WorldWideScience

Sample records for total spin moment

  1. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  2. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  3. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  4. Hyperon magnetic moments and total cross sections

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)

  5. Spins, moments and radii of Cd isotopes

    International Nuclear Information System (INIS)

    Hammen, Michael

    2013-01-01

    , the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I=11/2 - isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.

  6. Spins, moments and radii of Cd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hammen, Michael

    2013-10-30

    recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I=11/2{sup -} isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.

  7. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  8. Moments of nucleon spin-dependent generalized parton distributions

    International Nuclear Information System (INIS)

    Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.

    2004-01-01

    We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions

  9. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  10. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  11. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  12. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  13. Hamiltonian action of spinning particle with gravimagnetic moment

    International Nuclear Information System (INIS)

    Deriglazov, Alexei A; Ramírez, W Guzmán

    2016-01-01

    We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)

  14. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P., E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Si, M. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); George, Thomas F. [Office of the Chancellor and Center for Nanoscience, Departments of Chemistry and Biochemistry and Physics and Astronomy, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2015-05-07

    When a laser pulse excites a ferromagnet, its spin undergoes a dramatic change. The initial demagnetization process is very fast. Experimentally, it is found that the demagnetization time is related to the spin moment in the sample. In this study, we employ the first-principles method to directly simulate such a process. We use the fixed spin moment method to change the spin moment in ferromagnetic nickel, and then we employ the Liouville equation to couple the laser pulse to the system. We find that in general the dependence of demagnetization time on the spin moment is nonlinear: It decreases with the spin moment up to a point, after which an increase with the spin moment is observed, followed by a second decrease. To understand this, we employ an extended Heisenberg model, which includes both the exchange interaction and spin-orbit coupling. The model directly links the demagnetization rate to the spin moment itself and demonstrates analytically that the spin relaxes more slowly with a small spin moment. A future experimental test of our predictions is needed.

  15. Torque for electron spin induced by electron permanent electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Senami, Masato, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  16. Erratum to: Quadrupole moments of low-lying baryons with spin ...

    Indian Academy of Sciences (India)

    physics pp. 1083. Erratum to: Quadrupole moments of low-lying baryons with spin-. 1. 2. +. , spin-. 3. 2. +. , and spin-. 3. 2. +. → 1. 2. + transitions. NEETIKA SHARMA and HARLEEN DAHIYA. ∗. Department of Physics, Dr. B.R. Ambedkar National Institute of Technology,. Jalandhar 144 011, India. ∗. Corresponding author.

  17. The total position-spread tensor: Spin partition

    International Nuclear Information System (INIS)

    El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry; Brea, Oriana; Fertitta, Edoardo; Bendazzoli, Gian Luigi

    2015-01-01

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H n (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system

  18. Temperature dependence of spin and orbital magnetic moments of Sm 4f electrons in (Sm, Gd)Al2

    International Nuclear Information System (INIS)

    Qiao, S.; Kimura, A.; Adachi, H.; Iori, K.; Miyamoto, K.; Xie, T.; Namatame, H.; Taniguchi, M.; Tanaka, A.; Muro, T.; Imada, S.; Suga, S.

    2005-01-01

    X-ray magnetic circular dichroism studies were carried out on (Sm, Gd)Al 2 , a ferromagnet without net magnetization at a certain compensation temperature. For Sm 4f electrons, the following understandings were obtained: the magnitude of expectation value of orbital magnetic moment (m L Sm ) is always larger than that of spin one (m S Sm ), so the cancellation of total spin and orbital magnetic moments cannot be achieved only by Sm 4f electrons and the contributions from Gd ions and conduction electrons are important; when the temperature decreases, the magnitude of both m L Sm and m S Sm increases and the gross magnetic moment due to the Sm 4f electrons monotonically deviates from zero. These results tell us that the temperature dependence of magnetic moments related with the electrons other than Sm 4f ones may play important roles in the subtle adjustment of the total spin and orbital magnetic moments to the zero magnetization at the compensation temperature

  19. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    International Nuclear Information System (INIS)

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  20. Electron spin resonance in YbRh2Si2: local-moment, unlike-spin and quasiparticle descriptions.

    Science.gov (United States)

    Huber, D L

    2012-06-06

    Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ≪ 1. The connection with theoretical studies of a two-component model with like spins is also discussed.

  1. The classical equations of motion for a spinning point particle with charge and magnetic moment

    International Nuclear Information System (INIS)

    Rowe, E.G.P.; Rowe, G.T.

    1987-01-01

    The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)

  2. Local spin torque induced by electron electric dipole moment in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  3. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  4. Masses, magnetic moments, QCD and proton spin structure

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1990-10-01

    This talk is dedicated to the memory of Andrei D. Sakharov. In addition to his well-known contributions to society, Sakharov was also a pioneer in spin physics and the application of the basic ideas of QCD to spin structure of hadrons. He took quarks seriously at the time when the particle physicists ridiculed the quark model. Immediately after the quark proposal Sakharov asked: 'Why is M Λ ≠ M Σ ? They contain the same quarks' His answer was 'Spin Physics! A flavor-dependent hyperfine interaction'. (author)

  5. Spin-orbitronics: A new moment for Berry

    KAUST Repository

    Manchon, Aurelien

    2014-01-01

    The standard description of spin-orbit torques neglects geometric phase effects. But recent experiments suggest that the Berry curvature gives rise to an anti-damping torque in systems with broken inversion symmetry.

  6. Spin-orbitronics: A new moment for Berry

    KAUST Repository

    Manchon, Aurelien

    2014-04-13

    The standard description of spin-orbit torques neglects geometric phase effects. But recent experiments suggest that the Berry curvature gives rise to an anti-damping torque in systems with broken inversion symmetry.

  7. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  8. Spins, Electromagnetic Moments, and Isomers of 107-129Cd

    CERN Document Server

    Yordanov, D T; Bieron, J; Bissell, M L; Blaum, K; Budincevic, I; Fritzsche, S; Frommgen, N; Georgiev, G; Geppert, Ch; Hammen, M; Kowalska, M; Kreim, K; Krieger, A; Neugart, R; Nortershauser, W; Papuga, J; Schmidt, S

    2013-01-01

    The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell.

  9. Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures

    Science.gov (United States)

    Zhi, Wenzheng; Lin, Shaofen

    In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.

  10. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  11. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  12. Current-induced damping of nanosized quantum moments in the presence of spin-orbit interaction

    Science.gov (United States)

    Mahfouzi, Farzad; Kioussis, Nicholas

    2017-05-01

    Motivated by the need to understand current-induced magnetization dynamics at the nanoscale, we have developed a formalism, within the framework of Keldysh Green function approach, to study the current-induced dynamics of a ferromagnetic (FM) nanoisland overlayer on a spin-orbit-coupling (SOC) Rashba plane. In contrast to the commonly employed classical micromagnetic LLG simulations the magnetic moments of the FM are treated quantum mechanically. We obtain the density matrix of the whole system consisting of conduction electrons entangled with the local magnetic moments and calculate the effective damping rate of the FM. We investigate two opposite limiting regimes of FM dynamics: (1) The precessional regime where the magnetic anisotropy energy (MAE) and precessional frequency are smaller than the exchange interactions and (2) the local spin-flip regime where the MAE and precessional frequency are comparable to the exchange interactions. In the former case, we show that due to the finite size of the FM domain, the "Gilbert damping" does not diverge in the ballistic electron transport regime, in sharp contrast to Kambersky's breathing Fermi surface theory for damping in metallic FMs. In the latter case, we show that above a critical bias the excited conduction electrons can switch the local spin moments resulting in demagnetization and reversal of the magnetization. Furthermore, our calculations show that the bias-induced antidamping efficiency in the local spin-flip regime is much higher than that in the rotational excitation regime.

  13. Effective moments of inertia and spin cut off parameters in Hf isotopes

    International Nuclear Information System (INIS)

    Razavi, R.; Sharifzadeh, N.; Farahmand, M.R.

    2011-01-01

    In all statistical theories the nuclear level density is the most characteristic quantity and plays a major role in the study of nuclear structure. Most experimental data on nuclear level density have been analyzed with analytical functions of the level density. On the basis of statistical models, the effective moments of inertia and spin cut off parameters have been determined for 176 Hf, 178 Hf and 180 Hf nuclei from extensive and complete level schemes and neutron resonance densities in low excitation energy levels. Then, moments of inertia of these nuclei have been determined by nuclear rotational model. The results have been compared with their corresponding rigid body value

  14. The zero-moment half metal: How could it change spin electronics?

    International Nuclear Information System (INIS)

    Betto, Davide; Rode, Karsten; Thiyagarajah, Naganivetha; Lau, Yong-Chang; Borisov, Kiril; Atcheson, Gwenael; Stamenov, Plamen; Coey, J. M. D.; Žic, Mario; Archer, Thomas

    2016-01-01

    The Heusler compound Mn_2Ru_xGa (MRG) may well be the first compensated half metal. Here, the structural, magnetic and transport properties of thin films of MRG are discussed. There is evidence of half-metallicity up to x = 0.7, and compensation of the two Mn sublattice moments is observed at specific compositions and temperatures, leading to a zero-moment half metal. There are potential benefits for using such films with perpendicular anisotropy for spin-torque magnetic tunnel junctions and oscillators, such as low critical current, high tunnel magnetoresistance ratio, insensitivity to external fields and resonance frequency in the THz range.

  15. Relationship Between Magnitude of Applied Spin Recovery Moment and Ensuing Number of Recovery Turns

    Science.gov (United States)

    Anglin, Ernie L.

    1967-01-01

    An analytical study has been made to investigate the relationship between the magnitude of the applied spin recovery moment and the ensuing number of turns made during recovery from a developed spin with a view toward determining how to interpolate or extrapolate spin recovery results with regard to determining the amount of control required for a satisfactory recovery. Five configurations were used which are considered to be representative of modern airplanes: a delta-wing fighter, a stub-wing research vehicle, a boostglide configuration, a supersonic trainer, and a sweptback-wing fighter. The results obtained indicate that there is a direct relationship between the magnitude of the applied spin recovery moments and the ensuing number of recovery turns made and that this relationship can be expressed in either simple multiplicative or exponential form. Either type of relationship was adequate for interpolating or extrapolating to predict turns required for recovery with satisfactory accuracy for configurations having relatively steady recovery motions. Any two recoveries from the same developed spin condition can be used as a basis for the predicted results provided these recoveries are obtained with the same ratio of recovery control deflections. No such predictive method can be expected to give satisfactory results for oscillatory recoveries.

  16. Spins, charge radii and magnetic moments of neutron-rich Mn isotopes measured with bunched beam Collinear Laser Spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2085887; Heylen, Hanne

    In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...

  17. The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment

    CERN Document Server

    Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.

    2007-01-01

    We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.

  18. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  19. Quadrupole moments of low-lying baryons with spin- , spin- , and ...

    Indian Academy of Sciences (India)

    2013-02-03

    Feb 3, 2013 ... boson (GB), successfully explains the 'proton spin crisis' [26], hyperon β decay parame- ters [27], strangeness content in the nucleon [28], and in the N ...... ment of India (SR/S2/HEP-0028/2008) and Department of Atomic Energy, Government of India (2010/37P/48/BRNS/1445). References. [1] R G Sachs ...

  20. Measurement of the neutron electric dipole moment: simultaneous spin analysis and preliminary data analysis

    International Nuclear Information System (INIS)

    Helaine, Victor

    2014-01-01

    In the framework of the neutron Electric Dipole Moment (nEDM) experiment at the Paul Scherrer Institut (Switzerland), this thesis deals with the development of a new system of spin analysis. The goal here is to simultaneously detect the two spin components of ultracold neutrons in order to increase the number of detected neutrons and therefore lower the nEDM statistical error. Such a system has been designed using Geant4-UCN simulations, built at LPC Caen and then tested as part of the experiment. In parallel to this work, the 2013 nEDM data taken at PSI have been analysed. Finally, methods to recover magnetic observables of first interest to control nEDM systematic errors have been studied and possible improvements are proposed. (author) [fr

  1. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    The electric quadrupole interaction of the 209 Po (17/2) - and (13/2) - isomers in a Bi single-crystal was measured. The results for the quadrupole moments are connected with studies of isomers in Po isotopes. A two level analysis procedure was employed for the combined data of (17/2) - and (13/2) - isomers. The quadrupole moments of the Po isotopes are of special interest for testing nuclear models because of supposed simple nuclear structure with two protons outside a closed magic number shell. While the g-factors are significant for the predominant few-particle structures often present at high spins, the quadrupole moments are sensitive to additional contributions arising from core deformation effects. A systematic study of quadrupole moments of 12 + isomers in Pb isotopes has indeed demonstrated that the valence neutron effective charge increases as more particle pairs are removed from the 208 Pb core. In the present work, quadrupole coupling constants were measured for the isomers by the time-differential perturbed angular distribution (TDPAD) technique, in the presence of quadrupole interactions from the internal electric field gradient (EFG) in Bi crystal. The experiments were performed using a pulsed deuteron-beam of 13 MeV. The (17/2) - isomer state (T 1/2 = 88 ns) and the (13/2) - isomer state (T 1/2 = 24 ns) were populated and aligned by the 209 Bi(d,2n) reaction. The repetition time of the pulse was 10 μs and the width was around 5 ns (FWHM). The rather low bombardment energy was chosen to reduce population of higher spin isomers and to optimize the population of 209 Po((17/2) - ) and 209 Po((13/2) - ). The 209 Po single crystal target was held at a temperature of 470 K in order to reduce possible radiation damage effects. The experiments have been performed with the c axis of the single crystal at 45 angle and 90 angle to the beam direction. We chose to use a calibration based on isomers with well-understood nuclear structure allowing a reliable

  2. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  3. Interfacial tuning of perpendicular magnetic anisotropy and spin magnetic moment in CoFe/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D.-T., E-mail: ndthe82@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Meng, Z.L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Tahmasebi, T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, A-STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, Singapore 117608 (Singapore); Yu, X. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Thoeng, E. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Yeo, L.H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rusydi, A., E-mail: phyandri@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Han, G.C [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Teo, K.-L., E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2014-01-15

    We report on a strong perpendicular magnetic anisotropy in [CoFe 0.4 nm/Pd t]{sub 6} (t=1.0–2.0 nm) multilayers fabricated by DC sputtering in an ultrahigh vacuum chamber. Saturation magnetization, M{sub s}, and uniaxial anisotropy, K{sub u}, of the multilayers decrease with increasing the spacing thickness; with a M{sub s} of 155 emu/cc and a K{sub u} of 1.14×10{sup 5} J/m{sup 3} at a spacing thickness of t=2 nm. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements reveal that spin and orbital magnetic moments of Co and Fe in CoFe film decrease as a function of Pd thickness, indicating the major contribution of surface/interfacial magnetism to the magnetic properties of the film. - Highlights: • Strong perpendicular magnetic anisotropy essentially contributed by interfacial anisotropy. • Controllably magnetic properties with low M{sub s}, high K{sub u}, high P. • Interfacial magnetic moments modified by CoFe/Pd interfaces with strong spin–orbit coupling. • Narrow Bloch walls with Néel caps. • Superior magnetic characteristics for spin-torque applications.

