execution speeds for large 3-D problems by factors of order 20, reduced memory requirements, and improved user-friendliness. The workshop closed with an open discussion session that focussed on future needs and means for interaction in the TOUGH user community. Input from participants was gathered by means of a questionnaire that is reproduced in the appendix. 171 refs., 91 figs., 16 tabs.

  9. Proceedings of the TOUGH workshop

    International Nuclear Information System (INIS)

    Pruess, K.

    1990-09-01

    A workshop on applications and enhancements of the TOUGH/MULKOM family of multiphase fluid and heat flow simulation programs was held at Lawrence Berkeley Laboratory on September 13--14, 1990. The workshop was attended by 62 scientists from seven countries with interests in geothermal reservoir engineering, nuclear waste isolation, unsaturated zone hydrology, environmental problems, and laboratory and field experimentation. The meeting featured 21 technical presentations, extended abstracts of which are reproduced in the present volume in unedited form. Simulator applications included processes on a broad range of space scales, from centimeters to kilometers, with transient times from seconds to geologic time scales. A number of code enhancements were reported that increased execution speeds for large 3-D problems by factors of order 20, reduced memory requirements, and improved user-friendliness. The workshop closed with an open discussion session that focussed on future needs and means for interaction in the TOUGH user community. Input from participants was gathered by means of a questionnaire that is reproduced in the appendix. 171 refs., 91 figs., 16 tabs

  10. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    International Nuclear Information System (INIS)

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L.

    1995-09-01

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were 85 Sr, 236 U, and 238 U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period

  11. Preface: Research advances in vadose zone hydrology through simulations with the TOUGH codes

    International Nuclear Information System (INIS)

    Finsterle, Stefan; Oldenburg, Curtis M.

    2004-01-01

    symposium, with special attention to issues related to the vadose zone and unsaturated flow systems. The first paper, written by the original developer of TOUGH, Karsten Pruess, provides an overview of the history of the TOUGH codes, the main physical processes considered, their mathematical and numerical implementation, and case studies. That paper is followed by a review article summarizing inverse modeling applications performed by iTOUGH2. A subsequent group of papers deals with diverse unsaturated zone systems, highlighting the versatility of the code to handle a variety of processes in different geologic settings. Simulation capabilities of the TOUGH codes are increasingly used for geologic carbon sequestration studies as testified by the next group of papers. The final series of papers demonstrates the use of the TOUGH codes in support of remediation and engineering applications. These studies discuss biological and reactive chemical transport simulations, the design of clean-up operations and landfill management, and the analysis of engineered soil stabilization. As guest editors, we thank the authors for their interesting contributions, and the many reviewers for their careful and constructive review comments. Finally, on behalf of all of the authors and ourselves, we express our sincerest appreciation to Rien van Genuchten for providing the opportunity to publish these papers together in a Special Section of ''Vadose Zone Journal''

  12. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.

  13. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    Science.gov (United States)

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the

  14. TOUGH: a numerical model for nonisothermal unsaturated flow to study waste canister heating effects

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1983-12-01

    The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermo-hydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables

  15. TOUGH - a numerical model for nonisothermal unsaturated flow to study waste canister heating effects

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1984-01-01

    The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermohydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables

  16. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  17. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  18. SITA version 0. A simulation and code testing assistant for TOUGH2 and MARNIE

    Energy Technology Data Exchange (ETDEWEB)

    Seher, Holger; Navarro, Martin

    2016-06-15

    High quality standards have to be met by those numerical codes that are applied in long-term safety assessments for deep geological repositories for radioactive waste. The software environment SITA (''a simulation and code testing assistant for TOUGH2 and MARNIE'') has been developed by GRS in order to perform automated regression testing for the flow and transport simulators TOUGH2 and MARNIE. GRS uses the codes TOUGH2 and MARNIE in order to assess the performance of deep geological repositories for radioactive waste. With SITA, simulation results of TOUGH2 and MARNIE can be compared to analytical solutions and simulations results of other code versions. SITA uses data interfaces to operate with codes whose input and output depends on the code version. The present report is part of a wider GRS programme to assure and improve the quality of TOUGH2 and MARNIE. It addresses users as well as administrators of SITA.

  19. Adaptation of TOUGH2 to the transport of supercritical CO2. Final report

    International Nuclear Information System (INIS)

    Audigane, P.

    2004-12-01

    This work has been realized in the framework of the PICOR national research program which aims to study the massive injection of CO 2 in reservoirs (aquifers). It is considered as a mean for reducing atmospheric emissions of greenhouse effect gases. Numerical modeling is an important tool for studying these injections. Some modifications have been realized in the EWASG module to adapt the software TOUGH2 for the case of the supercritical CO 2 storage in saline aquifers. In order to validate the modifications, comparative evaluations are presented. The report presents the TOUGH2 software, more specially the EWASG module, the comparative evaluations and discusses the satisfying results. (A.L.B.)

  20. Tensile and fracture toughness characteristics of Zr-2.5Nb pressure tube

    International Nuclear Information System (INIS)

    Jung, H. C.; Kim, Y. S.; Ahn, S. B.; Kim, S. S.; Im, K. S.

    2004-01-01

    The object of this study is to evaluate the characteristics of tensile and fracture toughness of Zr-2.5Nb pressure tube. The transverse tensile tests were performed at various temperatures and the fracture toughness tests were carried out at room temperature using the CCT (curved compact tension) specimen. These specimens were directly machined from the pressure tube retaining original curvatures. Also, the fracture toughness of two sets of Zr-2.5Nb manufactured at different time was compared. The chemical analysis and the Vicker's hardness tests were performed at two sets of Zr-2.5Nb pressure tube. The Vicker's hardness value of SET-2 containing more oxygen and carbon relatively was higher about 11 than that of SET-1

  1. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  2. EOS7R: Radionuclide transport for TOUGH2

    International Nuclear Information System (INIS)

    Oldenburg, C.M.; Pruess, K.

    1995-11-01

    EOS7R provides radionuclide transport capability for TOUGH2. EOS7R extends the EOS7 module (water, brine, and optional air) to model water, brine, parent component, daughter component, and optional air and heat. The radionuclide components follow a first-order decay law, and may adsorb onto the solid grains. Volatilization of the decaying components is modeled by Henry's Law. The decaying components are normally referred to as radionuclides, but they may in fact by any trace components that decay, adsorb, and volatilize. The decay process need not be radioactive decay, but could be any process that follows a first-order decay law, such as biodegradation. EOS7R includes molecular diffusion for all components in gaseous and aqueous phases using a simplified binary diffusion model. When EOS7R is used with standard TOUGH2, transport occurs by advection and molecular diffusion in all phases. When EOS7R is coupled with the dispersion module T2DM, one obtains T2DMR, the radionuclide transport version of T2DM. T2DMR models advection, diffusion, and hydrodynamic dispersion in rectangular two-dimensional regions. Modeling of radionuclide transport requires input parameters specifying the half-life for first-order decay, distribution coefficients for each rock type for adsorption, and inverse Henry's constants for volatilization. Options can be specified in the input file to model decay in inactive grid blocks and to read from standard EOS7 INCON files. The authors present a number of example problems to demonstrate application and accuracy of TOUGH2/EOS7R. One-dimensional simulation results agree well with analytical solutions. For a two-dimensional salt-dome flow problem, the final distribution of daughter radionuclide component is complicated by the presence of weak recirculation caused by density effects due to salinity

  3. Master curve based correlation between static initiation toughness KIC and crack arrest toughness KIa

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.

    1999-01-01

    Historically the ASME reference curve concept assumes a constant relation between static fracture toughness initiation toughness and crack arrest toughness. In reality, this is not the case. Experimental results show that the difference between K IC and K Ia is material specific. For some materials there is a big difference while for others they nearly coincide. So far, however, no systematic study regarding a possible correlation between the two parameters has been performed. The recent Master curve method, developed for brittle fracture initiation estimation, has enabled a consistent analysis of fracture initiation toughness data. The Master curve method has been modified to be able to describe also crack arrest toughness. Here, this modified 'crack arrest master curve' is further validated and used to develop a simple, but yet (for safety assessment purpose) adequately accurate correlation between the two fracture toughness parameters. The correlation enables the estimation of crack arrest toughness from small Charpy-sized static fracture toughness tests. The correlation is valid for low Nickel steels ≤ (1.2% Ni). If a more accurate description of the crack arrest toughness is required, it can either be measured experimentally or estimated from instrumented Charpy-V crack arrest load information. (orig.)

  4. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  5. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  6. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-01-01

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  7. WinGridder - An interactive grid generator for TOUGH - A user's manual (Version 1.0)

    International Nuclear Information System (INIS)

    Pan, Lehua; Hinds, Jennifer; Haukwa, Charles; Wu, Yu-Shu; Bodvarsson, Gudmundur

    2001-01-01

    WinGridder is a Windows-based software package for designing, generating, and visualizing at various spatial scales numerical grids used in reservoir simulations and groundwater modeling studies. Development of this software was motivated by the requirements of the TOUGH (Transport of Unsaturated Groundwater and Heat) family of codes (Pruess 1987, 1991) for simulating subsurface processes related to high-level nuclear waste isolation in partially saturated geological media. Although the TOUGH family of codes has great flexibility in handling the variety of grid information required to describe complex objects, designing and generating a suitable irregular grid can be a tedious and error-prone process, even with the help of existing grid generating programs. This is especially true when the number of cells and connections is very large. The processes of inspecting the quality of the grid or extracting sub-grids or other specific grid information are also complex. The mesh maker embedded within TOUGH2 generates only uniform numerical grids and handles only one set of uniform fracture and matrix properties throughout the model domain. This is not suitable for grid generation in complex flow and transport simulations (such as those of Yucca Mountain, which have heterogeneity in both fracture and matrix media). As a result, the software program Amesh (Haukwa 2000) was developed to generate irregular, effective-continuum (ECM) grids

  8. Age dating ground water by use of chlorofluorocarbons (CCl3F and CCl2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Busenberg, E.; Weeks, E.P.; Plummer, L.N.; Bartholomay, R.C.

    1993-04-01

    Detectable concentrations of chlorofluorocarbons (CFC's) were observed in ground water and unsaturated-zone air at the Idaho National Engineering Laboratory (INEL) and vicinity. The recharge ages of waters were determined to be from 4 to more than 50 years on the basis of CFC concentrations and other environmental data; most ground waters have ages of 14 to 30 years. These results indicate that young ground water was added at various locations to the older regional ground water (greater than 50 years) within and outside the INEL boundaries. The wells drilled into the Snake River Plain aquifer at INEL sampled mainly this local recharge. The Big Lost River, Birch Creek, the Little Lost River, and the Mud Lake-Terreton area appear to be major sources of recharge of the Snake River Plain aquifer at INEL. An average recharge temperature of 9.7±1.3 degrees C (degrees Celsius) was calculated from dissolved nitrogen and argon concentrations in the ground waters, a temperature that is similar to the mean annual soil temperature of 9 degrees C measured at INEL. This similarity indicates that the aquifer was recharged at INEL and not at higher elevations that would have cooler soil temperatures than INEL. Soil-gas concentrations at Test Area North (TAN) are explained by diffusion theory

  9. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  10. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  11. Modelling flow and heat transfer through unsaturated chalk - Validation with experimental data from the ground surface to the aquifer

    Science.gov (United States)

    Thiéry, Dominique; Amraoui, Nadia; Noyer, Marie-Luce

    2018-01-01

    During the winter and spring of 2000-2001, large floods occurred in northern France (Somme River Basin) and southern England (Patcham area of Brighton) in valleys that are developed on Chalk outcrops. The floods durations were particularly long (more than 3 months in the Somme Basin) and caused significant damage in both countries. To improve the understanding of groundwater flooding in Chalk catchments, an experimental site was set up in the Hallue basin, which is located in the Somme River Basin (France). Unsaturated fractured chalk formation overlying the Chalk aquifer was monitored to understand its reaction to long and heavy rainfall events when it reaches a near saturation state. The water content and soil temperature were monitored to a depth of 8 m, and the matrix pressure was monitored down to the water table, 26.5 m below ground level. The monitoring extended over a 2.5-year period (2006-2008) under natural conditions and during two periods when heavy, artificial infiltration was induced. The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used

  12. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  13. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    Science.gov (United States)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  14. Influence of preliminary loading on fracture toughness of ceramics ZrO2-(3,4) mol.% Y2O3

    International Nuclear Information System (INIS)

    Akimov, G.Ya.; Timchenko, V.M.

    2001-01-01

    The effect of preliminary mechanical loading on the fracture toughness of ceramics of the ZrO 2 -3-4 mol.% Y 2 O 3 composition is studied. It is shown that the fracture toughness monotonously increases and the increment constitutes ∼ 50% from the initial value. It is supposed that by the preliminary loading there takes place slow isothermal stage of the martensitic phase transformation of the part of the material grains. This leads to increase in the transformation degree by mechanical testing which is expressed in the increase in the fracture toughness [ru

  15. Fracture toughness of irradiated Zr-2.5Nb pressure tube from KAPS-2 evaluated using disk compact tension specimens

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Balakrishnan, K.S.; Shriwastaw, R.S.; Dhotre, M.P.; Bhandekar, A.; Pandit, K.M.; Anantharaman, S.

    2013-12-01

    The report gives the results of the fracture toughness tests carried out over the range of temperatures on specimens prepared from the irradiated S-07Zr-2.5Nb pressure tube removed from Kakrapar Atomic Power Station-2 (KAPS-2) as a part of materials surveillance programme. The pressure tube had experienced ∼ 8 effective full power years (EFPY) of reactor operation and had hydrogen equivalent (H eq ) content less than 20 ppm along the tube length. The fracture toughness tests have been carried out using 30 mm Disk Compact Tension (DCT) specimens, that were punched out of the irradiated pressure tube. The disk punching was carried out using specially made shielded enclosure and hydraulic press. Fatigue pre-cracking and fracture toughness tests were performed using servo-hydraulic universal testing machine with Direct Current Potential Drop (DCPD) equipment to monitor the crack length. The tests were carried out at different test temperature from ambient to 300℃. The fracture toughness values have been used to estimate the critical pressure for the tube. The fracture properties indicate that such tubes have sufficient toughness to satisfy the Leak-Before-Break (LBB) criterion for in-reactor operation. (author)

  16. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  17. SYNTHESIS OF 2,3-UNSATURATED FURANIC HEX- AND PENT ...

    African Journals Online (AJOL)

    a

    [12] and reduction in two steps of 3-(2-furyl)-acrolein[13] in good yields. The reaction of alcohols 2a-e with glucal 1, carried out in presence of boron trifluoride [7]. (method A), ferric chloride [11] (method B) and CAN [10] (method C), afforded the corresponding 2,3-unsaturated glucopyranosides 3a-e (Table 1). Table 1.

  18. Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR

    Science.gov (United States)

    Shah, Priti Kotak; Dubey, J. S.; Shriwastaw, R. S.; Dhotre, M. P.; Bhandekar, A.; Pandit, K. M.; Anantharaman, S.; Singh, R. N.; Chakravartty, J. K.

    2015-03-01

    Fracture toughness of irradiated Zr-2.5Nb alloy pressure tube, fabricated by the cold pilgering and stress relieving route, was evaluated using disk compact tension type specimens. These specimens were punched out from the irradiated pressure tube (S-07), which was in service for about 8 effective full power years of reactor operation in the Kakrapar Atomic Power Station-2 (KAPS-2). The tests were carried out remotely inside a lead shielded enclosure. Crack growth during the test was measured using the direct current potential drop technique. The irradiated pressure tube showed low fracture toughness at 25 °C. The fracture toughness increased with increase in temperature up to 250 °C but was practically unaffected with further increase in temperature up to 300 °C. This paper discusses the fracture behavior of irradiated Indian pressure tube material and compares it with other data available.

  19. Toughness of 2,25Cr-1Mo steel and weld metal

    Science.gov (United States)

    Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret

    2017-09-01

    2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.

  20. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  1. EOSN: A TOUGH2 module for noble gases

    International Nuclear Information System (INIS)

    Shan, Chao; Pruess, Karsten

    2003-01-01

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations

  2. Mental toughness latent profiles in endurance athletes.

    Directory of Open Access Journals (Sweden)

    Joanna S Zeiger

    Full Text Available Mental toughness in endurance athletes, while an important factor for success, has been scarcely studied. An online survey was used to examine eight mental toughness factors in endurance athletes. The study aim was to determine mental toughness profiles via latent profile analysis in endurance athletes and whether associations exist between the latent profiles and demographics and sports characteristics. Endurance athletes >18 years of age were recruited via social media outlets (n = 1245, 53% female. Mental toughness was measured using the Sports Mental Toughness Questionnaire (SMTQ, Psychological Performance Inventory-Alternative (PPI-A, and self-esteem was measured using the Rosenberg Self-Esteem Scale (RSE. A three-class solution emerged, designated as high mental toughness (High MT, moderate mental toughness (Moderate MT and low mental toughness (Low MT. ANOVA tests showed significant differences between all three classes on all 8 factors derived from the SMTQ, PPI-A and the RSE. There was an increased odds of being in the High MT class compared to the Low MT class for males (OR = 1.99; 95% CI, 1.39, 2.83; P<0.001, athletes who were over 55 compared to those who were 18-34 (OR = 2.52; 95% CI, 1.37, 4.62; P<0.01, high sports satisfaction (OR = 8.17; 95% CI, 5.63, 11.87; P<0.001, and high division placement (OR = 2.18; 95% CI, 1.46,3.26; P<0.001. The data showed that mental toughness latent profiles exist in endurance athletes. High MT is associated with demographics and sports characteristics. Mental toughness screening in athletes may help direct practitioners with mental skills training.

  3. A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO 2 geological storage

    Science.gov (United States)

    Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine

    2011-04-01

    This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).

  4. Mental toughness latent profiles in endurance athletes.

    Science.gov (United States)

    Zeiger, Joanna S; Zeiger, Robert S

    2018-01-01

    Mental toughness in endurance athletes, while an important factor for success, has been scarcely studied. An online survey was used to examine eight mental toughness factors in endurance athletes. The study aim was to determine mental toughness profiles via latent profile analysis in endurance athletes and whether associations exist between the latent profiles and demographics and sports characteristics. Endurance athletes >18 years of age were recruited via social media outlets (n = 1245, 53% female). Mental toughness was measured using the Sports Mental Toughness Questionnaire (SMTQ), Psychological Performance Inventory-Alternative (PPI-A), and self-esteem was measured using the Rosenberg Self-Esteem Scale (RSE). A three-class solution emerged, designated as high mental toughness (High MT), moderate mental toughness (Moderate MT) and low mental toughness (Low MT). ANOVA tests showed significant differences between all three classes on all 8 factors derived from the SMTQ, PPI-A and the RSE. There was an increased odds of being in the High MT class compared to the Low MT class for males (OR = 1.99; 95% CI, 1.39, 2.83; Pathletes who were over 55 compared to those who were 18-34 (OR = 2.52; 95% CI, 1.37, 4.62; Pathletes. High MT is associated with demographics and sports characteristics. Mental toughness screening in athletes may help direct practitioners with mental skills training.

  5. Strength-toughness relations in sintered and isostatically hot-pressed ZrO2-toughened Al2O3

    International Nuclear Information System (INIS)

    Hori, S.; Yoshimura, M.; Somiya, S.

    1986-01-01

    The fracture toughness of fine-grained undoped ZrO 2 -toughened Al 2 O 3 (ZTA) was essentially unchanged by post-sintering hot isostatic pressing and increased monotonically with ZrO 2 additions up to 25 wt%. The strength of ZTA with 5 to 15 wt% tetragonal ZrO 2 , which depended monotonically on the amount of ZrO 2 present before hot isostatic pressing, was increased by pressing but became almost constant between 5 and 15 wt% ZrO 2 addition. The strength appeared to be controlled by pores before pressing and by surface flaws after pressing; the size of flaws after pressing increased with ZrO 2 content. The strength of ZTA containing mostly monoclinic ZrO 2 (20 to 25 wt%) remained almost constant despite the noticeable density increase upon hot isostatic pressing because the strength was controlled by preexisting microcracks whose extent did not change on postsintering pressing. These strength-toughness relations in sintered and isostatically hot-pressed ZTA are explained on the basis of R-curve behavior. The importance of the contribution of microcracks to the toughness of ZTA is emphasized

  6. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    Albright, C.E.

    1978-11-01

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 350 0 C were heat treated at 360, 380, 400, 420, and 440 0 C. An intermetallic reaction product layer of Fe 2 Al 5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe 2 Al 5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe 2 Al 5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe 2 Al 5 is shown to cause the embrittlement

  7. Transport of gaseous C-14 from a repository in unsaturated rock

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Lee, W. L.; Pigford, T.H.; California Univ., Berkeley, CA

    1990-09-01

    The authors predict the transport of gaseous 14 CO 2 from a nuclear waste repository in unsaturated rock using a porous-medium model. This model is justified if the appropriate modified Peclet number, which indicates equilibrium between gas in fractures and liquid in rock pores, is much less than unity. Numerical illustrations are given which are applicable to the proposed repository at Yucca Mountain which is 350 m underground. Maximum predicted concentrations of 14 CO 2 near the ground surface are comparable to the USNRC limit for unrestricted areas. Maximum predicted dose rates above ground are less than 1% of background. Travel times are predicted to be hundreds to thousands of years. For some cases, it is shown that the release rate from the source has negligible effect on concentrations at the ground surface. 15 refs., 10 figs., 1 tab

  8. Review of ground-water flow and transport models in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type.

  9. Review of ground-water flow and transport models in the unsaturated zone

    International Nuclear Information System (INIS)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type

  10. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-01-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  11. Increasing the efficiency of the TOUGH code for running large-scale problems in nuclear waste isolation

    International Nuclear Information System (INIS)

    Nitao, J.J.

    1990-08-01

    The TOUGH code developed at Lawrence Berkeley Laboratory (LBL) is being extensively used to numerically simulate the thermal and hydrologic environment around nuclear waste packages in the unsaturated zone for the Yucca Mountain Project. At the Lawrence Livermore National Laboratory (LLNL) we have rewritten approximately 80 percent of the TOUGH code to increase its speed and incorporate new options. The geometry of many requires large numbers of computational elements in order to realistically model detailed physical phenomena, and, as a result, large amounts of computer time are needed. In order to increase the speed of the code we have incorporated fast linear equation solvers, vectorization of substantial portions of code, improved automatic time stepping, and implementation of table look-up for the steam table properties. These enhancements have increased the speed of the code for typical problems by a factor of 20 on the Cray 2 computer. In addition to the increase in computational efficiency we have added several options: vapor pressure lowering; equivalent continuum treatment of fractures; energy and material volumetric, mass and flux accounting; and Stefan-Boltzmann radiative heat transfer. 5 refs

  12. Characterizing and improving the toughness of thick-sectioned 2 1/4 Cr-1 Mo electroslag weldments

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, G.R.; Frost, R.H.

    1980-09-01

    Efforts to improve the toughness of electroslag weldments consisted of four endeavors: process control, changes caused in 2 1/4 Cr-1 Mo steel by electroslag welding and post-weld heat treatment, electrochemical reactions during the electroslag welding, and toughness testing.

  13. Modelling flow through unsaturated zones: Sensitivity to unsaturated ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    soil properties are studied by varying the unsaturated parameters α and n over a wide range. ... Keywords. Unsaturated zone; capillary fringe; finite element method. ... and radioactive wastes. Several .... The length (L) of the soil sample is 1 m.

  14. Influence of hydrogen content on fracture toughness of CWSR Zr-2.5Nb pressure tube alloy

    Science.gov (United States)

    Singh, R. N.; Bind, A. K.; Srinivasan, N. S.; Ståhle, P.

    2013-01-01

    In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr-2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial-circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30-300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.

  15. Dynamic fracture toughness of ASME SA508 Class 2a ASME SA533 grade A Class 2 base and heat affected zone material and applicable weld metals

    International Nuclear Information System (INIS)

    Logsdon, W.A.; Begley, J.A.; Gottshall, C.L.

    1978-03-01

    The ASME Boiler and Pressure Vessel Code, Section III, Article G-2000, requires that dynamic fracture toughness data be developed for materials with specified minimum yield strengths greater than 50 ksi to provide verification and utilization of the ASME specified minimum reference toughness K/sub IR/ curve. In order to qualify ASME SA508 Class 2a and ASME SA533 Grade A Class 2 pressure vessel steels (minimum yield strengths equal 65 kip/in. 2 and 70 kip/in. 2 , respectively) per this requirement, dynamic fracture toughness tests were performed on these materials. All dynamic fracture toughness values of SA508 Class 2a base and HAZ material, SA533 Grade A Class 2 base and HAZ material, and applicable weld metals exceeded the ASME specified minimum reference toughness K/sub IR/ curve

  16. Ultra-tough and strong, hybrid thin films based on ionically crosslinked polymers and 2D inorganic platelets

    Science.gov (United States)

    Ji, Dong Hwan; Choi, Suji; Kim, Jaeyun; nanobiomaterials lab Team

    Integration of high strength and toughness tend to be mutually exclusive and synthesized hybrid films with superior mechanical properties have been difficult to fabricate controllable shapes and various scales. Although diverse synthesized hybrid films consisting of organic matrix and inorganic materials with brick-and-mortar structure, show improved mechanical properties, these films are still limited in toughness and fabrication methods. Herein, we report ultra-tough and strong hybrid thin films with self-assembled uniform microstructures with controllable shapes and various scale based on hydrogel-mediated process. Ca2+-crosslinking in alginate chains and well-aligned alumina platelets in alginate matrix lead to a synergistic enhancement of strength and toughness in the resulting film. Consequentially, Ca2+-crosslinked Alg/Alu films showed outstanding toughness of 29 MJ m-3 and tensile strength of 160 MPa. Furthermore, modifying Alu surface with polyvinylpyrrolidone (PVP), tensile strength was further improved up to 200 MPa. Our results suggest an alternative approach to design and processing of self-assembled hydrogel-mediated hybrid films with outstanding mechanical properties.

  17. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  18. Application of tan h curve fitting to toughness data

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu

    1985-01-01

    Curve-fitting regression procedures for toughness data have been examined. The objectives of fitting curve in the context of the study of nuclear pressure vessel steels are (1) convenient summarization of test data to permit comparison of materials and testing methods; (2) development of statistical base concerning the data; (3) the surveying of the relationships between charpy data and fracture toughness data; (4) estimation of fracture toughness level from charpy absorbed energy data. The computational procedures using the tanh function have been applied to the toughness data (charpy absorbed energy, static fracture toughness, dynamic fracture toughness, crack arrest toughness) of A533B cl.1 and A508 cl.3 steels. The results of the analysis shows the statistical features of the material toughness and gives the method for estimating fracture toughness level from charpy absorbed energy data. (author)

  19. Mental Toughness Moderates Social Loafing in Cycle Time-Trial Performance.

    Science.gov (United States)

    Haugen, Tommy; Reinboth, Michael; Hetlelid, Ken J; Peters, Derek M; Høigaard, Rune

    2016-09-01

    The purpose of this study was to determine if mental toughness moderated the occurrence of social loafing in cycle time-trial performance. Twenty-seven men (Mage = 17.7 years, SD = 0.6) completed the Sport Mental Toughness Questionnaire prior to completing a 1-min cycling trial under 2 conditions: once with individual performance identified, and once in a group with individual performance not identified. Using a median split of the mental toughness index, participants were divided into high and low mental toughness groups. Cycling distance was compared using a 2 (trial) × 2 (high-low mental toughness) analysis of variance. We hypothesized that mentally tough participants would perform equally well under both conditions (i.e., no indication of social loafing) compared with low mentally tough participants, who would perform less well when their individual performance was not identifiable (i.e., demonstrating the anticipated social loafing effect). The high mental toughness group demonstrated consistent performance across both conditions, while the low mental toughness group reduced their effort in the non-individually identifiable team condition. The results confirm that (a) clearly identifying individual effort/performance is an important situational variable that may impact team performance and (b) higher perceived mental toughness has the ability to negate the tendency to loaf.

  20. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  1. Design of dry barriers for containment of contaminants in unsaturated soils

    International Nuclear Information System (INIS)

    Morris, C.E.; Thomson, B.M.; Stormont, J.C.

    1997-01-01

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil's hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing

  2. The fracture toughness and DBTT of MoB particle-reinforced MoSi2 composites

    International Nuclear Information System (INIS)

    Xiong Zhi; Wang Gang; Jiang Wan

    2005-01-01

    The room temperature fracture toughness and the high temperature DBTT of MoB particle-reinforced MoSi 2 composites were investigated using Vickers indentation technique and MSP testing method, respectively. Modified small punch (MSP) test is a method for evaluation of mechanical properties using very small specimens, and it's appropriate for the determination of strength and DBTT. It was found that the approximate fracture toughness of the composite is 1.3 times that of monolithic MoSi 2 , and its DBTT is 100 C higher than that of monolithic MoSi 2 materials. Cracks deflection is a probable mechanism responsible for this behavior. (orig.)

  3. Characterization on the Microstructure Evolution and Toughness of TIG Weld Metal of 25Cr2Ni2MoV Steel after Post Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2018-03-01

    Full Text Available The microstructure and toughness of tungsten inert gas (TIG backing weld parts in low-pressure steam turbine welded rotors contribute significantly to the total toughness of the weld metal. In this study, the microstructure evolution and toughness of TIG weld metal of 25Cr2Ni2MoV steel low-pressure steam turbine welded rotor under different post-weld heat treatment (PWHT conditions are investigated. The fractography and microstructure of weld metal after PWHT are characterized by optical microscope, SEM, and TEM, respectively. The Charpy impact test is carried out to evaluate the toughness of the weld. The optical microscope and SEM results indicate that the as-welded sample is composed of granular bainite, acicular ferrite and blocky martensite/austenite (M-A constituent. After PWHT at 580 °C, the blocky M-A decomposes into ferrite and carbides. Both the number and size of precipitated carbides increase with holding time. The impact test results show that the toughness decreases dramatically after PWHT and further decreases with holding time at 580 °C. The precipitated carbides are identified as M23C6 carbides by TEM, which leads to the dramatic decrease in the toughness of TIG weld metal of 25Cr2Ni2MoV steel.