  4. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  5. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  6. How sensitive is the deltoid moment arm to humeral offset changes with reverse total shoulder arthroplasty?

    Science.gov (United States)

    Walker, David R; Kinney, Allison L; Wright, Thomas W; Banks, Scott A

    2016-06-01

    Reverse total shoulder arthroplasty commonly treats cuff-deficient or osteoarthritic shoulders not amenable to rotator cuff repair. This study investigates deltoid moment arm sensitivity to variations in the joint center and humeral offset of 3 representative reverse total shoulder arthroplasty subjects. We hypothesized that a superior joint implant placement may exist, indicated by muscle moment arms, compared with the current actual surgical implant configuration. Moment arms for the anterior, lateral, and posterior aspects of the deltoid muscle were determined for 1521 perturbations of the humeral offset location away from the surgical placement in a subject-specific musculoskeletal model with motion defined by subject-specific in vivo abduction kinematics. The humeral offset was varied from its surgical position ±4 mm in the anterior/posterior direction, ±12 mm in the medial/lateral direction, and -10 to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied in humeral offset and center of rotation up to 20 mm, primarily in the medial/lateral and superior/inferior directions. The lateral deltoid moment arm varied in humeral offset up to 20 mm, primarily in the medial/lateral and anterior/posterior directions. The posterior deltoid moment arm varied up to 15 mm, primarily in early abduction, and was most sensitive to humeral offset changes in the superior/inferior direction. High variations in muscle moment arms were found for all 3 deltoid components, presenting an opportunity to dramatically change the deltoid moment arms through surgical placement of the reverse shoulder components and by varying the overall offset of the humerus. Basic Science Study; Computer Modeling. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  8. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  9. How do deltoid muscle moment arms change after reverse total shoulder arthroplasty?

    Science.gov (United States)

    Walker, David R; Struk, Aimee M; Matsuki, Keisuke; Wright, Thomas W; Banks, Scott A

    2016-04-01

    Although many advantages of reverse total shoulder arthroplasty (RTSA) have been demonstrated, a variety of complications indicate there is much to learn about how RTSA modifies normal shoulder function. This study used a subject-specific computational model driven by in vivo kinematic data to assess how RTSA affects deltoid muscle moment arms after surgery. A subject-specific 12 degree-of-freedom musculoskeletal model was used to analyze the shoulders of 26 individuals (14 RTSA and 12 normal). The model was modified from the work of Holzbaur to directly input 6 degree-of-freedom humeral and scapular kinematics obtained using fluoroscopy. The moment arms of the anterior, lateral, and posterior aspects of the deltoid were significantly different when RTSA and normal cohorts were compared at different abduction angles. Anterior and lateral deltoid moment arms were significantly larger in the RTSA group at the initial elevation of the arm. The posterior deltoid was significantly larger at maximum elevation. There was large intersubject variability within the RTSA group. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and the muscle moment arms in the RTSA shoulder. RTSA shoulders maintain the same anterior and posterior deltoid muscle moment-arm patterns as healthy shoulders but show much greater intersubject variation and larger moment-arm magnitudes. These observations provide a basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner. Published by Elsevier Inc.

  10. Magnetic moments of the spin-(3)/(2) doubly heavy baryons

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lu; Li, Hao-Song [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Liu, Zhan-Wei [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-12-15

    In this work, we investigate the chiral corrections to the magnetic moments of the spin-(3)/(2) doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: μ{sub Ξ}{sup {sub *}{sub +}{sub +{sub c{sub c}}}} = 2.61μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub c{sub c}}}} = -0.18μ{sub N}, μ{sub Ω}{sup {sub *}{sub +{sub c{sub c}}}} = 0.17μ{sub N}. As a by-product, we have also calculated the magnetic moments of the spin-(3)/(2) doubly bottom baryons and charmed bottom baryons: μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub b}}}} = 2.83μ{sub N}, μ{sub Ξ}{sup {sub *}{sub -{sub b{sub b}}}} = -1.33μ{sub N}, μ{sub Ω}{sup {sub *}{sub -{sub b{sub b}}}} = -1.54μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub b{sub c}}}} = 3.22μ{sub N}, μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub c}}}} = -0.84μ{sub N}, μ{sub Ω}{sup {sub *}{sub 0{sub b{sub c}}}} = -1.09μ{sub N}. (orig.)

  11. Magnetic moments of high spin rotational states in 158Dy and 164Dy+

    International Nuclear Information System (INIS)

    Seiler-Clark, G.

    1983-09-01

    For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de

  12. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    International Nuclear Information System (INIS)

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  13. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  14. Spin precession of a particle with an electric dipole moment: contributions from classical electrodynamics and from the Thomas effect

    International Nuclear Information System (INIS)

    Silenko, Alexander J

    2015-01-01

    The new derivation of the equation of the spin precession is given for a particle possessing electric and magnetic dipole moments. Contributions from classical electrodynamics and from the Thomas effect are explicitly separated. A fully covariant approach is used. The final equation is expressed in a very simple form in terms of the fields in the instantaneously accompanying frame. The Lorentz transformations of the electric and magnetic dipole moments and of the spin are derived from basic equations of classical electrodynamics. For this purpose, the Maxwell equations in matter are used and the result is confirmed by other methods. An antisymmetric four-tensor is correctly constructed from the electric and magnetic dipole moments. (article)

  15. The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1978-01-01

    The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)

  16. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  17. Laser-spectroscopy measurements of 72-96Kr spins, moments and charge radii

    International Nuclear Information System (INIS)

    Keim, M.

    1995-01-01

    The spins, moments and radii of krypton isotopes have been investigated by collinear fast-beam laser spectroscopy in combination with ultra-sensitive collisional ionization detection. The sequence of isotopes under study ranges from the neutron-deficient N=Z=36 isotope 72 Kr to the neutron-rich 96 Kr (N=60). The mean-square charge radii in the neighbourhood of the N=50 neutron-shell closure exhibit a pronounced shell effect which has recently been explained in the framework of relativistic mean-field theory. The results for the neutron-deficient nuclei are related to the shape coexistence of strongly prolate and near-spherical states which is known from nuclear spectroscopy. Here, an inversion of the odd-even staggering is observed below the neutron number N=45. The neutron-rich transitional nuclei are influenced by the N=56 subshell closure. In contrast to the N=60 isotones 97 Rb, 98 Sr and 100 Zr, the new isotope 96 Kr is not strongly deformed. ((orig.))

  18. Simulation of spin dynamics to measure electric dipole moments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Marcel; Lehrach, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Collaboration: JEDI-Collaboration

    2013-07-01

    CP violation in the baryon sector, which is predicted by the Standard Model of Particle Physics, is too small to explain the matter and antimatter asymmetry in our universe. Permanent Electric Dipole Moments (EDMs) violate both P and T symmetries and are therefore, through the CPT theorem, also CP violating. No direct EDM measurements for protons, deuterons and light nuclei have been performed up to now. The JEDI collaboration at Forschungszentrum Juelich (FZJ) and the BNL-EDM collaboration at Brookhaven National Laboratory (BNL) pursue the goal to measure the EDMs of these particles in dedicated storage rings. Therefore different approaches are studied to reach an ultimate sensitivity of 10{sup -29} e.cm. A first direct measurement of the proton and deuteron EDM at a sensitivity level of 10{sup -24} e.cm will be performed in the existing conventional storage ring at FZJ, the Cooler Synchrotron COSY. Particle tracking simulations to explore the motion-correlated spin dynamics are a crucial part of feasibility studies of the planned storage ring EDM experiments. In a first step, a benchmarking of simulation codes with measurements at the Cooler Synchrotron COSY is performed.

  19. Implications of the strange spin of the nucleon for the neutron electric dipole moment in supersymmetric theories

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John; Flores, Ricardo A

    1996-01-01

    Supersymmetric model contributions to the neutron electric dipole moment arise via quark electric dipole moment operators, whose matrix elements are usually calculated using the Naive Quark Model (NQM). However, experiments indicate that the NQM does not describe well the quark contributions \\Delta q to the nucleon spin, and so may provide misleading estimates of electric dipole operator matrix elements. Taking the \\Delta q from experiment, we indeed find consistently smaller estimates of the neutron electric dipole moment for given values of the supersymmetric model parameters. This weakens previous constraints on CP violation in supersymmetric models, which we exemplify analytically in the case where the lightest supersymmetric particle (LSP) is a U(1) gaugino \\tilde{B}, and display numerically for other LSP candidates.

  20. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  1. Fullerene/layered antiferromagnetic reconstructed spinterface: Subsurface layer dominates molecular orbitals' spin-split and large induced magnetic moment

    Science.gov (United States)

    Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang

    2018-03-01

    The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.

  2. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-10-07

    We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  3. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Directory of Open Access Journals (Sweden)

    Jian-hua Gao

    2015-10-01

    Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  4. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    Science.gov (United States)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  5. Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials.

    Science.gov (United States)

    Manz, Thomas A; Sholl, David S

    2011-12-13

    The partitioning of electron spin density among atoms in a material gives atomic spin moments (ASMs), which are important for understanding magnetic properties. We compare ASMs computed using different population analysis methods and introduce a method for computing density derived electrostatic and chemical (DDEC) ASMs. Bader and DDEC ASMs can be computed for periodic and nonperiodic materials with either collinear or noncollinear magnetism, while natural population analysis (NPA) ASMs can be computed for nonperiodic materials with collinear magnetism. Our results show Bader, DDEC, and (where applicable) NPA methods give similar ASMs, but different net atomic charges. Because they are optimized to reproduce both the magnetic field and the chemical states of atoms in a material, DDEC ASMs are especially suitable for constructing interaction potentials for atomistic simulations. We describe the computation of accurate ASMs for (a) a variety of systems using collinear and noncollinear spin DFT, (b) highly correlated materials (e.g., magnetite) using DFT+U, and (c) various spin states of ozone using coupled cluster expansions. The computed ASMs are in good agreement with available experimental results for a variety of periodic and nonperiodic materials. Examples considered include the antiferromagnetic metal organic framework Cu3(BTC)2, several ozone spin states, mono- and binuclear transition metal complexes, ferri- and ferro-magnetic solids (e.g., Fe3O4, Fe3Si), and simple molecular systems. We briefly discuss the theory of exchange-correlation functionals for studying noncollinear magnetism. A method for finding the ground state of systems with highly noncollinear magnetism is introduced. We use these methods to study the spin-orbit coupling potential energy surface of the single molecule magnet Fe4C40H52N4O12, which has highly noncollinear magnetism, and find that it contains unusual features that give a new interpretation to experimental data.

  6. Spin exchange between ion probes and localized moments in ferromagnets as the origin of transient fields

    International Nuclear Information System (INIS)

    Hagelberg, F.; Das, T.P.; Speidel, K.

    1993-01-01

    The transient field phenomenon has been ascribed to a polarization transfer between the electrons of the ionic projectiles and the surplus of majority spin electrons of the ferromagnetic host over the minority spin electrons. Earlier attempts to explain this crucial process failed to account for the order of magnitude of the experimentally observed transient field strengths. A recent model which proposes spin exchange scattering between bound projectile electrons and quasifree host electrons as the mechanism of polarization transfer arrives at the correct orders of magnitude but is in conflict with the weak velocity dependence of the experimental polarization, exhibiting a strongly decreasing behavior with increasing velocity. The new model presented here proposes spin exchange between the ionic shell and localized electrons of the ferromagnet as a more adequate approach to the problem. It is shown that calculations involving hydrogenlike ions explain the size of the experimentally observed polarization effects as well as their velocity dependence for various ion probes traversing thin iron foils

  7. Controlling orbital moment and spin orientation in CoO layers by strain

    NARCIS (Netherlands)

    Csiszar, SI; Haverkort, MW; Hu, Z; Tanaka, A; Hsieh, HH; Lin, HJ; Chen, CT; Hibma, T; Tjeng, LH

    2005-01-01

    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L-2,L-3 edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the

  8. Quadrupole moments of high spin states in the trans lead region

    International Nuclear Information System (INIS)

    Neyens, G.; Hardeman, F.; Nouwen, R.; S'heeren, G.; Van Den Bergh, M.; Cousement, R.

    1990-01-01

    The last few years, a lot of attention has been paid to the trans lead region. A reason for this has to be found in the fact that 208 Pb is a double magic core: both its proton and neutron shell are closed. This means that all nuclei in the lead region can be described well by the shell model, using a spherical 208 Pb core (spherical symmetric potential) and some valence particles or holes around it. The question is whether this model is also correct for high spin states. In this region, isomers with high angular momenta can only be created by alignment of all the spins of the valence particles and holes. And in some cases, alignment is not enough: core excitations are necessary to build up the large spin value of the isomeric state (e.g. the 63/2-isomer in 211 Rn. This means that a neutron pair from the closed N = 126 shell is broken up and one or both neutrons are excited to a level with higher energy and spin. The alignment of the valence-particle-spins causes an increase of the interactions between the valence particles (holes) on one hand, and between the valence particles (holes) and the hard core on the other hand. The latter interaction can cause a deformation of the core. The two interactions are taken into account in two different models: The SERI model (Spherical shell model with Empirical Residual Interactions) and the DIPM (Deformed Independent Particle Model). This paper reports that the effect of alignment of the spins of the valence particles in an isomeric state has been taken into account in the shell model by using residual interactions between the valence particles. These interactions are introduced in the theory in an empirical way or are calculated. Another model, the DIPM, takes into account the effect of alignment in a natural way: it starts from a deformed core (e.g. an axial symmetric potential) in which the valence particles are moving independently from each other)

  9. Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, A.I.

    2011-01-01

    Roč. 84, č. 11 (2011), "113112-1"-"113112-4" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : spin Hall effect * XMCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://prb.aps.org/abstract/PRB/v84/i11/e113112

  10. The deuteron spin-dependent structure function and its first moment

    Czech Academy of Sciences Publication Activity Database

    Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Alexeev, M.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A. M.; Donskov, S.V.; Dorofeev, V. A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V. F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.-W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    Roč. 647, č. 1 (2007), s. 8-17 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : Deep inelastic scattering * Spin * Structure function * QCD analysis * A1 * g1 Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.189, year: 2007 http://www.sciencedirect.com/science/article/B6TVN-4MYVG5P-1/2/387d70e7f30fb736514de259c62118d9

  11. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  12. The flow field acting on the fluttering profile, kinematics, forces and total moment

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Vlček, Václav; Zolotarev, Igor

    2013-01-01

    Roč. 13, č. 7 (2013), s. 1-7 ISSN 0219-4554 R&D Projects: GA ČR GA101/09/1522 Institutional support: RVO:61388998 Keywords : fluttering profile * interferometry visualization * acting forces and moment Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 1.059, year: 2013

  13. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun; Osman, Osman I; Aziz, Saadullah G; Winget, Paul; Bredas, Jean-Luc

    2014-01-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  14. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun

    2014-08-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  15. Quantum Interference in the Longitudinal Oscillations of the Total Spin of a Dimeric Molecular Nanomagnet

    Science.gov (United States)

    Ramsey, Christopher; Del Barco, Enrique; Hill, Stephen; Shah, Sonali; Beedle, Christopher; Hendrickson, David

    2008-03-01

    The synthetic flexibility of molecular magnets allows one to systematically produce samples with desirable properties such as those with entangled spin states for implementation in quantum logic gates. Here we report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel.

  16. [Establishment of the mathematic model of total quantum statistical moment standard similarity for application to medical theoretical research].

    Science.gov (United States)

    He, Fu-yuan; Deng, Kai-wen; Huang, Sheng; Liu, Wen-long; Shi, Ji-lian

    2013-09-01

    The paper aims to elucidate and establish a new mathematic model: the total quantum statistical moment standard similarity (TQSMSS) on the base of the original total quantum statistical moment model and to illustrate the application of the model to medical theoretical research. The model was established combined with the statistical moment principle and the normal distribution probability density function properties, then validated and illustrated by the pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical method for them, and by analysis of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving the Buyanghanwu-decoction extract. The established model consists of four mainly parameters: (1) total quantum statistical moment similarity as ST, an overlapped area by two normal distribution probability density curves in conversion of the two TQSM parameters; (2) total variability as DT, a confidence limit of standard normal accumulation probability which is equal to the absolute difference value between the two normal accumulation probabilities within integration of their curve nodical; (3) total variable probability as 1-Ss, standard normal distribution probability within interval of D(T); (4) total variable probability (1-beta)alpha and (5) stable confident probability beta(1-alpha): the correct probability to make positive and negative conclusions under confident coefficient alpha. With the model, we had analyzed the TQSMS similarities of pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical methods for them were at range of 0.3852-0.9875 that illuminated different pharmacokinetic behaviors of each other; and the TQSMS similarities (ST) of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving Buyanghuanwu-decoction-extract were at range of 0.6842-0.999 2 that showed different constituents

  17. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  18. Statistical model of hadrons multiple production in space of total angular momentum and isotopic spin

    International Nuclear Information System (INIS)

    Gridneva, S.A.; Rus'kin, V.I.

    1980-01-01

    Basic features of the statistical model of multiple hadron production based on microcanonical distribution and taking into account the laws of conservation of total angular momentum, isotopic spin, p-, G-, C-eveness and Bose-Einstein statistics requirements are given. The model predictions are compared with experimental data on anti NN annihilation at rest and e + e - annihilation in hadrons at annihilation total energy from 2 to 3 GeV [ru

  19. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  20. Measurement of the Q^{2} Dependence of the Deuteron Spin Structure Function g_{1} and its Moments at Low Q^{2} with CLAS.

    Science.gov (United States)

    Adhikari, K P; Deur, A; El Fassi, L; Kang, H; Kuhn, S E; Ripani, M; Slifer, K; Zheng, X; Adhikari, S; Akbar, Z; Amaryan, M J; Avakian, H; Ball, J; Balossino, I; Barion, L; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bosted, P; Briscoe, W J; Brock, J; Bültmann, S; Burkert, V D; Thanh Cao, F; Carlin, C; Carman, D S; Celentano, A; Charles, G; Chen, J-P; Chetry, T; Choi, S; Ciullo, G; Clark, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Defurne, M; Djalali, C; Dodge, G E; Drozdov, V; Dupre, R; Egiyan, H; El Alaoui, A; Elouadrhiri, L; Eugenio, P; Fedotov, G; Filippi, A; Ghandilyan, Y; Gilfoyle, G P; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Isupov, E L; Jenkins, D; Jo, H S; Johnston, S C; Joo, K; Joosten, S; Kabir, M L; Keith, C D; Keller, D; Khachatryan, G; Khachatryan, M; Khandaker, M; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kovacs, K; Kubarovsky, V; Lanza, L; Lenisa, P; Livingston, K; Long, E; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Meekins, D G; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niccolai, S; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, K; Pasyuk, E; Payette, D; Phelps, W; Phillips, S K; Pierce, J; Pogorelko, O; Poudel, J; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Rizzo, A; Rosner, G; Rossi, P; Sabatié, F; Salgado, C; Schumacher, R A; Sharabian, Y G; Shigeyuki, T; Simonyan, A; Skorodumina, Iu; Smith, G D; Sparveris, N; Sokhan, D; Stepanyan, S; Strakovsky, I I; Strauch, S; Sulkosky, V; Taiuti, M; Tan, J A; Ungaro, M; Voutier, E; Wei, X; Weinstein, L B; Zhang, J; Zhao, Z W

    2018-02-09

    We measured the g_{1} spin structure function of the deuteron at low Q^{2}, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W≈1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γ_{1}^{d} and the spin polarizability γ_{0}^{d} are precisely determined down to a minimum Q^{2} of 0.02  GeV^{2} for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain.

  1. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  2. Moments of the Spin Structure Functions g1p and g1d for 0.05 < Q2 < 3.0 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Prok, Yelena; Bosted, Peter; Burkert, Volker; Deur, Alexandre; Dharmawardane, Kahanawita; Dodge, Gail; Griffioen, Keith; Kuhn, Sebastian; Minehart, Ralph; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Anghinolfi, Marco; Asryan, G.; Audit, Gerard; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Beard, Kevin; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Boyarinov, Sergey; Bonner, Billy; Bouchigny, Sylvain; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Cazes, Antoine; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Cords, Dieter; Corvisiero, Pietro; Crabb, Donald; Crede, Volker; Cummings, John; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Dhuga, Kalvir; Dickson, Richard; Djalali, Chaden; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fatemi, Renee; Fedotov, Gleb; Feldman, Gerald; Fersch, Robert; Feuerbach, Robert; Forest, Tony; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Golovach, Evgeny; Gothe, Ralf; Guidal, Michel; Guillo, Matthieu; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hardie, John; Hassall, Neil; Heddle, David; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Huertas, Marco; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keith, Christopher; Kellie, James; Khandaker, Mahbubul; Kim, Kui; Kim, Kyungmo; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klusman, Mike; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, Dave; Lima, Ana; Livingston, Kenneth; Lu, Haiyun; Lukashin, K.; MacCormick, Marion; Marchand, Claude; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Morand, Ludyvine; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; O' Rielly, Grant; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Anefalos Pereira, S.; Philips, Sasha; Pierce, J.; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Popa, Iulian; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Procureur, Sebastien; Protopopescu, Dan; Qin, Liming; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Rowntree, David; Rubin, Philip; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Seely, Mikell; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shaw, Jeffrey; Shvedunov, Nikolay; Skabelin, Alexander; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Suleiman, Riad; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; V

    2009-02-01

    The spin structure functions $g_1$ for the proton and the deuteron have been measured over a wide kinematic range in $x$ and \\Q2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH$_3$ and ND$_3$ targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for $0.05 < Q^2 < 5 $\\ GeV$^2$ and $W < 3$ GeV. The first moments of $g_1$ for the proton and deuteron are presented -- both have a negative slope at low \\Q2, as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first result for the generalized forward spin polarizability of the proton $\\gamma_0^p$ is also reported, and shows evidence of scaling above $Q^2$ = 1.5 GeV$^2$. Although the first moments of $g_1$ are consistent with Chiral Perturbation Theory (\\ChPT) calculations up to approximately $Q^2 = 0.06$ GeV$^2$, a significant discrepancy is observed between the $\\gamma_0^p$ data and \\ChPT\\ for $\\gamma_0^p$,even at the lowest \\Q2.

  3. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  4. Magnetic moments, E3 transitions and the structure of high spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-03-01

    The results of g-factor measurements of high spin states in 211 Rn are: Esub(x)=8856+Δsup(') keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δsup(') keV (49/2 + ), 0.766(8); 5247+Δsup(') keV (43/2 - ), 0.74(2); 3927+Δsup(') keV (35/2 + ), 1/017(12); 1578+Δsup(') keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously

  5. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-01-01

    The results of g-factor measurements of high-spin states in 211 Rn are: Esub(x)=8856+Δ' keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δ' keV (49/2 + ), 0.766(8); 5347+Δ' keV (43/2 - ), 0.74(2); 3927+Δ keV (35/2 + ), 1.017(12); 1578+Δ keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously. (orig.)

  6. Patterns in the knee flexion-extension moment profile during stair ascent and descent in patients with total knee arthroplasty.

    Science.gov (United States)

    McClelland, Jodie A; Feller, Julian A; Menz, Hylton B; Webster, Kate E

    2014-06-03

    The aim of this study was to investigate the prevalence of abnormal knee biomechanical patterns in 40 patients with a modern TKA prosthesis, compared to 40 matched control participants when ascending and descending stairs. Fewer patients were able to ascend (65%) or descend stairs (53%) unassisted than controls (83%). Of the participants who could ascend and descend, cluster analysis classified most patients (up to 77%) as demonstrating a similar knee moment pattern as all controls. A small subgroup of patients who completed the tasks did so with distinctly abnormal biomechanics compared to other patients and controls. These findings suggest that recovery of normal stair climbing is possible. However, rehabilitation might be more effective if it were tailored to account for these differences between patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. There are many ways to spin a photon: Half-quantization of a total optical angular momentum.

    Science.gov (United States)

    Ballantine, Kyle E; Donegan, John F; Eastham, Paul R

    2016-04-01

    The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ . We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.

  8. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  9. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  10. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  11. Spinning fluids in general relativity: a variational formulation

    International Nuclear Information System (INIS)

    Oliveira, H.P. de; Salim, J.M.

    1990-01-01

    In this paper we present a variational formulation for spinning fluids in General Relativity. In our model each volume element of the fluid has rigid microstructure. We deduce a symmetrical energy-moment tensor where there is an explicit contribution of kinetic spin energy to the total energy. (author)

  12. Temperature dependent spin momentum densities in Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Ahuja, B L; Dashora, Alpa; Vadkhiya, L; Heda, N L; Priolkar, K R; Lobo, Nelson; Itou, M; Sakurai, Y; Chakrabarti, Aparna; Singh, Sanjay; Barman, S R

    2010-01-01

    The spin-dependent electron momentum densities in Ni 2 MnIn and Ni 2 Mn 1.4 In 0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.

  13. Variational approach to magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1977-11-07

    Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.

  14. The total angular moment selectivity in 7Li(α, α) 7Li(4.63 MeV, 7/2-) reaction at Eα = 27.2 MeV

    International Nuclear Information System (INIS)

    Dmitrenko, V.N.; Kozyr', Yu.E.

    1995-01-01

    The DWBA calculation of tensor polarisation of residual nuclei for direct inelastic scattering 7 Li(α, α) 7 Li(4.63 MeV, 7/2 - ) gives the lest approximation to experimental data at selected total angular moment and parity values J π 13/2 + . The microscopic coupled channel calculation also predicts a significant role of total angular moment states with J ≥ 13/2. at E α 27.2 MeV

  15. Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory

    International Nuclear Information System (INIS)

    Soderlind, P

    2008-01-01

    The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero

  16. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  17. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  18. Magnetic structure of the spin valve interface

    International Nuclear Information System (INIS)

    Nicholson, D.M.C.; Butler, W.H.; Zhang, X.; MacLaren, J.M.; Gurney, B.A.; Speriosu, V.S.

    1994-01-01

    Nonferromagnetic atoms present at Ni/Cu and Permalloy/Cu interfaces in sputtered spin valve magnetoresistive layered structures have been shown to cause reduced magnetoresistance. Here we show that a model in which the moments on the Ni atoms in the interfacial region of Ni/Cu are reduced substantially by interdiffusion with Cu is consistent with the experimental results. In contrast, we believe that moments persist at the permalloy/Cu interface, which first principle total energy calculations suggest will be disordered at finite temperatures. These reduced or disordered moments are expected to significantly reduce the GMR

  19. Magnetic moments of composite quarks and leptons: further difficulties

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-05-01

    The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa

  20. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  1. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  2. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  3. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  4. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  5. Experimental energy-dependent nuclear spin distributions

    International Nuclear Information System (INIS)

    Egidy, T. von; Bucurescu, D.

    2009-01-01

    A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter σ as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, σ 2 =0.391 A 0.675 (E-0.5Pa ' ) 0.312 , is proposed up to about 10 MeV that is in very good agreement with experimental σ values and is applied to improve the systematics of level-density parameters.