  4. 46 CFR 54.05-16 - Production toughness testing.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Production toughness testing. 54.05-16 Section 54.05-16... Toughness Tests § 54.05-16 Production toughness testing. (a) For vessels of welded construction, production... welding procedures shall be the same as used in the fabrication of the vessel. From each test plate, one...

  5. Precipitation and impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel during isothermal aging

    International Nuclear Information System (INIS)

    Han, Jian; Li, Huijun; Barbaro, Frank; Jiang, Laizhu; Zhu, Zhixiong; Xu, Haigang; Ma, Li

    2014-01-01

    The effect of isothermal aging on precipitation behaviour and Charpy impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel was investigated by means of Thermo-Calc prediction, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Charpy impact toughness testing. The results show that, niobium, vanadium carbides and nitrides, Fe 2 Nb (Laves phase) and Cr 23 C 6 formed after 2 h aging at 800 °C, and the equilibrium solvus temperature of Fe 2 Nb phase increases to above 750 °C, higher than the calculated temperature (730 °C) using Thermo-Calc. After isothermal aging at 750–950 °C, 2 h aging resulted in a decrease in toughness due to the formation of precipitation, especially (Nb,V)(C,N) and Fe 2 Nb. When isothermally aged at 800 °C for up to 24 h, the coarsening rate of Fe 2 Nb particle is much higher than that of (Nb,V)(C,N), and the impact toughness of the steel is dependent on quantity and sizes of (Nb,V)(C,N) and Fe 2 Nb particles

  6. Precipitation and impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel during isothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jian, E-mail: jh595@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Li, Huijun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Barbaro, Frank [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); CBMM Technology Suisse, 14, Rue du Rhone, Geneve 1204 (Switzerland); Jiang, Laizhu [Baoshan Iron and Steel Co., Ltd., Shanghai 200431 (China); Zhu, Zhixiong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Xu, Haigang; Ma, Li [Baoshan Iron and Steel Co., Ltd., Shanghai 200431 (China)

    2014-08-26

    The effect of isothermal aging on precipitation behaviour and Charpy impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel was investigated by means of Thermo-Calc prediction, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Charpy impact toughness testing. The results show that, niobium, vanadium carbides and nitrides, Fe{sub 2}Nb (Laves phase) and Cr{sub 23}C{sub 6} formed after 2 h aging at 800 °C, and the equilibrium solvus temperature of Fe{sub 2}Nb phase increases to above 750 °C, higher than the calculated temperature (730 °C) using Thermo-Calc. After isothermal aging at 750–950 °C, 2 h aging resulted in a decrease in toughness due to the formation of precipitation, especially (Nb,V)(C,N) and Fe{sub 2}Nb. When isothermally aged at 800 °C for up to 24 h, the coarsening rate of Fe{sub 2}Nb particle is much higher than that of (Nb,V)(C,N), and the impact toughness of the steel is dependent on quantity and sizes of (Nb,V)(C,N) and Fe{sub 2}Nb particles.

  7. Fast reactor irradiation effects on fracture toughness of Si_3N_4 in comparison with MgAl_2O_4 and yttria stabilized ZrO_2

    International Nuclear Information System (INIS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-01-01

    Fracture toughness of silicon nitride (Si_3N_4), magnesia-alumina spinel (MgAl_2O_4) and yttria stabilized zirconia (8 mol%Y_2O_3–ZrO_2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si_3N_4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl_2O_4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks. - Highlights: • Si_3N_4, MgAl_2O_4 and YSZ were neutron irradiated up to 55dpa around 700 °C in the Joyo. • They are candidate ceramics for the inert matrices of nuclear fuels in the fast reactors. • The irradiation enhanced the fracture toughness of MgAl_2O_4 and YSZ, while degraded that of Si_3N_4. • The toughness changes were correlated with radiation induced defects and transmutation gases.

  8. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide

    International Nuclear Information System (INIS)

    Rishabh, Abhishek; Joshi, Milind R.; Balani, Kantesh

    2010-01-01

    The current work focuses on predicting the fracture toughness of Al 2 O 3 ceramic matrix composites using a modified Mandelbrot's fractal approach. The first step confirms that the experimental fracture toughness values fluctuate within the fracture toughness range predicted as per the modified fractal approach. Additionally, the secondary reinforcements [such as carbon nanotubes (CNTs)] have shown to enhance the fracture toughness of Al 2 O 3 . Conventional fractural toughness evaluation via fractal approach underestimates the fracture toughness by considering the shortest crack path. Hence, the modified Mandelbrot's fractal approach considers the crack propagation along the CNT semicircumferential surface (three-dimensional crack path propagation) for achieving an improved fracture toughness estimation of Al 2 O 3 -CNT composite. The estimations obtained in the current approach range within 4% error regime of the experimentally measured fracture toughness values of the Al 2 O 3 -CNT composite.

  9. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  10. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  11. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  12. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    This paper presents the application of parallel computing techniques to large-scale modeling of fluid flow in the unsaturated zone (UZ) at Yucca Mountain, Nevada. In this study, parallel computing techniques, as implemented into the TOUGH2 code, are applied in large-scale numerical simulations on a distributed-memory parallel computer. The modeling study has been conducted using an over-one-million-cell three-dimensional numerical model, which incorporates a wide variety of field data for the highly heterogeneous fractured formation at Yucca Mountain. The objective of this study is to analyze the impact of various surface infiltration scenarios (under current and possible future climates) on flow through the UZ system, using various hydrogeological conceptual models with refined grids. The results indicate that the one-million-cell models produce better resolution results and reveal some flow patterns that cannot be obtained using coarse-grid modeling models

  13. Formation of Nitriles in the Interstellar Medium via Reactions of Cyano Radicals, CN(X2Σ+), with Unsaturated Hydrocarbons

    Science.gov (United States)

    Balucani, N.; Asvany, O.; Huang, L. C. L.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.; Bettinger, H. F.

    2000-12-01

    Crossed molecular beam experiments of cyano radicals, CN(X2Σ+, ν=0), in their electronic and vibrational ground state reacting with unsaturated hydrocarbons acetylene, C2H2(X1Σ+g), ethylene, C2H4(X1Ag), methylacetylene, CH3CCH(X1A1), allene, H2CCCH2(X1A1), dimethylacetylene, CH3CCCH3(X1A1'), and benzene, C6H6 (X1A1g), were performed at relative collision energies between 13.3 and 36.4 kJ mol-1 to unravel the formation of unsaturated nitriles in the outflows of late-type AGB carbon stars and molecular clouds. In all reactions, the CN radical was found to attack the π electron density of the hydrocarbon molecule with the radical center located at the carbon atom; the formation of an initial addition complex is a prevalent pathway on all the involved potential energy surfaces. A subsequent carbon-hydrogen bond rupture yields the nitriles cyanoacetylene, HCCCN (X1Σ+), vinylcyanide, C2H3CN (X1A'), 1-methylcyanoacetylene, CH3CCCN (X1A1), cyanoallene, H2CCCH(CN) (X1A'), 3-methylcyanoacetylene, HCCCH2CN(X1A'), 1,1-cyanomethylallene, H2CCC(CN)(CH3) (X1A'), and cyanobenzene, C6H5CN (X1A1). In case of acetylene and ethylene, a second reaction channel involves a [1, 2]-H atom shift in the initial HCCHCN and H2CCH2CN collision complexes prior to a hydrogen atom release to form cyanoacetylene, HCCCN (X1Σ+), and vinylcyanide, C2H3CN (X1A'). Since all these radical-neutral reactions show no entrance barriers, have exit barriers well below the energy of the reactant molecules, and are exothermic, the explicit identification of this CN versus H atom exchange pathway under single collision conditions makes this reaction class a compelling candidate to synthesize unsaturated nitriles in interstellar environments holding temperatures as low as 10 K. This general concept makes it even feasible to predict the formation of nitriles once the corresponding unsaturated hydrocarbons are identified in the interstellar medium. Here HCCCN, C2H3CN, and CH3CCCN have been already observed

  14. Preface to the Special Issue on TOUGH Symposium 2015

    Science.gov (United States)

    Blanco-Martín, Laura

    2017-11-01

    The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.

  15. High-temperature fracture toughness of duplex microstructures

    International Nuclear Information System (INIS)

    French, J.D.; Chan, H.M.; Harmer, M.P.; Miller, G.A.

    1996-01-01

    The temperature dependence of the fracture toughness of ceramics exhibiting duplex microstructures was studied relative to their single-phase constituents using two test methods: bend testing of chevron-notched beams, and the indentation-crack-length technique. The two materials systems studied were Al 2 O 3 :c-ZrO 2 (Y) and Al 2 O 3 :Y 3 Al 5 O 12 (YAG), and the testing temperature ranged from room temperature to 1,200 C. The study showed that in both systems the duplex materials showed higher toughness values than their single-phase constituents above 800 C. This result was attributed to the contribution of low-energy interphase boundaries to the overall composite toughness. Indentation crack length measurements gave toughness values and trends comparable to those determined by the chevron-notched beam method. By comparing the results of the two test methods it was possible to demonstrate that the indentation calibration constant (ξ) shows no significant temperature or material dependence. For the zirconia-containing materials, however, indentation at elevated temperatures is accompanied by significant localized plasticity, which suppressed the radial cracking. Under such conditions, some caution is warranted, since localized plasticity can lead to an overestimation of the fracture toughness

  16. Development of models for fast fluid pathways through unsaturated heterogeneous porous media

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-11-01

    The pre-waste-emplacement ground water travel time requirement is a regulatory criterion that specifies ground water travel time to the accessible environment shall be greater than 1,000 years. Satisfying the ground water travel time criterion for the potential repository at Yucca Mountain requires the study of fast travel path formation in the unsaturated zone and development of models that simulate the formation of fast paths. Conceptual models for unsaturated flow that have been used for total-systems performance assessment generally fall into the categories of composite-porosity or fracture models. The actual hydrologic conditions at Yucca Mountain are thought to lie somewhere between the extremes of these two types of models. The current study considers the effects of heterogeneities on composite-porosity models and seeks to develop numerical methods (and models) that can produce locally saturated zones where fracture flow can occur. The credibility of the model and numerical methods is investigated by using test data from the INTRAVAL project (Swedish Nuclear Inspectorate, 1992) to attempt to predict in-situ volumetric water content at specific locations in Yucca Mountain. Work based on the numerical methods presented in this study is eventually intended to allow the calculation of ground water travel times in heterogeneous media. 60 refs

  17. Inverse modeling of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: The case of CO2 injection at In Salah, Algeria

    Science.gov (United States)

    Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2017-11-01

    Ground deformation, commonly observed in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.

  18. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fracture toughness and strength change of neutron-irradiated ceramic materials

    International Nuclear Information System (INIS)

    Dienst, W.; Zimmermann, H.

    1994-01-01

    In order to analyse the results of bending strength measurements on neutron-irradiated samples of Al 2 O 3 , AlN and SiC, fracture toughness measurements were additionally conducted. The neutron fluences concerned were mostly in the range of 0.6 to 3.2x10 26 n/m 2 at irradiation temperatures of 400 to 550 C. A fracture toughness decrease was generally observed for polycrystalline materials which, however, was considerably smaller than the reduction of the fracture strength. Exceptional increase of the fracture toughness seems typical for the effect of rather coarse irradiation defects. The irradiation-induced change of the fracture toughness of single crystal Al 2 O 3 appeared dependent on the crystallographic orientation; both reduced and increased fracture toughness after irradiation was observed. Recent results of neutron irradiation to about 2x10 25 n/m 2 at 100 C showed, that the strength decrease of various Al 2 O 3 grades sets in at (3-5)x10 24 n/m 2 and seems to be little dependent on the irradiation temperature. ((orig.))

  20. Oxygenated gasoline release in the unsaturated zone - Part 1: Source zone behavior.

    Science.gov (United States)

    Freitas, Juliana G; Barker, James F

    2011-11-01

    Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effect of Li level, artificial aging, and TiB2 reinforcement on the fracture toughness of Weldalite (tm) 049-type alloys

    Science.gov (United States)

    1991-01-01

    Plane strain fracture toughness (K sub IC) was evaluated for Weldalite (tm) 049 with and without TiB2 reinforcement. For the nonreinforced variant, changes in toughness were measured for various aging conditions and lithium levels. Toughness testing was carried out on fatigue precracked compact tension (CT) specimens at 24 C, as per ASTM standard E-399. Toughness was measured as a function of aging time at 160 C for the two Weldalite 049(1.3) heats. The composition of these heats differed only in that 0.03 wt pct. Ti was added to one as an additional grain refiner. Both heats showed a decrease in toughness with increasing aging time, although toughness values for one were significantly higher than for the other. This greater toughness may be due to a subtle change in the grain size resulting for the presence of Ti or, alternatively, to differences in texture or substructure formed during extrusion.

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  3. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  4. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  5. 46 CFR 154.605 - Toughness test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Toughness test. 154.605 Section 154.605 Shipping COAST....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test, the...

  6. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    Science.gov (United States)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  7. Simulation of Water Percolation in a FEBEX Bentonite Block Using TOUGH2 Program; Simulacion de la Percolacion de Agua en un Bloque de Bentonite Febex Utilizando el Programa TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Bru, A.

    2001-07-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs.

  8. Fracture toughness of intermetallics using a micro-mechanical probe

    International Nuclear Information System (INIS)

    Gerberich, W.W.; Venkataraman, S.K.; Hoehn, J.W.; Marsh, P.G.

    1993-01-01

    A novel technique for determining the fracture toughness of brittle intermetallics is presented, wherein very small samples are used and multiple tests are easily conducted on a flat polished surface. The fracture toughness of single crystal NiAl and polycrystalline Al 3 Sc are evaluated with this continuous microscratch technique at scratch rates ranging from 0.5 to greater than 100 μm s - . For comparison, small compact tension samples of (100) NiAl are evaluated at applied stress intensity rates ranging from 1.5 to 5,400 MPa-m 1/2 s -1 . Good comparison of microscratch toughness to compact tension K Ic values are obtained in this study for (001) NiAl, 10.6 vs. 10.0 MPa-m 1/2 , from the literature for (001) , 13.5 vs. 12.2 MPa-m 1/2 , and from the literature for polycrystalline Al 3 Sc, 3.5 vs. 3.1 MPa-m 1/2 . Also, the fracture toughness of both NiAl and Al 3 Sc are found to be strongly dependent on strain rate at room temperature with toughness dropping by an order of magnitude over a decade increase in rate. Possible reasons and implications to improving low temperature brittleness are discussed

  9. A statistical study on fracture toughness data of Japanese RPVS

    International Nuclear Information System (INIS)

    Sakai, Y.; Ogura, N.

    1987-01-01

    In a cooperative study for investigating fracture toughness on pressure vessel steels produced in Japan, a number of heats of ASTM A533B cl.1 and A508 cl.3 steels have been studied. Approximately 3000 fracture toughness data and 8000 mechanical properties data were obtained and filed in a computer data bank. Statistical characterization of toughness data in the transition region has been carried out using the computer data bank. Curve fitting technique for toughness data has been examined. Approach using the function to model the transition behaviours of each toughness has been applied. The aims of fitting curve technique were as follows; (1) Summarization of an enormous toughness data base to permit comparison heats, materials and testing methods; (2) Investigating the relationships among static, dynamic and arrest toughness; (3) Examining the ASME K(IR) curve statistically. The methodology used in this study for analyzing a large quantity of fracture toughness data was found to be useful for formulating a statistically based K(IR) curve. (orig./HP)

  10. The production of grain oriented lanthanum titanate (La2Ti2O7) ceramics by uniaxial hot-forging process for improved fracture toughness

    International Nuclear Information System (INIS)

    Ceylan, Ali

    2008-01-01

    The layered-structural ceramics, such as lanthanum titanate (La 2 Ti 2 O 7 ), have been known for their good electrical and optical properties at high frequencies and temperatures. However, few studies have been conducted on the mechanical properties of these ceramics. The interest in ceramic hot-forging (HF) has been greatly increased recently due to the enhancement in fracture toughness via bridging effect of oriented grains. In this study, grain oriented lanthanum titanate was produced by the hot-forging process. The characterizations of the samples were achieved by density measurement, scanning electron microscopy (SEM), optical microscopy, X-ray diffraction (XRD), Vickers indentation and three-point bending test. According to X-ray diffraction patterns, the orientation factor (f) was found to be 0.73 for certain hot-forging conditions resulting an improved fracture toughness. The improved fracture toughness of La 2 Ti 2 O 7 (3.2 MPa m 1/2 ) reached to the value of monolithic alumina (Al 2 O 3 ) between 3 and 4 MPa m 1/2

  11. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  12. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  13. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  14. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  15. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  16. Fracture toughness evaluations of TP304 stainless steel pipes

    International Nuclear Information System (INIS)

    Rudland, D.L.; Brust, F.W.; Wilkowski, G.M.

    1997-02-01

    In the IPIRG-1 program, the J-R curve calculated for a 16-inch nominal diameter, Schedule 100 TP304 stainless steel (DP2-A8) surface-cracked pipe experiment (Experiment 1.3-3) was considerably lower than the quasi-static, monotonic J-R curve calculated from a C(T) specimen (A8-12a). The results from several related investigations conducted to determine the cause of the observed toughness difference are: (1) chemical analyses on sections of Pipe DP2-A8 from several surface-cracked pipe and material property specimen fracture surfaces indicate that there are two distinct heats of material within Pipe DP2-A8 that differ in chemical composition; (2) SEN(T) specimen experimental results indicate that the toughness of a surface-cracked specimen is highly dependent on the depth of the initial crack, in addition, the J-R curves from the SEN(T) specimens closely match the J-R curve from the surface-cracked pipe experiment; (3) C(T) experimental results suggest that there is a large difference in the quasi-static, monotonic toughness between the two heats of DP2-A8, as well as a toughness degradation in the lower toughness heat of material (DP2-A8II) when loaded with a dynamic, cyclic (R = -0.3) loading history

  17. Mental toughness in soccer

    DEFF Research Database (Denmark)

    Diment, Gregory Michael

    2014-01-01

    a systematic observation checklist of mental toughness behavior in professional soccer. Consistent with existing studies, the results created a systematic observation instrument containing 15 mental toughness behaviors. Practical implications include goal-setting, game analysis and self-modeling interventions...

  18. Fracture Toughness of Ceramics Fired at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Peter SIN

    2012-03-01

    Full Text Available The fracture toughness test was performed at room temperature on sets of 5 ceramic samples made from material for high voltage insulators (kaolin 36 wt. %, Al2O3 30 wt. %, clay 12 wt. % and feldspar 22 wt. % fired at temperatures 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500 °C at heating and cooling rate of 5 °C/min. The precrack was made to each sample by indentation under the loads 10 N – 200 N, the dwell time was 45 s and the loading rate was 10 N/s. Results of the fracture toughness tests were in accordance with changes of structure of the samples after the partial firings. Fracture toughness from 20 °C to 500 °C is almost constant and it varies between 0.1 MPa·m0.5and 0.2 MPa·m0.5. Dehydroxylation (420 °C – 600 °C does not influence the value of fracture toughness. At temperature interval where we assume sintering (700 °C – 1250 °C we observe exponential dependence of fracture toughness up to 1.5 MPa·m0.5. From comparison of the fracture toughness, Young’s modulus and flexural strength follows a correlation and proporcionality of these mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1349

  19. Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants.

    Science.gov (United States)

    Elgart-Berry, Alison

    2004-04-01

    Mountain gorillas, the largest extant primates, subsist almost entirely on plant matter. Moreover, their diet includes a substantial amount of structural material, such as bark and stems, which other primates tend to avoid. Accordingly, the robust masticatory apparatus of gorillas may be adaptive to this presumably tough diet; however, quantitative information on this subject is lacking. In this study the fracture toughness of mountain gorilla foods was examined for the first time. Samples of 44 food plants from Bwindi-Impenetrable National Park (BINP) and Mgahinga Gorilla National Park (MGNP) were tested. These parks are inhabited by two gorilla populations that regarded by some as being distinct at the subspecific taxonomic level. Although food toughness did not differ between the two populations, both diets contained tough items. Tree barks were the toughest food items (varying from 0.23 to 8.2 kJ/m2), followed by shrub barks, pith, and stems. The toughness of leaves and fruit was negligible compared to that of bark. The toughness of bamboo was low in comparison to the toughest food items. Accordingly, the prominent toughness of bark, pith, and stems may be key factors in the evolution of orofacial robusticity in mountain gorillas. Copyright 2004 Wiley-Liss, Inc.

  20. Simulation of Water Percolation in a FEBEX Bentonite Block using TOUGH2 Program

    International Nuclear Information System (INIS)

    Bru, A.

    2001-01-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs

  1. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  2. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  3. Fracture toughness behaviour using small CCT specimen of Zr-2.5Nb pressure tube materials

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Kim, Young Suk; Ahn, Sang Bok; Im, Kyung Soo; Kwon, Sang Chul; Cheong, Yong Mu

    2001-03-01

    Fracture toughness of Zr-2.5Nb pressure tube is the essential data to estimate the CCL(critical crack length) for the concept of LBB(Leak-Before-Break) in PHWR. Zr-2.5Nb pressure tubes could be degraded due to the absorption of hydrogen from coolant and the irradiation. To investigate the fracture toughness behaviour such as J-resistance curves, dJ/da, and CCL of some Zr-alloys (CANDU-double, -quad, CW-E125, TMT-E125, E-635), the transverse tensile test and the fracture toughness test of small CCT (Curved Compact Tension) specimen with 17 mm width were carried out with the variation of testing temperature at different testing condition. To define the fracture mechanism of degradation, the fractographic comparison of fracture surface was performed using the stereoscope and SEM. In addition, the effect of non-uniformed pre-fatigue crack was also studied. In conclusion, CANDU double-melted was less tougher than CANDU quad-melted and the hydrogen embrittlement was found at room temperature. Finally, while the effect of non-uniformed pre-fatigue crack was considerable at room temperature, this effect was disappeared at 250-300 .deg. C

  4. Modeling tritium transport through a deep unsaturated zone in an arid environment

    Science.gov (United States)

    Mayers, C.J.; Andraski, Brian J.; Cooper, C.A.; Wheatcraft, S.W.; Stonestrom, David A.; Michel, R.L.

    2005-01-01

    Understanding transport of tritium (3H) in unsaturated zones is critical to evaluating options for waste isolation. Tritium typically is a large component of low-level radioactive waste (LLRW). Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Nevada investigate 3H transport from a closed LLRW facility. Two boreholes are 100 and 160 m from the nearest waste trench and extend to the water table at 110 m. Soil-water vapor samples from the deep boreholes show elevated levels of 3H at all depths. The objectives of this study were to (i) test source thermal and gas-advection mechanisms driving 3H transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. A two-dimensional numerical model incorporated a non-isothermal, heterogeneous domain of the unsaturated zone and instantaneous isotopic equilibrium. The TOUGH2 code was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to tritiated water. Increases in source temperature, pressure, and porosity enhanced 3H migration, but failed to match measured 3H distributions. All anisotropic simulations with a source pressure component resembled, in shape, the upper portion of the 3H distribution of the nearest borehole. Isotopic equilibrium limited migration of 3H, while effects of radioactive decay were negligible. A 500 Pa pressure increase above ambient pressure in conjunction with a high degree of anisotropy (1:100) was necessary for simulated 3H transport to reach the nearest borehole.

  5. 46 CFR 57.06-5 - Production toughness testing.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Production toughness testing. 57.06-5 Section 57.06-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Production Tests § 57.06-5 Production toughness testing. (a) In addition to the test specimens required by...

  6. Hydrogeological studies in the water-saturated and unsaturated zone of the calcareous strata in the Wackersdorf region

    International Nuclear Information System (INIS)

    Heinemann, J.M.

    1987-01-01

    The investigation cerves an area of 58.5 km 2 . It is a locally important groundwater reservoir with numerous fountains and waterworks. The investigations were conducted in the unsaturated zone and in the topmost ground-water horizon in the chalky layers. Emphasis is laid on questions of infiltration and groundwater dynamics. The hydrological situation is covered in its entirety, and basic data are collected from field and laboratory tests. (DG) [de

  7. Mental Toughness Attributes of Junior Level Medalist Badminton Players

    Directory of Open Access Journals (Sweden)

    Varghese C. Antony

    2016-10-01

    Full Text Available The study aims to compare the mental toughness attributes between medalist and non-medalist badminton players and between male and female players. Participants were 15 male and 15 female badminton players aged between 13-19 years (M= 15.71, SD=2.82. Mental toughness questionnaire of Tiwari and Sharma was administered and the data were analyzed by using descriptive statistics and t-test. Medalist players have exhibited higher mean values on self-confidence, attention control, motivation and goal setting attributes. Overall mental toughness of medalists was higher 180.80±17.15 than non-medalists 170.25±20.10. Comparison analysis showed significant difference between medalists and non-medalists on mental toughness attributes: Self-confidence (SCO: p=0.001<0.05, medalists scored (M±SD=31.33±2.10 higher than non-medalists; motivation (MOT: p=0.006<0.05, medalist scored higher (M±SD=33.50±4.07; goal setting (GSE: p=0.044<0.05, medalists scored significantly higher (M±SD=33.55±4.11 than non-medalists. Other attributes did not show any significant difference between medalist and non-medalist players. When compared with gender, no significant difference was observed on mental toughness attributes except attention control (ATNCON: p=0.044<0.05, female players scored (M±SD=38.97±3.08 higher than male players. The findings confirm that mental toughness is a desired attribute which differentiates a medalist and non-medalist player. Connaughton et al., (2007 stated that elite competitive athletes possess better mental toughness. Medalist players displayed better self-confidence than the non-medalists as supported by Kuan and Roy (2007, Loehr (1986. Motivation helps players to achieve their best and enhance mental toughness (Connaughton et al., 2008; Mohammad et al., 2009. Goal setting determines successful performance Weinberg and Weigand (1993, Weinberg (2003. It was concluded that medalist badminton players showed better mental toughness

  8. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    Science.gov (United States)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed

  9. Mezzo-scopic Analysis of Fracture Toughness in Steels

    Directory of Open Access Journals (Sweden)

    Miyata Takashi

    2002-01-01

    Full Text Available The cleavage fracture toughness of steels was mezzo-scopically analyzed on the basis of the statistical local fracture criterion approach. The statistical stress criterion at the crack tip region suggests that the cleavage fracture toughness in steels can be described as a function of the yield stress, the cleavage fracture stress, and other mechanical properties of the materials. Formulation of the cleavage fracture toughness was first examined through an investigation on correlation between the cleavage toughness and the cleavage fracture stress obtained in notched round bar specimens in accordance with the theoretical prediction. Then, the scatter of the toughness, specimen thickness effect on the toughness, deterioration of the toughness due to cold working and irradiation, and improvement of the toughness caused by the Ni addition, were analyzed through the formulation of the toughness.

  10. Deuterium labelling studies with unsaturated acids and nitriles

    International Nuclear Information System (INIS)

    Desai, U.V.; Mane, R.B.

    1986-01-01

    α-Deuteriated α,β-unsaturated acids have been prepared by Knoevenagel condensation of aldehydes with deuteriated malonic acid. The decarboxylation of α,β-unsaturated cyano acid with pyridine/D 2 O yields α- and γ-labelled nitriles. The deuterium incorporation is studied by pmr spectroscopy. (author). 8 refs

  11. A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements. The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.

  12. Leaching patterns and secondary phase formation during unsaturated leaching of UO2 at 90 degrees C

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S.

    1991-11-01

    Experiments are being conducted that examine the reaction of UO 2 with dripping oxygenated ground water at 90 degrees C. The experiments are designed to identify secondary phases formed during UO 2 alteration, evaluate parameters controlling U release, and act as scoping tests for studies with spent fuel. This study is the first of its kind that examines the alteration of UO 2 under unsaturated conditions expected to exist at the proposed Yucca Mountain repository site. Results suggest the UO 2 matrix will readily react within a few months after being exposed to simulated Yucca Mountain conditions. A pulse of rapid U release, combined with the formation of dehydrated schoepite on the UO 2 surface, characterizes the reaction between one to two years. Rapid dissolution of intergrain boundaries and spallation of UO 2 granules appears to be responsible for much of the U released. Differential release of the UO 2 granules may be responsible for much of the variation observed between duplicate experiments. Less than 5 wt % of the released U remains in solution or in a suspended form, while the remaining settles out of solution as fine particles or is reprecipitated as secondary phases. Subsequent to the pulse period, U release rates decline and a more stable assemblage of uranyl silicate phases are formed by incorporating cations from the ground water leachant. Uranophane, boltwoodite, and sklodowskite appear as the final solubility limiting phases that form in these tests. This observed paragenetic sequence (from uraninite to schoepite-type phases to uranyl silicates) is identical to those observed in weathered zones of natural uraninite occurrences. The combined results indicate that the release of radionuclides from spent fuel may not be limited by U solubility constraints, but that spallation of particulate matter may be an important, if not the dominant release mechanism affecting release

  13. A performance assessment methodology for high-level radioactive waste disposal in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Gallegos, D.P.