  6. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  7. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  8. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  9. Impurity-induced moments in underdoped cuprates

    International Nuclear Information System (INIS)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-01-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society

  10. Near total magnetic moment compensation with high Curie temperature in Mn2V0.5Co0.5Z (Z  =  Ga,Al) Heusler alloys

    Science.gov (United States)

    Midhunlal, P. V.; Arout Chelvane, J.; Arjun Krishnan, U. M.; Prabhu, D.; Gopalan, R.; Kumar, N. Harish

    2018-02-01

    Mn2V1-x Co x Z (Z  =  Ga,Al and x  =  0, 0.25, 0.5, 0.75, 1) Heusler alloys have been synthesized to investigate the effect of Co substitution at the V site on the magnetic moment and Curie temperature of half-metallic ferrimagnets Mn2VGa and Mn2VAl. Near total magnetic moment compensation was achieved with high Curie temperature for x  =  0.5 composition. The Co substituted alloys show a non linear decrease in lattice parameter without altering the crystal structure of the parent alloys. The end members Mn2VGa and Mn2CoGa have the saturation magnetization of 1.80 µ B/f.u. and 2.05 µ B/f.u. respectively whereas for the Mn2V0.5Co0.5Ga alloy, a near total magnetic moment compensation (0.10 µ B/f.u.) was observed due to the ferrimagnetic coupling of Mn with parallelly aligned V and Co. The Co substituted Mn2VAl has also shown a similar trend with compensated magnetic moment value of 0.06 µ B/f.u. for x  =  0.5. The Curie temperatures of the alloys including the x  =  0.5 composition are well above the room temperature (more than 650 K) which is in sharp contrast to the earlier reported values of 171 K for the (MnCo)VGa and 105 K for the (MnCo)VAl (substitution at the Mn site). The observed T C values are highest among the Mn2V based fully compensated ferrimagnets. The magnetic moment compensation without significant reduction in T C indicates that the V site substitution of Co does not weaken the magnetic interaction in Mn2VZ (Z  =  Ga,Al) alloys which is contrary to the earlier experimental reports on Mn site substitution.

  11. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  12. Magnus effects on spinning transonic missiles

    Science.gov (United States)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  13. Spin and orbital moments in UGa3

    International Nuclear Information System (INIS)

    Kambe, S; Kato, H; Sakai, H; Tokunaga, Y; Walstedt, R E; Matsuda, T D; Aoki, D; Haga, Y; Onuki, Y

    2003-01-01

    The antiferromagnetic (AF) state of UGa 3 is studied using 69 Ga nuclear magnetic resonance. We have observed a drastic change of the hyperfine coupling constant at the Ga site around the AF transition (T N = 67 K) in UGa 3 . The internal field at the Ga site appears at slightly lower temperature ∼63 K, indicating another anomaly around 63 K. A possible origin of the anomaly is discussed, in terms of orbital ordering

  14. Spins, moments and radii of Cd isotopes

    CERN Document Server

    Hammen, Michael

    The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of $^{100−130}$Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium f...

  15. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  16. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  17. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  18. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  19. Assembling Transgender Moments

    Science.gov (United States)

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  20. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  1. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  2. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  3. Quantum tunneling of the magnetic moment in a free nanoparticle

    International Nuclear Information System (INIS)

    O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.

    2012-01-01

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  4. Quantum tunneling of the magnetic moment in a free nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)

    2012-09-15

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  5. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  6. Magnetic properties of a classical XY spin dimer in a “planar” magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)

    2016-10-15

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.

  7. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    Science.gov (United States)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  8. Local moment formation in Dirac electrons

    International Nuclear Information System (INIS)

    Mashkoori, M; Mahyaeh, I; Jafari, S A

    2015-01-01

    Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V 2 D/2πγ 3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε 0 , in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands. (paper)

  9. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  10. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  11. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  12. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  13. Magnetic moments of baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-06-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)

  14. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  15. Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2

    Science.gov (United States)

    Bupu, A.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.

  16. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  17. Manipulation and Read-out of Spins in Quantum Dots

    NARCIS (Netherlands)

    Vink, I.T.

    2008-01-01

    Besides an electric charge, electrons also have a tiny magnetic moment, called spin. In a magnetic field, the spin has two possible orientations: 'spin-up' (parallel to the field) and 'spin-down' (anti-parallel to the field) and can therefore be used as a quantum bit, the computational unit of a

  18. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  19. Probing the magnetic moments of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets—A cross comparison of XMCD and spin-resolved electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: helmstedt.andreas@gmail.com [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Dohmeier, Niklas; Müller, Norbert; Gryzia, Aaron; Brechling, Armin; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Leicht, Philipp; Fonin, Mikhail [Fachbereich Physik, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz (Germany); Tietze, Thomas [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Joly, Loïc [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2 (France); Kuepper, Karsten [Institut für Festkörperphysik, Universität Ulm, 89069 Ulm (Germany)

    2015-01-15

    Highlights: • [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets are investigated. • XMCD and spin-resolved electron spectroscopy (SPES) results are compared. • A simple sum rule evaluation is performed for comparison. • Differences between SPES and XMCD results are discussed. • Influences of the magnetic field on the Mn L edge absorption are observed. - Abstract: Single-molecule magnets (SMM) of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} structural type prepared on Si and gold-coated glass substrates have been investigated by spin-resolved electron spectroscopy (SPES) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edge and in addition by XMCD at the Cr L{sub 3,2} edge using synchrotron radiation. Differences between the two methods are discussed. Despite its severe limitations for 3d transition metals, a spin sum rule evaluation is nevertheless performed for the Mn{sup III} centres in the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} SMM to provide a simple means of comparing XMCD and spin-resolved electron spectroscopy results.

  20. A measurement of ΔσL(np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    International Nuclear Information System (INIS)

    Beddo, M.E.

    1990-10-01

    A measurement off Δσ L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD 2 ). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0 degree. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a ''beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD 2 target. The experimental values of Δσ L (np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from Δσ L (np) using existing pp data (I = 1), with the unexpected result that Δσ L (I = 0) was found to be essentially identical in shape to Δσ L (I = 1). The significance of this is not yet understood

  1. Novel spin effects in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1993-02-01

    This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F

  2. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  3. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals

    KAUST Repository

    Singh, Nirpendra

    2016-08-30

    First-principles calculations with onsite Coulomb interaction and spin-orbit coupling are used to investigate the electronic structure of monolayer WS2 doped substitutionally with 3d transition-metals. While neither W vacancies nor strain induce spin polarization, we demonstrate an unprecedented tendency to extended moment formation under doping. The extended magnetic moments are characterized by dopant-specific spin density patterns with rich structural features involving the nearest neighbor W and S atoms.

  4. The vector meson with anomalous magnetic moment

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1976-01-01

    The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies

  5. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  6. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...

  7. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  8. Nuclear Anapole Moments

    International Nuclear Information System (INIS)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-01-01

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments

  9. The moment problem

    CERN Document Server

    Schmüdgen, Konrad

    2017-01-01

    This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...

  10. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  11. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  12. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.

    2014-01-01

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  13. Moment-ration imaging of seismic regions for earthquake prediction

    Science.gov (United States)

    Lomnitz, Cinna

    1993-10-01

    An algorithm for predicting large earthquakes is proposed. The reciprocal ratio (mri) of the residual seismic moment to the total moment release in a region is used for imaging seismic moment precursors. Peaks in mri predict recent major earthquakes, including the 1985 Michoacan, 1985 central Chile, and 1992 Eureka, California earthquakes.

  14. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    Science.gov (United States)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  15. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography?

    Science.gov (United States)

    Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P

    2015-06-10

    We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.

  16. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    International Nuclear Information System (INIS)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E.

    2017-01-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  17. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    Energy Technology Data Exchange (ETDEWEB)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)

    2017-05-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  18. Electric and magnetic dipole moments of the neutron

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1977-01-01

    Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references

  19. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  20. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  1. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  2. Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment

    Science.gov (United States)

    Deriglazov, Alexei A.; Ramírez, Walberto Guzmán

    2018-04-01

    Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson-Papapetrou-Tulczyjew-Dixon equations with improved behavior in the ultrarelativistic limit. We present exact Hamiltonian of the resulting theory and compute an effective 1/c2-Hamiltonian and leading post-Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession of spin S as a fictitious rotation of the central body with angular momentum J = M/m S. So the modified equations imply a number of qualitatively new effects, that could be used to test experimentally, whether a rotating body in general relativity has null or unit gravimagnetic moment.

  3. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  4. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  5. SPIN SUSCEPTIBILITY IN HIGH - TC SUPERCONDUCTIVITY

    African Journals Online (AJOL)

    USER

    2012-07-05

    Jul 5, 2012 ... remains unchanged as a result of which the oxygen site will remain deficient ... kinetic energy, a hole's spin hooks up with the random Cu moment to form a ... reach out to each other magnetically to form spin singlet pairs with ...

  6. Spectrum and static moments of /sup 187/Re

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R; Sharma, S D; Sahota, H S; Sehgal, V K [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    The spectrum and static moments of /sup 187/Re are calculated using extension of Davydov-Filippov model. The Hamiltonian including the coriolis coupling term is used to calculate the effective moment of inertia for various bands. The kinking effect in the excited bands is studied by mixing the pair of bands such that both bands in single pair have same k value either k = 1/2 or 3/2. The effective moment of inertia under excitation is found to change with spin. The change is found in agreement with the theoretical prediction on the basis of this model.

  7. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  8. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Science.gov (United States)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  9. Spin effects in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1980-12-01

    The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned

  10. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  11. Disorder and Quantum Spin Ice

    Science.gov (United States)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  12. Lattice QCD evaluation of baryon magnetic moment sum rules

    International Nuclear Information System (INIS)

    Leinweber, D.B.

    1991-05-01

    Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs

  13. Moment magnitude scale

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, T.C.; Kanamori, H.

    1979-05-10

    The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.

  14. Magnetic moments of hyperons

    International Nuclear Information System (INIS)

    Overseth, O.E.

    1981-01-01

    The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned

  15. Spin light of neutrino in matter and electromagnetic fields

    International Nuclear Information System (INIS)

    Lobanov, A.; Studenikin, A.

    2003-01-01

    A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important

  16. Disorder dependence of the magnetic moment of the half-metallic ferromagnet NiMnSb from first principles

    International Nuclear Information System (INIS)

    Orgassa, D.; Fujiwara, H.; Schulthess, T. C.; Butler, W. H.

    2000-01-01

    Using half-metallic ferromagnets in spin-dependent devices, like spin valves and ferromagnetic tunnel junctions, is expected to increase the device performance. However, using the half-metallic ferromagnet NiMnSb in such devices led to much less than ideal results. One of the possible sources for this behavior is atomic disorder. First-principles calculations of the influence of atomic disorder on the electronic structure of NiMnSb underline the sensitivity of half-metallic properties in NiMnSb to atomic disorder. In this article, we report on the disorder dependence of the total magnetic moment calculated by applying the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. We consider the following types of disorder: (1) intermixing of Ni and Mn, (2) partial occupancy of a normally vacant lattice site by Ni and Mn, and (3) partial occupancy of this site by Mn and Sb. In all cases the composition is kept stoichiometric. All three types of disorder decrease the moment monotonically with increasing disorder levels. For the experimentally seen disorder of 5% Mn and 5% Sb on the normally vacant lattice site, the total moment is decreased by 4.1%. The results suggest that precise measurement of the saturation magnetization of NiMnSb thin films can give information on the disorder. (c) 2000 American Institute of Physics

  17. Distribution functions and moments in the theory of coagulation

    International Nuclear Information System (INIS)

    Pich, J.

    1990-04-01

    Different distribution functions and their moments used in the Theory of coagulation are summarized and analysed. Relations between the moments of these distribution functions are derived and the physical meaning of individual moments is briefly discussed. The time evolution of the moment of order zero (total number concentration) during the coagulation process is analysed for the general kernel of the Smoluchowski equation. On this basis the time evolution of certain physically important quantities related to this moment such as mean particle size, surface and volume as well as surface concentration is described. Equations for the half time of coagulation for the general collision frequency factor are derived. (orig.) [de

  18. Moments of Negotiation

    NARCIS (Netherlands)

    Pieters, Jurgen

    2001-01-01

    'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,

  19. Magnetic moments revisited

    International Nuclear Information System (INIS)

    Towner, I.S.; Khanna, F.C.

    1984-01-01

    Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents

  20. The Humanist Moment

    Science.gov (United States)

    Higgins, Chris

    2014-01-01

    In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…

  1. Magnetic moments and the Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica

    1977-12-12

    The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.

  2. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  3. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Directory of Open Access Journals (Sweden)

    P. Kharel

    2017-05-01

    Full Text Available Recent discovery of a new class of materials, spin-gapless semiconductors (SGS, has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics. Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.

  4. Redefining the political moment

    Directory of Open Access Journals (Sweden)

    James Arvanitakis

    2011-07-01

    Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.

  5. Projective moment invariants

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2004-01-01

    Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf

  6. Moment ratios for heavy QQ- - states and their dependence on the quarkmass definition

    International Nuclear Information System (INIS)

    Bertlmann, R.A.

    1982-01-01

    When analyzing heavy qq - states with help of exponential moments we argue that a ratio of moments should be expanded rather than the moments themselves. Within a nonrelativistic approximation we show that the expanded ratio is totally independent on the quark mass definition, whereas the nonexpanded ratio of moments strongly depends on it. (Author)

  7. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu

    2007-02-15

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  8. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    International Nuclear Information System (INIS)

    Ye, Zhenyu

    2007-02-01

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  9. The neutron Electric Dipole Moment experiment at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Hélaine V.

    2014-06-01

    Full Text Available The neutron Electric Dipole Moment (nEDM is a probe for physics beyond the Standard Model. A report on the nEDM measurement performed at the Paul Scherrer Institute (Switzerland is given. A neutron spin analyzer designed to simultaneously detect both neutron spin states is presented.

  10. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  11. Moment methods for nonlinear maps

    International Nuclear Information System (INIS)

    Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON

    1993-01-01

    It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)

  12. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Zamudio-Bayer, V. [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany); Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hirsch, K.; Langenberg, A.; Kossick, M. [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Ławicki, A.; Lau, J. T., E-mail: tobias.lau@helmholtz-berlin.de [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Terasaki, A. [Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001 (Japan); Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany)

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  13. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    Science.gov (United States)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  14. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Weiss, Dieter

    2000-01-01

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  15. Paul Callaghan luminous moments

    CERN Document Server

    Callaghan, Paul

    2013-01-01

    Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa

  16. Neutron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Mischke, R.E.

    2003-01-01

    The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study

  17. Cooper pairs' magnetic moment in MCFL color superconductivity

    International Nuclear Information System (INIS)

    Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la

    2011-01-01

    We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.

  18. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  19. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  20. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  1. Moments in time

    Directory of Open Access Journals (Sweden)

    Marc eWittmann

    2011-10-01

    Full Text Available It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or ‘psychological present’. Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behaviour and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working-memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence.

  2. The Proton-Spin Crisis another ABJ anomaly?

    CERN Document Server

    Shore, G.M.

    1998-01-01

    Contents: 1. Introduction; 2. The First Moment Sum Rule for $g_1^p$; 3. The Parton Model and the `Proton Spin'; 4. The CPV Method and Topological Charge Screening; 5. Experiment; 6. Semi-Inclusive Polarised DIS.

  3. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  4. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  5. Is there a hard gluonic contribution to the first moment of g1?

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Qiu, Jianwei

    1990-01-01

    We show that the size of the hard gluonic contribution to the first moment of the proton's spin-dependent structure function g 1 is entirely a matter of the convention used in defining the quark distributions. If the UV regulator for the spin-dependent quark distributions respects the gauge invariance of Green's functions (allows shifts of loop momenta) and respects the analyticity structure of the unregulated distributions, then the hard gluonic contribution to the first moment of g 1 vanishes. This is the case, for example, in dimensional regularization. By relaxing the requirement that the regulator allow shifts of loop moments, we are able to obtain a nonvanishing hard gluonic contribution to the first moment of g 1 . However, the first moments of the resulting quark distributions correspond to matrix elements that are either gauge variant or involve nonlocal operators and, hence, have no analogue in the standard operator-product expansion. 11 refs., 2 figs

  6. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  7. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  8. Spin tomography

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)

    2003-02-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.

  9. Spin tomography

    International Nuclear Information System (INIS)

    D'Ariano, G M; Maccone, L; Paini, M

    2003-01-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique

  10. Partons and the EMC spin effect

    International Nuclear Information System (INIS)

    Bass, S.D.

    1992-03-01

    We focus on the patron model and the role of the axial anomaly in polarised deep inelastic scattering. We show that the axial anomaly is relevant to each of the higher moments of the spin dependent structure function g 1 (x) and not just the first moment. This result implies that the factorisation of mass singularities is not sufficient to define the parton model in spin dependent quantum chromodynamics (QCD). (It is certainly a necessary condition.) We also need to consider the locality of the photon parton interaction. The anomaly is observed over all x in the (EMC)g 1 (x) data. (author)

  11. T violation in radiative β decay and electric dipole moments

    Directory of Open Access Journals (Sweden)

    W. Dekens

    2015-12-01

    Full Text Available In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs. As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  12. T violation in radiative β decay and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, W.; Vos, K.K., E-mail: k.k.vos@rug.nl

    2015-12-17

    In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  13. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    2015-11-27

    Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.

  14. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  16. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  17. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  18. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  19. The proton's spin: A quark model perspective

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    Magnetic moments and g A /g V provide information on the correlations among quark spins and flavors in the proton. I compare this information with the deep inelastic polarized data from EMC which has been claimed to show that very little of the proton's spin is due to the quarks. The possibility that there is significant polarization of strange quarks within protons is discussed. 38 refs

  20. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  1. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  2. Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)

    2017-06-15

    Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.

  3. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  4. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  5. Quadrupole moments of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Goergen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Hagemann, G.B.; Sletten, G.; Huebel, H.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of 163 Lu have been measured with the Gammasphere spectrometer using the Doppler-shift attenuation method. The bands have been interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments are extracted for the zero-phonon yrast band and, for the first time, for the one-phonon wobbling band. The very similar results found for the two bands suggest a similar intrinsic structure and support the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the ratio of the interband to the in-band transition strengths remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared

  6. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  7. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  8. The relation between anomalous magnetic moment and axial anomaly

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    1990-12-01

    The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig

  9. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  10. Resolution of Single Spin-Flips of a Single Proton

    CERN Document Server

    Mooser, A.; Blaum, K.; Bräuninger, S.A.; Franke, K.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Ulmer, S.; Walz, J.

    2013-04-04

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.

  11. Face recognition using Krawtchouk moment

    Indian Academy of Sciences (India)

    Zernike moment to enhance the discriminant nature (Pang et al 2006). ... was proposed which is partially invariant to changes in the local image samples, ... tigate the Krawtchouk discrete orthogonal moment-based feature ..... in scale have been achieved by changing the distance between the person and the video camera.

  12. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  13. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  14. Magnetic moments of the lowest-lying singly heavy baryons

    Science.gov (United States)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  15. Proton spin structure in the rest frame

    International Nuclear Information System (INIS)

    Zavada, P.

    1997-01-01

    It is shown that the quark-parton model in the standard infinite momentum approach overestimates the proton spin structure function g 1 (x) in comparison with the approach taking consistently into account the internal motion of quarks described by a spherical phase space in the proton rest frame. Particularly, it is shown the first moment of the spin structure function in the latter approach, assuming only the valence quarks contribution to the proton spin, does not contradict the experimental data. copyright 1997 The American Physical Society

  16. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  17. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  18. Art of spin decomposition

    International Nuclear Information System (INIS)

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-01-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  19. Transition quadrupole moments in the superdeformed band of 40Ca

    International Nuclear Information System (INIS)

    Chiara, C.J.; Ideguchi, E.; Devlin, M.; LaFosse, D.R.; Lerma, F.; Reviol, W.; Ryu, S.K.; Sarantites, D.G.; Baktash, C.; Galindo-Uribarri, A.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Reiter, P.; Seweryniak, D.; Fallon, P.; Goergen, A.; Macchiavelli, A.O.; Rudolph, D.

    2003-01-01

    The transition quadrupole moments Q t for the superdeformed band in 40 Ca have been determined through thin-target Doppler-shift attenuation analyses. A best-fit value of Q t =1.30±0.05 e b is obtained when a single value is assumed for the entire band. Fitting separate quadrupole moments for in-band transitions decaying from the high-spin states and the presumably admixed low-spin states results in Q t (high)=1.81 -0.26 +0.41 e b and Q t (low)=1.18 -0.05 +0.06 e b, respectively. Q t values extracted for individual transitions in a Doppler-broadened line-shape analysis also indicate smaller Q t values at lower spins. These results are consistent with the interpretation of this band as an eight-particle-eight-hole superdeformed band with a significant admixture of less-collective configurations at low spins

  20. Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid

    International Nuclear Information System (INIS)

    Zayets, V.

    2014-01-01

    It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model

  1. Efficient spin transitions in inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Lorente, Nicolás; Gauyacq, Jean-Pierre

    2009-10-23

    The excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies. First-principles transmissions are evaluated in quantitative agreement with the experiment.

  2. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Determination of the K*(1800) spin parity

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, G W; Carnegie, R K; Cashmore, R J; Davier, M; Dunwoodie, W M; Lasinski, T A; Leith, D W.G.S.; Matthews, J A.J.; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)

    1976-02-16

    A spherical harmonic moment analysis of the reactions K/sup -/p..-->..K/sup -/..pi../sup +/n and K/sup +/p..-->..K/sup +/..pi../sup -/..delta../sup + +/ at 13 GeV/c demonstrates the existence of a broad K* state with mass in the vicinity of 1800 MeV and spin parity 3/sup -/.

  4. Disordered kagomé spin ice

    Science.gov (United States)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  5. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  6. From a Moment of Totality to a Lasting Community

    Science.gov (United States)

    Gay, Pamela; Murph, Susan; Astronomy Cast

    2018-01-01

    The 2017 Great American Eclipse provided a reason for people from around the world to come together in one place and share their passion for astronomy. The Astronomy Cast podcast provided an opportunity and organizational structure for 100 people from more than 10 nations to come together for 3 days. These people are all listeners of the Astronomy Cast podcast, or family members of listeners. The majority of attendees did not know one another prior to this event. In this poster, we look at what organizational structure was provided to attendees before, during, and after this event, and how important different factors have been in building a lasting community from this group of attendees.The primary goals in hosting the Astronomy Cast event was to build a lasting community of people willing to attend real-world learning opportunities, and to facilitate the formation of social relationships between attendees that would encourage continued engagement. In order to meet these goals, we needed to construct an event that both met attendee expectations for science lectures and events, and also facilitated communications between attendees. We recognized that attendees would largely be introverts, and that this would present challenges to community building. Our strategy for success included: building a Facebook group well in advance of the event and using regular communications to build excitement; providing a space for community building as well as food and board games to communicate around; and following up the event with opportunities for participants to share the photos, experiences, and ways to connect.This work includes analysis of attendee surveys and commentaries that are used to study which aspects of this program were most (and least successful), and to see what self-maintaining community has been created.

  7. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  8. Spin tracking for a deuteron EDM storage ring

    International Nuclear Information System (INIS)

    Skawran, A; Lehrach, A

    2017-01-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity. (paper)

  9. Magnetic properties of a quantum transverse spin-1 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Ez Zahraouy, H.

    1993-09-01

    Using an expansion technique for cluster identities of spin-1 localized spin systems, we study the magnetic properties of a quantum transverse spin-1 Blume-Emery-Griffiths model. The longitudinal and transverse magnetizations and the quadrupolar moments are calculated. General formula applicable to structures with arbitrary coordination number are given. (author). 38 refs, 6 figs

  10. Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles

    OpenAIRE

    Silenko, A. J.

    2014-01-01

    Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.

  11. Overview of spin physics

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1992-01-01

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy

  12. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  13. Moment Magnitude discussion in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  14. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  15. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  16. Dynamic interaction between localized magnetic moments in carbon nanotubes

    International Nuclear Information System (INIS)

    Costa, A T; Muniz, R B; Ferreira, M S

    2008-01-01

    Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices

  17. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    Science.gov (United States)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  18. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  19. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    Science.gov (United States)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  20. Unidirectional spin-Hall and Rashba-Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures.

    Science.gov (United States)

    Lv, Yang; Kally, James; Zhang, Delin; Lee, Joon Sue; Jamali, Mahdi; Samarth, Nitin; Wang, Jian-Ping

    2018-01-09

    The large spin-orbit coupling in topological insulators results in helical spin-textured Dirac surface states that are attractive for topological spintronics. These states generate an efficient spin-orbit torque on proximal magnetic moments. However, memory or logic spin devices based upon such switching require a non-optimal three-terminal geometry, with two terminals for the writing current and one for reading the state of the device. An alternative two-terminal device geometry is now possible by exploiting the recent discovery of the unidirectional spin Hall magnetoresistance in heavy metal/ferromagnet bilayers and unidirectional magnetoresistance in magnetic topological insulators. Here, we report the observation of such unidirectional magnetoresistance in a technologically relevant device geometry that combines a topological insulator with a conventional ferromagnetic metal. Our devices show a figure of merit (magnetoresistance per current density per total resistance) that is more than twice as large as the highest reported values in all-metal Ta/Co bilayers.

  1. Fast computation of Krawtchouk moments

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, B.; Flusser, Jan

    2014-01-01

    Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf

  2. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    Science.gov (United States)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  3. First observation of magnetic moment precession of channeled particles in bent crystals

    International Nuclear Information System (INIS)

    Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan

    1992-01-01

    Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process

  4. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co [Programa de Física, Universidad del Quindo (Colombia); Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  5. Nucleon form factors and moments of generalized parton distributions using N{sub f}= 2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration

    2013-04-15

    We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.

  6. arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    CERN Document Server

    Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-05

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  7. Magnetic moment of a two-particle bound state in quantum electrodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    2002-01-01

    A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium

  8. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A. [Universita di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Cavoto, G. [' ' Sapienza' ' Universita di Roma, Rome (Italy); INFN, Sezione di Roma (Italy); Henry, L.; Martinez Vidal, F.; Ruiz Vidal, J. [IFIC, Universitat de Valencia-CSIC, Valencia (Spain); Marangotto, D. [Universita di Milano, Milan (Italy); INFN, Sezione di Milano (Italy); Merli, A.; Neri, N. [Universita di Milano, Milan (Italy); CERN, Geneva (Switzerland); INFN, Sezione di Milano (Italy)

    2017-12-15

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector. (orig.)

  9. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  10. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  11. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  12. Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.

    2013-01-01

    The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi

  13. Rotation invariants of vector fields from orthogonal moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš; Bujack, R.

    2018-01-01

    Roč. 74, č. 1 (2018), s. 110-121 ISSN 0031-3203 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Vector field * Total rotation * Invariants * Gaussian–Hermite moments * Zernike moments * Numerical stability Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0478329.pdf

  14. An Ising spin state explanation for financial asset allocation

    Science.gov (United States)

    Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit

    2016-03-01

    We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.

  15. Electromagnetic moments and effective operators in nuclei near and far from the stability line

    International Nuclear Information System (INIS)

    Matsuta, Kensaku; Minamisono, Tadanori; Ogawa, Yoko; Miyake, Toru; Morishita, Akio; Sato, Kazunori; Momota, Sadao; Nojiri, Yoichi; Mihara, Mototsugu; Fukuda, Mitsunori; Zhu, Sheng-Yung; Onishi, Takashi; Sasaki, Makoto; Yamaguchi, Takayuki; Minamisono, Kei; Akai, Hisazumi; Atsushi, Kitagawa; Torikoshi, Masami; Kanazawa, Mitsutaka; Nishio, Teiji; Koda, Shigeru; Otsubo, Tatashi; Fukuda, Shigekazu; Tanihata, Isao; Yoshida, Koichi; Ozawa, Akira; Kitagawa, Hisashi; Sagawa, Hiroyuki; Hanna, Stanley S.; Alonso, Jose R.; Krebs, Gary F.; Symons, T. James M.; Osaka-RIKEN-HIMAC Collaboration

    2003-12-01

    Quenching of neutron effective charge has been observed by measuring the quadrupole moment of 16 N. Moreover, the neutron effective charge may be quenched in the quadrupole moment of 21 F. This quenching of effective charges is discussed in terms of the overlap integrals of the wave functions of the valence nucleons and the core. Effective g-factors may be required to explain the large spin expectation value for the mass number 9 mirror nuclei, deduced from the iso-scalar magnetic moment

  16. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

    Science.gov (United States)

    Suwa, Hidemaro

    2013-03-01

    We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad

  17. Green function study of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic model

    International Nuclear Information System (INIS)

    Li Jun; Wei Guozhu; Du An

    2004-01-01

    The magnetic properties of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by a multisublattice Green-function technique which takes into account the quantum nature of Heisenberg spins. This model can be relevant for understanding the magnetic behavior of the new class of organometallic materials that exhibit spontaneous magnetic moments at room temperature. We discuss the spontaneous magnetic moments and the finite-temperature phase diagram. We find that there is no compensation point at finite temperature when only the nearest-neighbor interaction and the single-ion anisotropy are included. When the next-nearest-neighbor interaction between spin-((1)/(2)) is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other values in Hamiltonian fixed. The next-nearest-neighbor interaction between spin-((3)/(2)) has the effect of changing the compensation temperature

  18. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  19. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    Science.gov (United States)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  20. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying

    2011-01-01

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  1. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng

    2011-08-16

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  2. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  3. Proposed new test of spin effects in general relativity.

    Science.gov (United States)

    O'Connell, R F

    2004-08-20

    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernible. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars.