    1991-07-01

    Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig

  14. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  15. Analysis of nuclide transport under natural convection and time dependent boundary condition using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Javeri, V. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    1995-03-01

    After implementation of TOUGH2 at GRS in summer 91, it was first used to analyse the gas transport in a repository for the nuclear waste with negligible heat generation and to verify the results obtained with ECLIPSE/JAV 92/. Since the original version of TOUGH2 does not directly simulate the decay of radionuclide and the time dependent boundary conditions, it is not a appropriate tool to study the nuclide transport in a porous medium/PRU 87, PRU 91/. Hence, in this paper some modifications are proposed to study the nuclide transport under combined influence of natural convection diffusion, dispersion and time dependent boundary condition. Here, a single phase fluid with two liquid components is considered as in equation of state model for water and brine/PRU 91A/.

  16. A New Method for Evaluating the Indentation Toughness of Hardmetals

    Directory of Open Access Journals (Sweden)

    Prem C. Jindal

    2018-05-01

    Full Text Available This paper proposes a new method of evaluating the indentation toughness of hardmetals using the length of Palmqvist cracks (C and Vickers indentation diagonal size (di. Indentation load “P” is divided into two parts: Pi for plastic indentation size and Pc for Palmqvist cracks. Pi depends upon the square of the indentation size (di2 and Pc depends upon (C3/2. The new method produces a very good linear relationship between the calculated indentation toughness values and the standard conventional linear elastic fracture mechanics toughness values with the same cemented carbide materials for a large number of standard Kennametal grades for both straight WC-Co carbide grades and grades containing cubic carbides. The new method also works on WC-Co hardmetal data selected from recently published literature. The technique compares the indentation toughness values of WC-Co materials before and after vacuum annealing at high temperature. The indentation toughness values of annealed carbide samples were lower than for un-annealed WC-Co hardmetals.

  17. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-01-01

    This study clarified the relationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2 Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6x10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated. (orig.)

  18. Fracture toughness and stress relief response of irradiated Type 347/348 stainless steel

    International Nuclear Information System (INIS)

    Haggag, F.M.

    1985-01-01

    A test program has experimentally determined: (1) The fracture toughness of Type 347/348 stainless steel (SS) specimens with high values of irradiation fluence (2.3 to 4.8 x 10 22 n/cm 2 , E > 1.0 MeV) and experiencing different levels of irradiation creep (0.0, 0.6, 1.1, 1.8%), (2) the effect of thermal stress relief on fracture toughness recovery for the highly irradiated material, and (3) the mechanisms associated with fracture toughness recovery due to thermal stress relief. The postirradiation fracture toughness tests and tensile tests were conducted at 427 0 C

  19. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    Science.gov (United States)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured

  20. Global Sensitivity and Data-Worth Analyses in iTOUGH2: User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, Haruko Murakami [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Univ. of California, Berkeley, CA (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Univ. of California, Berkeley, CA (United States)

    2016-07-15

    This manual explains the use of local sensitivity analysis, the global Morris OAT and Sobol’ methods, and a related data-worth analysis as implemented in iTOUGH2. In addition to input specification and output formats, it includes some examples to show how to interpret results.

  1. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  2. Fracture toughness of China low activation martensitic (CLAM) steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunfeng [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, Gang; Jiang, Siben [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-15

    Highlights: • The fracture toughness of CLAM steel at room temperature is 417.9 kJ/m{sup 2} measured by unloading compliance method according to the ASTM E1820-11. • The fracture toughness of CLAM steel at room temperature can be calculated on the basis of the fractal dimensions measured under plane strain conditions. The calculated result and relative error for this experiment are 454.6 kJ/m{sup 2} and 8.78% respectively. • The calculation method could be used to estimate the fracture toughness of materials with analysis of the fracture surface. - Abstract: The fracture toughness (J{sub IC}) of China low activation martensitic (CLAM) steel was tested at room temperature through the compact tension specimen, the result is 417.9 kJ/m{sup 2}, which is similar to the JLF-1 at same experimental conditions. The microstructural observation of the fracture surface shows that the fracture mode is a typical ductile fracture. Meanwhile, the fracture toughness is also calculated on the basis of the fractal dimension and the calculated result is 454.6 kJ/m{sup 2}, which is consistent well with the experimental result. This method could be used to estimate the fracture toughness of materials by analyzing of the fracture surface.

  3. Evaluation of fracture toughness of ductile cast iron for casks

    International Nuclear Information System (INIS)

    Hide, Koh-ichiro; Arai, Taku; Takaku, Hiroshi; Shimazaki, Katsunori; Kusanagi, Hideo

    1988-01-01

    We studied the fracture toughness and tensile properties of ductile cast iron for casks, and tried to introduce a fatigue crack into partial cask model. Main results were shown as follows. (1) Fracture toughness were in the upper shelf area above -25deg C, and were in the transition area at -40 and -70deg C. (2) Increasing the value of K I , the fracture toughness decreased. (3) Increasing the specimen thickness, fracture toughness decreased. (4) Fracture toughness of an artificial flaw (ρ=0.1 mm) was the same as that of a fatigue crack at -40deg C. (5) Tensil properties were inferior at -196 and about 400deg C because of low temperature brittleness and blue brittleness. (6) Tensile properties in the middle of cask wall were inferior. (7) It seems to be possible to introduce a fatigue crack into a full size cask. (author)

  4. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  5. Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for delta 13 C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs

  6. Fracture toughness of fibrous composite materials

    Science.gov (United States)

    Poe, C. C., Jr.

    1984-01-01

    Laminates with various proportions of 0 deg, 45 deg, and 90 deg plies were fabricated from T300/5208 and T300/BP-907 graphite/epoxy prepreg tape material. The fracture toughness of each laminate orientation or lay-up was determined by testing center-cracked specimens, and it was also predicted with the general fracture-toughness parameter. The predictions were good except when crack-tip splitting was large, at which time the toughness and strengths tended to be underpredicted. By using predictions, a parametric study was also made of factors that influence fracture toughness. Fiber and matrix properties as well as lay-up were investigated. Without crack-tip splitting, fracture toughness increases in proportion to fiber strength and fiber volume fraction, increases linearly with E(22)/E(11), is largest when the modulus for non-0 deg fibers is greater than that of 0 deg fibers, and is smallest for 0(m)/90(p)(s) lay-ups. (The E(11) and E(22) are Young's moduli of the lamina parallel to and normal to the direction of the fibers, respectively). For a given proportion of 0 deg plies, the most notch-sensitive lay-ups are 0(m)/90(p)(s) and the least sensitive are 0(m)/45(n)(s) and alpha(s). Notch sensitivity increases with the proportion of 0 deg plies and decreases with alpha. Strong, tough matrix materials, which inhibit crack-tip splitting, generally lead to minimum fracture toughness.

  7. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  8. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  9. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J; Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  10. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-01-01

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km 2 and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow

  11. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  12. A statistical approach to the prediction of pressure tube fracture toughness

    International Nuclear Information System (INIS)

    Pandey, M.D.; Radford, D.D.

    2008-01-01

    The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in a nuclear reactor. Fracture toughness data have been generated by performing rising pressure burst tests on sections of pressure tubes removed from operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which is used in defining the operational limits of pressure tubes. The paper presents a comprehensive statistical analysis of burst test data and develops a multivariate statistical model to relate toughness with material chemistry, mechanical properties, and operational history. The proposed model can be useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing conservatism associated with a generic lower-bound approach

  13. TOUGH User's Guide

    International Nuclear Information System (INIS)

    Pruess, K.

    1987-08-01

    This document contains a technical description of the TOUGH computer program, which was developed at Lawrence Berkeley Laboratory for simulating the coupled transport of water, vapor, air and heat in porous and fractured media. The physical processes taken into account in TOUGH are discussed, and the governing equations actually solved by the simulator are stated in full detail. A brief overview is given of the mathematical and numerical methods, and the code architecture. The report provides detailed instructions for preparing input decks. Code applications are illustrated by means of six sample problems

  14. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  15. Comparison of long-term numerical simulations at the Ketzin pilot site using the Schlumberger ECLIPSE and LBNL TOUGH2 simulators

    Science.gov (United States)

    Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.

    2012-04-01

    Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a

  16. Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite

    Science.gov (United States)

    Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo

    2018-05-01

    The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.

  17. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient.

    Science.gov (United States)

    Glowacka, Halszka; McFarlin, Shannon C; Vogel, Erin R; Stoinski, Tara S; Ndagijimana, Felix; Tuyisingize, Deo; Mudakikwa, Antoine; Schwartz, Gary T

    2017-08-01

    The robust masticatory system of mountain gorillas is thought to have evolved for the comminution of tough vegetation, yet, compared to other primates, the toughness of the mountain gorilla diet is unremarkable. This may be a result of low plant toughness in the mountain gorilla environment or of mountain gorillas feeding selectively on low-toughness foods. The goal of this paper is to determine how the toughness of the mountain gorilla diet varies across their habitat, which spans a large altitudinal range, and whether there is a relationship between toughness and food selection by mountain gorillas. We collected data on the following variables to determine whether, and if so how, they change with altitude: leaf toughness of two plant species consumed by mountain gorillas, at every 100 m increase in altitude (2,600-3,700 m); toughness of consumed foods comprising over 85% of the gorilla diet across five vegetation zones; and toughness of unconsumed/infrequently consumed plant parts of those foods. Although leaf toughness increased with altitude, the toughness of the gorilla diet remained similar. There was a negative relationship between toughness and consumption frequency, and toughness was a better predictor of consumption frequency than plant frequency, biomass, and density. Consumed plant parts were less tough than unconsumed/infrequently consumed parts and toughness of the latter increased with altitude. Although it is unclear whether gorillas select food based on toughness or use toughness as a sensory cue to impart other plant properties (e.g., macronutrients, chemicals), our results that gorillas maintain a consistent low-toughness dietary profile across altitude, despite toughness increasing with altitude, suggest that the robust gorilla masticatory apparatus evolved for repetitive mastication of foods that are not high in toughness. © 2017 Wiley Periodicals, Inc.

  18. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhu, Lin; Jin, Fanlong; Park, Soojin

    2012-01-01

    This study examined the effects of the epoxidized castor oil (ECO) and Al 2 O 3 content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/Al 2 O 3 ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and Al 2 O 3 nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and Al 2 O 3 nanoparticles. The composite containing 3 wt % Al 2 O 3 nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/Al 2 O 3 composites, which prevented deformation and crack propagation

  19. Hydrochemical investigations in characterizing the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Ferarese, J.S.; Yu, P.; Ryan, J.N.

    1998-01-01

    Hydrochemical and isotopic investigations of ground water at Yucca Mountain, Nevada, site of a potential permanent national nuclear-waste repository, demonstrate that younger rocks are dominated by calcium-sulfate or calcium-chloride water and that older rocks contain sodium-carbonate or sodium-bicarbonate water. Furthermore, unsaturated-zone pore water has significantly larger concentrations of major ions and dissolved solids than does the saturated-zone water. Recharge of perched or saturated-zone water, therefore, requires rapid flow through fractures or permeable regions in the unsaturated zone to avoid mixing with the chemically concentrated water in the unsaturated zone. This conceptual model is consistent with observations of rapidly moved post-bomb (post-1954) tritium and chlorine-36 in the deep unsaturated zone at Yucca Mountain. Presence of post-bomb tritium in matrix water away from fracture zones further indicates that parts of the fast-flow water that moves through fractures have been diverted laterally into nonwelded units. Experimental data show that different lithologic units require specific water-extraction methods for stable-isotope analyses of hydrogen and oxygen to ensure accurate characterization. Vacuum-distillation and compression-extraction methods both can yield accurate data but must be used with specific lithologies. Column experiments demonstrate that percolating water can exchange with pore water of the core as well as water held in zeolite minerals in the core. Exchange rates range from days to months. Pore-water samples from core, therefore, reflect the most recently infiltrated water but do not reflect percolating water of the distant past

  20. The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels

    International Nuclear Information System (INIS)

    Scheid, Adriano; Félix, Lorenzo Marzari; Martinazzi, Douglas; Renck, Tiago; Fortis Kwietniewski, Carlos Eduardo

    2016-01-01

    Production of oil and gas in the Brazilian pre-salt faces several technical challenges and one of them that is a major concern is the presence of CO_2 in high concentration. The aim of this work is to evaluate the fracture toughness of two nickel-containing steels as an alternative material to manufacture low-temperature toughness improved CO_2 transporting pipelines for Enhanced oil recovery (EOR). Optical and scanning electron microscopies were employed to characterize the steels microstructures. Electron back-scattered diffraction was used to estimate the effective grain size and the density of high-angle grain boundaries. Fracture toughness was determined by the use of the crack tip opening displacement methodology. The results indicated that for the as-rolled condition the large islands of the microconstituent M/A in the 5"1"/"2 Ni steel had a detrimental effect on fracture toughness at −100 °C, while finer M/A particles and lower effective grain size with higher density of high-angle grain boundaries in the 9 Ni steel turned its fracture toughness practically temperature independent. Additionally, heat treatment (quenching and tempering) has the potential to dissolve the M/A hard particles and consequently improve fracture toughness at low temperature.

  1. The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, Adriano, E-mail: scheid@ufpr.br [Programa de Pos-Graduação em Engenharia Mecânica, PGMec, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 210, Curitiba (Brazil); Félix, Lorenzo Marzari; Martinazzi, Douglas; Renck, Tiago; Fortis Kwietniewski, Carlos Eduardo [Programa de Pos-Graduação em Engenharia de Minas, Metalurgia e Materiais, PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre (Brazil)

    2016-04-20

    Production of oil and gas in the Brazilian pre-salt faces several technical challenges and one of them that is a major concern is the presence of CO{sub 2} in high concentration. The aim of this work is to evaluate the fracture toughness of two nickel-containing steels as an alternative material to manufacture low-temperature toughness improved CO{sub 2} transporting pipelines for Enhanced oil recovery (EOR). Optical and scanning electron microscopies were employed to characterize the steels microstructures. Electron back-scattered diffraction was used to estimate the effective grain size and the density of high-angle grain boundaries. Fracture toughness was determined by the use of the crack tip opening displacement methodology. The results indicated that for the as-rolled condition the large islands of the microconstituent M/A in the 5{sup 1/2} Ni steel had a detrimental effect on fracture toughness at −100 °C, while finer M/A particles and lower effective grain size with higher density of high-angle grain boundaries in the 9 Ni steel turned its fracture toughness practically temperature independent. Additionally, heat treatment (quenching and tempering) has the potential to dissolve the M/A hard particles and consequently improve fracture toughness at low temperature.

  2. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  3. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Data.gov (United States)

    U.S. Environmental Protection Agency — We show in the present study that the unsaturated aldehydes, 2-E-pentenal, 2-E-hexenal and 3-Z-hexenal, are biogenic volatile organic compound (BVOC) precursors for...

  4. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  5. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    Science.gov (United States)

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  6. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites

    International Nuclear Information System (INIS)

    Evora, Victor M.F.; Shukla, Arun

    2003-01-01

    Unsaturated polyester resin specimens embedded with small loadings of 36 nm average diameter TiO 2 particles were fabricated using a direct ultrasonification method to study the effects of nanosized particles on nanocomposite bulk mechanical properties. The ultrasonification method employed produced nanocomposites with excellent particle dispersion as verified by transmission electron microscopy (TEM). Quasi-static fracture toughness, tension, and compression testing was carried out. The presence of the particles had the greatest effect on fracture toughness; negligible influence was observed in the remaining quasi-static properties. Scanning electron microscopy (SEM) of fracture surfaces was carried out to identify toughening mechanisms. The inadequacy of the bond between the filler and the matrix and the presence of minor particle agglomerations in specimens containing higher volume fractions of particles were believed to be responsible for a consistent decrease in property values beyond a volume fraction of 1 vol.%. Dynamic fracture toughness testing was carried out, and an increase in dynamic fracture toughness relative to quasi-static fracture toughness was observed. High strain rate testing conducted using a split Hopkinson pressure bar (SHPB) apparatus revealed a moderate stiffening effect with increasing particle volume fraction, although no marked effect was observed on the ultimate strength

  7. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  8. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strong, tough and stiff bioinspired ceramics from brittle constituents

    Science.gov (United States)

    Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain

    2014-05-01

    High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.

  10. Fracture toughness of welded joints of a high strength low alloy steel

    International Nuclear Information System (INIS)

    Veiga, S.M.B. da; Bastian, F.L.; Pope, A.M.

    1985-10-01

    The fracture toughness of the different regions of welded joints of a high strength low alloy steel, Niocor 2, was evaluated at different temperatures and compared with the toughness of the base metal. The studied regions were: the weld metal, fusion boundary and heat affected zone. The welding process used was the manual metal arc. It is shown that the weld metal region has the highest toughness values. (Author) [pt

  11. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model

    Directory of Open Access Journals (Sweden)

    Dong-mei Sun

    2016-07-01

    Full Text Available Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase, and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes, TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC3D, which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.

  12. Determination of Polybutadiene Unsaturation Content in Thermal and Thermo-Oxidative Degradation Processes by NMR

    Directory of Open Access Journals (Sweden)

    Farshid Ziaee

    2013-01-01

    Full Text Available The unsaturation content of various polybutadiene (PBD types of 1,4-cis, 1,4-trans and 1,2-vinyl isomers with different molecular weights was investigated. An important parameter for unsaturation content of polybutadiene would be the determination of olefnic and aliphatic contents for three types of isomers. For this purpose, proton and carbon nuclear magnetic resonance spectroscopy methods were employed for determination of 1,4-cis, 1,4-trans and 1,2-vinyl contents. A change of adjustable parameter of NMR software was made for accurate integrals giving better results. The accuracy in calculation of low molecular weight PBD, surface area of chain end group decreased in aliphatic region. Furthermore, the changing of unsaturation content versus time was considered for 1,2-PBD and 1,4-PBD in thermal degradation conditions at 250°C. NMR results showed that during heating, the unsaturation content decreased for 1,2-PBD and was not changed for 1,4-PBD. In fact, the basic factor responsible for changing of unsaturation content in thermal degradation of PBD may be due to the presence of 1,2-vinyl isomer. Finally, changing in unsaturation content versus time was observed for 1,2-PBD and 1,4-PBD in thermo-oxidative degradation conditions at 100°C. The NMR results showed that at extended time, the unsaturation content decreased for 1,4-PBD and was not changed for 1,2-PBD. Moreover, the basic factor for changes in unsaturation content in thermo-oxidative degradation of PBD is due to the presence of 1,4-cis and 1,4-trans isomers.

  13. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  14. Mental Toughness Moderates Social Loafing in Cycle Time-Trial Performance

    Science.gov (United States)

    Haugen, Tommy; Reinboth, Michael; Hetlelid, Ken J.; Peters, Derek M.; Høigaard, Rune

    2016-01-01

    Purpose: The purpose of this study was to determine if mental toughness moderated the occurrence of social loafing in cycle time-trial performance. Method: Twenty-seven men (M[subscript age] = 17.7 years, SD = 0.6) completed the Sport Mental Toughness Questionnaire prior to completing a 1-min cycling trial under 2 conditions: once with individual…

  15. The limit of strength and toughness of steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhen [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the governing principles of strength and toughness, along with the approaches that can be used to improve these properties and the inherent limits to how strong and tough a steel can be.

  16. Rapid Thermal Processing to Enhance Steel Toughness.

    Science.gov (United States)

    Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J

    2018-01-11

    Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.

  17. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  18. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  19. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    Science.gov (United States)

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  20. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    Science.gov (United States)

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  1. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Science.gov (United States)

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  2. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  3. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  4. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yi [Colorado School of Mines, Golden, CO (United States); Fakcharoenphol, Perapon [Colorado School of Mines, Golden, CO (United States); Wang, Shihao [Colorado School of Mines, Golden, CO (United States); Winterfeld, Philip H. [Colorado School of Mines, Golden, CO (United States); Zhang, Keni [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States)

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  5. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  6. J/sub 1c/ fracture toughness transition behavior of HT-9

    International Nuclear Information System (INIS)

    Huang, F.H.

    1984-01-01

    Small compact tension specimens of two heats of HT-9 were tested at temperatures ranging from room temperature to -192 0 C. The ductile-brittle transition toughness of HT-9 was evaluated using the J-integral approach. There were two loading rates of 2.1 x 10 -5 m/s and 3.2 x 10 -2 m/s. The ductile-brittle transition temperatures of HT-9 (number 1 heat) tested at 2.1 x 10 -5 m/s and HT-9 (number 2 heat) tested at 3.2 x 10 -2 m/s were found to be -60 and -10 0 C, respectively. Results showed the fracture toughness of the former was not sensitive to loading rate and the lower shelf toughness decreased with temperature to a J/sub 1c/ value of 5 kJ/m 2 at -190 0 C. Furthermore, the values of J/sub 1c/ were valid since the thickness of the test specimens was well above the thickness criterion

  7. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  8. Proceedings of the TOUGH Symposium 2009

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Doughty, Christine; Finsterle, Stefan; Sonnenthal, Eric

    2009-10-01

    Welcome to the TOUGH Symposium 2009. Within this volume are the Symposium Program for eighty-nine papers to be presented in both oral and poster formats. The full papers are available as pdfs linked from the Symposium Program posted on the TOUGH Symposium 2009 website http://esd.lbl.gov/newsandevents/events/toughsymposium09/program.html Additional updated information including any changes to the Program will also be available at the website. The papers cover a wide range of application areas and reflect the continuing trend toward increased sophistication of the TOUGH codes. A CD containing the proceedings papers will be published immediately following the Symposium and sent to all participants. As in the prior Symposium, selected papers will be invited for submission to a number of journals for inclusion in Special Issues focused on applications and developments of the TOUGH codes. These journals include, Transport in Porous Media, Geothermics, Energy Conversion and Management, Journal of Nuclear Science and Technology, and the Vadose Zone Journal.

  9. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1994-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (1.25 mm diam by 4.6 mm thick). Specimens of European type 316L austenitic stainless steel were irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 C and tested over a temperature range from 20 to 250 C. Results show that irradiation to this dose level at these temperatures reduces the fracture toughness but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 C is more damaging than at 90 C, causing larger decreases in the fracture toughness. The testing shows that it is possible to generate useful fracture toughness data with a small disk compact specimens

  10. Influence of texture on fracture toughness of zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V. [Studsvik Material AB, Nykoeping (Sweden); Andersson, Stefan [Royal Inst. of Tech., Stockholm (Sweden)

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill`s theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture. With a 2 page summary in Swedish. 32 refs, 18 figs.

  11. The unsaturated bistable stochastic resonance system.

    Science.gov (United States)

    Zhao, Wenli; Wang, Juan; Wang, Linze

    2013-09-01

    We investigated the characteristics of the output saturation of the classical continuous bistable system (saturation bistable system) and its impact on stochastic resonance (SR). We further proposed a piecewise bistable SR system (unsaturated bistable system) and developed the expression of signal-to-noise ratio (SNR) using the adiabatic approximation theory. Compared with the saturation bistable system, the SNR is significantly improved in our unsaturated bistable SR system. The numerical simulation showed that the unsaturated bistable system performed better in extracting weak signals from strong background noise than the saturation bistable system.

  12. Mindfulness and mental toughness among provincial adolescent ...

    African Journals Online (AJOL)

    Kathryn van Boom

    psychological basis of mental toughness from within existing, evidence-based ... development of mental toughness among athletes. The existing studies have ... that advocated by cognitive-behavioural interventions and traditional mental skills ...

  13. Fracture toughness of Al-Cr alloys with minor additions

    International Nuclear Information System (INIS)

    Datta, S.; Banerjee, M.K.

    2000-01-01

    Fracture toughness behavior of aluminium chromium alloys with minor additions is studied to determine its relation with microstructure and ageing conditions. The effect of the minor additions on the fracture toughness property of the alloys is also studied. Fracture toughness of Al-Cr alloys has been improved by selected minor additions. Also, the fracture toughness of the investigated alloys is found to be sensitive to ageing conditions. (author)

  14. Assessment of fracture toughness of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junyor, José Onésimo; Faria, Stéfanno Bruno; Rocha, Nirlando Antônio; Reis, Emil; Vilela, Jefferson José, E-mail: ze_onezo@hotmail.com, E-mail: sbrunofaria@gmail.com, E-mail: nar@cdtn.br, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro Universitário de Belo Horizonte (UNIBH), MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The fracture toughness parameters are applied to estimate the lifetime of mechanical components and define the criteria of safe failure and tolerable damages. This information allows equipment to be used longer with a high degree of safety. These techniques are applied in the Leak-Before-Break (LBB) concept that is accepted for designing the piping system of the primary circuit of the pressurized water reactor (PWR). In this work, fracture toughness tests such as J{sub IC} and CTOD were performed on some structural steels. The fracture toughness parameters were determined using SE(B) and C(T) test specimens. The fracture toughness values for the same material varied according to the type specimen. The parameter δ{sub 1c} showed different values when it was calculated using the ASTM E1820 standard and using the BS 7448: Part 1 standard. These results indicate that procedures of these standards need to be improved. Two systems with different sensitivity in the force measurement were used that showed similar results for toughness fracture but the dispersion was different. (author)

  15. Fracture toughness behavior of irradiated stainless steel in PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Fyfitch, S. [AREVA NP Inc., Lynchburg, Pennsylvania (United States); Tang, H.T. [Electric Power Research Inst., Palo Alto, California (United States)

    2007-07-01

    Data from available research programs were collected and evaluated by the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) to determine the relationship between fracture toughness and neutron fluence for conditions representative of pressurized water reactor (PWR) conditions. It is shown that the reduction of fracture toughness with increasing neutron dose in both boiling water reactors (BWRs) and PWRs is consistent with that observed in fast reactors. The lower bound fracture toughness observed for irradiated stainless steels in PWRs is 38 MPa{radical}m (34.6 ksi{radical}in) at neutron exposures greater than 6.7 X 10{sup 21} n/cm{sup 2} (E > 1.0 MeV) or approximately 10 dpa. For such levels of fracture toughness, it is recommended that linear-elastic fracture mechanics (LEFM) analyses be considered for design and operational analyses. The results from this study can be used by the nuclear industry to assess the effects of irradiation on stainless steels in PWR systems. (author)

  16. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  17. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    Mills, W.J.

    1986-01-01

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 427 0 C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m 2 ; the weld exhibited a saturation level of 11 kJ/m 2 . Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  18. Microstructure and fracture toughness of Mn-stabilized cubic titanium trialuminide

    Science.gov (United States)

    Zbroniec, Leszek Ireneusz

    This thesis project is related to the fracture toughness aspects of the mechanical behavior of the selected Mn-modified cubic Ll2 titanium trialuminicles. Fracture toughness was evaluated using two specimen types: Single-Edge-Precracked-Beam (SEPB) and Chevron-Notched-Beam (CNB). The material tested was in cast, homogenized and HIP-ed condition. In the preliminary stage of the project due to lack of the ASTM Standard for fracture toughness testing of the chevron-notched specimens in bending the analyses of the CNB configuration were done to establish the optimal chevron notch dimensions. Two types of alloys were investigated: (a) boron-free and boron doped low-Mn (9at.% Mn), as well as (b) boron-free and boron-doped high-Mn (14at.% Mn). Toughness was investigated in the temperature range from room temperature to 1000°C and was calculated from the maximum load. It has been found that toughness of coarse-grained "base" 9Mn-25Ti alloy exhibits a broad peak at the 200--500°C temperature range and then decreases with increasing temperature, reaching its room temperature value at 10000°C. However, the work of fracture (gammaWOF) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Also the fracture mode dependence on temperature has been established. To understand the effect of environment on the fracture toughness of coarse-grained "base", boron-free 9Mn-25Ti alloy, the tests were carried out in vacuum (˜1.3 x 10-5 Pa), argon, oxygen, water and liquid nitrogen. It has been shown that fracture toughness at ambient temperature is not affected by the environments containing moisture (water vapor). It seems that at ambient temperatures these materials are completely immune to the water-vapor hydrogen embrittlement and their cause of brittleness is other than environment. To explore the influence of the grain size on fracture toughness the fracture toughness tests were also performed on the dynamically

  19. Shallow-crack toughness results for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Shum, D.K.M.; Rolfe, S.T.

    1992-01-01

    The Heavy Section Steel Technology Program (HSST) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. To complete this investigation, techniques were developed to determine the fracture toughness from shallow-crack specimens. A total of 38 deep and shallow-crack tests have been performed on beam specimens about 100 mm deep loaded in 3-point bending. Two crack depths (a ∼ 50 and 9 mm) and three beam thicknesses (B ∼ 50, 100, and 150 mm) have been tested. Techniques were developed to estimate the toughness in terms of both the J-integral and crack-tip opening displacement (CTOD). Analytical J-integral results were consistent with experimental J-integral results, confirming the validity of the J-estimation schemes used and the effect of flaw depth on fracture toughness. Test results indicate a significant increase in the fracture toughness associated with the shallow flaw specimens in the lower transition region compared to the deep-crack fracture toughness. There is, however, little or no difference in toughness on the lower shelf where linear-elastic conditions exist for specimens with either deep or shallow flaws. The increase in shallow-flaw toughness compared with deep-flaw results appears to be well characterized by a temperature shift of 35 degree C

  20. Fracture toughness of irradiated and recovered vessel steels

    International Nuclear Information System (INIS)

    Perosanz, F.; Lapena, J.

    1998-01-01

    This paper presents the fracture toughness measurements carried out on three vessel steels in an irradiated condition and after a post-irradiation recovery treatment. A statistical approach and the fracture parameters corresponding to two theoretical models of the fracture tests are used for evaluating toughness. Test results show that the neutron fluence gradually transforms the fracture behaviour of the vessel steels from ductile to brittle and seriously reduces their fracture toughness. The effectiveness of the recovery treatment, as evaluated from the toughness measurements, is confirmed, although the efficiency is not the same for the steels and depends on the evaluation parameter except in the case of almost complete recovery. The recovery effect increases with the received neutron fluence if the toughness values after treatment are compared with those in the irradiated condition rather than those in the as received condition. (orig.)