  4. Electromagnetic deflection of spinning particles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1992-01-01

    It is shown that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a point-like spin-half particle possessing an electric charge and magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. The equations obtained encompass the well-tested Lorentz force and Thomas-Bargmann-Michel-Telegdi spin equations, as well as providing a definite specification of the classical magnetic dipole force, whose exact form has been the subject of recent debate. Radiation reaction - the force and torque on an accelerated particle due to its self-interaction - is neglected at this stage. 18 refs

  5. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  6. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  7. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  8. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  9. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  10. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  11. Anomalous superconductivity in the tJ model; moment approach

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Rodriguez-Nunez, J.J.

    1997-01-01

    By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...

  12. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  13. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  14. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  15. Study on spin filtering and switching action in a double-triangular network chain

    Science.gov (United States)

    Zhang, Yongmei

    2018-04-01

    Spin transport properties of a double-triangular quantum network with local magnetic moment on backbones and magnetic flux penetrating the network plane are studied. Numerical simulation results show that such a quantum network will be a good candidate for spin filter and spin switch. Local dispersion and density of states are considered in the framework of tight-binding approximation. Transmission coefficients are calculated by the method of transfer matrix. Spin transmission is regulated by substrate magnetic moment and magnetic flux piercing those triangles. Experimental realization of such theoretical research will be conducive to designing of new spintronic devices.

  16. Quiet Moment around the Campfire

    Centers for Disease Control (CDC) Podcasts

    2014-06-18

    Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand.  Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/19/2014.

  17. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  18. Moment of Inertia by Differentiation

    Science.gov (United States)

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  19. Unteachable Moments and Pedagogical Relationships

    Science.gov (United States)

    Wang, Hongyu

    2016-01-01

    This paper discusses how Julia Kristeva's theory can inform our understanding of unteachable moments. It proposes a pedagogical relationship that can contain breakdowns of meanings and work toward breakthroughs to new awareness, particularly related to social justice pedagogy in teacher education. First, one example from the author's own teaching…

  20. Moment Distributions of Phase Type

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2011-01-01

    Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...

  1. Moment methods and Lanczos methods

    International Nuclear Information System (INIS)

    Whitehead, R.R.

    1980-01-01

    In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here

  2. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    Science.gov (United States)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  3. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  4. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  5. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  6. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  7. Moments Method for Shell-Model Level Density

    International Nuclear Information System (INIS)

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  8. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  9. Search for a permanent Xe-electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    A permanent electric dipole moment (EDM) of the isotope {sup 129}Xe would imply a breakdown of both parity P and time-reversal symmetry T and, through the CPT theorem, a breakdown in CP, the combined symmetries of charge conjugation C and parity P. Our goal is to improve the present experimental limit (d{sub Xe}<3.10{sup -27} ecm) by about three orders of magnitude. The most precise EDM limit on diamagnetic atoms was measured on {sup 199}Hg (d{sub Hg}<3.1.10{sup -29} ecm). To get more stringent limits, we perform a {sup 3}He/{sup 129}Xe clock comparison experiment with the detection of free spin precession of gaseous, nuclear polarized {sup 3}He or {sup 129}Xe samples with a SQUID as magnetic flux detector. The precession of co-located {sup 3}He/{sup 129}Xe nuclear spins are used as an ultra-sensitive probe for non-magnetic spin interactions of type δν∝ d{sub Xe}.E. With our experimental setup at the research center Juelich we are able to observe spin coherence times T{sub 2}{sup *} of several hours for both species. We report on first experimental results achieved within the MIXed-collaboration.

  10. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  11. TMRG studies on spin alignment in molecule-based ferrimagnetics [rapid communication

    Science.gov (United States)

    Liu, Q. M.; Yao, K. L.; Liu, Z. L.

    2005-05-01

    A physical picture of spin alignment in organic molecule-based ferrimagnets is presented from studying the thermal effective magnetic moment of the sublattice by use of the transfer matrix renormalization group. We conclude that the classical antiparallel spin alignment is not the most stable state. The three-spin system tends to parallel alignment when the exchange interaction between the biradical and the monoradical molecules is much weaker than that within the biradical, which can result in the decrease of the effective magnetic moment upon lowering the temperature. More importantly, we give the theoretical evidence that even the antiparallel spin alignment in the biradical monoradical alternating chain does not necessarily lead to ferrimagnetic spin ordering due to the formation of the spin singlet pairs, which suppresses the ferrimagnetic spin alignment.

  12. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  13. Measurement of the proton spin structure function g1p

    International Nuclear Information System (INIS)

    Pussieux, T.

    1994-10-01

    In order to check the Bjorken sum rule and confirm the EMC surprising conclusion on the spin structure of the proton, the measurement of the spin structure function of the proton has been performed by the Spin Muon Collaboration via the polarized muon nucleon deep inelastic scattering. The results of the 1993 run are presented within a kinematical range of 0.003 2 = 10 GeV 2 . The first moment of the polarized spin structure function g 1 p is found to be two standard deviations below the Ellis-Jaffe sum rule. Assuming SU(3) for hyperons β decays, the quark spin contribution to the proton spin is extracted. Combining all available data on proton, neutron and deuton, The Bjorken sum rule is confirmed within 10%. (author). 25 refs., 3 figs., 2 tabs

  14. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  15. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  16. The Critical Moment of Transition

    DEFF Research Database (Denmark)

    Svalgaard, Lotte

    2018-01-01

    By providing a holding environment to acknowledge sensitivities and address emotions, leadership programs prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... environment and entering a context characterized by activity and performance. This is a frequently debated challenge for both academics and providers of management learning. Yet, critical moments in this transition remain under-exposed and under-researched. The contribution of this article is a research study......—within the context of an international MBA program—of MBA students applying their knowledge from a Leadership Stream in an international consultancy project. This article contributes to the theory and practice of management learning by providing a lens through which subjective experience of critical moments...

  17. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  18. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  19. Nuclear spin content and constraints on exotic spin-dependent couplings

    International Nuclear Information System (INIS)

    Kimball, D F Jackson

    2015-01-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole–dipole and dipole–dipole couplings of nuclei leading to significant revisions of some published constraints. (paper)

  20. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  1. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    Science.gov (United States)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  2. Moment Distributions of Phase Type

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    In this paper we prove that the class of distributions on the positive reals with a rational Laplace transform, also known as matrix-exponential distributions, is closed under formation of moment distributions. In particular, the results are hence valid for the well known class of phase-type dist...... alternative representation in terms of sub{intensity matrices. Finally we are able to nd explicit expressions for both the Lorenz curve and the Gini index....

  3. Electric Dipole Moments of Hadrons

    OpenAIRE

    Wirzba, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...

  4. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  5. RKKY interaction in spin polarized armchair graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: rezania.hamed@gmail.com; Azizi, Farshad

    2016-11-01

    We present the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction. - Highlights: • Theoretical calculation of RKKY interaction of armchair graphene nanoribbon. • The investigation of the effect of spin polarization on RKKY interaction. • The investigation of electronic concentration on RKKY interaction of armchair graphene nanoribbon.

  6. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  7. Operational tools for moment characterization, entanglement verification and quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias

    2009-01-01

    In this thesis we address several different topics within the field of quantum information theory. These results can be classified to either enhance the applicability of certain conceptual ideas to be more suited for an actual experimental situation or to ease the analysis for further investigation of central problems. In detail, the present thesis contains the following achievements: We start our discussion with the question under which conditions a given set of expectation values is compatible with the first and second moments of the spin operators of a generic spin j state. We link this characterization of physical moments to the Bosesymmetric extension problem for a particular two qubit state that is completely determined by the given moments. Via this reformulation we can provide operational sub- and superset approximations in order to identify moments which are assured to be physical and others which are clearly incompatible with quantum mechanics. We show that this operational approximate solution becomes more accurate for increasing total spin numbers j and converges to the exact solution in the limiting case. Another part deals with the theoretical concept of entanglement witnesses. In particular, we concentrate how to improve the detection strength of a linear entanglement witness by nonlinear terms. We analyze two distinguished cases: Either we optimize the iteration method for a given target state or we try to improve the entanglement witness with respect to all entangled states equally. In the remaining parts we discuss different options in order to make already existing ideas more applicable for actual experiments, since most of the famous applications in quantum information theory have only been introduced on a very idealized level and hence are not directly valid for the real experiment. We investigate the theoretical concept of a squash model, that represents an elegant ''evaluation trick'' to directly apply for instance the security analysis of an

  8. Operational tools for moment characterization, entanglement verification and quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias

    2009-07-31

    In this thesis we address several different topics within the field of quantum information theory. These results can be classified to either enhance the applicability of certain conceptual ideas to be more suited for an actual experimental situation or to ease the analysis for further investigation of central problems. In detail, the present thesis contains the following achievements: We start our discussion with the question under which conditions a given set of expectation values is compatible with the first and second moments of the spin operators of a generic spin j state. We link this characterization of physical moments to the Bosesymmetric extension problem for a particular two qubit state that is completely determined by the given moments. Via this reformulation we can provide operational sub- and superset approximations in order to identify moments which are assured to be physical and others which are clearly incompatible with quantum mechanics. We show that this operational approximate solution becomes more accurate for increasing total spin numbers j and converges to the exact solution in the limiting case. Another part deals with the theoretical concept of entanglement witnesses. In particular, we concentrate how to improve the detection strength of a linear entanglement witness by nonlinear terms. We analyze two distinguished cases: Either we optimize the iteration method for a given target state or we try to improve the entanglement witness with respect to all entangled states equally. In the remaining parts we discuss different options in order to make already existing ideas more applicable for actual experiments, since most of the famous applications in quantum information theory have only been introduced on a very idealized level and hence are not directly valid for the real experiment. We investigate the theoretical concept of a squash model, that represents an elegant ''evaluation trick'' to directly apply for instance the

  9. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  10. Spins of superdeformed band in {sup 192}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    Determination of the spins of SD states is the most important challenge in the study of superdeformation. Knowledge of the spin will provide crucial information on SD bands, in particular on the fascinating phenomenon of bands with identical energies and moments of inertia. Angular distribution coefficients of the {gamma}rays decaying out of the {sup 192}Hg SD band were determined using Eurogam data. These coefficients, as well as the spectral shape and multiplicity of the spectrum, are compared with the results of calculations, thereby providing a check on these calculations. From the measured decay multiplicity and the calculated average spin removed per photon (0.3 h), we deduce the average spin {bar I}{sub decay} removed by the {gamma} rays connecting SD and normal states. The spin I{sub SD} of the SD band from which the decay occurs is given by I{sub SD} = {bar I} decay + {bar I} ND, where {bar I} ND is the average spin removed by the normal yrast states. The state from which the major decay out of the SD band occurs is found to have spin 9.5 {plus_minus} 0.8 h. Since angular momentum is (quantized), this leads to a spin assignment of 9 or 10 h. The latter value is favored since the yrast band in the SD well must have only even spin values. This constitutes the first deduction of spin from data in the mass 150 and 190 regions. The spin of 10 h agrees with the spin which is inferred from a model, using the observed moment of inertia (Im){sup (2)}{omega}.

  11. High spin states and Yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1981-01-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2 - . Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  12. High spin states and yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1980-12-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2. Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  13. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  14. Implanting Strong Spin-Orbit Coupling at Magnetoelectric Interfaces

    Science.gov (United States)

    2017-12-19

    drawback is that including both spin and orbital is computationally more expensive than the conventional method and consume significantly longer time...superlattices in Fig. 6. Right: The remnant magnetization anisotropy between the in- plane and out-of- plane directions for the 1/1-SL, which is...canted antiferromagnet. The out-of- plane canting of the spin-orbit moments is significantly enhanced (Fig. 10) compared with the nonpolar structure

  15. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-09-29

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  16. Lagrangian approach in spin-oscillations problem

    Directory of Open Access Journals (Sweden)

    P.V. Pyshkin

    2014-12-01

    Full Text Available Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits to study the spin dynamics in an open-circuit which contains capacitance and/or inductivity.

  17. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  18. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  19. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  20. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  1. On the interpretation of the support moment

    NARCIS (Netherlands)

    Hof, AL

    2000-01-01

    It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the

  2. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  3. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    Science.gov (United States)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  4. Modeling and simulation of spin-polarized transport at the kinetic and diffusive level

    International Nuclear Information System (INIS)

    Possanner, S.

    2012-01-01

    The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this

  5. Exact solution to the moment problem for the XY chain

    International Nuclear Information System (INIS)

    Witte, N.S.

    1996-01-01

    We present the exact solution to the moment problem for the spin-1/2 isotropic antiferromagnetic XY chain with explicit forms for the moments with respect to the Neel state, the cumulant generating function, and the Resolvent Operator. We verify the correctness of the Horn-Weinstein Theorems, but the analytic structure of the generating function (e -tH ) in the complex t-plane is quite different from that assumed by the t-Expansion and the Connected Moments Expansion due to the vanishing gap. This function has a finite radius of convergence about t = 0, and for large 't' has a leading descending algebraic series E(t)-E o ∼ At -2 . The Resolvent has a branch cut and essential singularity near the ground state energy of the form G(s)/s∼B|s+1| -3/4 exp(C|s+1| 1/2 ). Consequently extrapolation strategies based on these assumptions are flawed and in practice we find that the CMX methods are pathological and cannot be applied, while numerical evidence for two of the t-expansion methods indicates a clear asymptotic convergence behaviour with truncation order. (author). 28 refs., 2 figs

  6. Extracting the Omega- electric quadrupole moment from lattice QCD data

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, M.T. Pena

    2011-03-01

    The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].

  7. Electric and Magnetic Dipole Moments

    CERN Document Server

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  8. The Muon Electric Dipole Moment

    OpenAIRE

    Barger, Vernon; Kao, Chung; Das, Ashok

    1997-01-01

    The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...

  9. Elementary quantum mechanics of the neutron with an electric dipole moment.

    Science.gov (United States)

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  10. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  11. Spin transfer in reactions between heavy ions

    International Nuclear Information System (INIS)

    Dong Pil Min.

    1980-06-01

    The model presented affords a better understanding of the manner in which the orbital angular moment can be converted into an intrinsic spin in the collision between two heavy ions. After referring to the vector fields and the collective energy of a spheroidal nucleus, the calculation of the exchange of nucleons is described and the dissipation function is constructed. The spin transfer and the reorientation of the spin during the reaction are then examined (effect of friction and vibration). The estimated calculations are compared with the results of the 63 Cu+ 197 Au and 86 Kr+ 209 Bi experiments. The sensitivity of the calculation to the parameters of the model is discussed (nuclear potential, vibrational inertial parameter) [fr

  12. Angle and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic semi-metal CrO{sub 2}; Winkel- und Temperaturabhaengigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gold, S.