  1. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  2. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  3. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. An overview of EXTOOL: An analysis tool for V-TOUGH and NUFT

    International Nuclear Information System (INIS)

    Daveler, S.

    1995-08-01

    Several post-processors have been used in connection with V-TOUGH. Initially, a sequence of utilities were used to extract and plot V-TOUGH information. This changed in 1991 as a new post-processor, EXTOOL, was developed. Currently, EXTOOL, is the main post-processor for the modeling codes V-TOUGH and NUFT. In the following sections, a history of V-TOUGH post-processing is discussed along with an overview of EXTOOL. This overview describes some of Extool's capabilities and suggests reasons for using this code instead of another postprocessor. More detailed information on EXTOOL can be found in the Extool User's Manual and the Extool Programmer's Guide. Both these manuals are drafts, and can be requested by sending email to daveler2 at sign llnl.gov

  5. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.

    Science.gov (United States)

    Cavelier, S; Dastjerdi, A K; McKee, M D; Barthelat, F

    2018-05-01

    The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates. Copyright © 2018 Elsevier Inc

  6. Fracture toughness of oxide-dispersion strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The fracture toughness of an oxide-dispersion strengthened copper alloy AL-15 has been examined at room temperature and 250{degrees}C, in air and in vacuum (< 10{sup {minus}6} torr). Increasing test temperature causes a significant decrease in the fracture toughness of this material, in either air or vacuum environments. In addition, specimens oriented in the T-L orientation (crack growth parallel to the extrusion direction) show significantly lower toughness than those in the L-T orientation (crack growth perpendicular to the extrusion direction).

  7. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  8. Radiation-induced loss of unsaturation in 1,2-polybutadiene

    International Nuclear Information System (INIS)

    Golub, M.A.; Cormia, R.D.

    1982-01-01

    The radiation induced loss of unsaturation and methyl production in 1,2-polybutadiene (VB) was studied using IR spectroscopy. It was found that G(-1,2), which depends on the initial vinyl content, decreased from approximately 550 for VB with 98.5% 1,2 initially, to approximately 270 for VB with 85% 1,2 initially. G(-trans-1,4) ranged from approximately 21 for VB with 14% trans-1,4 to nearly zero for VB with less than 1% trans-1,4 initially. Methyl production was found to equal one methyl group formed for every 4-5 vinyl units consumed in the radiation-cyclized VB, in contrast to one methyl formed for every two vinyls reacted during cationic cyclization to give monocyclic structures. The IR spectra of gamma-irradiated VB were very similar to the spectra of UV-irradiated or thermally-treated VB at the same residual vinyl contents. It is suggested that the radiation-induced cyclization of VB occurs by a nonionic, nonradical 'energy chain' mechanism, which apparently holds for the cyclization of VB, whether induced by gamma-rays, UV radiation, or heat

  9. Fracture toughness of A533B. Part 2. Review of data pertinent to upper shelf temperatures

    International Nuclear Information System (INIS)

    Druce, S.G.; Eyre, B.L.; Belcher, W.P.A.

    1978-08-01

    This report is the second in a series of three examining the state of the art of elastoplastic fracture mechanics as applied to A533B pressure vessel steel in the upper shelf temperature regime. Part II presents a review of fracture toughness data for A533B Class 1 plate tested in the longitudinal (RW) orientation. Data from USA, UK and Scandinavian sources published prior to September 1976 has been included. It is concluded that previous studies using a maximum load criterion have over-estimated the initiation toughness in the upper shelf regime. Results derived from J integral tests now show the mean toughness at 275 0 C to vary between 141 ksi sq. root in and 154 ksi sq. root in depending on the exact analytical procedure used. Limited statistical analysis of the results obtained using several heats of material suggest that standard deviation of the scatter of results is approximately 11% of the mean value. Recommendations for future work to improve our understanding of the fracture properties of A533B and similar medium strength high toughness materials, and their application to large structures, are presented. (author)

  10. The origins of mental toughness – prosocial behavior and low internalizing and externalizing problems at age 5 predict higher mental toughness scores at age 14

    Directory of Open Access Journals (Sweden)

    Dena Sadeghi Bahmani

    2016-08-01

    Full Text Available Background: The concept of mental toughness has gained increasing importance among groups other than elite athletes by virtue of its psychological importance and explanatory power for a broad range of health-related behaviors. However, no study has focused so far on the psychological origins of mental toughness. Therefore, the aims of the present study were: to explore, to what extent the psychological profiles of preschoolers aged five were associated with both 1 mental toughness scores and 2 sleep disturbances at age 14, and 3 to explore possible gender differences.Method: Nine years after their first assessment at age five (preschoolers, a total of 77 adolescents (mean age: 14.35 years; SD = 1.22; 42% females took part in this follow-up study. At baseline, both parents and teachers completed the Strengths and Difficulties Questionnaire (SDQ, covering internalizing and externalizing problems, hyperactivity, negative peer relationships, and prosocial behavior. At follow-up, participants completed a booklet of questionnaires covering socio-demographic data, mental toughness, and sleep disturbances.Results: Higher prosocial behavior, lower negative peer relationships, and lower internalizing and externalizing problems at age five, as rated by parents and teachers, were associated with self-reported higher mental toughness and lower sleep disturbances at age 14. At age 14, and relative to males, females had lower MT scores and reported more sleep disturbances.Results: Higher prosocial behavior, lower negative peer relationships, and lower internalizing and externalizing problems at age five, as rated by parents and teachers, predicted self-reported higher mental toughness and lower sleep disturbances at age 14. At age 14, and relative to males, females had lower MT scores and reported more sleep disturbance.Conclusions: The pattern of results suggests that mental toughness traits during adolescence may have their origins in the pre-school years.

  11. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  12. Fracture toughness behavior and its analysis on nuclear pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Tadao; Tanaka, Yasuhiko; Ono, Shin-ichi; Tsukada, Hisashi [Japan Steel Works Ltd., Muroran, Hokkaido. Muroran Plant

    1983-02-01

    A drop weight J sub(Id) testing machine has been developed successfully, by which the multiple specimen J resistance curve test technique can be applied to measure the fracture toughness. In this study, the use of a small size round compact tension (RCT) specimen for measuring the fracture toughness J sub(Ic) or J sub(Id) of the nuclear pressure vessel steels is recommended and confirmed for the surveillance tests. The static and dynamic fracture toughness of ASTM A508 C 1.2, A508 C 1.3 and A533 Gr.B C 1.1 steels in the wide range of temperature including the upper shelf have been measured and their behavior has been analysed. The fracture toughness behavior under various strain rates and in a wide temperature range can be explained by the behavior of stretched zone formation preceding the crack initiation. The scatter of K sub(J) values in the transition range is caused by the amount of crack extension contained in the specimens. In this paper, the method to obtain the fracture toughness equivalent to the K sub(Ic) from the K sub(J) value is also presented.

  13. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  14. Validity of fracture toughness determined with small bend specimens

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.; Valo, M.

    1994-02-01

    This report considers the validity of fracture toughness estimates obtained with small bend specimens in relation to fracture toughness estimates obtained with large specimens. The study is based upon the analysis and comparison of actual test results. The results prove the validity of the fracture toughness determined based upon small bend specimens, especially when the results are only used to determine the fracture toughness transition temperature T o . In this case the possible error is typically less than 5 deg C and at most 10 deg C. It can be concluded that small bend specimens are very suitable for the estimation of fracture toughness in the case of brittle fracture, provided the results are corrected for statistical size effects. (orig.). (20 refs., 17 figs.)

  15. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  16. Self-concept organisation and mental toughness in sport.

    Science.gov (United States)

    Meggs, Jennifer; Ditzfeld, Christopher; Golby, Jim

    2014-01-01

    The present study examines the relationship between individual differences in evaluative self-organisation and mental toughness in sport, proposing that motivation and emotional resiliency (facets of mental toughness) stem from differences in core self. A cross-sectional assessment of 105 athletes competing at a range of performance levels took part in an online study including measures of self-reported mental toughness (Sport Mental Toughness Questionnaire; Sheard, M., Golby, J., & van Wersch, A. (2009). Progress towards construct validation of the Sports Mental Toughness Questionnaire (SMTQ). European Journal of Psychological Assessment, 25(3), 186-193. doi:10.1027/1015-5759.25.3.186) and self-organisation (self-descriptive attribute task; Showers, C. J. (2002). Integration and compartmentalisation: A model of self-structure and self-change. In D. Cervone & W. Mischel (Eds.), Advances in personality science (pp. 271-291). New York, NY: Guilford Press). As predicted, global mental toughness was associated with self-concept positivity, which was particularly high in individuals with positive-integrative self-organisation (individuals who distribute positive and negative self-attributes evenly across multiple selves). Specifically, positive integration was associated with constancy (commitment to goal achievement despite obstacles and the potential for failure), which extends presumably from positive integratives' emotional stability and drive to resolve negative self-beliefs.

  17. Interlaminar fracture toughness for composite materials

    International Nuclear Information System (INIS)

    Lee, Kang Yong; Kwon, Soon Man

    1991-01-01

    The new equation of energy release rate for a double cantilever beam specimen is proposed within the framework of the higher order shear deformable plate theory. The interlaminar fracture toughnesses by present theory, ASTM round robin test method and acoustic emission method are compared for thermoset Graphite/Epoxy and thermoplastic AS4/PEEK composites. As a result, the interlaminar fracture toughness values by present theory show good agreement within 5% when compared with ones by ASTM method and it is shown that ones by acoustic emission method yield the lower values than ones by ASTM method. It is observed that the interlaminar fracture toughness of thermoplastic AS4/PEEK composite is about ten times larger than one of thermoset Graphite/Epoxy composite. (Author)

  18. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  19. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    rough near a service road, in low velocity, unsaturated, unconsolidated 7 sands. Other than native grass, there was no significant vegetation . Surface...literature, demonstrate slll kale field tests. Similar degrees of spatial variability in ground that these stochastic geologic effects pose a potentially

  20. Highly Functionalised Cyclopentanes by Radical Cyclisation of Unsaturated Bromolactones III. Preparation of Carbaaldohexofuranoses. - Determination of the Relative Configuration at C-4/C-5 of 2,3-Unsaturated heptono-1,4-lactones by Means of 1-H NMR Spectroscopy

    DEFF Research Database (Denmark)

    Lundt, Inge; Horneman, Anne Marie

    1999-01-01

    Two new carbaaldohexofuranoses, carba--D-glucofuranose and carba--L-mannofuranose have been prepared using 5,6-O-isopropylidene-D-glycero-L-galacto-heptono-1,4-lactone (6) as the starting material. The key step was a highly stereoselective intramolecular 5-exo-trig radical cyclisation of C-2......-substituted 2,3-unsaturated 7-bromo-7-deoxy-heptono-1,4-lactones promoted by tributyltin hydride. Assignment of the configuration of the unsaturated lactones was based upon NMR data of related compounds. The starting material, compound 6, was obtained by chain elongation of D-gulose, and a facile method...

  1. Phase stability and fracture toughness of t' ZrO2 stabilised with MO1.5 (M=Yb and Gd) for thermal barrier application

    International Nuclear Information System (INIS)

    Loganathan, Archana; Gandhi, Ashutosh S.

    2010-01-01

    Thermal Barrier coatings (TBC's) protect the gas turbine blades at high temperature exposure. The t' phase is metastable and slowly transforms to the high-temperature equilibrium state consisting of tetragonal (t) and cubic (c) during high temperature exposure. Nanometric grain size also influences the fracture toughness and t' stability. A comparative study of the phase stability and fracture toughness evolution of Yb and Gd stabilized zirconia with composition 8 mol%MO 1.5 . The t' ZrO 2 -8mol% MO 1.5 (M = Yb and Gd) were prepared by co-precipitation method with crystallite size ∼ 20nm. Spark plasma sintering at 1250 deg C for 10 min was carried out to produce compacts with ∼ 96% relative density for fracture toughness measurements. The dense compacts were heat treated at 1250 deg C upto 192h. XRD studies revealed the partitioning of t' to t+c. No spontaneous monoclinic phase formed during cooling, except after 192h exposure. The fracture toughness of the sintered pellets with various time intervals of thermal exposure was measured. The results were analysed in terms of the effect of phase constitution on fracture toughness. The role of ferroelastic toughening in these materials was explored. (author)

  2. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  3. Fracture toughness of the F-82H steel-effect of loading modes, hydrogen, and temperature

    International Nuclear Information System (INIS)

    Li, H.-X.; Jones, R.H.; Hirth, J.P.; Gelles, D.S.

    1996-01-01

    The effects of loading mode, hydrogen, and temperature on fracture toughness and tearing modulus were examined for a ferritic/martensitic steel (F-82H). The introduction of a shear load component, mode III, significantly decreased the initiation and propagation resistance of cracks compared to the opening load, mode I, behavior. Mode I crack initiation and propagation exhibited the highest resistance. A minimum resistance occurred when the mode I and mode III loads were nearly equal. The presence of 4 wppm hydrogen decreased the cracking resistance compared to behavior without H regardless of the loading mode. The minimum mixed-mode fracture toughness with the presence of hydrogen was about 30% of the hydrogen-free mode I fracture toughness. The mixed-mode toughness exhibited a lesser sensitivity to temperature than the mode I toughness. The J IC value was 284 kJ/m 2 at room temperature, but only 60 kJ/m 2 at -55 C and 30 kJ/m 2 at -90 C. The ductile to brittle transition temperature (DBTT) was apparently higher than -55 C. (orig.)

  4. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  5. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  6. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    Science.gov (United States)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.

  7. THE RELATIONSHIP BETWEEN MENTAL TOUGHNESS, STRESS, AND BURNOUT AMONG ADOLESCENTS: A LONGITUDINAL STUDY WITH SWISS VOCATIONAL STUDENTS (.).

    Science.gov (United States)

    Gerber, Markus; Feldmeth, Anne Karina; Lang, Christin; Brand, Serge; Elliot, Catherine; Holsboer-Trachsler, Edith; Pühse, Uwe

    2015-12-01

    Past research has shown that higher stress is associated with increased burnout symptoms. The purpose of this study was to test whether mental toughness protects against symptoms of burnout and whether mental toughness moderates the relationship between perceived stress and burnout over time. Fifty-four vocational students (M age = 18.1 yr., SD = 1.2; 27 males, 27 females) completed self-report questionnaires twice, 10 mo. apart. Perceived stress, mental toughness, and burnout were measured using the Adolescent Stress Questionnaire (ASQ), the Mental Toughness Questionnaire (MTQ), and the Shirom-Melamed Burnout Measure (SMBM). Students who perceived higher stress and lower mental toughness scores reported higher burnout symptoms. Although no significant interaction effects were found between stress and mental toughness in the prediction of burnout, the graphical inspection of the interactions indicated that among students with high stress, those with high mental toughness remained below the cutoff for mild burnout, whereas an increase in burnout symptoms was observable among peers with low mental toughness.

  8. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  9. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  10. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  11. Dependence of fracture toughness of molybdenum laser welds on dendritic spacing and in situ titanium additions

    International Nuclear Information System (INIS)

    Jellison, J.L.

    1979-01-01

    The fracture toughness of molybdenum welds has been improved by in situ gettering of oxygen by means of physically deposited titanium. The addition of titanium suppressed brittle intergranular fracture. Pulsed laser welds (both Nd:YAG and CO 2 ) exhibited superior toughness to that of continuous wave CO 2 laser welds. Also, welds of vacuum arc remelted grades were tougher than those of sintered molybdenum. However, weld toughness could not be correlated with either oxygen or carbon content

  12. Influence of texture on fracture toughness of zircaloy cladding

    International Nuclear Information System (INIS)

    Grigoriev, V.; Andersson, Stefan

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill's theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture

  13. Screening and identification of dietary oils and unsaturated fatty acids in inhibiting inflammatory prostaglandin E2 signaling in fat stromal cells

    Directory of Open Access Journals (Sweden)

    Ruan Diana

    2012-08-01

    Full Text Available Abstract Background The molecular mechanisms of dietary oils (such as fish oil and unsaturated fatty acids, which are widely used by the public for anti-inflammation and vascular protection, have not been settled yet. In this study, prostaglandin E2 (PGE2-mediated calcium signaling was used to screen dietary oils and eight unsaturated fatty acids for identification of their anti-inflammatory mechanisms. Isolated fat/stromal cells expressing endogenous PGE2 receptors and an HEK293 cell line specifically expressing the recombinant human PGE2 receptor subtype-1 (EP1 were cultured and used in live cell calcium signaling assays. The different dietary oils and unsaturated fatty acids were used to affect cell signaling under the specific stimulation of a pathological amount of inflammatory PGE2. Results It was identified that fish oil best inhibited the PGE2 signaling in the primary cultured stromal cells. Second, docosahexaenoic acid (DHA, found in abundance in fish oil, was identified as a key factor of inhibition of PGE2 signaling. Eicosapentaenoic acid (EPA, another major fatty acid found in fish oil and tested in this study was found to have small effect on EP1 signaling. The study suggested one of the four PGE2 subtype receptors, EP1 as the key target for the fish oil and DHA target. These findings were further confirmed by using the recombinant EP1 expressed in HEK293 cells as a target. Conclusion This study demonstrated the new mechanism behind the positive effects of dietary fish oils in inhibiting inflammation originates from the rich concentration of DHA, which can directly inhibit the inflammatory EP1-mediated PGE2 receptor signaling, and that the inflammatory response stimulated by PGE2 in the fat stromal cells, which directly related to metabolic diseases, could be down regulated by fish oil and DHA. These findings also provided direct evidence to support the use of dietary oils and unsaturated fatty acids for protection against heart

  14. Fracture toughness testing on ferritic alloys using the electropotential technique

    International Nuclear Information System (INIS)

    Huang, F.H.; Wire, G.L.

    1981-01-01

    Fracture toughness measurements as done conventionally require large specimens (5 x 5 x 2.5 cm) which would be prohibitively expensive to irradiate over the fluence and temperature ranges required for first wall design. To overcome this difficulty a single specimen technique for J intergral fracture toughness measurements on miniature specimens (1.6 cm OD x 0.25 cm thick) was developed. Comparisons with specimens three times as thick show that the derived J/sub 1c/ is constant, validating the specimen for first wall applications. The electropotential technique was used to obtain continuous crack extension measurements, allowing a ductile fracture resistence curve to be constructed from a single specimen. The irradiation test volume required for fracture toughness measurements using both miniature specimens and single specimen J measurements was reduced a factor of 320, making it possible to perform a systematic exploration of irradiation temperature and dose variables as required for qualification of HT-9 and 9Cr-1Mo base metal and welds for first wall application. Fracture toughness test results for HT-9 and 9Cr-1Mo from 25 to 539 0 C are presented to illustrate the single specimen technique

  15. Prediction of fracture toughness K/sub Ic/ of steel from Charpy impact test results

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Tadao; Tanaka, Yasuhiko; Takemata, Hiroyuki; Terashima, Shuhei

    1986-08-01

    This paper presents a method to predict the fracture toughness K/sub Ic/ and/or K/sub Id/ of steels using their Charpy impact test results and tensile properties. The fracture toughness, Charpy impact and tensile properties of 2 1/4 Cr-1Mo, ASTM A508 Cl.1, A508 Cl.2 A508 Cl.3 and A533 Gr.B Cl.1 steels were measured and analysed on the basis of the excess temperature (test temperature minus FATT) and Rolfe-Novak correlation. The relationship between K/sub Ic//K/sub Ic-us/ and the excess temperature, where K/sub Ic-us/ is the upper-shelf fracture toughness K/sub Ic/ predicted by Rolfe-Novak correlation, discloses that the K/sub Ic/ transition curves of several steels are representable by only one trend curve of K/sub Ic//K/sub Ic-us/ or K/sub Id//K/sub Id-us/ versus excess temperature relation. This curve is denoted as a ''master curve''. By using this curve, the fracture toughness of steel can be predicted using Charpy impact and tensile test results. By taking account of the scattering of both the fracture toughness and Charpy impact test results, the confidence limits of the master curve were also determined. Another approach to develop more general procedure of predicting the fracture toughness K/sub Ic/ is also discussed.

  16. MENTAL TOUGHNESS: A COMPARATIVE STUDY ON KFUPM UNIVERSITY TEAMS

    Directory of Open Access Journals (Sweden)

    MOHAMMED HAMDAN

    2012-06-01

    Full Text Available AbstractMental toughness is an attribute that is often associated with successful performance in competitions. Mental toughness and its importance in competitive Sports have been documented in literature (A.S. Goldberg, 1998; K. Hodge, 1994; J. Tunney, 1987; R.M. Williams, 1988. In sports, many things are left to chance as, sports are predictably unpredictable. Sports persons who enter the competitive arena soon realize that there is more to competition than simply learning the physical skills. It is one thing to possess the physical and mental skills and yet another to be able to use them when needed. Every athletic contest is a contest of control of the delicate mind-body connection, which is dramatically clear within the competitive arena (J.E. Loehr, 1982.Purpose: 1. To compare the mental toughness between King Fahd University of Petroleum and Minerals (KFUPM Judo and Karate teams; 2. To compare the mental toughness between KFUPM Swimming and Track & Field teams. Methods A total of 26 players who are part of KFUPM Judo, Karate , Swimming and Track & Field University teams (2011-12 with age ranging from 18-20 years were selected as subjects for study and were divided into four groups namely; Judo (N= 6, Karate (N= 5, Swimming (N= 8 and Track & Field (N= 7. Mental toughness questionnaire of Tiwari and Sharma (2006 was administered to the subjects. The questionnaire consists of 48 statements and has six sub- scales namely: Self Confidence, Attention Control, Motivation, Goal Setting, Visual Imagery and Attitude Control. T- Test was applied to compare means between the groups. Statistical significance was set at 0.05 levels. Results T- Test failed to reveal significant difference on mental toughness (MT between KFUPM Judo and Karate teams (p = .7 > .05. T-Test also failed to reveal significant difference on MT between KFUPM Swimming and Track & Field teams (p = .122 > .05. T-Test revealed significant difference on Self Confidence between KFUPM

  17. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  18. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  19. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  20. Synthesis of Phosphatidylcholine Containing Highly Unsaturated Fatty Acid by Phospholipase A2 and Effect on Retinoic Acid Induced Differentiation of HL-60 Cells

    OpenAIRE

    細川, 雅史; 大島, 宏哲; 甲野, 裕之; 高橋, 是太郎; 羽田野, 六男; 小田島, 粛夫

    1993-01-01

    Phosphatidylcholine containing highly unsaturated fatty acid (HUFA-PC) was prepared by porcine pancreatic phospholipase A2, which catalyzed esterification between lysophosphatidylcholine (LPC) and highly unsaturated fatty acid (HUFA), under a scaled-up reaction system. Fatty acid mixture prepared from sardine oil, purified eicosapentaenoic acid (EPA), and purified docosahexaenoic acid (DHA) were used as the substrates of HUFA. The yield of HUFA-PC was 17.0-19.9%. Synthesized phosphatidylcholi...

  1. Postirradiation fracture toughness of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1983-01-01

    The effect of fast-neutron irradiation on the fracture toughness response of Inconel X-750 was characterized at 427 deg C using the J-R curve technique. Irradiation exposures ranging from 3 to 16 displacements per atom resulted in a reduction in Jsub(Ic) from 130 to 76 kJ/m 2 and a reduction in tearing modulus from 32 to 2.6. Postirradiation fractographic examination revealed that an intergranular fracture mechanism was dominant, in contrast to the extensive transgranular cracking mode found on unirradiated fracture surfaces. The enhanced intergranular failure observed after irradiation was caused by extensive heterogeneous slip in a matrix that was greatly strengthened by an irradiation-induced dislocation substructure. Specifically, intense planar slip bands impinged on the grain boundaries and generated large stress concentrations. Since the stress concentrations could not be relaxed by the hardened matrix, the grain boundaries 'unzipped' readily, resulting in the low toughness and tearing resistance. (author)

  2. A Novel Methods for Fracture Toughness Evaluation of Tool Steels with Post-Tempering Cryogenic Treatment

    Directory of Open Access Journals (Sweden)

    Ramona Sola

    2017-02-01

    Full Text Available Cryogenic treatments are usually carried out immediately after quenching, but their use can be extended to post tempering in order to improve their fracture toughness. This research paper focuses on the influence of post-tempering cryogenic treatment on the microstructure and mechanical properties of tempered AISI M2, AISI D2, and X105CrCoMo18 steels. The aforementioned steels have been analysed after tempering and tempering + cryogenic treatment with scanning electron microscopy, X-ray diffraction for residual stress measurements, and micro- and nano-indentation to determine Young’s modulus and plasticity factor measurement. Besides the improvement of toughness, a further aim of the present work is the investigation of the pertinence of a novel technique for characterizing the fracture toughness via scratch experiments on cryogenically-treated steels. Results show that the application of post-tempering cryogenic treatment on AISI M2, AISI D2, and X105CrCoMo18 steels induce precipitation of fine and homogeneously dispersed sub-micrometric carbides which do not alter hardness and Young’s modulus values, but reduce residual stresses and increase fracture toughness. Finally, scratch test proved to be an alternative simple technique to determine the fracture toughness of cryogenically treated steels.

  3. An evaluation of fracture toughness of bituminous coal

    International Nuclear Information System (INIS)

    Pathan, A.G.

    2005-01-01

    The role of fracture mechanics in the design of rock structures is vitally important. However, because of the complexities of rock structures and lack of understanding of the fundamentals of the failure mechanism, it has become customary to use the engineering properties approach in the design of stable rock structures. Recently considerable attention has been given and attempts are being made to apply the fracture mechanics approach to the design of safe mining structures. In mining engineering the fracture mechanics may be applied to calculate the formation of fracture zones around mine opening, thus estimating support requirements and formulating guide lines for the selection of mine roadway support system. The research work presented here is concerned with the evaluation of fracture toughness of coal under laboratory conditions. Diametral compression test method is used to determine the fracture toughness parameter of coal in the opening model failure. The effect of crack length and dimensionless crack length on the fracture toughness was studied also. A laboratory investigation of fracture toughness of coal in tensile mode failure has led to the conclusion that fracture toughness could be treated as a material property. (author)

  4. A study on the fracture toughness of heavy section steel plates and forgings for nuclear pressure vessels produced in Japan, 2

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu; Takahashi, Isao; Miya, Kenzo; Ando, Yoshio.

    1984-01-01

    In this paper, the main results of a series of tests carried out by the Atomic Energy Research Committee, the Japan Welding Engineering Society, for six years for the purpose of evaluating the fracture toughness and strength of superthick steel materials for nuclear reactors made in Japan are reported. In this research, as the fracture toughness test, three kinds of static, dynamic and crack propagation stop tests were carried out. Not only parent metals but also welded parts were evaluated, and numerous data have been accumulated. The fracture toughness of structural materials generally depends on test temperature, and forms three regions of lower shelf, transition and upper shelf from low temperature side toward high temperature side. It is desired to establish the effective method to determine fracture toughness over wide temperature range with small test pieces, and as its promising method, J(IC) fracture toughness test based on elasto-plastic fracture mechanics is carried out. The toughness in lower shelf and transition regions was clarified by K(IC) test, and that in upper shelf region was evaluated by J(IC) test. The methods of test and analysis, and the results are reported. (Kako, I.)

  5. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  6. Toughness degradation evaluation of low alloyed steels by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nahm, S H; Yu, K M; Kim, S C [Korea Research Inst. of Standards and Science, Taejon (Korea, Republic of); Kim, A [Department of Mechanical Engineering, Kongju Univ., Kongju, Chungnam (Korea, Republic of)

    1997-09-01

    Remaining life of turbine rotors with a crack can be assessed by the fracture toughness on the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at 630 deg. C. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity. (author). 13 refs, 7 figs.

  7. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  8. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  9. Investigation of impact toughness of a Ni-based superalloy at elevated temperature

    International Nuclear Information System (INIS)

    Yang, Y.H.; Yu, J.J.; Sun, X.F.; Jin, T.; Guan, H.R.; Hu, Z.Q.

    2012-01-01

    Highlights: ► The samples show highest impact toughness at 600 °C. ► The impact toughness of samples impact at 760 °C drops sharply. ► The voids nucleation and growth are fracture mechanism at elevated temperature. ► The decrease in strength of grain boundaries causes reduction in impact toughness. -- Abstract: The impact toughness of M951 alloy is investigated in temperature range between 20 °C and 800 °C. The results show that the impact toughness of samples impacted at 600 °C shows highest impact toughness value, the impact toughness value drops sharply when the samples impacted at 760 °C. In addition samples impacted at 800 °C show the higher impact toughness than that of samples impact at 760 °C. The scanning electron microscope observations show that cracks initiate at carbides particles due to high stress concentration, which leads to low impact toughness value at 20 °C. The dimples which can absorb more energy are formed during the impact at 600 °C. The samples impacted at 760 °C show lowest impact toughness. Additionally, the dimples nucleation, growth and coalescence are the major fracture mechanism at elevated temperature.

  10. Modification and application of TOUGH2 as a variable-density, saturated-flow code and comparison to SWIFT II results

    International Nuclear Information System (INIS)

    Christian-Frear, T.L.; Webb, S.W.

    1995-01-01

    Human intrusion scenarios at the Waste Isolation Pilot Plant (WIPP) involve penetration of the repository and an underlying brine reservoir by a future borehole. Brine and gas from the brine reservoir and the repository may flow up the borehole and into the overlying Culebra formation, which is saturated with water containing different amounts of dissolved 'solids resulting in a spatially varying density. Current modeling approaches involve perturbing a steady-state Culebra flow field by inflow of gas and/or brine from a breach borehole that has passed through the repository. Previous studies simulating steady-state flow in the Culebra have been done. One specific study by LaVenue et al. (1990) used the SWIFT 2 code, a single-phase flow and transport code, to develop the steady-state flow field. Because gas may also be present in the fluids from the intrusion borehole, a two-phase code such as TOUGH2 can be used to determine the effect that emitted fluids may have on the steady-state Culebra flow field. Thus a comparison between TOUGH2 and SWIFT2 was prompted. In order to compare the two codes and to evaluate the influence of gas on flow in the Culebra, modifications were made to TOUGH2. Modifications were performed by the authors to allow for element-specific values of permeability, porosity, and elevation. The analysis also used a new equation of state module for a water-brine-air mixture, EOS7 (Pruess, 1991), which was developed to simulate variable water densities by assuming a miscible mixture of water and brine phases and allows for element-specific brine concentration in the INCON file

  11. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  12. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  13. Ductile fracture toughness of heavy section pressure vessel steel plate. A specimen-size study of ASTM A 533 steels

    International Nuclear Information System (INIS)

    Williams, J.A.

    1979-09-01

    The ductile fracture toughness, J/sub Ic/, of ASTM A 533, Grade B, Class 1 and ASTM A 533, heat treated to simulate irradiation, was determined for 10- to 100-mm thick compact specimens. The toughness at maximum specimen load was also measured to determine the conservatism of J/sub Ic/. The toughness of ASTM A 533, Grade B, Class 1 steel was 349 kJ/m 2 and at the equivalent upper shelf temperature, the heat treated material exhibited 87 kJ/m 2 . The maximum load fracture toughness was found to be linearly proportional to specimen size, and only specimens which failed to meet ASTM size criteria exhibited maximum load toughness less than J/sub Ic/

  14. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    Science.gov (United States)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  15. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  16. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  17. Technology development on analysis program for measuring fracture toughness of irradiated specimens

    International Nuclear Information System (INIS)

    Shibata, Akira; Takada, Fumiki

    2007-03-01

    The fracture toughness which represents resistance for brittle or ductile fracture is one of the most important material property concerning linear and non-linear fracture mechanics analyses. In order to respond to needs of collecting data relating to fracture toughness of pressure vessel and austenitic stainless steels, fracture toughness test for irradiated materials has been performed in JMTR hot laboratory. On the other hand, there has been no computer program for analysis of fracture toughness using the test data obtained from the test apparatus installed in the hot cell. Therefore, only load-displacement data have been provided to users to calculate fracture toughness of irradiated materials. Recently, request of analysis of fracture toughness have been increased. Thus a computer program, which calculates the amount of the crack extension, the compliance and the fracture toughness from the data acquired from the test apparatus installed in the hot cell, has been developed. In the program unloading elastic compliance method is applied based on ASTM E1820-01. Through the above development, the request for the fracture toughness analysis can be satisfied and the fracture toughness of irradiated test specimens can be provided to users. (author)

  18. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  19. The statistical background to proposed ASME/MPC fracture toughness reference curves

    International Nuclear Information System (INIS)

    Oldfield, W.

    1981-01-01

    The ASME Pressure Vessel Codes define, in Sec. 11, lower bound fracture toughness curves. These curves are used to predict the lower bound fracture toughness on the basis of the RT test procedure. This test is used to remove heat to heat differences, by permitting the lower bound (reference) curve to be moved along the temperature scale according to the measured RT. Numerous objections have been raised to the procedure, and a Subcommittee (the ASME/MPC Working Group on Reference Toughness) is currently revising the codified procedures for fracture toughness prediction. The task has required a substantial amount of statistical work, since the new procedure are to have a statistical basis. Using initiation fracture toughness (J-Integral R curve procedures in the ductile domain) it was shown that when CVN energy data is properly transformed it is highly correlated with valid fracture toughness measurements. A single functional relationship can be used to predict the mean fracture toughness for a sample of steel from a set of CVN energy measurements, and the coefficients of the function tabulated. More importantly, the approximate lower statistical bounds to the initiation fracture toughness behaviour can be similarly predicted, and coefficients for selected bounds have also been tabulated. (orig.)

  20. Fracture toughness of manet II steel

    International Nuclear Information System (INIS)

    Gboneim, M.M.; Munz, D.

    1997-01-01

    High fracture toughness was evaluated according to the astm and chromium (9-12) martensitic steels combine high strength and toughness with good corrosion and oxidation resistance in a range of environments, and also show relatively high creep strength at intermediate temperatures. They therefore find applications in, for example, the offshore oil and gas production and chemical industries i pipe work and reaction vessels, and in high temperature steam plant in power generation systems. Recently, the use of these materials in the nuclear field was considered. They are candidates as tubing materials for breeder reactor steam generators and as structural materials for the first wall and blanket in fusion reactors. The effect of ageing on the tensile properties and fracture toughness of a 12 Cr-1 Mo-Nb-v steel, MANET II, was investigated in the present work. Tensile specimens and compact tension (CT) specimens were aged at 550 degree C for 1000 h. The japanese standards. Both microstructure and fracture surface were examined using optical and scanning electron microscopy (SEM). The results showed that ageing did not affect the tensile properties. However, the fracture toughness K Ic and the tearing modules T were reduced due to the ageing treatment. The results were discussed in the light of the chemical composition and the fracture surface morphology. 9 figs., 3 tabs

  1. Finite Element Simulation of Fracture Toughness Test

    International Nuclear Information System (INIS)

    Chu, Seok Jae; Liu, Cong Hao

    2013-01-01

    Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found

  2. The toughness of secondary cell wall and woody tissue

    OpenAIRE

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the i...

  3. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  4. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  5. On the Evolutionary Stability of 'Tough' Bargaining Behavior

    DEFF Research Database (Denmark)

    Poulsen, Anders

    2003-01-01

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game such behavior survives. We also study the Ultimatum Game. Here evolutionary selection wipes out all tough behavior, as long as th...

  6. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels.

    Science.gov (United States)

    Darnell, Max C; Sun, Jeong-Yun; Mehta, Manav; Johnson, Christopher; Arany, Praveen R; Suo, Zhigang; Mooney, David J

    2013-11-01

    Although hydrogels now see widespread use in a host of applications, low fracture toughness and brittleness have limited their more broad use. As a recently described interpenetrating network (IPN) of alginate and polyacrylamide demonstrated a fracture toughness of ≈ 9000 J/m(2), we sought to explore the biocompatibility and maintenance of mechanical properties of these hydrogels in cell culture and in vivo conditions. These hydrogels can sustain a compressive strain of over 90% with minimal loss of Young's Modulus as well as minimal swelling for up to 50 days of soaking in culture conditions. Mouse mesenchymal stem cells exposed to the IPN gel-conditioned media maintain high viability, and although cells exposed to conditioned media demonstrate slight reductions in proliferation and metabolic activity (WST assay), these effects are abrogated in a dose-dependent manner. Implantation of these IPN hydrogels into subcutaneous tissue of rats for 8 weeks led to mild fibrotic encapsulation and minimal inflammatory response. These results suggest the further exploration of extremely tough alginate/PAAM IPN hydrogels as biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  7. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  8. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.

    Science.gov (United States)

    Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei

    2015-05-06

    Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.

  9. The Influence of Instrumented Striker Configuration on the Results of Dynamic Toughness Testing

    International Nuclear Information System (INIS)

    Lucon, E.

    2008-01-01

    Several studies are available on the influence of the edge radius of instrumented strikers (ASTM - 8 mm or ISO - 2 mm) on the results of both non instrumented and instrumented Charpy tests. This paper investigates the effect of using either a 2 mm or a 8 mm striker when performing dynamic toughness tests at impact loading rates on precracked Charpy specimens. Existing data from tests run in the ductile-to-brittle region (dynamic Master Curve reference temperature) and in the upper shelf regime (ductile initiation fracture toughness and crack resistance curves) have been analyzed. The results show that 2 mm strikers tend to yield lower cleavage fracture toughness in the transition region (although the effect cannot be considered statistically significant), whereas the influence of striker configuration is negligible in the upper shelf regime when data are generated using the low-blow multiple-specimen technique.

  10. The Influence of Instrumented Striker Configuration on the Results of Dynamic Toughness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-09-15

    Several studies are available on the influence of the edge radius of instrumented strikers (ASTM - 8 mm or ISO - 2 mm) on the results of both non instrumented and instrumented Charpy tests. This paper investigates the effect of using either a 2 mm or a 8 mm striker when performing dynamic toughness tests at impact loading rates on precracked Charpy specimens. Existing data from tests run in the ductile-to-brittle region (dynamic Master Curve reference temperature) and in the upper shelf regime (ductile initiation fracture toughness and crack resistance curves) have been analyzed. The results show that 2 mm strikers tend to yield lower cleavage fracture toughness in the transition region (although the effect cannot be considered statistically significant), whereas the influence of striker configuration is negligible in the upper shelf regime when data are generated using the low-blow multiple-specimen technique.

  11. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  12. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330 degrees C (535--625 degrees F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature ''normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at ''saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, Φ, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common ''lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs

  13. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K. (Argonne National Lab., IL (USA))

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330{degrees}C (535--625{degrees}F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, {Phi}, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs.

  14. Fracture toughness of ferritic alloys irradiated at FFTF

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-05-01

    Ferritic compact tension specimens loaded in the Material Open Test Assembly (MOTA) for irradiation during FFTF Cycle 4 were tested at temperatures ranging from room temperature to 428/degree/C. The electrical potential single specimen method was used to measure the fracture toughness of the specimens. Results showed that the fracture toughness of both HT-9 and 9Cr-1Mo decreases with increasing test temperature and that the toughness of HT-9 was about 30% higher than that of 9Cr-1Mo. In addition, increasing irradiation temperature resulted in an increase in tearing modulus for both alloys. 4 refs., 5 figs., 1 tab

  15. Imaging and Measurements of Flow Phenomena and Impact of Soil Associated Constituents Through Unsaturated Porous Media in a 2D System

    Science.gov (United States)

    Pales, A. R.; Li, B.; Clifford, H.; Edayilam, N.; Montgomery, D.; Dogan, M.; Tharayil, N.; Martinez, N. E.; Moysey, S. M.; Darnault, C. J. G.

    2016-12-01

    This research aims to build upon past two-dimension (2D) tank light transmission methods to quantify real-time flow in unsaturated porous media (ASTM silica sand; US Silica, Ottawa, IL, USA) and how exudates effect unstable flow patterns. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a complementary metal oxide semiconductor digital single lens reflex (CMOS DSLR) Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from red-green-blue (RGB) into hue-saturation-intensity (HVI) and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Contact angle and surface tension of the chemical plant exudate solutions was measured using a Kruss EasyDrop FM40Mk2 (Kruss GmbH Germany). The exudates (oxalate, citrate, tannic acid, and Suwannee River Natural Organic Matter) had an increased wettability effect compared to control rain water (0.01M NaCl). This resulted in variable finger formation and speed of finger propagation; dependent on exudate type and concentration. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for future works in this study to analyze how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media.

  16. Cobalt-mediated [3 + 2]-annulation reaction of alkenes with alpha,beta-unsaturated ketones and imines.

    Science.gov (United States)

    Schomaker, Jennifer M; Toste, F Dean; Bergman, Robert G

    2009-08-20

    The utility of cobalt dinitrosyl complexes for the [3 + 2] annulation of alkenes with unsaturated enones and ketimines has been demonstrated. Reaction of a series of cobalt dinitrosyl/alkene adducts with conjugate acceptors in the presence of Sc(OTf)(3)/LHMDS formed two new C-C bonds at the carbons alpha to the nitrosyl groups of the substrate, leading to unusual tri- and tetracycles. Retrocycloaddition of these products in the presence of norbornadiene yielded functionalized tetrasubstituted bicyclic olefins.

  17. Test methodology and technology of fracture toughness for small size specimens

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also

  18. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  19. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  20. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  1. Sensitivity and uncertainty analyses of unsaturated flow travel time in the CHnz unit of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1991-10-01

    This report documents the results of sensitivity and uncertainty analyses conducted to improve understanding of unsaturated zone ground-water travel time distribution at Yucca Mountain, Nevada. The US Department of Energy (DOE) is currently performing detailed studies at Yucca Mountain to determine its suitability as a host for a geologic repository for the containment of high-level nuclear wastes. As part of these studies, DOE is conducting a series of Performance Assessment Calculational Exercises, referred to as the PACE problems. The work documented in this report represents a part of the PACE-90 problems that addresses the effects of natural barriers of the site that will stop or impede the long-term movement of radionuclides from the potential repository to the accessible environment. In particular, analyses described in this report were designed to investigate the sensitivity of the ground-water travel time distribution to different input parameters and the impact of uncertainty associated with those input parameters. Five input parameters were investigated in this study: recharge rate, saturated hydraulic conductivity, matrix porosity, and two curve-fitting parameters used for the van Genuchten relations to quantify the unsaturated moisture-retention and hydraulic characteristics of the matrix. 23 refs., 20 figs., 10 tabs

  2. Isotope studies of a thick unsaturated zone in a semi-arid area of Southern Africa

    International Nuclear Information System (INIS)

    Butler, M.J.; Verhagen, B.Th.

    2001-01-01

    Unsaturated zone profiles ranging in depth from 8 m to 22 m were obtained by hand augering an aeolian sand cover in the southern reaches of the semi-arid Kalahari thirstland. Moisture contents were rather low (<3 wt.%); in situ moisture chloride concentrations, measured by selective ion electrode following elutriation, are generally <500 ppm. Deuterium in the moisture was measured mass spectrometrically by direct quantitative conversion to hydrogen on zinc metal of moist soil samples. A novel technique of direct equilibration was developed for oxygen-18 analysis. Neither a thermonuclear tritium peak nor a stable isotope evaporation inversion near the surface could be observed in any of the profiles. Remarkable differences both laterally and vertically are observed in most parameters measured between profiles taken a few tens of metres apart. At greater depths, these differences become less pronounced. Recharge estimates based on chloride differ markedly from those obtained from tritium. Although the stable isotope values of the underlying saturated zone are similar to moisture in the deeper sections of the unsaturated zone profiles, the markedly lower chloride concentrations point towards preferential or bypass flow as an important mechanism of ground water recharge in the area. This can be regarded as a benchmark site on account of the wealth of unsaturated zone data as well as the detailed and ongoing rainfall record. (author)

  3. Development of the transverse tensile and fracture toughness test techniques for spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. B.; Hong, K. P.; Jung, Y. H.; Seo, H. S.; Oh, W. H.; Yoo, B. O.; Kim, D. S.; Seo, K. S

    2001-12-01

    To define the cause of cladding damage which can take place during the operation of nuclear power plant and the storage through the degradation aspect of mechanical characteristics, the transverse tensile an fracture toughness test were developed in hot cell at IMEF(Irradiated Material Experiment Facility). The following hot cell techniques were developed. 1. The development of a jig and a specimen for transverse tensile test 2. The acquisition of a manufacturing technique for the transverse tensile specimen at hot cell 3. The acquisition of testing procedures and an analysis technque for the transverse tensile 4. The dimensional determination of an optimized fracture toughness specimen 5. The acquisition of manufacturing technique for the fracture toughness test specimen at the hot cell 6. The acquisition of testing procedures and analysis technique for the fracture toughness test (Multiple specimen method, DCPD method, Load ratio method)

  4. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA).

    Science.gov (United States)

    Abdulrazzaq Naji, Sahar; Behroozibakhsh, Marjan; Jafarzadeh Kashi, Tahereh Sadat; Eslami, Hossein; Masaeli, Reza; Mahgoli, Hosseinali; Tahriri, Mohammadreza; Ghavvami Lahiji, Mehrsima; Rakhshan, Vahid

    2018-04-01

    The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO 2 ) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. TiO 2 nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each TiO 2 :PMMA ratio, 15 specimens were fabricated for each experiment. Effects of n-TiO 2 addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. SEM images of n-TiO 2 exhibited the presence of elongated tubular structures. The XRD pattern of synthesized n-TiO 2 represented the anatase crystal phase of TiO 2 . Moderate to very strong significant positive correlations were observed between the concentration of n-TiO 2 and each of the 3 physicomechanical properties of PMMA (Pearson's P value ≤.001, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% n-TiO 2 were significantly higher than those of control ( P ≤.001). Fracture toughness of samples reinforced with 5 wt% n-TiO 2 (but not those of 2.5% n-TiO 2 ) was higher than control ( P =.002). Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

  5. Mental toughness in sport: motivational antecedents and associations with performance and psychological health.

    Science.gov (United States)

    Mahoney, John W; Gucciardi, Daniel F; Ntoumanis, Nikos; Mallett, Cliff J; Mallet, Cliff J

    2014-06-01

    We argue that basic psychological needs theory (BPNT) offers impetus to the value of mental toughness as a mechanism for optimizing human functioning. We hypothesized that psychological needs satisfaction (thwarting) would be associated with higher (lower) levels of mental toughness, positive affect, and performance and lower (higher) levels of negative affect. We also expected that mental toughness would be associated with higher levels of positive affect and performance and lower levels of negative affect. Further, we predicted that coaching environments would be related to mental toughness indirectly through psychological needs and that psychological needs would indirectly relate with performance and affect through mental toughness. Adolescent cross-country runners (136 male and 85 female, M(age) = 14.36) completed questionnaires pertaining to BPNT variables, mental toughness, and affect. Race times were also collected. Our findings supported our hypotheses. We concluded that BPNT is generative in understanding some of the antecedents and consequences of mental toughness and is a novel framework useful for understanding mental toughness.

  6. Evaluation of Microstructure and Toughness of AISI D2 Steel by Bright Hardening in Comparison with Oil Quenching

    Science.gov (United States)

    Torkamani, H.; Raygan, Sh.; Rassizadehghani, J.

    2011-12-01

    AISI D2 is used widely in the manufacture of blanking and cold-forming dies, on account of its excellent hardness and wear behavior. Increasing toughness at a fixed high level of hardness is growing requirement for this kind of tool steel. Improving microstructure characteristics, especially refinement of coarse carbides, is an appropriate way to meet such requirement. In this study, morphology and size of carbides in martensite matrix were compared between two kinds of samples, which were bright hardened (quenching in hot alkaline salt bath consisting of 60% KOH and 40% NaOH) at 230 °C and quenched in oil bath at 60 °C. Results showed that morphology and distribution of carbides in samples performed by bright hardening were finer and almost spherical compared to that of oil quenched. This microstructure resulted in an improvement in toughness and tensile properties of alloy.

  7. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  8. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    Science.gov (United States)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  9. Controlling coaching and athlete thriving in elite adolescent netballers: The buffering effect of athletes' mental toughness.

    Science.gov (United States)

    Gucciardi, Daniel F; Stamatis, Andreas; Ntoumanis, Nikos

    2017-08-01

    The purposes of this study were to examine the association between controlling coach behaviours and athlete experiences of thriving and test the buffering effect of mental toughness on this relation. A cross-sectional survey. In total, 232 female netballers aged 11 to 17 years (14.97+1.52) with between 1 and 15 years of experience in their sport (7.50+2.28) completed measures of controlling coach interpersonal style, mental toughness and thriving. Latent moderated structural models indicated that (i) controlling coach behaviours were inversely related with experiences of vitality and learning; (ii) mental toughness was positively associated with psychological experiences of both dimensions of thriving; and (iii) mental toughness moderated the effect of coach's controlling interpersonal style on learning but not vitality experiences, such that the effect was weaker for individuals who reported higher levels of mental toughness. This study extends past work and theory to show that mental toughness may enable athletes to counteract the potentially deleterious effect of controlling coach interpersonal styles. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  11. The effect of irradiation and irradiation temperature on the fracture toughness of cold-worked Zr-2.5 wt percent Nb

    International Nuclear Information System (INIS)

    Simpson, L.A.; Ellis, R.B.; Stark, D.J.; Shillinglaw, A.J.

    1984-09-01

    The use of fracture mechanics methods and small specimens to assess the effect of metallurgical variables on fracture toughness and critical crack length in reactor pressure tubes is reviewed. Fracture toughness tests on specimens irradiated in the NRU research reactor at 260 degrees C are described and compared with results from a previous irradiation in the WR-1 research reactor at 350 degrees C. The J-resistance curve is used as the measure of fracture toughness, and is shown to be very sensitive to the metallurgical state. The lower irradiation temperature (260 degrees C), characteristic of the operating temperature range for power reactors, has a significant effect on fracture toughness. Circumferential hydrides also have an effect. Estimates of critical crack length are made using the J-resistance data, and are seen to slightly underestimate the actual critical crack length as determined in full-scale burst tests. This conservatism is not large enough to impose a significant penalty in design applications

  12. Analysis of pumping-induced unsaturated regions beneath aperennial river

    Energy Technology Data Exchange (ETDEWEB)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  13. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INLEL Oversight COmmittee

    International Nuclear Information System (INIS)

    Horn, D.; Liou, J.; Finnie, J.

    1993-03-01

    This project, begun in March 1991, was originally structured as two separate research efforts: An investigation of the recharge phenomenon and surface water-ground water interactions at the INEL; and a study of water and contaminant movement through the unsaturated zone, including a review of computer models used to described this process. During the initial months of work, it became obvious to those involved in these studies that the two topic areas were intimately related, and work since that time has proceeded with no firm boundaries between the two efforts. Much of the Phase I work (March 1991--March 1992) consisted of a detailed review of available literature pertinent to the two research topics and to the INEL site. This Annual Report summarizes the other project activities during Phase III, and is organized into three sections: Section I -- an overview of the ongoing efforts related to computer model algorithms and data requirements for modeling the transport process in the unsaturated zone (Dr. Jim Liou). Section H -- a review of ongoing work to predict the growth and decay of the ground water mound beneath the INEL spreading basins, using the computer model UNSAT-2 (Dr. John Finnie). Section M -- a final report of the completed study effort examining the recharge rates associated with stream flow in the Big Lost River, and the effects of this recharge on ground water levels at the INEL site (Dr. Dennis Horn). Phase M of the project has now begun, and will conclude in December 1993 with two final reports documenting the work that has been briefly described in Sections I and H of this report

  14. Effects of stitching on fracture toughness of uniweave textile graphite/epoxy laminates

    Science.gov (United States)

    Sankar, Bhavani V.; Sharma, Suresh

    1995-01-01

    The effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and Mode 1 and Mode 2 fracture toughness of textile graphite/epoxy laminates were studied experimentally. Graphite/epoxy laminates were fabricated from AS4 graphite uniweave textiles and 3501-6 epoxy using Resin Transfer Molding. The cloths were stitched with Kevlar(tm) and glass yarns before resin infusion. Delamination was implanted during processing to simulate impact damage. Sublaminate buckling tests were performed in a novel fixture to measure Compression After Impact (CAI) strength of stitched laminates. The results show that CAI strength can be improved up to 400% by through-the-thickness stitching. Double Cantilever Beam tests were performed to study the effect of stitching on Mode 1 fracture toughness G(sub 1c). It was found that G(sub 1c) increased 30 times for a low stitching density of 16 stitches/sq in. Mode 2 fracture toughness was measured by testing the stitched beams in End Notch Flexure tests. Unlike in the unstitiched beams, crack propagation in the stitched beams was steady. The current formulas for ENF tests were not found suitable for determining G(sub 2C) for stitched beams. Hence two new methods were developed - one based on crack area measured from ultrasonic C-scanning and the other based on equivalent crack area measured from the residual stiffness of the specimen. The G(sub 2c) was found to be at least 5-15 times higher for the stitched laminates. The mechanisms by which stitching increases the CAI strength and fracture toughness are discussed.

  15. Application of fracture toughness scaling models to the ductile-to- brittle transition

    International Nuclear Information System (INIS)

    Link, R.E.; Joyce, J.A.

    1996-01-01

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries

  16. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D.; Roedder, Edwin

    2008-01-01

    (24-26 deg. C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as ∼8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body ∼8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma

  17. Cobalt-Mediated [3+2]-Annulation Reaction of Alkenes with α,β-Unsaturated Ketones and Imines

    Science.gov (United States)

    Schomaker, Jennifer M.; Toste, F. Dean; Bergman, Robert G.

    2009-01-01

    The utility of cobalt dinitrosyl complexes for the [3+2] annulation of alkenes with unsaturated enones and ketimines has been demonstrated. Reaction of a series of cobalt dinitrosyl/alkene adducts with conjugate acceptors in the presence of Sc(OTf)3/LHMDS formed two new C-C bonds at the carbons α to the nitrosyl groups of the substrate, leading to unusual tri- and tetracycles. Retrocycloaddition of these products in the presence of norbornadiene yielded functionalized tetrasubstituted bicyclic olefins. PMID:19639989

  18. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  19. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    Science.gov (United States)

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  1. An Equal-Strain Analytical Solution for the Radial Consolidation of Unsaturated Soils by Vertical Drains considering Drain Resistance

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2018-01-01

    Full Text Available Developing an analytical solution for the consolidation of unsaturated soils remains a challenging task due to the complexity of coupled governing equations for air and water phases. This paper presents an equal-strain model for the radial consolidation of unsaturated soils by vertical drains, and the effect of drain resistance is also considered. Simplified governing equations are established, and an analytical solution to calculate the excess pore-air and pore-water pressures is derived by using the methods of matrix analysis and eigenfunction expansion. The average degrees of consolidation for air and water phases and the ground surface settlement are also given. The solutions of the equal-strain model are verified by comparing the proposed free-strain model with the equal-strain model, and reasonably good agreement is obtained. Moreover, parametric studies regarding the drain resistance effect are graphically presented.

  2. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  3. Vertical hydrochemical profiles in the unsaturated zone of louga ...

    African Journals Online (AJOL)

    Solutions chemistry of the rainwater and the unsaturated zone interstitial water of Louga (Northern Senegal) local aquifer provide valuable ... together with chemical analysis of the interstitial water carried out through the entire unsaturated ...

  4. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  5. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  6. Fracture-toughness variations in Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; Blackburn, L.D.

    1983-04-01

    The effect of product-form variations within a single heat on the J Ic fracture toughness behavior of Alloy 718 was examined at 24, 427 and 538 degree C using the multiple-specimen J R -curve method. Three product forms (plate, round bar and upset forging) were tested in both the conventional and modified heat-treatment (CHT and MHT) conditions. In CHT material, the fracture toughness response was different for the three product forms -- plate having the highest toughness, bar the lowest. The MHT was found to improve the overall fracture resistance for each product form. In this condition, plate and forging had very similar toughness values, but J Ic levels for the bar were considerably lower. These results and WHC data previously reported for four other Alloy 718 heats were unalloyed statistically to establish minimum-expected J Ic values based on tolerance limits bracketing 90% of a total population at a 95% confidence level. Metallographic and fractographic examinations of the seven material lots were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties. Generally, coarse δ precipitates controlled fracture properties in CHT material by initiating secondary dimples that pre-empted growth of the primary dimples nucleated by broken carbide inclusions. The MHT dissolved the coarse δ particles and thereby suppressed secondary microvoid coalescence. This generally enhanced the fracture resistance of Alloy 718, except when alternate secondary fracture mechanism, such as channel fracture and dimple rupture at δ-phase remnants, prematurely interrupted primary microvoid growth. 25 refs., 12 figs., 12 tabs

  7. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  8. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  9. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  10. Migrations of 60-Co and 137-Cs in Saturated and unsaturated Soil at Serpong Nuclear Research Center

    International Nuclear Information System (INIS)

    Lubis, E; Untara

    1996-01-01

    The migrations of 60-Co and 137-Cs in saturated and unsaturated soil at Serpong Nuclear Research Center was investigated. The objectives of this investigation are to find the geological and hydrological parameters, especially for estimating the migrations of radionuclides in porous media with advection-dispersion equations. The result showed that the porosity (η) and density (ρ ) of saturated soil are 27.6% and 1.35 g/cm3, and in the unsaturated soil are 18.9% and 1.41 g/cm3. The coefficients distributions (Kd) of 60-Co and 137-Cs in saturated and unsaturated soil are 1.6 - 8.9 and 3.2 - 7.7 respectively. The hydrodinamic coefficients (Dx) and dispersivity (αx) of C0-60 in saturated and unsaturated soil are 0.85 cm2/second and 2.4 x 10-3 cm, and for 137-Cs are 0.91 cm2/second and 2.54 x 10E3 cm

  11. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  12. To investigate the effect of heat treatment on fracture toughness of welded joints

    International Nuclear Information System (INIS)

    Hameed, A.; Pasha, R.A.; Shah, M.

    2013-01-01

    Annealing as a post weld heat treatment (PWHT), increases toughness in the welding joints of medium carbon steel in the same way as it increases toughness of the non-welded medium carbon steel. Measurement of increase in toughness through PWHT is focus of the present research work. Welded samples of commercially available steel AISI -1035 have been used for the proposed evaluation. The samples welded by two different techniques namely oxyacetylene gas welding and manual metal arc welding, passed through annealing process along with non-welded samples for comparison of increase in toughness. Toughness measured by impact tests revealed the improvement, which in the order of increasing effects is in gas welded, electric welded and non-welded samples. The aim of the present research was to measure the improvement in fracture toughness through post weld heat treatment (annealing). It has been shown that toughness increases as the structural flaws decrease. (author)

  13. Summary of pre and post-processors for V-TOUGH

    International Nuclear Information System (INIS)

    Daveler, S.

    1995-08-01

    This report summaries the preprocessor utility, LMESH and the postprocessor utility, EXTOOL. These utilities support the input file generation and postprocessing analysis for V-TOUGH. LMESH is a mesh generator for V-TOUGH and generates a rectangular or cylindrical mesh in two dimensions. The format for the LMESH summary is a discussion of input options, followed by a sample problem and output from the sample problem. EXTOOL is an analysis tool that extracts, manipulates and plots V-TOUGH output. The format for the EXTOOL summary is a discussion of the development of EXTOOL and an overview of the programs capabilities

  14. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  15. New unified fracture toughness estimation scheme for structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K; Nevasmaa, P [VTT, Espoo (Finland); Bannister, A [Research and Development, British Steel plc., Swinden Technology Centre Rotherham (United Kingdom)

    1999-12-31

    At present, treatment of fracture toughness data varies depending on the type of data (K{sub IC}, J, CTOD) that are available for fracture mechanics analysis. This complicates structural integrity assessment and makes it difficult to apply any single, unified procedure. Within the Brite-Euram project `SINTAP` a fracture toughness estimation scheme has been developed for the unified treatment of data for use in structural integrity assessment. As a procedure, it can be applied to Charpy data, as well as to fracture toughness data, and is suitable for the treatment of data at both single and different temperatures. The data sets may contain results from both homogeneous and inhomogeneous material, making the procedure applicable also to welded joints. The procedure allows fracture toughness assessment with quantified probability and confidence levels. Irrespective of the type of the original data, one material-specific K{sub mat} value representing a conservative estimate of the mean fracture toughness is obtained (with its probability distribution). This information can then be applied to structural integrity assessment. (orig.) 4 refs.

  16. New unified fracture toughness estimation scheme for structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K.; Nevasmaa, P. [VTT, Espoo (Finland); Bannister, A. [Research and Development, British Steel plc., Swinden Technology Centre Rotherham (United Kingdom)

    1998-12-31

    At present, treatment of fracture toughness data varies depending on the type of data (K{sub IC}, J, CTOD) that are available for fracture mechanics analysis. This complicates structural integrity assessment and makes it difficult to apply any single, unified procedure. Within the Brite-Euram project `SINTAP` a fracture toughness estimation scheme has been developed for the unified treatment of data for use in structural integrity assessment. As a procedure, it can be applied to Charpy data, as well as to fracture toughness data, and is suitable for the treatment of data at both single and different temperatures. The data sets may contain results from both homogeneous and inhomogeneous material, making the procedure applicable also to welded joints. The procedure allows fracture toughness assessment with quantified probability and confidence levels. Irrespective of the type of the original data, one material-specific K{sub mat} value representing a conservative estimate of the mean fracture toughness is obtained (with its probability distribution). This information can then be applied to structural integrity assessment. (orig.) 4 refs.

  17. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  18. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  20. Seismic response of earth dams considering dynamic properties of unsaturated zone

    Directory of Open Access Journals (Sweden)

    Ariyan M.

    2016-01-01

    Full Text Available It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC. Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

  1. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  2. The synthesis of some unsaturated 4-substituted-g-lactones

    Directory of Open Access Journals (Sweden)

    SUREN HUSINEC

    2000-02-01

    Full Text Available The synthesis of conjugated and nonconjugated unsaturated 4-substituted lactones of type 1 and 2 are described. The type 1 lactone was prepared by a two step procedure employing Bredereck's reagent. The type 2 lactone was synthesised by combining the Claisen-Ireland rearrangement and selenolactonisation.

  3. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

  4. Mode I type delamination fracture toughness of YBCO coated conductor with additional Cu layer

    International Nuclear Information System (INIS)

    Miyazato, T.; Hojo, M.; Sugano, M.; Adachi, T.; Inoue, Y.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2011-01-01

    A fracture toughness test method was developed for a YBCO coated conductor with an additional Cu layer. Mode I type tests were carried out using double cantilever beam (DCB) specimens. Delamination propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness for YBCO was about 10 J/m 2 . That for Ag/YBCO interface was about 100 J/m 2 . Although interlaminar fracture at a YBa 2 Cu 3 O 7-δ (YBCO)/CeO 2 interface was reported for YBCO coated conductors, this has not yet been investigated by a fracture mechanical approach. In the present study, we developed a mode I type fracture toughness test method for a YBCO coated conductor with an additional Cu layer using double cantilever beam (DCB) specimens. Fracture mechanism was investigated by microscopic observation by a scanning electron microscope (SEM), together with composition analysis by an energy dispersive X-ray spectroscope (EDS). A pre-crack introduced at the YBCO/CeO 2 interface deviated from the interface, and propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness, G R , for YBCO and the Ag/YBCO interface was evaluated to be 7-10 J/m 2 and 80-120 J/m 2 , respectively. The complex stress intensity factor ratio, K 2 /K 1 , at YBCO/CeO 2 interface was evaluated to be -0.19, and this ratio controlled the formation of microcracks in the YBCO layer. The main crack propagated into the YBCO layer accompanied with the formation of microcracks.

  5. Role of specimen size upon the measured toughness of cellular solids

    International Nuclear Information System (INIS)

    Christodoulou, I; Tan, P J

    2013-01-01

    It is well known that the mechanical properties of cellular solids depend critically upon the specimen size and that a 'sufficiently' large test specimen is needed to obtain representative bulk values. Notwithstanding, the fracture toughness of cellular solids is still measured experimentally based on standards, such as the ASTM E399 and E813, developed for solid materials that do not possess an intermediate, 'cell-level' length scale. Experimental data in the literature appears to show that the toughness of stochastic 3D foams is, also, size-dependent. This paper presents the results of a detailed finite element (FE) study that will quantify, and identify the physical origin of, the size-dependent effect. Three-point bending of a single-edge notched (or SEN(B)) specimen, with a 2D Voronoi micro-architecture, is modelled numerically to obtain estimates of fracture toughness which are compared to those obtained with a 'boundary-layer' analysis

  6. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  7. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  8. Ductile fracture toughness of modified A 302 grade B plate materials. Volume 2

    International Nuclear Information System (INIS)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-02-01

    The objective of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A 302 grade B plate materials typical of those used in fabricating reactor pressure vessels. A previous experimental study at Materials Engineering Associates (MEA) on one particular heat of A 302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in numerous tests made on the more recent production materials of A 533 grade B and A 508 class 2 pressure vessel steels. It was unknown if the departure from norm for the MEA material was a generic characteristic for all heats of A 302 grade B steels or just unique to that one particular plate. Seven heats of modified A 302 grade B steel and one heat of vintage A 533 grade B steel were provided to this project by the General Electric Company of San Jose, California. All plates were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550 degrees F (288 degrees C). Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, IT, 2T, and 4T). None of the seven heats of modified A 302 grade showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550 degrees F (82 to 288 degrees C) produced the usual loss in J-R curve fracture toughness. Generic J-R curves and mathematical curve fits to the same were generated to represent each heat of material. This volume is a compilation of all data developed

  9. Status report on the use of the CRB for the measurement of fracture toughness of RPV steels

    International Nuclear Information System (INIS)

    Scibetta, M.; Chaouadi, R.; Van Walle, E.

    1998-02-01

    A large number of fracture toughness tests were performed in order to assess the use of the circumferentially-Cracked Round Bar (CRB) as a potential method for the measurement of fracture toughness of Reactor Pressure Vessel steels. Test conditions were selected to: (1) characterise fracture toughness in the transition region; (2) study the size effect and loss of constraint; (3) establish the limit of validity of this geometry; (4) investigate the ductile fracture at the upper shelf. In the transition region, the fracture toughness obtained from the CRB over-estimates the actual value as long as the loss of constraint and size effect were not taken into account. In addition, the B1/4 size correction is verified and gives a very good description of the size effect. The application of these corrections allows a good prediction of the normalised fracture toughness up to high levels of fracture toughness.In the upper shelf region, promising results were obtained with this geometry to characterise the ductile crack initiation and propagation

  10. Preliminary test results from the HSST shallow-crack fracture toughness program

    International Nuclear Information System (INIS)

    Theiss, T.J.; Robinson, G.C.; Rolfe, S.T.

    1991-01-01

    The Heavy Section Steel Technology (HSST) Program under sponsorship of the Nuclear Regulatory Commission (NRC) is investigating the influence of crack depth on the fracture toughness of reactor pressure vessel steel. The ultimate goal of the investigation is the generation of a limited data base of elastic-plastic fracture toughness values appropriate for shallow flaws in a reactor pressure vessel and the application of this data to reactor vessel life assessments. It has been shown that shallow-flaws play a dominant role in the probabilistic fracture mechanics analysis of reactor pressure vessels during a pressurized-thermal-shock event. In addition, recent research has shown that the crack initiation toughness measured using specimens with shallow flaws is greater that the toughness determined with conventional, deeply notched specimens at temperatures within the transition region for non-nuclear steels. The influence of crack depth on the elastic-plastic fracture toughness for prototypic reactor material is being investigated. Preliminary results indicate a significant increase in the toughness associated with shallow-flaws which has the potential to significantly impact the conditional probability of vessel failure. 8 refs., 4 figs., 1 tab

  11. Simulation approaches for the two-phase flow in saline repositories using the code TOUGH2-GRS. Report in the frame of the project ZIESEL. Two-phase flow in a saline repository using the example ERAM; Ansaetze zur Simulation der Zweiphasenstroemung in salinaren Endlagern mit dem Code TOUGH2-GRS. Bericht im Vorhaben ZIESEL. Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Martin; Fischer, Heidemarie; Seher, Holger; Weyand, Torben

    2016-10-15

    The simulation approaches for the two-phase flow in saline repositories using the code TOUGH2-GRS cover the following issues: simulation of gravitational flows in horizontal galleries without vertical discretization, homogenization approach for the simulation of the two-phase flow in converging partly backfilled galleries, qualification of the convergence approach implemented by GRS into the code TOUGH2-GRS, discretization effects during replacement of liquid by gas, consequences for the system analyses in the frame of the project ZIESEL.

  12. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    Science.gov (United States)

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  14. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.

    Science.gov (United States)

    Pashaei, S; Ghoorchi, T; Yamchi, A

    2016-04-01

    An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro-organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  15. The weak interfaces within tough natural composites: experiments on three types of nacre.

    Science.gov (United States)

    Khayer Dastjerdi, Ahmad; Rabiei, Reza; Barthelat, Francois

    2013-03-01

    Mineralization is a typical strategy used in natural materials to achieve high stiffness and hardness for structural functions such as skeletal support, protection or predation. High mineral content generally leads to brittleness, yet natural materials such as bone, mollusk shells or glass sponge achieve relatively high toughness considering the weakness of their constituents through intricate microstructures. In particular, nanometers thick organic interfaces organized in micro-architectures play a key role in providing toughness by various processes including crack deflection, crack bridging or energy dissipation. While these interfaces are critical in these materials, their composition, structure and mechanics is often poorly understood. In this work we focus on nacre, one of the most impressive hard biological materials in terms of toughness. We performed interfacial fracture tests on chevron notched nacre samples from three different species: red abalone, top shell and pearl oyster. We found that the intrinsic toughness of the interfaces is indeed found to be extremely low, in the order of the toughness of the mineral inclusions themselves. Such low toughness is required for the cracks to follow the interfaces, and to deflect and circumvent the mineral tablets. This result highlights the efficacy of toughening mechanisms in natural materials, turning low-toughness inclusions and interfaces into high-performance composites. We found that top shell nacre displayed the highest interfacial toughness, because of higher surface roughness and a more resilient organic material, and also through extrinsic toughening mechanisms including crack deflection, crack bridging and process zone. In the context of biomimetics, the main implication of this finding is that the interface in nacre-like composite does not need to be tough; the extensibility or ductility of the interfaces may be more important than their strength and toughness to produce toughness at the macroscale

  16. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures

    International Nuclear Information System (INIS)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.; Shiba, Kiyoyuki

    1994-01-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 degrees C. These specimens have been tested over a temperature range from 20 to 250 degrees C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenitic stainless steels, but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 degrees C is more damaging than at 90 degrees C, causing larger decreases in the fracture toughness. Ferritic-martensitic steels are embrittled by the irradiation, and show the lowest toughness at room temperature

  17. Developing Mental Toughness: Lessons from Paralympians

    Directory of Open Access Journals (Sweden)

    Alexander J. Powell

    2017-08-01

    Full Text Available Mental toughness (MT is a key psychological variable related to perseverance and success in performance domains. MT and its development has been explored across a range of contexts and across different sports, but no research to date has examined MT in relation to Paralympic athletes. We sought to understand the lived-experiences of mentally tough Paralympians, aiming to conceptualize MT in a Paralympic context and investigate its development. Ten Paralympic athletes were interviewed using in-depth, semi-structured interviews. The verbatim transcripts of the interviews served as the data for an interpretative phenomenological analysis. Three broad themes and several subthemes emerged in conceptualizing Paralympian MT: characteristics (determination, defiance, pragmatic, optimistic, resilient, self-belief and independence and autonomy, cognitions (normalization, sense of escape, non-acceptance of constraints, influence perception and connection and cognitive strategies (rational thinking, goal setting, pain management and control. In understanding MT development, two broad themes and several subthemes emerged: formative experiences (challenge, classification, setbacks, critical incident, trauma and recovery, sustained commitment, development of mind-set and perspective during challenge, failure, and acceptance, and support and coping resources (social support and significant others, external shaping, social support, overcoming problems, social comparison and reflective practice. The findings suggest that Paralympians benefited from exposure to highly demanding situations in a supportive environment and this helped develop mentally tough characteristics and behaviors and individualized cognitive coping strategies. Our findings highlight the association between the adaptive development of personal characteristics by overcoming physical and mental setbacks over a sustained time period. Overall, the findings suggest that to develop mentally tough

  18. Developing Mental Toughness: Lessons from Paralympians.

    Science.gov (United States)

    Powell, Alexander J; Myers, Tony D

    2017-01-01

    Mental toughness (MT) is a key psychological variable related to perseverance and success in performance domains. MT and its development has been explored across a range of contexts and across different sports, but no research to date has examined MT in relation to Paralympic athletes. We sought to understand the lived-experiences of mentally tough Paralympians, aiming to conceptualize MT in a Paralympic context and investigate its development. Ten Paralympic athletes were interviewed using in-depth, semi-structured interviews. The verbatim transcripts of the interviews served as the data for an interpretative phenomenological analysis. Three broad themes and several subthemes emerged in conceptualizing Paralympian MT: characteristics (determination, defiance, pragmatic, optimistic, resilient, self-belief and independence and autonomy), cognitions (normalization, sense of escape, non-acceptance of constraints, influence perception and connection) and cognitive strategies (rational thinking, goal setting, pain management and control). In understanding MT development, two broad themes and several subthemes emerged: formative experiences (challenge, classification, setbacks, critical incident, trauma and recovery, sustained commitment, development of mind-set and perspective during challenge, failure, and acceptance), and support and coping resources (social support and significant others, external shaping, social support, overcoming problems, social comparison and reflective practice). The findings suggest that Paralympians benefited from exposure to highly demanding situations in a supportive environment and this helped develop mentally tough characteristics and behaviors and individualized cognitive coping strategies. Our findings highlight the association between the adaptive development of personal characteristics by overcoming physical and mental setbacks over a sustained time period. Overall, the findings suggest that to develop mentally tough characteristics

  19. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Joseph F. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States)], E-mail: jfwhelan@usgs.gov; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States); Roedder, Edwin [Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 (United States)

    2008-05-15

    that maximum unsaturated zone temperatures probably predate {approx}10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 deg. C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as {approx}8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body {approx}8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma.

  20. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  1. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2

    International Nuclear Information System (INIS)

    Moridis, G.; Pruess, K.; Antunez, E.

    1994-03-01

    Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources

  2. Application of ISRM testing methods to fracture toughness testing of graphite

    International Nuclear Information System (INIS)

    Hashida, T.; Fukasawa, T.; Takahashi, H.; Ishiyama, S.; Oku, T.

    1987-01-01

    Fracture toughness measurements of nuclear grade graphites, IG11 and PGX, were made by means of AE technique. Tests were conducted on edge-notched round bend bar, edge-notched short bar and round compact tension specimens. These round-shaped specimens used in this study have been proposed for standard fracture toughness tests of rock as a draft of testing standard of International Society for Rock Mechanics (ISRM). Taking the observed nonlinear deformation behavior into account, J-integral approach was utilized to determine the fracture toughness of the graphites. It is shown that the critical J integral determined by AE technique, J iAE , is independent of specimen geometry. Based on this experimental results, the fracture toughness K IC of the graphites was determined from the J iAE values. K IC value of IG11 was 1.04 MPa√m, and 0.77 MPa√m for PGX respectively. Furthermore, the specimen size effect of the fracture toughness determined by the J-integral/AE method is discussed. (author)

  3. A toughness and defect size assessment of welded stainless steel components

    International Nuclear Information System (INIS)

    Chipperfield, C.G.

    1978-01-01

    The results of an investigation of the effect of test temperature, stress relieving temperature and weld profile on the initiation toughness of 316 type steels are described. The data indicate that little improvement in weld metal toughness is obtained by stress relieving at temperatures of up to 850 0 C and the magnitude of the toughness is significantly below that of wrought 316 steel. The observed trends in toughness with test temperature or stress relieving temperature have been explained in terms of the effect of these variables on yield strength and work hardening rate. A defect size assessment of a particular component has been made for stress relieved and non-stress relieved conditions. Simple addition of residual to applied stress values indicated that the defect size is in many cases essentially controlled by the magnitude of the residual stress. The possible conservatism of this assessment and the use of initiation toughness values are discussed. (author)

  4. A study on in-situ measuring method and modeling technique of an unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hisashi [Hazama Corp., Tsukuba, Ibaraki (Japan). Technical Research Inst.; Amemiya, Kiyoshi; Nishida, Kaoru; Lin, Weiren; Lei, Xinglin

    1997-03-01

    It is generally considered that an unsaturated zone is generated in the vicinity of a drift after excavation. In such a zone, invasion of air containing oxygen possibly changes geochemical environment (redox condition) of the rock mass. However, no measurement technique for quantitative understanding of this unsaturated zone is currently available. This study has been started to develop the measuring method in the several years. This year, fundamental information has been obtained through analysis, laboratory experiments using homogeneous rock samples and field measurement described below. (1) experiments on the mechanism of undersaturation in rock. (2) experiments on the measuring method of the extend of unsaturated zone. (author)

  5. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  6. Coupling of the reservoir simulator TOUGH and the wellbore simulator WFSA

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, T.; Zimmerman, R.W.; Bodvarsson [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The reservoir simulator TOUGH and the wellbore simulator WFSA have been coupled, so as to allow simultaneous modeling of the flow of geothermal brine in the reservoir as well as in the wellbore. A new module, COUPLE, allows WFSA to be called as a subroutine by TOUGH. The mass flowrate computed by WFSA now serves as a source/sink term for the TOUGH wellblocks. Sample problems are given to illustrate the use of the coupled codes. One of these problems compares the results of the new simulation method to those obtained using the deliverability option in TOUGH. The coupled computing procedure is shown to simulate more accurately the behavior of a geothermal reservoir under exploitation.

  7. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2013-06-15

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge.

  8. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    International Nuclear Information System (INIS)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young

    2013-01-01

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge

  9. Relationship between mental toughness, stress appraisal, and innovation performance of R&D personnel

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2016-01-01

    Full Text Available Four hundred and two R&D personnel were surveyed through questionnaires to study the relationship between mental toughness, stress appraisal (including experience of stress and stress control, and innovation performance. The findings reveal a significant negative correlation between mental toughness and stress experience and a significant positive correlation between mental toughness and both stress control and innovation performance. Furthermore, although the experience of stress was negatively correlated with innovation performance, stress control had the opposite effect. Experience of stress and stress control were the mediating variables for mental toughness and innovation performance, respectively. There was also a significant interaction effect between stress appraisal and mental toughness.

  10. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave

    International Nuclear Information System (INIS)

    Yadav, S.N.; Kumar, Vijai; Verma, Sushil K.

    2006-01-01

    This work was to evaluate as to how mode II fracture toughness G II is affected by interleave having Kevlar fibre reinforcement in the fracture plane. Thermoset interleave and chopped Kevlar fibres were applied between the carbon/epoxy composite layers. An artificial crack starter was implanted in the mid-plane to initiate the fracture process. The following five different types of carbon fibre/epoxy composites were prepared and tested. (a) Base laminate without interleave (b) unreinforced interleave and (c) 0.5, 1.0 and 1.5 mg/cm 2 chopped Kevlar fibre reinforced interleave. Results obtained show that fracture toughness G IIC enhanced up to about two times in all the laminates. However, enhancement in fracture toughness G IIC was more effective in interleaved laminate than Kevlar reinforced interleaved because of large energy absorbing capabilities of interleaf. Mechanism of fracture and toughening were examined by using scanning electron microscope

  11. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  12. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses

    OpenAIRE

    Kim, C. Paul; Suh, Jin-Yoo; Wiest, Aaron; Lind, Mary Laura; Conner, R. Dale; Johnson, William L.

    2009-01-01

    Three new compositional variants of the Zr–Ti–Be–LTM (late transition metal) family of metallic glasses are discussed. Thermal stability, ΔT = T_x−T_g, was increased from 82 °C for Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Viterloy 1) to 141 °C for Zr_(44)Ti_(11)Cu_(20)Be_(25). It is found that fracture toughness is the most distinguishing parameter characterizing the alloys in contrast to other mechanical properties. Quaternary alloys consistently had fracture toughness values exceeding 8...

  13. Tough Times: Strategic Planning as a War Canoe

    Science.gov (United States)

    Seymour, Daniel

    2011-01-01

    In this article, the author discusses how to make strategic planning a more valuable tool for higher education in today's tough times. Strategic planning is really the answer to five straightforward questions. The first three represent the plan itself, while the last two are what makes the plan vital and dynamic: (1) Why do we exist?; (2) What do…

  14. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  15. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  16. Tough Choices or Tough Times: The Report of the New Commission on the Skills of the American Workforce. Revised and Expanded Edition

    Science.gov (United States)

    Jossey-Bass, An Imprint of Wiley, 2008

    2008-01-01

    "Tough Choices or Tough Times," the report of the New Commission on the Skills of the American Workforce, shows how the dynamics of the global economy will lead to a steady decline in the American standard of living if this country does not undertake the first thorough overhaul of its education system in a century. This new revised and expanded…

  17. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  18. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  19. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  20. Effect of TiC addition on fracture toughness of Al6061 alloy

    Science.gov (United States)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  1. Crack arrest toughness of structural steels evaluated by compact test

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Tanaka, Michihiro

    1982-01-01

    Crack arrest tests such as compact, ESSO and DCB tests were made on SA533B Cl. 1, HT80 and KD32 steels to evaluate the crack arrest toughness. The main results obtained are as follows: (1) The crack arrest toughness could be evaluated by K sub(Ia) which was obtained by the static analysis of compact test. (2) K sub(ID) determined by the dynamic analysis of compact test was greater than K sub(Ia), though K sub(ID) became close to K sub(Ia)/K sub(Q) became a unity where K sub(Q) is the stress intensity factor at the crack initiation. (3) No significant difference was observed between K sub(Ia) and K sub(ca) obtained by ESSO and DCB tests, though K sub(ca) obtained by DCB test tended to be smaller than K sub(Ia) at lower temperatures. (4) K sub(Ia) was smaller than K sub(Ic) in the transition temperature range, while it was greater than K sub(Id). In the temperature range where K sub(Ic), which was determined from J sub(Ic), decreased with temperature increase, however, it was smaller than K sub(Ia). (5) The fracture appearance transition temperature and the absorbed energy obtained by 2 mm V-notch Charpy test were appropriate parameters for representing the crack arrest toughness, while the NDT temperature was not. (author)

  2. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    Science.gov (United States)

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  4. Fracture toughness of 6.4 mm (0.25 inch) Arc-Cast molybdenum and molybdenum-TZM plate at room temperature and 300 oC

    International Nuclear Information System (INIS)

    Shields, J.A. jr.; Lipetzky, P.; Mueller, A.J.

    2001-01-01

    The fracture toughness of 6.4 mm (0.25 inch) low carbon arc-cast (LCAC) molybdenum and arc-cast molybdenum-TZM alloy plate were measured at room temperature and 300 o C using compact tension specimens. The effect of crack plane orientation (longitudinal vs. transverse) and annealing practice (stress-relieved vs. recrystallized) were evaluated. Depending upon the test temperature either a standard K IC or a J-integral analysis was used to obtain the toughness value. At room temperature, regardless of alloy, orientation, or microstructure, fracture toughness values between 15 and 22 MPa m 1/2 (14 and 20 ksi in 1/2 ) were measured. These K IC values were consistent with measurements by other authors. Increasing temperature improves the toughness, due to the fact that one takes advantage of the ductile-brittle transition behavior of molybdenum. At 300 o C, the fracture toughness of recrystallized LCAC and arc-cast TZM molybdenum were also similar at approximately 64 MPa m 1/2 (58 ksi in 1/2 ). In the stress-relieved condition, however, the toughness of arc-cast TZM (91 MPa m 1/2 / 83 ksi in 1/2 ) was higher than that of the LCAC molybdenum (74 MPa m 1/2 / 67 ksi in 1/2 ). (author)

  5. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  6. Fracture toughness of Charpy-size compound specimens and its application in engineering

    International Nuclear Information System (INIS)

    Zhang, X.P.; Shi, Y.W.

    1994-01-01

    The use of a pre-cracked Charpy-size specimen with a side-groove to evaluate the fracture toughness of materials has been researched and considered. This method not only satisfies the demand for small-size specimens in surveillance tests of fracture toughness but also avoids using complicated physical methods to monitor the initial conditions of crack propagation. For most materials this method has solved the problem in which the small-size specimen did not satisfy the valid conditions of a fracture toughness measurement. In order to obtain more information from neutron-irradiated sample specimens and raise the reliability of fracture toughness surveillance tests, it has been considered more important to repeatedly exploit the broken Charpy-size specimen tested in the surveillance test, and to make it renewable. In this work, on the renewing design and utilization of Charpy-size specimens, nine data on fracture toughness can be obtained from one pre-cracked side-grooved Charpy-size specimen, while at present usually only one to three data on fracture toughness can be obtained from one Charpy-size specimen. Thus, it is found that the new method would improve the reliability of fracture toughness surveillance testing and evaluation. In addition, some factors that affect the optimum design of pre-cracked deep side-groove Charpy-size compound specimens have also been discussed. (author)

  7. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  8. Dependence of Fracture Toughness on Crystallographic Orientation in Single-Crystalline Cubic (β) Silicon Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, M.; Katoh, Y.; Bei, H.

    2006-01-01

    Along with other desirable properties, the ability of silicon carbide (SiC) to retain high strength after elevated temperature exposures to neutron irradiation renders it potentially applicable in fusion and advanced fission reactors. However, properties of the material such as room temperature fracture toughness must be thoroughly characterized prior to such practical applications. The objective of this work is to investigate the dependence of fracture toughness on crystallographic orientation for single-crystalline β-SiC. X-ray diffraction was first performed on the samples to determine the orientation of the crystal. Nanoindentation was used to determine a hardness of 39.1 and 35.2 GPa and elastic modulus of 474 and 446 GPa for the single-crystalline and polycrystalline samples, respectively. Additionally, crack lengths and indentation diagonals were measured via a Vickers micro-hardness indenter under a load of 100 gf for different crystallographic orientations with indentation diagonals aligned along fundamental cleavage planes. Upon examination of propagation direction of cracks, the cracks usually did not initiate and propagate from the corners of the indentation where the stresses are concentrated but instead from the indentation sides. Such cracks clearly moved along the {1 1 0} family of planes (previously determined to be preferred cleavage plane), demonstrating that the fracture toughness of SiC is comparatively so much lower along this set of planes that the lower energy required to cleave along this plane overpowers the stress-concentration at indentation corners. Additionally, fracture toughness in the <1 1 0> direction was 1.84 MPa·m1/2, lower than the 3.46 MPa·m1/2 measured for polycrystalline SiC (which can serve as an average of a spectrum of orientations), further demonstrating that single-crystalline β-SiC has a strong fracture toughness anisotropy.

  9. Tough Blends of Polylactide and Castor Oil

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  10. Tough blends of polylactide and castor oil.

    Science.gov (United States)

    Robertson, Megan L; Paxton, Jessica M; Hillmyer, Marc A

    2011-09-01

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of l-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized-an order of magnitude larger than that of neat PLLA.

  11. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  12. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  13. The effect of specimen and flaw dimensions on fracture toughness

    International Nuclear Information System (INIS)

    Nevalainen, M.J.

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account

  14. On the proper fracture toughness properties to be used for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Server, W.L.

    1997-01-01

    The traditional approach in the U.S. for evaluating PTS has relied upon probabilistic studies in which the toughness has been based upon the data used to generated the lower bound ASME Code K IC and K IR curves. A mean curve through this data with a Gaussian statistical distribution assumed, except for a lower bound cutoff of somewhere between 2 and 3 standard deviations, has been used. The RT NDT normalizing concept has been maintained which then requires the measured shift in Charpy V-notch toughness at the 41 J (30 ft-lb) energy level be used to adjust the position of the Code curves. The Master Curve method provides a unique alternative in providing a much better measure of real fracture toughness, plus the opportunity to use a more refined statistical distribution using Weibull statistics. There are active moves in the U.S. to Standardize and Codify the Master Curve (also termed T 0 method). Benefits to both deterministic and probabilistic analyses will be realized since more realistic measures of toughness can be used

  15. On the proper fracture toughness properties to be used for pressurized thermal shock evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Server, W L [ATI Consulting, Danville, CA (United States)

    1997-09-01

    The traditional approach in the U.S. for evaluating PTS has relied upon probabilistic studies in which the toughness has been based upon the data used to generated the lower bound ASME Code K{sub IC} and K{sub IR} curves. A mean curve through this data with a Gaussian statistical distribution assumed, except for a lower bound cutoff of somewhere between 2 and 3 standard deviations, has been used. The RT{sub NDT} normalizing concept has been maintained which then requires the measured shift in Charpy V-notch toughness at the 41 J (30 ft-lb) energy level be used to adjust the position of the Code curves. The Master Curve method provides a unique alternative in providing a much better measure of real fracture toughness, plus the opportunity to use a more refined statistical distribution using Weibull statistics. There are active moves in the U.S. to Standardize and Codify the Master Curve (also termed T{sub 0} method). Benefits to both deterministic and probabilistic analyses will be realized since more realistic measures of toughness can be used.

  16. Dynamic fracture toughness and evaluation of fracture in a ferritic nodular cast iron for casks

    International Nuclear Information System (INIS)

    Yasunaka, T.; Nakano, K.

    1993-01-01

    The effect of loading rate and temperature on fracture toughness of a ferritic nodular cast iron obtained from a thick-walled cylindrical casting has been investigated. Based upon this result, the cast iron is evaluated as a material for casks. (1) In the ductile fracture region, fracture toughness increases with increases in loading rate. (2) Ductile-brittle transition temperature is linearly related to the logarithm of stress intensity rate. (3) In the ductile fracture region, converted plain strain fracture toughness divided by yield stress can be adopted as a material constant which is independent of loading rate and temperature. From the result of a static fracture toughness test, the evaluation of fracture in high loading rate can be made. (4) In the ductile fracture region of the material investigated, the maximum allowable flaw depth exceeded the minimum detectable flaw size by a nondestructive inspection. Ferritic nodular cast iron can be used as a material for casks in the ductile fracture region at least. (J.P.N.)

  17. Fracture toughness evaluation of Eurofer'97 by testing small specimens

    International Nuclear Information System (INIS)

    Serrano, M.; Fernandez, P.; Lapena, J.

    2006-01-01

    The Eurofer'97 is the structural reference material that will be tested in the ITER modules. Its metallurgical properties have been well characterized during the last years. However, more investigations related with the fracture toughness of this material are necessary because this property is one of the most important to design structural components and to study their integrity assessment. In the case of structural materials for fusion reactor the small specimen technology (SSTT) are being actively developed to investigate the fracture toughness among other mechanical properties. The use of small specimens is due to the small available irradiation volume of IFMIF and also due to the high fluence expected in the fusion reactor. The aim of this paper is to determine the fracture toughness of the Eurofer'97 steel by testing small specimens of different geometry in the ductile to brittle transition region, with the application of the Master Curve methodology, and to evaluate this method to assess the decrease in fracture toughness due to neutron irradiation. The tests and data analysis have been performed following the Master Curve approach included in the ASTM Standard E1921-05. Specimen size effect and comparison of the fracture toughness results with data available in the literature are also considered. (author)

  18. Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments.

    Science.gov (United States)

    Smith, Kathryn E; Trusty, Phillip; Wan, Beatrice; Gall, Ken

    2011-02-01

    Photopolymerizable (meth)acrylate networks are potentially advantageous biomaterials due to their ability to be formed in situ, their fast synthesis rates and their tailorable material properties. The objective of this study was to evaluate how immersion time in phosphate-buffered saline (PBS) affects the toughness of photopolymerizable methyl acrylate (MA)-co-methyl methacrylate-co-poly(ethylene glycol) dimethacrylate networks containing various concentrations of MA. Stress-strain behavior was determined by performing tensile strain to failure testing after soaking in PBS for different periods (1 day up to 9 months). In tandem, differential scanning calorimetry and PBS content measurements were undertaken at each time point in order to determine whether time-dependent changes in toughness were related to changes in T(g) or PBS absorption. The effect of immersion time on network toughness was shown to be dependent upon composition in a manner related to the viscoelastic state of the polymer upon initial immersion in PBS. The results demonstrate that tough acrylate-based materials may not maintain their toughness after several months in PBS. In addition, decreasing the PBS content by changing the network hydrophobicity resulted in better toughness maintenance after 9 months. The results provide a possible means to toughen various amorphous acrylate-based implant materials that are being explored for load-bearing biomedical applications, beyond the systems considered in this work. Published by Elsevier Ltd.

  19. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  20. A numerical study of water percolation through an unsaturated variable aperture fracture under coupled thermomechanical effects

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Hale, F.V.

    1991-12-01

    In calculation of ground water travel times associated with performance assessment of a nuclear waste repository, the role of fractures may turn out to be very important. There are two aspects related to fracture flow that have not been fully resolved. The first is the effect of coupled thermomechanical impact on fracture apertures due to the thermal output of the nuclear waste repository. The second is the effect of the variable aperture nature of the fractures. The present paper is an exploratory study of the impact of these two effects on water percolation through unsaturated fractures. The paper is divided into two main sections. the first section describes a calculation of the thermomechanical behavior of the geologic formation around a waste repository. In this exploratory study we assume two major fractures, one vertical and one horizontal through the repository center. Temperatures and thermally induced stress fields are calculated. The second part of the paper considers the unsaturated case and describes a study of water infiltration from the land surface through the vertical fracture to the repository

  1. Synthesis, characterization and biodistribution of new [sup 99m]Tc Oxo and nitrido complexes of unsaturated tetradentate (N[sub 2]S[sub 2]) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Coulais, Y.; Gantet, P.; Tafani, J.A.M.; Vende, D.; Guiraud, R. (Faculte de Medecine Toulouse-Purpan, Toulouse (France). Lab. de Biophysique et de Medecine Nucleaire); Cros, G.; Darbieu, M.H. (Centre National de la Recherche Scientifique (CNRS), Toulouse (France). Lab. de Chimie de Coordination); Pasqualini, R. (Cis-Bio International, Gif-sur-Yvette (France))

    1993-04-01

    Three unsaturated Schiff base tetradentate (N[sub 2]S[sub 2] or N[sub 2]SO) ligands were synthesized and characterized. Oxo and nitrido 99m-technetium complexes were obtained with these ligands. The nitrido complexes were formed using a new easy method available as a kit. When injected into rats and mice, these lipophilic complexes were able to cross blood-brain barrier but brain perfusion imaging could not be performed due to the insufficient uptake and retention time. (author).

  2. Effect of Aging Treatment on Impact Toughness and Corrosion Resistance of Super Duplex Stainless Steel

    Science.gov (United States)

    Kim, Jae-Hwan; Oh, Eun-Ji; Lee, Byung-Chan; Kang, Chang-Yong

    2016-01-01

    The effect of aging time on impact toughness and corrosion resistance of 25%Cr-7%Ni-2%Mo-4%W-0.2%N super duplex stainless steel from the viewpoint of intermetallic secondary phase variation was investigated with scanning electron microscopic observation with energy-dispersive x-ray spectroscopic analysis and transmission electron microscopy. The results clarified that R-phase is precipitated not only at the interface of ferrite and austenite but inside the ferrite at an initial stage of aging and then transformed into σ-phase from an aging time of 1 h, while the ferrite phase decomposed into γ2 and σ-phase with increase of aging time. This variation of the phases led to decrease of its impact toughness, and specifically, the R-phase was proved to be predominant in the degradation of the impact toughness at the initial stage of the aging. Additionally, these secondary phases led to deterioration of corrosion resistance because of Cr depletion.

  3. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  4. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  5. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  6. Mental Toughness in Competitive Tennis: Relationships with Resilience and Stress

    Directory of Open Access Journals (Sweden)

    Richard Gregory Cowden

    2016-03-01

    Full Text Available The present study investigated the relationships between mental toughness (MT, resilience, and stress among competitive South African tennis players. A total of 351 tennis players participating at various competitive standards completed the Sport Mental Toughness Questionnaire, the Resilience Scale for Adults, and a modified version of the Recovery-Stress Questionnaire for Athletes. The results indicated that total MT was positively associated with total resilience (r = .59, but negatively associated with total stress (r = -.44. The resilience subscales of perception of self, perception of future, social competence, and social resources, but not family cohesion, significantly predicted total MT (R2 = .35. Both total resilience and total MT significantly predicted total stress (R2 = .21. Based on the findings, interrelations between MT and resilience are explored, implications outlined, and additional research is suggested to ascertain the contextual relevance and outcomes associated with each construct in sport.

  7. Mental Toughness in Competitive Tennis: Relationships with Resilience and Stress.

    Science.gov (United States)

    Cowden, Richard G; Meyer-Weitz, Anna; Oppong Asante, Kwaku

    2016-01-01

    The present study investigated the relationships between mental toughness (MT), resilience, and stress among competitive South African tennis players. A total of 351 tennis players participating at various competitive standards completed the Sports Mental Toughness Questionnaire, the Resilience Scale for Adults, and a modified version of the Recovery-Stress Questionnaire for Athletes. The results indicated that total MT was positively associated with total resilience (r = 0.59), but negatively associated with total stress (r = -0.44). The resilience subscales of perception of self, perception of future, social competence, and social resources, but not family cohesion, significantly predicted total MT (R (2) = 0.35). Both total resilience and total MT significantly predicted total stress (R (2) = 0.21). Based on the findings, interrelations between MT and resilience are explored, implications outlined, and additional research is suggested to ascertain the contextual relevance and outcomes associated with each construct in sport.

  8. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  9. Hydrologic study of the unsaturated zone adjacent to a radioactive-waste disposal site at the Savannah River Plant, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Gruber, P.

    1980-01-01

    Unsaturated hydraulic conductivity as a function of soil-water content and soil-water pressure head of field soils in the vicinity of a low-level radioactive-waste disposal site was measured for a period of 28 days following steady-state infiltration. Tensiometer and a neutron probe measurements were replicated four times at various depth intervals of from 12.0 to 120.00 inches below land surface in two 12 foot square plots. Values of soil-water content, soil-water flux, and hydraulic conductivity at each depth were calculated during the period of drainage using a computer program called SOIL. After drainage of soil-water through the 120 inch profile ceased, duplicate undisturbed soil cores from opposite sides of each plot and from disturbed and undisturbed sites within the burial grounds were recovered and subjected to pressure-plate analysis for the calculation of unsaturated hydraulic conductivity. Laboratory analyses also included the determination of soil bulk density, particle-size distribution, and saturated hydraulic conductivity. Calculation of unsaturated hydraulic conductivity in the laboratory was made using a computer program called HYDRO, based upon the relationship of the soil-water content/soil-water pressure curve. Soils in the study area and the burial ground exhibited similar physical and hydrologic characteristics. Field derived hydraulic conductivity correlated well with laboratory derived conductivity. Variability of soil characteristics due to burial operations were minimal when compared to undisturbed natural soils in the study area. Two textural discontinuities were found to exist in the soil profile at depths of 12 to 24 inches and at 130 inches, which inhibit soil-water movement and thereby reduce the quantity and rate of recharge to the underlying water-table aquifer

  10. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  11. Tough-coated hard powders for hardmetals of novel properties

    International Nuclear Information System (INIS)

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  12. Heterogeneous hydrogenation of unsaturated compounds with catalyst P-2-Ni with turnover numbers up to 90,000

    Energy Technology Data Exchange (ETDEWEB)

    Strohmeier, W; Pfoehler, M; Steigerwald, H [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie

    1977-12-01

    Unsaturated compounds are very rapidly hydrogenated with nickel-boride catalyst P-2-Ni without solvent under mild conditions (70-85/sup 0/C and 10 bar). Turnover numbers UZ up to 90,000 and space-time-yields of 7.440 mmol product per l and 1 mgA Nickel in one hour with a mean catalyst activity a = 124 were observed. This hydrogenation catalyst has a power, which is in the same magnitude of very active noble metal catalysts.

  13. Fracture toughness evaluation of steels through master curve approach using Charpy impact specimens

    International Nuclear Information System (INIS)

    Chatterjee, S.; Sriharsha, H.K.; Shah, Priti Kotak

    2007-01-01

    The master curve approach can be used for the evaluation of fracture toughness of all steels which exhibit a transition between brittle to ductile mode of fracture with increasing temperature, and to monitor the extent of embrittlement caused by metallurgical damage mechanisms. This paper details the procedure followed to evaluate the fracture toughness of a typical ferritic steel used as material for pressure vessels. The potential of master curve approach to overcome the inherent limitations of the estimation of fracture toughness using ASME Code reference toughness is also illustrated. (author)

  14. Advanced Vadose Zone Simulations Using TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  15. Fracture toughness calculation using dynamic testing

    International Nuclear Information System (INIS)

    Perosanz, F. J.; Serrano, M.; Martinez, C.; Lapena, J.

    1998-01-01

    The most critical component of a Nuclear Power Station is the Reactor Pressure Vessel (RPV), due to safety and integrity requirements. The RPV is subjected to neutron radiation and this phenomenon lead to microstructural changes in the material and modifications in the mechanical properties. Due to this effects, it is necessary to assess the structural integrity of the RPV along the operational life through surveillance programs. The main objective of this surveillance programs is to determine the fracture toughness of the material. At present this objective is reached combining direct measures and prediction techniques. In this work, direct measures of fracture toughness using instrumented Charpy V impact testing are present using a CIEMAT development on analysis of results. (Author) 6 refs

  16. A framework for the behaviour of unsaturated expansive clays

    International Nuclear Information System (INIS)

    Gens, A.; Alonso, E.E.

    1992-01-01

    The paper presents a framework for describing the mechanical behaviour of unsaturated expansive clays. It is an extension of an existing formulation developed for unsaturated soils of low activity. The extended framework is based on the distinction within the material of a microstructural level where the basic swelling of the active minerals takes place, and a macrostructural level responsible for major structural rearrangements. Bu adopting simple assumptions concerning the coupling between the two levels, it is possible to reproduce major features of the behaviour of unsaturated expansive clays. Some selected qualitative comparisons between model predictions and experimental results reported in the literature are presented. Despite the simplified hypotheses made, a very encouraging agreement is obtained

  17. Fracture toughness testing of V-4Cr-4Ti at 25{degrees}C and -196{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.X.; Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Measurements of the fracture toughness of the production-scale heat (832665) of V-4Cr-4Ti have been performed at 25{degrees}C and {minus}196{degrees}C using compact tension (CT) specimens. Test specimens were vacuum annealed at either 1000{degrees}C for 1 hour (HT1) or 1050{degrees}C for two hours (HT2). Specimens given the HT1 treatment were annealed after final machining, whereas the HT2 specimens received the 1050{degrees}C anneal at Teledyne Wah Chang prior to final machining. Following machining HT2 specimens were then vacuum annealed at 180{degrees}C for two hours to remove hydrogen. Specimens treated using HT1 had a partially recrystallized microstructure and those treated using HT2 had a fully recrystallized microstructure. The fracture toughness at 25{degrees}C was determined by J-integral tests and at {minus}196{degrees}C by ASTM E 399 type tests. Toughness values obtained at {minus}196{degrees}C were converted to J-integral values for comparison to the 25{degrees}C data. The 25{degrees}C fracture toughness was very high with none of the specimens giving valid results per ASTM criteria. Specimens fractured by microvoid coalescence. The fracture toughness at {minus}196{degrees}C was much lower than that at 25{degrees}C and the fracture surface showed predominantly cleavage features. The present results show a transition from ductile to brittle behavior with decreasing test temperature which is not observed from one-third scale Charpy impact tests. The fracture toughness at {minus}196{degrees}C was still quite high, however, at about 75 kJ/m{sup 2}. Delaminations in planes normal to the thickness direction were seen at both test temperatures. Fracture surfaces inside the delaminations exhibited nearly 100% cleavage facets. The cause of the brittle delaminations was not determined, but will be a subject for further investigation.

  18. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Elisa Borowski

    2015-06-01

    Full Text Available Carbon fiber reinforced polymer (CFRP laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs. Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH–MWCNTs. Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS verify that chemical reactions took place between the COOH–MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness of the CFRP specimens containing MWCNTs. Finite element (FE simulations show good agreement with the experimental results and confirm the significant effect of MWCNTs on the interlaminar fracture toughness of CFRP.

  19. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  20. The development and maintenance of mental toughness: perceptions of elite performers.

    Science.gov (United States)

    Connaughton, Declan; Wadey, Ross; Hanton, Sheldon; Jones, Graham

    2008-01-01

    Seven participants from a previous study (Jones, Hanton, & Connaughton, 2002) agreed to be interviewed about the development of mental toughness. We also aimed to determine whether mental toughness requires maintenance. Semistructured interviews were conducted to elicit the participants' perceptions of how mental toughness is cultivated and retained. Findings indicated that the development of mental toughness is a long-term process that encompasses a multitude of underlying mechanisms that operate in a combined, rather than independent, fashion. In general, these perceived underlying mechanisms related to many features associated with a motivational climate (e.g. enjoyment, mastery), various individuals (i.e. coaches, peers, parents, grandparents, siblings, senior athletes, sport psychologists, team-mates), experiences in and outside sport, psychological skills and strategies, and an insatiable desire and internalized motives to succeed. It was also reported that once mental toughness had been developed, three perceived underlying mechanisms were required to maintain this construct: a desire and motivation to succeed that was insatiable and internalized, a support network that included sporting and non-sporting personnel, and effective use of basic and advanced psychological skills. Practical implications and future avenues of research are discussed.

  1. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  2. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K.

    2012-01-01

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  3. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  4. The crack layer approach to toughness characterization in steel

    Science.gov (United States)

    Bessendorff, M.; Chudnovsky, A.

    1986-01-01

    In a study of the laws of crack propagation and toughness characterization, it is feasible to employ two alternative approaches, including the fracture mechanics approach and the material science approach. The crack layer (CL) theory discussed by Khandogin and Chudnovsky (1978) and Chudnovsky (1980) considers the crack together with the surrounding defects as one system which has several degrees of freedom. It is pointed out that the CL theory defines the relationship between the parameters of fracture mechanics and the characteristics of microstructural changes which are the subject of material science. Experiments are described, taking into account a toughness characterization test and microscopic studies. Attention is given to a phenomenological study of toughness characterization, the morphology of crack layer, and the evaluation of energy stored in the dislocation network.

  5. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths

    Science.gov (United States)

    Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui

    2015-08-01

    How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.

  6. Anisotropy of fracture toughness of austenitic high nitrogen chromium-manganese steel

    International Nuclear Information System (INIS)

    Balitskii, A.I.; Pokhmurskii, V.I.; Diener, M.; Magdowski, R.; Speidel, M.O.

    1999-01-01

    The anisotropy of mechanical properties, in particular of the fracture toughness measured by the J-integral method, is demonstrated for industrially manufactured high strength retaining rings made from the nitrogen alloyed steel 18Mn18Cr. The RT-orientation turns out to be the weakest with regard to the resistance of the material to stable crack growth. The fracture toughness results are compared with results from calorimetric measurements. Here, also an orientation dependence of the heat irradiation energy is observed, clearly showing the same ranking of specimen orientation as the toughness data suggest. (orig.)

  7. Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Li, Guolu; Zhao, Lei

    2017-01-01

    This paper investigated on microstructure and impact toughness of different zones in duplex stainless steel welding joint. High-temperature heat-affected zone (HTHAZ) contained coarse ferrite grains and secondary precipitates such as secondary austenite, Cr2N, and sigma. Intergranular secondary austenite was prone to precipitation in low-temperature heat-affected zone (LTHAZ). Both in weld metal (WM) and in HTHAZ, the austenite consisted of different primary and secondary austenite. The ferrite grains in base metal (BM) presented typical rolling texture, while the austenite grains showed random orientation. Both in the HTHAZ and in the LTHAZ, the ferrite grains maintained same texture as the ferrite in the BM. The secondary austenite had higher Ni but lower Cr and Mo than the primary austenite. Furthermore, the WM exhibited the highest toughness because of sufficient ductile austenite and unapparent ferrite texture. The HTHAZ had the lowest toughness because of insufficient austenite formation in addition to brittle sigma and Cr2N precipitation. The LTHAZ toughness was higher than the BM due to secondary austenite precipitation. In addition, the WM fracture was dominated by the dimple, while the cleavage was main fracture mode of the HTHAZ. Both BM and LTHAZ exhibited a mixed fracture mode of the dimple and quasi-cleavage.

  8. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  9. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  10. Influence of crack depth on the fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bryson, J.W.

    1991-01-01

    The Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. Recently, it has been shown that, in notched beam testing, shallow cracks tend to exhibit an elevated toughness as a result of a loss of constraint at the crack tip. The loss of constraint takes place when interaction occurs between the elastic-plastic crack-tip stress field and the specimen surface nearest the crack tip. An increased shallow-crack fracture toughness is of interest to the nuclear industry because probabilistic fracture-mechanics evaluations show that shallow flaws play a dominant role in the probability of vessel failure during postulated pressurized-thermal-shock (PTS) events. Tests have been performed on beam specimens loaded in 3-point bending using unirradiated reactor pressure vessel material (A533 B). Testing has been conducted using specimens with a constant beam depth (W = 94 mm) and within the lower transition region of the toughness curve for A533 B. Test results indicate a significantly higher fracture toughness associated with the shallow flaw specimens compared to the fracture toughness determined using deep-crack (a/W = 0.5) specimens. Test data also show little influence of thickness on the fracture toughness for the current test temperature (-60 degree C). 21 refs., 5 figs., 3 tabs

  11. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  12. The effect of specimen and flaw dimensions on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M.J. [VTT Manufacturing Technology, Espoo (Finland)

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account. 64 refs. The thesis includes also four previous publications by author.

  13. Structure-Property Relationships in Tough, Superabsorbent Thermoplastic Elastomers for Hemorrhage Control

    Science.gov (United States)

    Beyer, Frederick; Bain, Erich; Long, Tyler; Mrozek, Randy; Savage, Alice; Martin, Halie; Dadmun, Mark; Lenhart, Joseph

    Between 2001 and 2009, uncontrolled hemorrhaging from major trauma accounted for the deaths of roughly 80% of wounded soldiers with potentially survivable injuries. Modern hemostatic materials are limited in their ability to deliver therapeutic agents, causing tissue damage themselves, or being difficult to remove intact. The goal of this study is to create a mechanically robust polymer that takes up as much as 1000 wt% water in seconds while maintaining sufficient toughness to be removed intact from the wound intact. A thermoplastic elastomer scaffold in which physical crosslinks provide mechanical toughness might provide an appropriate combination of fast swelling and excellent toughness if the matrix material can be engineered to be strongly hydrophilic and swell rapidly. In this work, a commercial SBS triblock copolymer has been modified with poly(acrylic acid) side chains, resulting in materials that are superabsorbent but retain good mechanical properties when saturated. Although SAXS experiments failed to show any significant changes in morphology, even with 800 wt% water uptake, preliminary SANS experiments using selectively deuterated materials and swelling with D2O show significant changes in morphology. Our most recent findings will be presented.

  14. Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk.

    Science.gov (United States)

    Anton, Arthur Markus; Heidebrecht, Aniela; Mahmood, Nasir; Beiner, Mario; Scheibel, Thomas; Kremer, Friedrich

    2017-12-11

    Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.

  15. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  16. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  17. Evaluation of fracture toughness for metal/ceramics composite materials by means of miniaturized specimen technique

    International Nuclear Information System (INIS)

    Saito, Masahiro; Takahashi, Hideaki; Jeong, Hee-Don; Kawasaki, Akira; Watanabe, Ryuzo

    1991-01-01

    In order to evaluate fracture strength for Y 2 O 3 -ZrO 2 , 3 mol% Y 2 O 3 -ZrO 2 (PSZ)/SUS 304 composite materials, Macor as a machinable ceramics and comercially available ceramics (SiC, Si 3 N 4 , PSZ, Al 2 O 3 ), fracture toughness tests were carried out by use of RCT or bending specimens. On the other hand, the fracture strength of these materials was evaluated and inspected the correlation between fracture toughness and fracture stress of small punch (SP) or modified small punch (MSP) test data to predict the fracture toughness value by using miniaturized specimens. Characteristic of the MSP testing method is the ability to evaluate elastic modulus (Young's modulus), fracture strength, yield strength, fracture strain, and fracture energy, etc., with high accuracy and good reproducibility for brittle materials. For a series of metal/ ceramics composites which from ductile to brittle, this paper clarified clear the applicable range for SP and MSP testing methods, which suggested that the simultaneous use of SP and MSP test methods can evaluate the fracture strength of metal/ ceramics composites. (author)

  18. Role of unsaturated soil in a waste containment system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, P.C.; Tay, J.H. [Nanyang Technological Univ. (Singapore)

    1996-12-31

    The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days for the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.

  19. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  20. Fracture toughness evaluation in the transition region of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Onizawa, K.; Suzuki, M.

    1995-01-01

    The fracture toughness (K jc and Jc) values at the cleavage fracture initiation in the transition region of a RPV steel were investigated using mainly precracked Charpy specimens. A conventional statistical approach and a fractographic study were applied to analyze the scatter of the fracture toughness values from precracked Charpy specimens. The material used was an ASTM A533B class 1 steel, which was designated as an IAEA correlation monitor material, JRQ. A lower bound transition curve of the fracture toughness for unirradiated condition was determined by the 5% confidence limit from the Weibull and fractographic analyses. The lower bound transition curve after irradiation was evaluated based on the statistics of unirradiated specimens. The results indicated that the shift of the fracture toughness transition curbe were somewhat larger than the Charpy 41J transition temperature. The parameters to determine the lower bound toughness such as the Weibull slope and the amount of ductile crack growth are discussed. The results are also compared with a model based on weakest link theory. (author). 12 refs, 12 figs, 5 tabs

  1. Effect of prestrain on ductility and toughness in high strength line pipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Y.; Besson, J. [Paristech, Evry (France). Centre des Materiaux, Mines Paris; Madi, Y. [Ecole d' Ingenieurs, Sceaux (France). Ermess EPF; Paristech, Evry (France). Centre des Materiaux, Mines Paris

    2009-07-01

    The anisotropic plasticity, ductility and toughness of an X100 steel pipeline was investigated both before and after a series of prestraining experiments. The aim of the study was to determine the effect of prestraining on ductility and toughness in high strength pipe steels. Results of the study showed that primary void growth and coalescence was dependent on initial plastic anisotropy and not dependent on tensile prestrain. Secondary void nucleation and growth was not influenced by either the initial plastic anisotropy or by prestraining. Scanning electron microscopy (SEM) studies showed that the main damage mechanism was the void growth of primary dimples. Dimples in the prestrained materials were larger than those observed in materials that had not been prestrained. However, the effect on prestrain on dimple size was limited. Results showed both plastic and rupture anisotropies. It was concluded that prestraining induces a decrease in ductility, but has a significant impact on toughness. 4 refs., 2 tabs., 12 figs.

  2. Formation of tough composite joints

    International Nuclear Information System (INIS)

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si 3 N 4 -coated fibers had a 0/90 degree architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses

  3. Development of the present reference fracture toughness curves in the ASME nuclear code

    International Nuclear Information System (INIS)

    Yukawa, S.; Merkle, J.G.

    1984-01-01

    Since the early 1970's, the Sections of the ASME Boiler and Pressure Vessel Code concerned with nuclear power plant components have included fracture mechanics procedures to analyze the effects of postulated or detected flaws. These procedures are contained in Appendix G of Section III and in Appendix A of Section XI of the Code. Specifically, Appendix G procedures are concerned with designing for protection against nonductile failures while Appendix A procedures are for evaluating the disposition of flaws detected during in-service inspection. An important element of the procedures is the inclusion of recommended material fracture toughness values. This paper describes the origin and development of these recommended fracture toughness values. Since these values appear in the Code in a graphical format, the values are often referred to as reference toughness curves. In the context of Code terminology, reference toughness means the allowable values of fracture toughness for the materials of concern that can be used in conjunction with the analytical procedures of Appendices G and A. The paper discusses the basis and rationale underlying the original formulation of these reference toughness curves and the modifications incorporated into them in the course of their adoption into the Code

  4. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  5. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  6. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  7. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    International Nuclear Information System (INIS)

    Dorati, R.; Colonna, C.; Tomasi, C.; Genta, I.; Bruni, G.; Conti, B.

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  8. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, R., E-mail: rossella.dorati@unipv.it [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Colonna, C. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Tomasi, C. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Genta, I. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Bruni, G. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Conti, B. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  9. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Long, Shao-lei [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yi-long, E-mail: liangyilong@126.com [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Jiang, Yun [Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yu; Yang, Ming; Yi, Yan-liang [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China)

    2016-10-31

    The martensite multi-level microstructures of 20CrNi2Mo steel, which were quenched at the different temperatures of 900–1200 °C and tempered at 200 °C, were investigated by optical microscope (OM), scanning electron microscopy (SEM), electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM), and the relationship between the microstructures and properties of strength and toughness was discussed by the classic formula of Hall–Petch. The results show that the size of prior austenite grain (d{sub r}), martensite packet (d{sub p}) and block (d{sub b}) increase with increasing of the quenching temperature, while the martensite lath (d{sub l}) size is opposite. On another hand, the confusion degree of the martensite packets changes from disorder to order. The boundaries of prior austenite grain, packet, block and the martensite lath are high angle boundaries (HBs) and low angle boundaries (LBs), respectively, and the ratio of the low angle boundaries increase with the quenching temperature by calculating to the multi-level microstructure size with the mathematical model established by myself. In addition, the relationship between the packet/block and strength follows the classical formula of Hall–Petch, and the size of d{sub b} is far lower than the size of d{sub p}, d{sub b} is the effective control unit of the strength. Meanwhile, d{sub l} is the effective control unit of toughness because it strongly impacts the crack initiation and propagation and follows also the Hall-Petch with toughness in 20CrNi2Mo steel.

  10. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  11. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-01-01

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as ''physical-property stratigraphy'' as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs

  12. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  13. Stainless steel submerged arc weld fusion line toughness

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations

  14. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  15. Tough by name, tough by nature.

    Science.gov (United States)

    Baillie, Jonathan

    2015-04-01

    Few beds, one would imagine, could withstand three-quarters of a ton landing on them, but this was the challenge successfully met by a box bed from a furniture manufacturer for challenging behaviour environments, Tough Furniture, when, to reassure a customer that the bed could accommodate 30-stone patients, 13 of the company's staff jumped repeatedly on it to ensure that it would survive intact in a real-world setting. Such testing may seem extreme, but is vital, since much of the company's furniture is destined for environments where patients will abuse, and indeed attempt to destroy, components. As MD David Vesty explained to HEJ editor, Jonathan Baillie, when he visited the company's Shropshire headquarters, it is through manufacturing premium quality cabinet furniture that is both attractive and distinctly non-institutional, but will equally withstand the harshest use, that the company has ensured that its products can live up to the brand name.