    2005-07-01

    The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)

  13. Determination of intrinsic spin Hall angle in Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  14. Determination of intrinsic spin Hall angle in Pt

    International Nuclear Information System (INIS)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  15. Crustal fraction of moment of inertia in pulsars

    International Nuclear Information System (INIS)

    Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.

    2015-01-01

    In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar

  16. Behaviour of a neutral particle with spin in an axial magnetic field

    International Nuclear Information System (INIS)

    Sorokin, S.V.; Ehpp, V.Ya.

    1982-01-01

    Proceeding from the Tamm-Good equation taking into account the spin influence on motion trajectory, the neutral particle motion tracjectory and vector turn of spin polarizition in axial magnetic field have been found. The behaviour of a neutral particle possessing its own magnetic moment in an axially-symmetric stationary magnetic field is considered

  17. Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Grezes, Cécile; Bertet, Patrice

    2013-01-01

    orders of magnitude longer than previously achieved. By calculating the evolution of the first and second moments of the spin-cavity system variables for realistic experimental parameters, we show that a memory based on NV center spins in diamond can store a qubit encoded on the |0> and |1> Fock states...

  18. Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni

    CERN Document Server

    Yang, X.F.; Xie, L.; Babcock, C.; Billowes, J.; Bissell, M.L.; Blaum, K.; Cheal, B.; Flanagan, K.T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L.K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Kraemer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papuga, J.; Sánchez, R.; Yordanov, D.T.

    2016-01-01

    Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\\mu$ ($^{79}$Zn) = $-$1.1866(10) $\\mu_{\\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\

  19. Reconstruction of convex bodies from moments

    DEFF Research Database (Denmark)

    Hörrmann, Julia; Kousholt, Astrid

    We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...

  20. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  1. Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1982-01-01

    We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy

  2. Spin structure of nucleon in QCD: inclusive and exclusive processes

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    2001-01-01

    There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes

  3. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using

  4. Partial transpose of two disjoint blocks in XY spin chains

    International Nuclear Information System (INIS)

    Coser, Andrea; Tonni, Erik; Calabrese, Pasquale

    2015-01-01

    We consider the partial transpose of the spin reduced density matrix of two disjoint blocks in spin chains admitting a representation in terms of free fermions, such as XY chains. We exploit the solution of the model in terms of Majorana fermions and show that such partial transpose in the spin variables is a linear combination of four Gaussian fermionic operators. This representation allows to explicitly construct and evaluate the integer moments of the partial transpose. We numerically study critical XX and Ising chains and we show that the asymptotic results for large blocks agree with conformal field theory predictions if corrections to the scaling are properly taken into account. (paper)

  5. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2001-01-01

    55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  6. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    Science.gov (United States)

    2016-01-01

    Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to

  7. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  9. Moment-to-moment dynamics of ADHD behaviour

    Directory of Open Access Journals (Sweden)

    Aase Heidi

    2005-08-01

    learning long behavioural sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD.

  10. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  11. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  12. Multi-shelled q-ball imaging. Moment-based orientation distribution function

    International Nuclear Information System (INIS)

    Umezawa, Eizou; Yamaguchi, Kojiro; Yoshikawa, Mayo; Ohno, Kana; Yoshikawa, Emi

    2010-01-01

    q-ball imaging (QBI) reconstructs the orientation distribution function (ODF) that describes the probability for a spin to diffuse in a given direction, and it is capable of identifying intravoxel multiple fiber orientations. The local maxima of ODF are assumed to indicate fiber orientations, but there is a mismatch between the orientation of a fiber crossing and the local maxima. We propose a novel method, multi-shelled QBI (MS-QBI), that gives a new ODF based on the moment of the probability density function of diffusion displacement. We test the accuracy of the fiber orientation indicated by the new ODF and test fiber tracking using the new ODF. We performed tests using numerical simulation. To test the accuracy of fiber orientation, we assumed that 2 fibers cross and evaluated the deviation of the measured crossing angle from the actual angle. To test the fiber tracking, we used a numerical phantom of the cerebral hemisphere containing the corpus callosum, projection fibers, and superior longitudinal fasciculus. In the tests, we compared the results between MS-QBI and conventional QBI under the condition of approximately equal total numbers of diffusion signal samplings between the 2 methods and chose the interpolation parameter such that the stabilities of the results of the angular deviation for the 2 methods were the same. The absolute value of the mean angular deviation was smaller in MS-QBI than in conventional QBI. Using the moment-based ODF improved the accuracy of fiber pathways in fiber tracking but maintained the stability of the results. MS-QBI can more accurately identify intravoxel multiple fiber orientations than can QBI, without increasing sampling number. The high accuracy of MS-QBI will contribute to the improved tractography. (author)

  13. Spin physics at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1986-01-01

    In this session a total of 25 contributed papers were presented studying a broad range of spin effects in nucleons and nuclei using electromagnetic (electrons and photons) and hadronic (pions and nucleons) probes. The status of the theory was characterized by its almost total absence. Only one theoretical contribution was presented at this session. Those experiments examining electromagnetic-, electroweak- and weak-strong interactions were emphasized

  14. The bond diluted spin-1 Blume-Emery-Griffiths model in a transverse field

    International Nuclear Information System (INIS)

    Ez Zahraouy, H.

    1993-09-01

    The effect of Bond-dilution on the magnetic properties of a quantum transverse spin-1 Blume-Emery-Griffiths model is investigated within an expansion technique for cluster identities of a spin-1 localized spin system. The longitudinal and transverse magnetizations and quadrupolar moments are studied for several values of the bond concentration. A general formula, applicable to structures with arbitrary coordination number N, are given. (author). 41 refs, 6 figs

  15. High-energy scattering of particles with anomalous magnetic moments in quantum field theory

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1976-01-01

    Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered

  16. Universal Effectiveness of Inducing Magnetic Moments in Graphene by Amino-Type sp3-Defects

    Directory of Open Access Journals (Sweden)

    Tao Tang

    2018-04-01

    Full Text Available Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp3-defects. As well, amino groups provide another potential sp3-type candidate to prepare magnetic graphene.

  17. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  18. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    Science.gov (United States)

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  19. The commensurate spin excitation in chromium: A polarised neutron investigation

    International Nuclear Information System (INIS)

    Pynn, R.; Stirling, W.G.

    1991-01-01

    A polarised neutron experiment with neutron energy analysis has been performed with a single-Q sample of chromium in a large magnetic field. The 4-meV ''commensurate'' mode is found to involve spin fluctuations parallel to the ordered chromium moments. 8 refs., 3 figs

  20. Spinor monopole harmonics and the Pauli spin equation

    International Nuclear Information System (INIS)

    Pereira, J.G.; Ferreira, P.L.

    1982-01-01

    In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt

  1. Summary of the 9th international symposium on high energy spin-physics

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1990-11-01

    Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p perpendicular production, transverse polarization and asymmetries from transversely polarized targets in high p perpendicular scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops

  2. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  3. The Critical Moment of Transition

    DEFF Research Database (Denmark)

    Svalgaard, Lotte

    2018-01-01

    By providing a holding environment to acknowledge sensitivities and address emotions, leadership programmes prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... – within the context of an international MBA program – of MBA students applying their knowledge from a Leadership Stream in an International Consultancy Project. This paper contributes to the theory and practice of management learning by providing lenses to understand subjective experiences of critical...... moments of transition, developing the notion of “mindful avoidance,” and pointing out a major and neglected potential space in the design of management education....

  4. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  5. Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys

    International Nuclear Information System (INIS)

    Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.

    2007-01-01

    Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments

  6. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  7. Nuclear spin and isospin excitations

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1992-01-01

    A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton

  8. Spin Sum Rules and Polarizabilities: Results from Jefferson Lab

    International Nuclear Information System (INIS)

    Jian-Ping Chen

    2006-01-01

    The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work

  9. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  10. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  11. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  13. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  14. Restrictions on the neutrino magnetic dipole moment

    International Nuclear Information System (INIS)

    Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.

    1987-01-01

    We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)

  15. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  16. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  17. Analysis of scaled-factorial-moment data

    International Nuclear Information System (INIS)

    Seibert, D.

    1990-01-01

    We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events

  18. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  19. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Brandon S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Draine, B. T., E-mail: brandon.s.hensley@jpl.nasa.gov [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2017-02-20

    In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).

  20. A white beam neutron spin splitter

    International Nuclear Information System (INIS)

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-01-01

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co 0.11 Fe 0.89 supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 angstrom -1 , whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths

  1. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  2. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  3. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  4. Fixed poles in electromagnetic processes and modification of Adler's neutrino sum rule due to quark anomalous magnetic moment

    International Nuclear Information System (INIS)

    Khare, A.

    1975-01-01

    We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)

  5. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  6. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  7. Moessbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe(12-2x)O19

    International Nuclear Information System (INIS)

    Williams, J.M.; Adetunji, J.; Gregori, M.

    2000-01-01

    We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction

  8. Spin dynamics in mesoscopic size magnetic systems: A 1HNMR study in rings of iron (III) ions

    International Nuclear Information System (INIS)

    Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.

    1997-01-01

    Two magnetic molecular clusters containing almost coplanar rings of iron (III) ions with spinS=5/2 have been investigated by 1 H NMR and relaxation measurements. The first system, which will be referred to as Fe6, is a molecule of general formula [NaFe 6 (OCH 3 ) 12 (C 17 O 4 H 15 ) 6 ] + ClO 4 - or [NaFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - or [LiFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - while the second type of ring, denoted Fe10, corresponds to the molecule [Fe 10 (OCH 3 ) 20 (C 2 H 2 O 2 Cl) 10 ]. The 1 H NMR linewidth is broadened by the nuclear dipolar interaction and by the dipolar coupling of the protons with the iron (III) paramagnetic moment. It is found that the nuclear spin-lattice relaxation rate, T 1 -1 , of the proton is a sensitive probe of the Fe spin dynamics. In both clusters, T 1 -1 decreases with decreasing temperatures from room temperature, goes through a peak just below about 30 K in Fe6 and 10 K in Fe10, and it drops exponentially to very small values at helium temperature. The temperature dependence of the relaxation rate is discussed in terms of the fluctuations of the local spins within the allowed total spin configurations in the framework of the weak collision theory to describe the nuclear relaxation. We use the calculated energy levels for the Fe6 ring based on a Heisenberg Hamiltonian and the value of J obtained from the fit of the magnetic susceptibility to describe semiquantitatively the behavior of T 1 -1 vs T. The exponential drop of T 1 -1 at low temperature is consistent with a nonmagnetic singlet ground state separated by an energy gap from the first excited triplet state. (Abstract Truncated)

  9. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    Science.gov (United States)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  10. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  11. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Amorim, R.; Tiomno, J.

    1977-01-01

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt

  12. Moments of nucleon generalized parton distributions from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Cyprus Institute, Nicosia; Carbonell, J.; Harraud, P.A.; Papinutto, M.; Constantinou, M.; Kallidonis, C.; Guichon, P.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-07-01

    We present results on the lower moments of the nucleon generalized parton distributions within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined using simulations on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized nonperturbatively and the values are given in the MS scheme at a scale μ=2 GeV. They are chirally extrapolated to the physical point in order to compare with experiment. The consequences of these results on the spin carried by the quarks in the nucleon are investigated. (orig.)

  13. A sensitive search for a muon electric dipole moment

    International Nuclear Information System (INIS)

    Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.

    2001-01-01

    We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon

  14. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  15. Kant’s Machiavellian Moment

    Directory of Open Access Journals (Sweden)

    Jay Foster

    2015-11-01

    Full Text Available At least two recent collections of essays – Postmodernism and the Enlightenment (2001 and What’s Left of Enlightenment?: A Postmodern Question (2001 – have responded to postmodern critiques of Enlightenment by arguing that Enlightenment philosophes themselves embraced a number of post-modern themes. This essay situates Kant’s essay Was ist Aufklärung (1784 in the context of this recent literature about the appropriate characterization of modernity and the Enlightenment. Adopting an internalist reading of Kant’s Aufklärung essay, this paper observes that Kant is surprisingly ambivalent about who might be Enlightened and unspecific about when Enlightenment might be achieved. The paper argues that this is because Kant is concerned less with elucidating his concept of Enlightenment and more with characterizing a political condition that might provide the conditions for the possibility of Enlightenment. This paper calls this political condition modernity and it is achieved when civil order can be maintained alongside fractious and possibly insoluble public disagreement about matters of conscience, including the nature and possibility of Enlightenment. Thus, the audience for the Aufklärung essay is not the tax collector, soldier or clergyman, but rather the sovereign. Kant enjoins and advises the prince that discord and debate about matters of conscience need not entail any political unrest or upheaval. It is in this restricted (Pocockian sense that the Enlightenment essay is Kant’s Machiavellian moment.

  16. Stereo Correspondence Using Moment Invariants

    Science.gov (United States)

    Premaratne, Prashan; Safaei, Farzad

    Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.

  17. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  18. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Science.gov (United States)

    Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.

    2015-01-01

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.

  19. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  20. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  1. Quadrupole Moments And Gamma Deformation Of Wobbling Excitations In 163Ln

    International Nuclear Information System (INIS)

    Goergen, A.; Hagemann, G.B.; Sletten, G.; Hamamoto, I.; Bengtsson, R.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Huebel, H.

    2005-01-01

    Wobbling is an excitation mode unique to triaxial nuclei. Even though it is a general consequence of triaxiality in nuclei, it has so far only been observed in the odd-mass Lu isotopes around 163Lu. The principal evidence for the wobbling mode is based on the pattern of rotational bands characterized and described by a wobbling phonon number and the decay between different bands belonging to the same family. A new measurement revealed lifetimes of states in an excited wobbling band for the first time and gave access to absolute transition probabilities for both in-band and interband transitions. A general recipe how to derive quadrupole moments for triaxial nuclei from experimental data is discussed. The results show a remarkable similarity of the quadrupole moments for the different bands, further supporting the wobbling scenario. A decrease of the quadrupole moments is observed with increasing spin. This is attributed to an increase in triaxiality with spin, which can at the same time explain the dependence of the interband transitions on spin. Such an increase in triaxiality is qualitatively reproduced by cranking calculations to which the experimental results are compared

  2. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  3. Empirical model with independent variable moments of inertia for triaxial nuclei applied to 76Ge and 192Os

    Science.gov (United States)

    Sugawara, M.