  16. Development of a statistically-based lower bound fracture toughness curve (Ksub(IR) curve)

    International Nuclear Information System (INIS)

    Wullaert, R.A.; Server, W.L.; Oldfield, W.; Stahlkopf, K.E.

    1977-01-01

    A program of initiation fracture toughness measurements on fifty heats of nuclear pressure vessel production materials (including weldments) was used to develop a methodology for establishing a revised reference toughness curve. The new methodology was statistically developed and provides a predefined confidence limit (or tolerance limit) for fracture toughness based upon many heats of a particular type of material. Overall reference curves were developed for seven specific materials using large specimen static and dynamic fracture toughness results. The heat-to-heat variation was removed by normalizing both the fracture toughness and temperature data with the precracked Charpy tanh curve coefficients for each particular heat. The variance and distribution about the curve were determined, and lower bounds of predetermined statistical significance were drawn based upon a Pearson distribution in the lower shelf region (since the data were skewed to high values) and a t-distribution in the transition temperature region (since the data were normally distributed)

  17. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan; Weihermü ller, Lutz; Scharnagl, Benedikt; Kowalsky, Michael B.; Bechtold, Michel; Hubbard, Susan S.; Vereecken, Harry; Lambot, Sé bastien

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model

  18. Fracture toughness in nuclear waste glasses and ceramics: environmental and radiation effects

    International Nuclear Information System (INIS)

    Weber, W.J.; Matzke, H.J.

    1986-03-01

    The effects of atmospheric moisture and radiation damage on fracture properties of nuclear waste glasses and ceramics was investigated by indentation techniques. In nuclear waste glasses, atmospheric moisture has no measurable effect on hardness but decreases the fracture toughness; radiation damage, on the other hand, decreased the hardness and increased the fracture toughness. In nuclear ceramics, self-radiation damage from alpha decay decreased the hardness and elastic modules; the fracture toughness increased with dose to a broad maximum and then decreased slightly with further increases in dose

  19. Fracture toughness determination in steam generator tubes

    International Nuclear Information System (INIS)

    Bergant M; Yawny, A; Perez Ipina, J

    2012-01-01

    The assessment of the structural integrity of steam generator tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for steam generator tubes with circumferential through wall cracks. The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5 min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required. Finally, a procedure for the structural integrity analysis of steam generator tubes with crack-like defects, based on a FAD diagram (Failure Assessment Diagram), is briefly described (author)

  20. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  1. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  2. (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions.

    Science.gov (United States)

    Baumgarten, W; Fleige, H; Peth, S; Horn, R

    2013-07-01

    The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.

  3. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  4. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.

    1997-01-01

    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the 87 Rb parent is billions of years, the 87 Sr/ 86 Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water

  5. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  6. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Feyzan, E-mail: fersoy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium); Gavrilov, Serguei [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Verbeken, Kim [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium)

    2016-04-15

    Heavy liquid metals such as lead bismuth eutectic (LBE) are chosen as the coolant to innovative Generation IV (Gen IV) reactors where ferritic/martensitic T91 steel is a candidate material for high temperature applications. It is known that LBE has a degrading effect on the mechanical properties of this steel. This degrading effect, which is known as liquid metal embrittlement (LME), has been screened by several tests such as tensile and small punch tests, and was most severe in the temperature range from 300 °C to 425 °C. To meet the design needs, mechanical properties such as fracture toughness should be addressed by corresponding tests. For this reason liquid-metal embrittlement of T91 steel was investigated by fracture toughness tests at 350 °C. Tests were conducted in Ar-5%H{sub 2} and LBE under the same experimental conditions Tests in Ar-5%H{sub 2} were used as reference. The basic procedure in the ASTM E 1820 standard was followed to perform tests and the normalization data reduction (NDR) method was used for the analysis. Comparison of the tests demonstrated that the elastic–plastic fracture toughness (J{sub 1C}) of the material was reduced by a factor in LBE and the fracture mode changed from ductile to quasi-cleavage. It was also shown that the pre-cracking environment played an important role in observing LME of the material since it impacts the contact conditions between LBE and steel at the crack tip. It was demonstrated that when specimens were pre-cracked in air and tested in LBE, wetting of the crack surface by LBE could not be achieved. When specimens were pre-cracked in LBE though, they showed a significant reduction in fracture toughness.

  7. On the Relationship of Hemingway's Tough Guys and the China Dream

    Institute of Scientific and Technical Information of China (English)

    Qin Chenghua

    2017-01-01

    Tough guys are a series of literary characters in Hemingway's works.The China Dream is a dream that calls on all Chinese people to be hard-working and aims at full development of the self and the nation.To realize the China Dream,hard work,development and environment protection are essential factors.Hemingway's tough guys are famous for their dedication to work and strong willpower in overcoming difficulties and hardships.Some of their reflections are also pertaining to environmental issues.All of these are good references in realizing the China Dream.Thus,to re-read Hemingway's stories about tough guys nowadays is important for Chinese reading pubhc.

  8. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  9. Conceptual hydrologic model of flow in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1984-01-01

    The purpose of this report is to propose a conceptual hydrologic model that reasonably describes the flow of fluids through the unsaturated zone at Yucca Mountain, for use as a basis for preliminary site-performance assessment and as a guide to further investigations. Scott and others (1983) presented an initial conceptual hydrogeologic model for the unsaturated zone at Yucca Mountain, based on detailed geologic, but very limited hydrologic, information. In this report, some of their concepts are examined and either supported or modified, and new concepts are developed. The model describes the manner in which flow probably occurs at Yucca Mountain and is based on: (1) current understanding of the hydrogeologic framework; (2) application of the principles of unsaturated flow; and (3) interpretation of some preliminary data from ongoing field and laboratory investigations. Included are extensive geologic information but relatively few hydrologic data that currently exist from the unsaturated zone in the Yucca Mountain area. Many uncertainties remain to be resolved concerning hydrologic conditions and processes. As a result, most of the concepts presented are intentionally descriptive and conjectural, with little quantitative basis provided. However, for the sake of directness and simplicity of expression, the model is presented as if it were a true expression of the facts. The authors recognize, and the reader should be aware, that the proposed model probably is not the only reasonable description that could be made at this point, and it certainly is subject to revision and quantification as more data become available. Although various alternative models probably could be developed, the one described in this report seems to fit current understanding of the unsaturated flow through a section of layered, fractured-rock formations with contrasting hydrologic properties, such as occurs at Yucca Mountain. 41 refs., 14 figs., 1 tab

  10. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    International Nuclear Information System (INIS)

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables

  11. Toughness and other mechanical properties of the duplex stainless steel 2205

    International Nuclear Information System (INIS)

    Sieurin, H.; Sandstroem, R.

    2003-01-01

    The use and range of potential applications of duplex stainless steel continuously increase. An overview of the mechanical properties of duplex stainless steel 2205 is presented with focus on toughness properties. Impact and fracture toughness as well as strength results from the European research project, EcoPress, are presented. (orig.)

  12. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Srivatsa, Kulkarni, E-mail: srivatsa.kulkarni@kcssl.com; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-11-20

    Improvement of the general mechanical properties and in particular sub-zero impact toughness in a 0.2%C-13%Cr martensitic stainless steel has been explored by varying the hot deformation and heat treatment conditions. The deformation conditions include hot rolling an ingot in one case and cogging the ingot to a semis followed by hot rolling in another case. The bars made from both routes were subjected to a single hardening heat treatment at 980 °C and 1040 °C oil quenched and a double hardening heat treatment at 1040 °C followed by 980 °C oil quenched. The hardened steels were subjected to a standard two stage tempering at 710 °C followed by 680 °C. The impact toughness was found to be doubled in the cogged and rolled steel in double hardened condition. Other processing conditions show varying impact toughness levels. The toughness observed was correlated to the grain size and the carbide distribution in the matrix and the fractography features.

  13. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    OpenAIRE

    Cooper, Adam J.; Sherry, Andrew

    2018-01-01

    Herein, we have performed J-Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP’d) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (− 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J0.2BL, when compared to equivalently graded forged 304L, which is relatively constant...

  14. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  15. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  16. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  17. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  18. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Preliminary results

    International Nuclear Information System (INIS)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.

    1993-01-01

    Candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at temperatures of either 60 or 250 degrees C. Preliminary results have been obtained for several of these materials irradiated at 60 degrees C. The results show that irradiation at this temperature reduces the fracture toughness of austenitic stainless steels, but the toughness remains quite high. The unloading compliance technique developed for the subsize disk compact specimens works quite well, particularly for materials with lower toughness. Specimens of materials with very high toughness deform excessively, and this results in experimental difficulties

  19. Four Takes on Tough Times

    Science.gov (United States)

    Rebell, Michael A.; Odden, Allan; Rolle, Anthony; Guthrie, James W.

    2012-01-01

    Educational Leadership talks with four experts in the fields of education policy and finance about how schools can weather the current financial crisis. Michael A. Rebell focuses on the recession and students' rights; Allan Odden suggests five steps schools can take to improve in tough times; Anthony Rolle describes the tension between equity and…

  20. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  1. Effect of Control Mode and Test Rate on the Measured Fracture Toughness of Advanced Ceramics

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2018-01-01

    The effects of control mode and test rate on the measured fracture toughness of ceramics were evaluated by using chevron-notched flexure specimens in accordance with ASTM C1421. The use of stroke control gave consistent results with about 2% (statistically insignificant) variation in measured fracture toughness for a very wide range of rates (0.005 to 0.5 mm/min). Use of strain or crack mouth opening displacement (CMOD) control gave approx. 5% (statistically significant) variation over a very wide range of rates (1 to 80 µm/m/s), with the measurements being a function of rate. However, the rate effect was eliminated by use of dry nitrogen, implying a stress corrosion effect rather than a stability effect. With the use of a nitrogen environment during strain controlled tests, fracture toughness values were within about 1% over a wide range of rates (1 to 80 micons/m/s). CMOD or strain control did allow stable crack extension well past maximum force, and thus is preferred for energy calculations. The effort is being used to confirm recommendations in ASTM Test Method C1421 on fracture toughness measurement.

  2. Method of polymerizing ethylenically unsaturated materials by irradiation and composition for use therein

    International Nuclear Information System (INIS)

    Nemcek, J.; Heap, N.

    1976-01-01

    This patent concerns photopolymerizable compositions consisting essentially of at least one polymerizable ethylenically unsaturated material and a photosensitive catalyst comprising (a) from 0.5 to 5 percent based on the ethylenically unsaturated material of at least one photosensitizer having the structure Ph(CO)C 2 A(CO)Ph, where Ph is phenyl, halogen-substituted phenyl, phenylene or halogen-substituted phenylene and A is a cyclic hydrocarbyl group, a halogen-substituted cyclic hydrocarbyl group, or a group of the formula X(NR)COCONRY, where X and Y each is hydrogen, a hydrocarbyl, or a halogen-substituted hydrocarbyl group, and (b) from 1 to 5 percent by weight based on the ethylenically unsaturated material of a reducing agent capable of reducing the photosensitizer when the photosensitizer is in an excited state. Also described is a process of preparing polymeric materials by irradiating the foregoing polymerizable composition at a wavelength capable of exciting the photosensitizer to an excited state

  3. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures

    International Nuclear Information System (INIS)

    Ganesh, P.; Kaul, R.; Paul, C.P.; Tiwari, Pragya; Rai, S.K.; Prasad, R.C.; Kukreja, L.M.

    2010-01-01

    Research highlights: → Mechanical test results of Laser rapid manufactured (LRM) Inconel 625 are reported. → 12 and 25 mm thick CT specimens of LRM Inconel 625 showed similar fatigue crack growth. → Stage II crack growth behavior is observed in the investigated ΔK range. → Fracture toughness testing by J-integral method yielded J 1c of about 200-250 kJ/m 2 . - Abstract: Fatigue crack growth and fracture toughness characteristics of laser rapid manufactured (LRMed) Inconel 625 compact tension specimens of thickness 12 and 25 mm were investigated. Fatigue crack propagation in all the specimens investigated in the stress intensity range (ΔK) of 14-38 MPa√m, exhibited stage II crack growth in Paris' regime with nearly same slopes of crack growth per cycle versus ΔK plot. Fatigue crack growth rates in the LRMed specimens of present study were found to be lower than the reported values for wrought Inconel 625 in the ΔK range of 14-24 MPa√m and above this range they tended to coincide. X-ray diffraction patterns of the fractured surfaces revealed that the crack propagated along the growth direction of the specimens which was predominantly along the (1 1 1) plane. The fracture toughness values (J 0.2 ) for LRMed Inconel 625 specimens were found to be in the range of about 200-255 kJ/m 2 . The LRMed specimens exhibited stable crack growth during the J-integral test.

  4. Synthesis of carba sugars from aldonolactones. Part IV. Stereospecific synthesis of carbaheptopyranoses by radical-induced carbocyclisation of 2,3-unsaturated octonolactones

    DEFF Research Database (Denmark)

    Wagner, Sussi Holstein; Lundt, Inge

    2001-01-01

    Three new carbaheptopyranoses, 6-deoxy-5a-carba-beta -L-gulo- (8), 5a-carba-D-glycero-beta -D-ido- (22) and 5a-carba-L-glycero-alpha -L-galacto-heptopyranose (25), have been prepared from 8-bromo-8-deoxy-2,3-unsaturated octono-1,4-lactones with L-galacto-, D-gluco- and D-manno-configuration, resp...

  5. Fracture toughness of neutron irradiated solid and powder HIP 316L(N). ITER Task 214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van den Broek, F.P.; Jong, M.; Van Osch, E.V.

    1998-04-01

    The fracture toughness properties of unirradiated and neutron irradiated type 316L(N) stainless steel plate (European Reference Heat ERHII), conventional 316L(N) solid HIP joints (heat PM-130), and 316L(N)-1G powder HIP material have been measured. Compact tension specimens with a thickness of 12 and 5 mm were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the fusion reactor's first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP (or HIP-bonded) CT-specimens were irradiated in two separate experiments: SIWAS-6 with 1.3 to 2.3 dpa (1.7 dpa av.) at 353 K, and CHARIOT-3 with 2.7 to 3.1 dpa (2.9 dpa av.) at 600 K. The plate material and powder HIP CT-specimens were irradiated in one experiment only, SIWAS-6. The helium content is up to 20 appm for the 2.9 dpa (av.) dose level. Testing temperatures of 353K and 573K have been used for the fracture toughness experiments. The report contains the experimental conditions and summarises the results, which are given in terms of J-resistance curve fits. The main conclusions are that all three materials have very high toughness in the unirradiated state with little difference between them; the solid HIP has the highest toughness, the powder HIP lowest. The toughness of all three materials is reduced significantly by irradiation, the reduction is the least for the plate material and the highest for the powder HIP material. However, many, but not all, of the solid HIP CT specimens showed debonding of the joint during testing. The machined notch of the CT specimens was not exactly on the joint interface, which could lead to unjustified interpretation of the measured values as being the toughness of the joint, the toughness of the joint being probably much lower. The reduction by irradiation of the fracture toughness of the powder HIP material is clearly larger than for plate material, which is confirmed by the observed early initiation

  6. Kinetic study of the degradation of C5 and C6 unsaturated aldehydes and alcohols by ozone

    Science.gov (United States)

    Kalalian, Carmen; Roth, Estelle; Chakir, Abdelkhaleq

    2017-04-01

    Emissions of biogenic volatile organic compounds (VOCs) are higher than those from anthropogenic sources. They are therefore likely to have a great influence on atmospheric chemistry both locally and regionally, through their impact on the HOx balance (HOx = HO + HO2), ozone production and ability to form secondary organic aerosols (SOA). Among the volatile organic compounds of biogenic origin are the family of C5 and C6 unsaturated aldehydes and alcohols. Few information exist regarding the fate of these compounds in the atmosphere especially there reaction with ozone. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans-2-pentenal, trans-2-hexenal and 2-methyl-2-pentenal) and three unsaturated alcohols (1-penten-3-ol, cis-2-penten-1-ol and trans-3-hexen-1-ol) with ozone O3 in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333 and 353 K) and at atmospheric pressure. The rate constants of the ozonolysis reaction of the unsaturated aldehydes and the unsaturated alcohols studied were determined and the following Arrhenius expression was obtained (cm3 molecule -1 s -1): k (Trans -2-pentenal)= (3.83 ± 3.71) x 10-16 exp (- (1706 ± 295) / T) k (Trans-2-hexenal)= (1.43 ± 0.67) x 10-16 exp (- (1369 ± 141) / T) k(2-Methyl-2-pentenal)= (3.62± 0.22) x 10-18 exp (- (121 ± 20) / T) k(1-penten-3-ol) = (1.42 ± 1.24) x 10-16 exp (- (642 ± 250) / T) k(Cis-2-penten-1-ol)= (3.14 ± 0.45) x 10-15 exp (- (1045 ± 40) / T) k(Trans-3-hexen-1-ol)= (6.38 ± 1.75) x 10-16 exp (- (686 ± 89) / T) The obtained data will be discussed in terms of structure-reactivity relationship and compared with the reported reactivity with OH radicals. The atmospheric implications derived from this study are discussed as well.

  7. alpha,beta-unsaturated 2-acyl imidazoles as a practical class of dienophiles for the DNA-Based catalytic asymmetric diels-alder reaction in water

    NARCIS (Netherlands)

    Boersma, A.J.; Feringa, B.L.; Roelfes, G.

    2007-01-01

    alpha,beta-Unsaturated 2-acyl imidazoles are a novel and practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in water. The Diels-Alder products are obtained with very high diastereoselectivities and enantioselectivities in the range of 83-98%. The catalytic

  8. Influence of different surface treatments on the fracture toughness of a commercial ZTA dental ceramic

    Directory of Open Access Journals (Sweden)

    Flavio Teixeira da Silva

    2007-03-01

    Full Text Available The objective of this study was to investigate how mechanical surface treatments performed for removal of excess of molten glass, influence the fracture toughness of a dental zirconia toughened alumina (In-Ceram® Zirconia. Infiltrated ZTA disks were submitted to three different surface treatments (grinding, sandblasting and grinding + sandblasting + annealing. Fracture toughness was accessed through indentation strength test (IS. X ray diffraction was used to investigate the metastability of tetragonal zirconia particles under all treatments proposed. Kruskall-Wallis non-parametrical test and Weibull statistics were used to analyze the results. Grinding (group 1 introduced defects which decreased the fracture toughness and reliability, presenting the lowest K IC. On the other hand, grinding followed by sandblasting and annealing (group 3 presented the highest K IC. Sandblasting (group 2 presented the highest reliability but lower K IC compared to group 3.

  9. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    Science.gov (United States)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  10. Crack arrest toughness measurements with A533B steel

    International Nuclear Information System (INIS)

    Salonen, Seppo.

    1979-11-01

    This work covers crack arrest toughness measurements on A533B steel done at the Technical Research Centre of Finland. These measurements are one part of a multinational effort, involving 30 laboratories. The aim of the cooperative test program is to examine two test procedures for measuring the crack arrest toughness, to give information about their reproducibility, and to identify the factors affecting the interpretation. The principles given for the testing were easy to apply in general and the results were satisfactory. Some factors in the test runs and in the specimen's behaviour are indicated which can cause error in the results or make implementation of the test more difficult. By comparing the results from our laboratory with average values from the test program a good agreement can be seen. Crack arrest toughness values derived from the compared procedures with a static analysis agree closely, but values calculated using a dynamic analysis differ considerably. (author)

  11. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  12. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  13. Air-tough: A fully 3-dimensional linking of atmosphere with soil using eddy diffusivity concept and V-TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Montazer, P. [Multimedia Environmental Technology, Inc., Newport Beach, CA (United States)

    1995-03-01

    In arid climates, evapotranspiration is a strongly-coupled thermodynamic process that is controlled by the interaction of the atmospheric boundary layer and the upper soil surface. Simulation of this process requires a fully-coupled thermodynamic multi-phase fluid-flow and energy-transport code. Such a code was developed in a previous investigation using V-TOUGH. The resulting efficient computer code, A-TOUGH, simulates the effect of dynamic atmospheric fluctuations on vapor movement between the soil and the atmosphere and the resulting moisture movement in the soil. However, the coupling between the atmosphere and soil employed eddy diffusivity which was only a function of time and not a function of space. In the present study the code is extended to allow spatial as well as temporal variation of eddy diffusivity.

  14. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  15. Impact of recharge through residual oil upon sampling of underlying ground water

    International Nuclear Information System (INIS)

    Wise, W.R.; Chang, Chichung; Klopp, R.A.; Bedient, P.B.

    1991-01-01

    At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observed the effects of the recharge process. Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present

  16. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    Science.gov (United States)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m

  17. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires

    International Nuclear Information System (INIS)

    Zhang, Tianli; Li, Zhuoxin; Kou, Sindo; Jing, Hongyang; Li, Guodong; Li, Hong; Jin Kim, Hee

    2015-01-01

    The effect of inclusions on the microstructure and toughness of the deposited metals of self-shielded flux cored wires was investigated by optical microscopy, electron microscopy and mechanical testing. The deposited metals of three different wires showed different levels of low temperature impact toughness at −40 °C mainly because of differences in the properties of inclusions. The inclusions formed in the deposited metals as a result of deoxidation caused by the addition of extra Al–Mg alloy and ferromanganese to the flux. The inclusions, spherical in shape, were mixtures of Al 2 O 3 and MgO. Inclusions predominantly Al 2 O 3 and 0.3–0.8 μm in diameter were effective for nucleation of acicular ferrite. However, inclusions predominantly MgO were promoted by increasing Mg in the flux and were more effective than Al 2 O 3 inclusions of the same size. These findings suggest that the control of inclusions can be an effective way to improve the impact toughness of the deposited metal

  18. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  19. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  20. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-03-01

    Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.

  1. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  2. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  3. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    Science.gov (United States)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  4. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  5. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    Science.gov (United States)

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  6. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  7. Cleanup Verification Package for the 618-2 Burial Ground

    International Nuclear Information System (INIS)

    Thompson, W.S.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities

  8. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  9. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  10. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  11. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  12. One-Pot Synthesis of 2-Acylindole-3-acetylketones via Domino Aza-alkylation/Michael Reaction Using o-Aminophenyl α,β-Unsaturated Ketones Followed by Desulfonative Dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Reum; Yu, Mi Rim; Sim, Jong Tack; Kim, Sung Gon [Kyonggi Univ., Suwon (Korea, Republic of)

    2016-09-15

    The development of novel and practical synthetic methods with a minimum number of operations for the construction of bioactive structurally complex compounds is a major challenge in synthetic organic chemistry. Recently, we reported an efficient method for the stereoselective synthesis of 2,3-disubstituted indoline derivatives; cis-2,3-disubstituted indolines were obtained by the aza-alkylation/Michael cascade reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones in good yields and with excellent diastereoselectivities (Scheme 2, Eq. (1)). Among the available synthetic strategies, domino or cascade reactions have received wide acceptance as highly efficient and powerful methods for the synthesis of molecules with a high structural complexity. An efficient synthesis of 2,3-disubstituted indoles was developed by the domino aza-alkylation/intramolecular Michael reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones, followed by desulfonative dehydrogenation with DBU. The reaction afforded structurally diverse and highly functionalized 2,3-disubstituted indoles in moderate to excellent yields (up to 99%). The synthesis of 2,3-disubstituted indoles without desulfonation through DDQ-induced oxidative dehydrogenation was also achieved.

  13. Lithological Effects on Evaporation and Direct Infiltration Through the Unsaturated Zone in Damascus Oasis (Syria)

    International Nuclear Information System (INIS)

    Abou zakhem, B.

    2004-01-01

    Soil water movement is directly affected by the lithology and texture of soil profile. The objective of this study is to determine water movement mechanism through the unsaturated zone, by estimating the direct infiltration rate and evaporation process in Damascus Oasis, using isotope techniques. Two soil profiles were drilled using a hand-auger. Soil samples were subjected to granulometry, mineralogy, chemical and isotopic analysis. Isotopic measurements indicate that the evaporation front is located at shallow depth between 0 and 2 m. Variations in isotopic content indicate to the alternation of wet and dry periods corresponding to infiltration and evaporation processes respectively. Results show considerable difference in isotopic content between the unsaturated zone and the groundwater, which is mainly attributed to limited recharge of the aquifer through the unsaturated. Whereas the indirect groundwater recharge is considered to be more predominant. Chloride concentration correspond to stable isotopes in the unsaturated zone, it increases proportionally with the evaporation rate. Using chemical balance of Chloride, it was possible to estimate the effective recharge average rate which is ranging between 1.8 mm/y and 0.45 mm/y. The calculated mean evaporation rate according to Barnes and Allison model is 18.1 mm/y at water table level of 3 m depth. This rate decreases to 2.4 mm/y at 6 m depth. (author)

  14. Evaluation of toughness degradation by small punch (SP) tests for neutron irradiated structural steels

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Hamaguchi, Yoshikazu; Kimura, Akihiko; Eto, Motokuni; Suzuki, Masahide; Nakajima, Nobuya.

    1992-01-01

    The small punch (SP) test as one of the useful small specimen testing technique (SSTT) has been developed to evaluate the fracture toughness, ductile-brittle transition temperature (DBTT) and tensile properties for neutron irradiated structural materials. The SP tests using the miniaturized specimens of φ3 mm TEM disk and 10 mm 2 coupon were performed for six kinds of ferritic steels of F-82, F-82H, HT-9, JFMS, 2.25-1Mo and SQV2A. It was shown that the temperature dependence of SP fracture energies with scatter in miniaturized testing can give reliable information on the DBTT by use of the statistical analysis based on the Weibull distribution. A good correlation between the DBTT of the SP tests and that of the standard CVN test has been obtained for the various nuclear ferritic steels. The SP test was performed for cryogenic austenitic steels as a way of evaluating elastic-plastic fracture toughness, J IC , on the basis of a universal empirical relationship between J IC and SP equivalent fracture strain, ε-bar qf . The SP testing using the neutron irradiated specimens of 2.25Cr-1Mo, F-82, F-82H and HT-9 steels was successfully applied and presented the neutron radiation induced changes on the DBTT, fracture toughness and tensile properties. (author)

  15. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  16. Tough nanocomposite ionogel-based actuator exhibits robust performance.

    Science.gov (United States)

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang

    2014-10-20

    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and -10°C) but also realize the goal of grabbing an object by adjusting the applied voltage.

  17. Influence of grain boundaries on the fracture toughness of tungsten alloys

    International Nuclear Information System (INIS)

    Gludovatz, B.; Faleschini, M.; Pippan, R.; Hoffmann, A.

    2007-01-01

    Full text of publication follows: Tungsten and tungsten alloys are possible candidates for future fusion reactors because of their high melting points, high thermal conductivity and their high erosion resistance. Since these materials have a body-centered cubic (bcc) structure, they show a typical change in fracture behaviour from brittle at low temperatures to ductile at high temperatures. For that reason the fracture behaviour of pure tungsten (W), potassium doped tungsten (AKS) and tungsten with 1 wt% La 2 O 3 (WL10) was studied, taking into account the influence of temperature and fabrication condition. Especially AKS has been studied to investigate the longitudinal splitting of the AKS-wires, the crack propagation direction with the lowest fracture toughness. This alloy subjected to intense deformation leads to a material with an elongated grain structure after recrystallization because of the potassium bubbles. Fracture toughness has been investigated by means of 3-point bending (3PB) specimens, double cantilever beam (DCB) specimens and compact tension (CT) specimens. Tests were performed in the range -196 deg. C to more than 1000 deg. C. Though all these materials show an expected increase in fracture toughness with increasing temperature, influences like texture, chemical composition, grain boundary segregation and dislocation density seem to have an extreme influence on the obtained results. These influences can especially be seen in the fracture behaviour and morphology, where two kinds of fracture can occur: on one hand the trans-crystalline and on the other hand the intercrystalline fracture. Therefore techniques like electron backscatter diffraction, auger electron spectroscopy and X-ray line profile analysis were used to determine the parameter influencing fracture toughness. Also new testing techniques have been devised and successfully applied. Additional tests like an 'in-situ EBSD' technique for investigating the formation of dislocations during

  18. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  19. Estimation of fracture toughness of Zr 2.5% Nb pressure tube of Pressurised Heavy Water Reactor using cyclic ball indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.; Rama Rao, A.

    2016-08-15

    Highlights: • Measurement of fracture toughness of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situ Property Measurement System (IProMS) has been designed in house. • Conventional and IProMS tests conducted on pressure tube spool pieces having different mechanical properties. • Correlation has been established between the conventional and IProMS estimated fracture properties. - Abstract: In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes made up of Zr 2.5 wt% Nb alloy. Pressure tubes undergo degradation during its service life due to high pressure, high temperature and radiation environment. Measurement of mechanical properties of degraded pressure tubes is important for assessing their fitness for further operation. Presently as per safety guidelines imposed by the regulatory body, a few pre-decided pressure tubes are removed from the reactor core at regular intervals during the planned reactor shut down to carry out post irradiation examination (PIE) in a laboratory which consumes lots of man-rem and imposes economic penalties. Hence a system is indeed felt necessary which can carry out experimental trials for measurement of mechanical properties of pressure tubes under in situ conditions. The only way to accomplish this important objective is to develop a system based on an in situ measurement technique. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing an indentation test either on the outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ conditions. Considering the importance of such measurements, an In situ Property

  20. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    Science.gov (United States)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.