    2018-05-01

    An empirical model with independent variable moments of inertia for triaxial nuclei is devised and applied to 76Ge and 192Os. Three intrinsic moments of inertia, J1, J2, and J3, are varied independently as a particular function of spin I within a revised version of the triaxial rotor model so as to reproduce the energy levels of the ground-state, γ , and (in the case of 192Os) Kπ=4+ bands. The staggering in the γ band is well reproduced in both phase and amplitude. Effective γ values are extracted as a function of spin I from the ratios of the three moments of inertia. The eigenfunctions and the effective γ values are subsequently used to calculate the ratios of B (E 2 ) values associated with these bands. Good agreement between the model calculation and the experimental data is obtained for both 76Ge and 192Os.

  4. Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair

    International Nuclear Information System (INIS)

    Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.

    2010-01-01

    Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)

  5. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    Science.gov (United States)

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  6. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    Science.gov (United States)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of , and orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

  7. Closed forms and multi-moment maps

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    2013-01-01

    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...

  8. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  9. 6-quark contribution to nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ito, H.

    1985-01-01

    The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes

  10. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  11. Dynamical moments of inertia for superdeformed nuclei

    International Nuclear Information System (INIS)

    Obikhod, T.V.

    1995-01-01

    The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd

  12. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  13. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  14. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  15. GMAG Dissertation Award Talk: Zero-moment Half-Metallic Ferrimagnetic Semiconductors

    Science.gov (United States)

    Jamer, Michelle E.

    2015-03-01

    Low- and zero-moment half-metallic ferrimagnetic semiconductors have been proposed for advanced applications, such as nonvolatile RAM memory and quantum computing. These inverse-Heusler materials could be used to generate spin-polarized electron or hole currents without the associated harmful fringing magnetic fields. Such materials are expected to exhibit low to zero magnetic moment at room temperature, which makes them well-positioned for future spin-based devices. However, these compounds have been shown to suffer from disorder. This work focuses on the synthesis of these compounds and the investigation of their structural, magnetic, and transport properties. Cr2CoGa and Mn3Al thin films were synthesized by molecular beam epitaxy, and V3Al and Cr2CoAl were synthesized via arc-melting. Rietveld analysis was used to determine the degree of ordering in the sublattices as a function of annealing. The atomic moments were measured by X-ray magnetic circular and linear dichroism confirmed antiferromagnetic alignment of sublattices and the desired near-zero moment in several compounds. In collaboration with George E. Sterbinsky, Photon Sciences Directorate, Brookhaven National Laboratory; Dario Arena Photon Sciences Directorate, Brookhaven National Laboratory; Laura H. Lewis, Chemical Engineering, Northeastern University; and Don Heiman, Physics, Northeastern University. NSF-ECCS-1402738, NSF-DMR-0907007.

  16. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  17. The magnetic moments of the proton and the antiproton

    CERN Document Server

    Ulmer, S.; Blaum, K.; Braeuninger, S.; Franke, K.; Kracke, H.; Leiteritz, C.; Matsuda, Y.; Nagahama, H.; Ospelkaus, C.; Rodegheri, C.C.; Quint, W.; Schneider, G.; Smorra, C.; Van Gorp, S.; Walz, J.; Yamazaki, Y.

    2014-01-01

    Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particle's spin state. Based on this success the proton magnetic moment $\\mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $\\mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $\\mu_{\\bar{p}}$. An improvement in precision of $\\mu_{\\bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryo...

  18. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  19. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  20. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  1. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  2. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  3. Gravitational effects on measurements of the muon dipole moments

    Directory of Open Access Journals (Sweden)

    Andrew Kobach

    2016-10-01

    Full Text Available If the technology for muon storage rings one day permits sensitivity to precession at the order of 10−8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM. Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ∼10−29 ecm in a storage ring with vertical magnetic field of ∼1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ≲10−36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.

  4. The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC

    Science.gov (United States)

    Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.

    2017-04-01

    The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.

  5. Magnetic moment of the fragmentation-aligned F61e (9/2+) isomer

    International Nuclear Information System (INIS)

    Matea, I.; Georgiev, G.; Lewitowicz, M.; Santos, F. de Oliveira; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Neyens, G.; Borremans, D.; Himpe, P.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Sawicka, M.

    2004-01-01

    We report on the g factor measurement of an isomer in the neutron-rich F 26 61 e (E * =861 keV and T 1/2 =239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods

  6. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  7. Ab initio study of the RbSr electronic structure: Potential energy curves, transition dipole moments, and permanent electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Pototschnig, Johann V., E-mail: johann.pototschnig@tugraz.at; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E., E-mail: wolfgang.ernst@tugraz.at [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm{sup −1}. We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) and Rb (5p {sup 2}P°) + Sr (5s{sup 2} {sup 1}S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  8. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    Science.gov (United States)

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  9. On the mechanism of spin-dependent (e,2e) scattering from a ferromagnetic surface

    International Nuclear Information System (INIS)

    Samarin, S N; Sergeant, A D; Pravica, L; Cvejanovic, D; Wilkie, P; Guagliardo, P; Williams, J F; Artamonov, O M; Suvorova, A A

    2009-01-01

    A simple model is suggested for a qualitative analysis of spin-dependent (e,2e) reaction on a ferromagnetic surface. The model is based on the scattering of the primary electron with the average spin projection 1 > by the valence electron with the average spin projection 2 >. To test the model the energy distributions of correlated electron pairs are measured for parallel and anti-parallel orientations of the magnetic moment of the cobalt film and polarization vector of the incident beam. The proposed model explains qualitatively the spin-asymmetry of the measured binding energy spectrum.

  10. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  11. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  12. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  13. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  14. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  15. Magnetic response of brickwork artificial spin ice

    Science.gov (United States)

    Park, Jungsik; Le, Brian L.; Sklenar, Joseph; Chern, Gia-Wei; Watts, Justin D.; Schiffer, Peter

    2017-07-01

    We have investigated the response of brickwork artificial spin ice to an applied in-plane magnetic field through magnetic force microscopy, magnetotransport measurements, and micromagnetic simulations. We find that, by sweeping an in-plane applied field from saturation to zero in a narrow range of angles near one of the principal axes of the lattice, the moments of the system fall into an antiferromagnetic ground state in both connected and disconnected structures. Magnetotransport measurements of the connected lattice exhibit unique signatures of this ground state. Also, modeling of the magnetotransport demonstrates that the signal arises at vertex regions in the structure, confirming behavior that was previously seen in transport studies of kagome artificial spin ice.

  16. On spin-canting in maghemite particles

    DEFF Research Database (Denmark)

    Linderoth, Søren; Hendriksen, Peter Vang; Bødker, F.

    1994-01-01

    The degree of alignment of the magnetic moments of Fe3+ ions in ultrafine maghemite particles has been studied in samples with induced magnetic texture. The textured samples were prepared by freezing ferrofluids, containing 7.5 nm maghemite particles, in a magnetic field. Mössbauer spectroscopy...... studies of the textured samples in large magnetic fields demonstrate that the lack of full alignment is not an effect of large magnetic anisotropy, as suggested recently, but that the effect is rather due to canting of individual spins. Journal of Applied Physics is copyrighted by The American Institute...

  17. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  18. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  19. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  20. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  1. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  2. NMR study of the molecular nanomagnet [Fe8(N3C6H15)6O2(OH)12]·[Br8·9H2O] in the high-spin magnetic ground state

    International Nuclear Information System (INIS)

    Furukawa, Y.; Kumagai, K.; Lascialfari, A.; Aldrovandi, S.; Borsa, F.; Sessoli, R.; Gatteschi, D.

    2001-01-01

    The magnetic molecular cluster [Fe 8 (N 3 C 6 H 15 ) 6 O 2 (OH) 12 ] 8+ [Br 8 ·9H 2 O] 8- , in short Fe8, has been investigated at low temperature by 1 H-NMR and relaxation measurements. Some measurements of 2 D-NMR in partially deuterated Fe8 clusters will also be reported. Upon decreasing temperature the NMR spectra display a very broad and structured signal which is the result of the internal local fields at the proton sites due to the local moments of the Fe(III) ions in the total S=10 magnetic ground state. The proton and deuteron NMR spectra have been analyzed and the different resonance peaks have been attributed to the different proton groups in the molecule. The simulation of the spectra by using a dipolar hyperfine field and the accepted model for the orientation of the Fe(III) local moments do not agree with the experiments even when the magnitude of the local Fe(III) moments is allowed to vary. It is concluded that a positive contact hyperfine interaction of the same order of magnitude as the dipolar interaction is present for all proton sites except the water molecules. The temperature and magnetic field dependence of the nuclear spin-lattice relaxation rate is ascribed to the fluctuations of the local Fe(III) moments, which follow rigidly the fluctuations of the total ground state magnetization of the nanomagnet. By using a simple model already utilized for the Mn12 cluster, we derive the value of the spin phonon coupling constant which determines the lifetime broadening of the different magnetic quantum number m substates of the S=10 ground state. It is shown that the lifetime broadening decreases rapidly on lowering the temperature. When the lifetime becomes longer than the reciprocal of the frequency shift of the proton lines a structure emerges in the NMR spectrum reflecting the ''frozen'' local moment configuration

  3. Lifetimes and magnetic moments in odd-odd 70 As

    International Nuclear Information System (INIS)

    Pantelica, D.; Negoita, F.; Stanoiu, M.

    1998-01-01

    The extensive experimental and theoretical work on the structure of N∼Z, A = 60-80 nuclei revealed many interesting features: large prolate deformations (β = 0.4), strong shape variations as a function of particle number, excitation energy, spin and shape coexistence effects. They are related with drastic changes of properties observed in nuclei with Z≥33 when going from spherical nuclei with N = 50 to neutron deficient nuclei with N = 38 or 40. Both the rapid changes in structure and the shape coexistence appear to reflect the competition between the shell gaps which occur at large oblate and prolate deformations near nucleon numbers 36 and 38 for both protons and neutrons. For N∼Z nuclei the same shell gaps appear simultaneously for both protons and neutrons and reinforce each other. The microscopic structure of the nuclei in the mass region A = 60-80 is essentially determined by the 1g 9/2 , 2p 1/2 , 1f 5/2 and 2p 3/2 orbitals. Because no unique interpretation of the unusual features discovered in these nuclei exists, the systematic experimental study of structure of these nuclei is still an interesting subject. As part of a systematic experimental study undertaken to investigate the structure of neutron deficient, odd-odd As nuclei, 68,70,72 As, the level scheme of 70 As was investigated using heavy ion induced reactions and in-beam γ-ray spectroscopy techniques. At energies between 500 and 900 keV a multiplet of negative parity levels has been observed. At higher energies a high-spin positive parity sequence of levels starting with a E x = 1676 keV, J π 8 + level is strongly populated. Additional information is required in order to establish the structure of low and high-spin levels of both parities. The magnetic moments of the 8 + and 9 + levels have been measured using the time-integral perturbed angular distribution technique and the lifetimes of four levels have been determined using the recoil-distance method. From the measured lifetime for the 9

  4. Moments analysis of concurrent Poisson processes

    International Nuclear Information System (INIS)

    McBeth, G.W.; Cross, P.

    1975-01-01

    A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)

  5. Exchange currents for hypernuclear magnetic moments

    International Nuclear Information System (INIS)

    Saito, K.; Oka, M.; Suzuki, T.

    1997-01-01

    The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)

  6. Moment analysis of hadronic vacuum polarization

    Directory of Open Access Journals (Sweden)

    Eduardo de Rafael

    2014-09-01

    Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  7. Moment analysis of hadronic vacuum polarization

    International Nuclear Information System (INIS)

    Rafael, Eduardo de

    2014-01-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data

  8. Moment analysis of hadronic vacuum polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, Eduardo de

    2014-09-07

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  9. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  10. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  11. Moments method in the theory of accelerators

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.

    1984-01-01

    The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge

  12. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is

  13. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  14. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  15. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  16. Constituent quarks and the gluonic contribution to the spin of the nucleon

    International Nuclear Information System (INIS)

    Eldahoumi, Gamal

    2009-01-01

    The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)

  17. Constituent quarks and the gluonic contribution to the spin of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Eldahoumi, Gamal

    2009-01-15

    The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)

  18. The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei

    International Nuclear Information System (INIS)

    Karahodjaev, A.K.; Kuyjonov, H.

    2003-01-01

    The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel

  19. Magnetic and electric dipole moments of the H 3Δ1 state in ThO

    International Nuclear Information System (INIS)

    Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.

    2011-01-01

    The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  20. Low-spin identical bands in odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C; Garrett, J D; Winchell, D F; Smith, A [Oak Ridge National Lab., TN (United States)

    1992-08-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig.

  1. Low-spin identical bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  2. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  3. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig

  4. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  5. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  6. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  7. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  8. Droplet-model predictions of charge moments

    International Nuclear Information System (INIS)

    Myers, W.D.

    1982-04-01

    The Droplet Model expressions for calculating various moments of the nuclear charge distribution are given. There are contributions to the moments from the size and shape of the system, from the internal redistribution induced by the Coulomb repulsion, and from the diffuseness of the surface. A case is made for the use of diffuse charge distributions generated by convolution as an alternative to Fermi-functions

  9. Moments of the very high multiplicity distributions

    International Nuclear Information System (INIS)

    Nechitailo, V.A.

    2004-01-01

    In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type

  10. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  11. From moments to functions in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Klein, Sebastian; Kauers, Manuel; Schneider, Carsten

    2009-02-01

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  12. Estimation of Uncertainties of Full Moment Tensors

    Science.gov (United States)

    2017-10-06

    For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year

  13. Moments expansion densities for quantifying financial risk

    OpenAIRE

    Ñíguez, T.M.; Perote, J.

    2017-01-01

    We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram-Charlier distribution is a particular case of the ME-type of densities. The latte...

  14. From moments to functions in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2009-02-15

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  15. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    Science.gov (United States)

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  17. Totally James

    Science.gov (United States)

    Owens, Tom

    2006-01-01

    This article presents an interview with James Howe, author of "The Misfits" and "Totally Joe". In this interview, Howe discusses tolerance, diversity and the parallels between his own life and his literature. Howe's four books in addition to "The Misfits" and "Totally Joe" and his list of recommended books with lesbian, gay, bisexual, transgender,…

  18. Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-01-01

    The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.

  19. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  20. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin