WorldWideScience

Sample records for total soil nitrogen

  1. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning modern farming techniques, their data availability is limited for many applications in the developing word. This study is designed to estimate BD and TN from soil properties, land-use systems, soil types and landforms in the ...

  2. Total Nitrogen and Available Phosphorus Dynamics in Soils ...

    African Journals Online (AJOL)

    Total nitrogen and available phosphorus concentration of soils in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation (Hevea brasiliensis) and a mature forest in the west African Rainforest belt in southern Nigeria were investigated in order to determine the ...

  3. Uptake of fertilizer nitrogen and soil nitrogen by rice using 15N-labelled nitrogen fertilizer

    International Nuclear Information System (INIS)

    Reddy, K.R.; Patrick, W.H. Jr.

    1980-01-01

    Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil + fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant. (orig.)

  4. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  5. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  6. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China

    Science.gov (United States)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui

    2006-10-01

    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  7. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  8. Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar

    Science.gov (United States)

    Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo

    2018-03-01

    Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.

  9. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  10. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    Science.gov (United States)

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  11. Mineralization of Nitrogen in Hydromorphic Soils Amended with ...

    African Journals Online (AJOL)

    ... to 320.00 mg kg-1 for Mangrove soil (mangal acid sulphate soils). The order of cumulative nitrogen released in the waste amended soil followed the order: sewage sludge>kitchen waste> poultry manure> oil palm waste> cow manure. Total mineralized N indicated negative correlation with total organic N and C:N ratio ...

  12. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  13. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  14. Effects of Nitrogen and Water on Soil Enzyme Activity and Soil Microbial Biomass in Stipa baicalensis Steppe,Inner Mongolia of North China

    Directory of Open Access Journals (Sweden)

    WANG Jie

    2014-06-01

    Full Text Available In this paper, eight nitrogen treatments were applied at 0 g·m -2(N0, 1.5 g·m -2(N15, 3.0 g·m -2(N30, 5.0 g·m -2(N50, 10.0 g·m -2(N100, 15.0 g·m -2(N150, 20.0 g·m -2(N200, 30.0 g·m -2(N300 as NH 4 NO 3 and adding water to simulate summer rainfall of 100 mm, the interactive experiment was set to explore the effects of nitrogen and water addition in Stipa baicalensis steppe on soil nutrients, enzyme activities and soil microbial biomass. The results showed that the nitrogen and water addition changed soil physico-chemical factors obviously, the content of soil total organic carbon, total nitrogen, nitrate nitrogen and ammonium nitrogen increased along with the increasing of application rate of nitrogen, on the contrary, the soil pH value had decreasing trend. Appropriate application of nitrogen could enhance the activity of urease and catalase but decreased the activity of polyphenol oxidase. Nitrogen and water addition had significant effect on soil microbial biomass C and N. Higher level of N fertilizer significantly reduced microbial biomass C, and the microbial biomass N was on the rise with the application rate of nitrogen. The addition of water could slow the inhibition of nitrogen to microorganism and increase the microbial biomass C and N. A closed relationship existed in soil nutrient, activities of soil enzyme and soil microbial biomass C and N. The significantly positive correlation existed between total N, organic C, nitrate N and catalase, significantly negative correlation between nitrate N, ammonium N, total N and polyphenol oxidase. Microbial biomass N was significantly positive correlated with total N, nitrate N, ammonium N, catalase, phosphatase, and was negative correlated with polyphenol oxidase. Microbial biomass C was significantly positive correlated with polyphenol oxidase, and was negative correlated with catalase.

  15. [Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages].

    Science.gov (United States)

    Miao, Juan; Zhou, Chuan-Yan; Li, Shi-Jie; Yan, Jun-Hua

    2014-03-01

    Taking three Pinus yunnanensis forests at different ages (19, 28 and 45 a) in Panxian County of Guizhou Province as test objects, we investigated vertical distributions and accumulation rates of soil organic carbon (SOC) and total nitrogen (TN), as well as their relationships with soil bulk density. For the three forests at different age stages, SOC and TN changed consistently along the soil profile, declining with the soil depth. Both SOC and TN storage increased with the forest age. The SOC and TN storage amounts were 96.24, 121.65 and 148.13 t x hm(-2), and 10.76, 12.96 and 13.08 t x hm(-2) for the forest stands with 19 a, 28 a and 45 a, respectively. SOC had a significant positive correlation with soil TN, while both of them had a significant negative relationship with the soil bulk density. The accumulation rates of both SOC and TN storage at different growth periods were different, and the rate in the period from age 19 to 28 was higher than in the period from age 28 to 45.

  16. PENETRATION OF NITROGEN INTO WATER AS A RESULT OF FERTILIZATION OF LIGHT SOIL

    Directory of Open Access Journals (Sweden)

    Franciszek Czyżyk

    2014-10-01

    Full Text Available In this article there are present the results of six-year study of infiltration of nitrogen through the sand soil (loamy sand. Every year the soil was fertilized by compost (from sewage sludge and equivalent doses of nitrogen in mineral fertilizers. Two variants of compost fertilization (K1-10 and K2-15 g N·m-2 were used. Additionally two variants of NPK with equivalent doses of nitrogen as an ammonium nitrate supplemented with PK as a superphosphate and potassium salt were applied. Systematically there were investigated the volume of all leachates and their chemical composition. With increasing doses of fertilizers the concentrations of total nitrogen and nitrate nitrogen in the leachate were increased. The concentration of nitrogen in the leachate from the soil fertilized by nitrate was much greater than in compost with equivalent dose of nitrogen. Not only nitrates but also nitrogen from soluble organic compounds were rinsed from the soil. In the case of soil fertilized by compost the participation of nitrates in the total value of nitorgen in the leachate was 41-77%. However in the case of fertilization by ammonium sulphate this proportion was significantly higher and was in the range 60-95%. Over the years, a systematic soil fertilization by both ways increased the nitrogen concentrations in leachate. It shows that in the soil there is surplus of nitrogen, increasing during the time.

  17. Organic nitrogen components in soils from southeast China*

    Science.gov (United States)

    Chen, Xian-you; Wu, Liang-huan; Cao, Xiao-chuang; Zhu, Yuan-hong

    2013-01-01

    Objective: To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated. Methods: Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis. Results: K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools. Conclusions: EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N. PMID:23549843

  18. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  19. Importance of soil nitrogen and select intensifying measures in the soil-plant-fertilizer system demonstrated in sugar beets

    International Nuclear Information System (INIS)

    Rauhe, K.; Sielaff, B.; Barth, F.J.

    1981-01-01

    Sugar beets were gradually fertilized with 15 N-labelled nitrogen fertilizer without or in combination with irrigation. To gain optimum crop yields 180 - 200 kg/ha fertilizer nitrogen were required. Within the range of maximum yield the total nitrogen uptake amounted to 300 - 360 kg/ha under conditions of irrigation. Nitrogen was taken up from the fertilizer by 40% and from the soil by 60%. The immobilization rate of fertilizer nitrogen was near 30% after 2 years of vegetation. Only 33% and 25%, resp., of soil nitrogen could be replaced by fertilizing without and combined with irrigation, resp. It was shown that despite of increased application of the main intensifying factors, nitrogen and water, the soil nitrogen was mineralized intensively

  20. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  1. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  2. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  3. Nitrogen uptake and fertilizer nitrogen use efficiency of wheat under different soil water conditions

    International Nuclear Information System (INIS)

    Wang Baiqun; Zhang Wei; Yu Cunzu

    1999-01-01

    The pot experiment was conducted to study the effects of soil water regime and fertilizer nitrogen rate on the yields, nitrogen uptake and fertilizer nitrogen utilization of wheat by using 15 N tracer method. The results showed that the aboveground biomass, stem yield and grain yield increased with the increase of soil moisture in the fertilizer nitrogen treatments. All the yield increased with the increase of the fertilizer nitrogen rate in the soil water treatments. It was found that both soil water regime and fertilizer nitrogen rate significantly influenced the amount of nitrogen uptake by wheat according to the variance analysis. The amount of nitrogen uptake increased with the rise of the soil moisture in fertilizer nitrogen treatments and the amount also increased with the increase of the urea nitrogen rate in the soil water regime. Soil water regimes not only had an impact on nitrogen uptake but also had a close relationship with soil nitrogen supply and fertilizer nitrogen use efficiency. The soil A values decreased in urea treatment and increased with the rise of the soil moisture in the combination treatment of urea with pig manure. The fertilizer nitrogen use efficiency rose with the rise of the soil moisture in the same fertilizer nitrogen treatment. The fertilizer nitrogen use efficiency of the urea treatment was 13.3%, 27.9% and 32.3% in the soils with 50%, 70% and 90% of the field water capacity, respectively. The fertilizer nitrogen use efficiency in the combination treatment of urea with pig manure was 20.0%, 29.9% and 34.4% in the soils of above three levels, respectively. It was concluded that the low soil moisture restricted urea nitrogen use efficiency (UNUE) and the UNUE could be raised by combination treatment of urea with manure in the soil of enough moisture

  4. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  5. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China.

    Science.gov (United States)

    Xu, Yan; Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-07-14

    Soils play an important role in sequestrating atmospheric CO₂. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg -1 and 0.21 g·kg -1 , respectively) to the cropland (10.73 g·kg -1 and 1.3 g·kg -1 , respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg -1 and 1.49 g·kg -1 , respectively) were greater than those in the young farmland (5.76 g·kg -1 and 0.86 g·kg -1 , respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m -2 , 1.52 kg·C·m -2 , and 3.31 kg·C·m -2 , respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m -2 , 0.23 kg·N·m -2 , and 0.38 kg·N·m -2 , respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.

  6. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    Science.gov (United States)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  7. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    Science.gov (United States)

    Wang, Xuyang; Chen, Yinping; Lian, Jie; Luo, Yongqing; Niu, Yayi; Gong, Xiangwen

    2018-01-01

    The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land. PMID:29771979

  8. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  9. Fertilizer nitrogen fixation in plants and its transmutation in soils in case of annual application

    International Nuclear Information System (INIS)

    Shilova, E.I.; Smirnov, P.M.; Khon, N.I.

    1974-01-01

    Using certain combinations of 15 N labeled and unlabeled nitrogen-containing fertilizers data were obtained for direct determination of nitrogen balance in the year of fertilization and subsequently. Annual and total (for 3 years) increment in utilization of soil nitrogen resulting from repeated fertilization was also determined. Coefficient of nitrogen utilization by barley decreased over the 3-year period after additional application of ammonium sulfate while biological immobilization of nitrogen tended to increase. Application of straw during the first year of the experiment did not significantly affect the nitrogen balance in the following years. The total coefficient of nitrogen utilization for the 2 to 3-year period was higher than that of the first year while biological immobilization was relatively lower. Additional utilization of soil nitrogen as compared to the control was the same over the whole 3-year period; additional mobilization (annual and total) was relatively higher due to lower removal of soil nitrogen in the subsequent years. Utilization of previously immobilized nitrogen was higher in the case of repeated fertilization than without application of nitrogen fertilizers. The content of newly immobilized nitrogen during 3 years in the hydrolyzable undistilable fraction (nitrogen of bounded amino acids) was relatively lower and this was accompanied by the growth of hydrolyzable distilable and unhydrolyzable nitrogen

  10. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  11. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    Science.gov (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  12. Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Padre, B.C. Jr.

    1975-01-01

    Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil was immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen was immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions. The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amount of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive stages of growth. Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soil-plant system was reduced by the addition of rice straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop. The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conditions used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive stage seemed to decrease as the soil moisture tension increased. (auth.)

  13. The soil acidity as restrictive factor of the use of nitrogen fertilizer by spring barley

    International Nuclear Information System (INIS)

    Hejnak, V.; Lippold, H.

    1999-01-01

    In two - year micro - plot trials was studied the effect of soil pH value (pH > 6,5 and pH 15 N in first year and no enriched in second year, rates of 0, 85, 170 and 255 mg N per pot, i.e. 0, 30, 60 and 90 kg N.ha -1 ) on the spring barley productivity and on the use of nitrogen fertilizer by plants in the application year of 15 N and in the following year. The productivity of spring barley is significantly higher in neutral soil than in acid soil. The gradated rates of nitrogen fertilization increased this difference. The total nitrogen uptake by plants was higher in neutral soil. The share of the nitrogen from 'the old soil's supply' in the total uptake by the harvest ranges from 95 to 82 % and is practically identical in studied soils. 'Priming effect' was higher in soil with better fertility (153 - 186 mg N per pot) than in acid soil (to 49 mg N per pot only). The gradated rates of ammonium sulphate increased the uptake nitrogen from fertilizer by harvest of spring barley in the application year of 15 N from 39 mg N to 107 mg N per pot in neutral soil and from 26 mg N to 83 mg N per pot in acid soil and in the following year from 3,05 mg N to 8,15 mg N per pot in neutral soil and from 1,76 mg N to 3,37 mg N per pot in acid soil. The total balance of fertilizer nitrogen ( 15 N) in soil - crop system in two years from application showed that in neutral soil 46 % used by spring barley (42 % in the application year and 4 % in the following year), 16 % rested in soil and loss was 38 % and in acid soil 35 % used by harvest (33 % in first year and 2 % second year), 12 % rested in soil and loss was 53 %. Refs. 5 (author)

  14. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  15. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  16. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  18. Soil Carbon and Nitrogen Stock as Affected by Agricultural Wastes in a Typic Haplusult of Owerri, Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Stanley Uchenna Onwudike

    2016-07-01

    Full Text Available We evaluated the effect of saw dust ash (SDA and poultry droppings (PD on soil physico-chemical properties, soil carbon and nitrogen stock and their effects on the growth and yield of okra (Abelmoshus esculentus on a typic haplusult in Owerri, Imo State Southeastern Nigeria. The experiment was a factorial experiment consisted of saw dust ash applied at the rates of 0, 5 and 10 t/ha and poultry droppings applied at the rates of 0, 5 and 10 t/ha. The treatments were laid out in a randomized complete block design and replicated four times. Results showed that plots amended with 10 t/ha PD + 10 t/ha SDA significantly reduced soil bulk density from 1.37 – 1.07 g/cm3, increased soil total porosity from 48.4 – 59.7% and the percentage of soil weight that is water (soil gravimetric moisture content was increased by 68.4%. There were significant improvements on soil chemical properties with plots amended with 10 t/ha PD + 10 t/ha SDA recording the highest values on soil organic carbon, soil total nitrogen and exchangeable bases. Plots amended with 10 t/ha PD + 10 t/ha SDA significantly increased soil carbon stock by 24% and soil nitrogen stock by 49.5% more than other treatments. There was significant increase in the growth of okra when compared to the un-amended soil with application of 10 t/ha PD + 10 t/ha SDA increasing the fresh okra pod yield by 78.5%. Significant positive correlation existed between SCS and organic carbon (r = 0.6128, exchangeable Mg (r= 0.5035, total nitrogen (r = 0.6167 and soil pH (r = 0.5221. SNS correlated positively with organic carbon (r = 0.5834, total nitrogen (r= 0.6101 and soil pH (r = 5150. Therefore applications of these agro-wastes are effective in improving soil properties, increasing soil carbon and nitrogen stock. From the results of the work, application of 10 t/ha PD + 10 t/ha SDA which was the treatment combination that improved soil properties and growth performances of okra than other treatments studied is

  19. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America

    NARCIS (Netherlands)

    Batjes, N.H.

    2000-01-01

    Organic carbon and total nitrogen stocks for South America are computed using four 1:5,000,000 scale soil data sets of different spatial resolution. These are the 60' by 60' resolution Zobler soil data file, the 30' by 30' resolution World Inventory of Soil Emission Potentials (WISE) database, a 5'

  20. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    Science.gov (United States)

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  1. Mineralization of nitrogen by protozoan activity in soil

    NARCIS (Netherlands)

    Kuikman, P.

    1990-01-01

    In general, more than 95% of the nitrogen in soils is present in organic forms. This nitrogen is not directly available to plants unless microbial decomposition takes place with the release of mineral nitrogen. In modern agriculture, nitrogen is often applied to arable soils as a fertilizer

  2. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  3. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    OpenAIRE

    Akinpelu, Enoch A.; Adetunji, Adewole T.; Ntwampe, Seteno K.O.; Nchu, Felix; Mekuto, Lukhanyo

    2017-01-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NC...

  4. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  5. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    Science.gov (United States)

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  6. Gaseous losses of fertilizer nitrogen from soils under various conditions

    International Nuclear Information System (INIS)

    Smirnov, P.M.; Pedishyus, R.K.

    1974-01-01

    Effects of aerobic and anaerobic conditions; pH, and soil sterilization on the nitrogen loss from ( 15 NH 4 ) 2 SO 4 , Ca( 15 NO 3 ) 2 and Na 15 NO 2 have been studied in vitro. Composition of the liberated gases has been determined by the adsorption chromatography technique. Gaseous losses of fertilizer nitrogen are shown to proceed most intensely during first 10 to 30 days after nitrogen application, Ca(NO 3 ) 2 nitrogen loss being much higher than that of (NH 4 ) 2 SO 4 . Under anaerobic conditions nitrogen losses are markedly higher than in the presence of oxygen. Nitrogen of Ca(NO 3 ) 2 and (NH 4 ) 2 SO 4 is lost mainly as N 2 O and N 2 , the proportion of NO and NO 2 under aerobic and, particularly, anaerobic conditions is very small. Fertilizer type and aeration affect strongly the composition of liberated gases and the N 2 O:N 2 ratio. Under anaerobic conditions, Ca(NO 3 ) 2 nitrogen, beginning from the first days, is lost mainly as N 2 (75-80%), N 2 O makes up only 12 to 14%. Under aerobic conditions, (NH 4 ) 2 SO 4 and Ca(NO 3 ) 2 release initially a considerable amount of N 2 O, its reduction to N 2 being inhibited. In the course of time, however, a noticeable growth of the N 2 fraction occurs and it is accompanied by the decrease in N 2 O. Soil pH effects are related mainly to the composition of gases released rather than to the total nitrogen loss by Ca(NO 3 ) 2 . Under anaerobic conditions, more reduced gaseous products N 2 O and N 2 - are formed at acidic and neutral soil reaction, the amount of N 2 being greater at pH 7 than at pH 4.4. Under aerobic conditions, Ca(NO 3 ) 2 at pH 7 loses nitrogen mostly as N 2 , while under acidic soil reaction (pH 4.1-4.4) the losses occur as N 2 O and in part as NO and NO 2 . Sterilized soil at acidic pH liberates primarily nitrogen oxide which is formed apparently as a result of chemical reactions with participation of nitrites

  7. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  8. Availability of residual nitrogen from fertilizers in soil

    International Nuclear Information System (INIS)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M.

    1983-01-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30 0 C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen. (author)

  9. Availability of residual nitrogen from fertilizers in soil

    Energy Technology Data Exchange (ETDEWEB)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M. (Institut za Primeni Nuklearne Energije u Poljoprivedri, Veterinarstvu i Sumarstvu, Zemun (Yugoslavia))

    1983-05-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30/sup 0/C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen.

  10. Soil Nitrogen Availability Is Reflected in the Bacterial Pathway1

    Institute of Scientific and Technical Information of China (English)

    V.KRIVTSOV; B.S.GRIFFITHS; K.LIDDELL; A.GARSIDE; R.SALMOND; T.BEZGINOVA; J.THOMPSON

    2011-01-01

    Measurements of concentrations of easily extractable soil nitrogen (N) were carried out on samples collected at the Heron Wood Reserve, Scotland, concurrently with investigations of N associated with total microbial biomass and the abundances of bacteria,fungi, and invertebrates. Soil biota at the studied site appeared to be limited by N. There was a remarkable difference between the ambient (i.e., easily extractable N) and biomass nitrogen. The abundance data of bacteria, protozoa and nematodes significantly negatively correlated with ambient N but showed positive correlations with the total microbial N content. There were, however,remarkable differences between the correlation patterns exhibited by the fungal and the bacterial pathways, as fungi did not show any correlations with chemical variables. These differences should be taken into account whilst interpreting biological interactions both at this important site and elsewhere.

  11. Soil and fertilizer nitrogen

    International Nuclear Information System (INIS)

    Winteringham, F.P.W.

    1984-01-01

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  12. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  13. Nitrogen isotope compositions and spatial distribution characteristics of soil in the process of karst rocky desertification

    International Nuclear Information System (INIS)

    Luo Xuqiang; Wang Shijie; Wang Chengyuan; Liang Yuhua; Liao Xinrong; Yang Hongyan

    2011-01-01

    Isotopic composition and spatial distribution characteristic of total nitrogen of the surficial soil in karst rocky desertification area, including different types, different grades and different disturbed modes karst rocky desertification within the same small catchment, which belong to the Wangjiazhai peak-cluster depression basin and located in Qingzhen City, Guizhou Province were discussed in this study. Results showed that δ 15 N values of total nitrogen in top soil in yellow soil area were mainly between +0.35‰ ∼ +6.82% with the average of +4.50‰, and between +2.70‰ ∼ +6.50‰ in black calcareous with the average of +4.27‰. In both yellow soil area and black calcareous area, there were no significant difference in the δ 15 N values of total nitrogen on sample lands of rocky desertification at different levels, different ways of interruption and different slope positions, and no obvious difference on the whole (P≤0.05), which is mainly due to the high habitat heterogeneity of karst area. (authors)

  14. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  15. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  16. Search for correlatable, isotopically light carbon and nitrogen components in Lunar soils and breccias

    International Nuclear Information System (INIS)

    Norris, S.J.; Swart, P.K.; Wright, I.P.; Grady, M.M.; Pillinger, C.T.

    1983-01-01

    Using stepped heating extraction techniques, determinations of carbon and nitrogen content and delta 13 C and delta 15 N values have been obtained for selected lunar soils and breccias. Only nitrogen data have been gathered for representative splits separated by size, density and magnetic properties from 12023. A plot of the total delta 13 C (after terrestrial contamination is removed) versus delta 15 N values for the bulk samples reveals little evidence for a correlation between isotopically light carbon and isotopically light nitrogen of putative ancient solar wind origin. Soil 12023 is used to examine the current interpretation for the stepped release profile of nitrogen from bulk lunar samples. Mature agglutinates, postulated by previous workers to be the host of the light nitrogen, are shown to have a very constant delta 15 N value which is heavy rather than light. The actual host of the light nitrogen in 12023 has not been identified. The lowest values encountered during the study were found associated with the finest soil, but none of these was as low as for some temperature steps of the bulk soil. Interpretations regarding the origin of light nitrogen, if it is not present in agglutinates, await the results of more definitive efforts to identify the host phase

  17. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  18. [Dynamic changes in functional genes for nitrogen bioremediation of petroleum-contaminated soil cycle during].

    Science.gov (United States)

    Wu, Bin-Bin; Lu, Dian-Nan; Liu, Zheng

    2012-06-01

    Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.

  19. An online tool for tracking soil nitrogen

    Science.gov (United States)

    Wang, J.; Umar, M.; Banger, K.; Pittelkow, C. M.; Nafziger, E. D.

    2016-12-01

    Near real-time crop models can be useful tools for optimizing agricultural management practices. For example, model simulations can potentially provide current estimates of nitrogen availability in soil, helping growers decide whether more nitrogen needs to be applied in a given season. Traditionally, crop models have been used at point locations (i.e. single fields) with homogenous soil, climate and initial conditions. However, nitrogen availability across fields with varied weather and soil conditions at a regional or national level is necessary to guide better management decisions. This study presents the development of a publicly available, online tool that automates the integration of high-spatial-resolution forecast and past weather and soil data in DSSAT to estimate nitrogen availability for individual fields in Illinois. The model has been calibrated with field experiments from past year at six research corn fields across Illinois. These sites were treated with applications of different N fertilizer timings and amounts. The tool requires minimal management information from growers and yet has the capability to simulate nitrogen-water-crop interactions with calibrated parameters that are more appropriate for Illinois. The results from the tool will be combined with incoming field experiment data from 2016 for model validation and further improvement of model's predictive accuracy. The tool has the potential to help guide better nitrogen management practices to maximize economic and environmental benefits.

  20. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L. ), in acid soils

    Energy Technology Data Exchange (ETDEWEB)

    Doebereiner, J

    1966-02-01

    Three greenhouse experiments were conducted to study manganese toxicity effects on the nitrogen fixing symbiosis of beans (Phaseolus vulgaris). Addition of 40 ppm of manganese to two acid soils affected nodulation and nitrogen fixation. Dependent on the Rhizobion strain either nodule numbers or efficiency in nitrogen fixation were reduced; the efficiency of one Rhizobium-host combination was more affected than another. Under less severe conditions of manganese toxicity, reduction of nodule numbers or of efficiency in nitrogen fixation could be compensated by an increase of nodule size. In the absence of manganese toxicity nodulation and nitrogen fixation of beans were abundant in a soil with pH 4.4. Naturally occurring manganese toxicity in a gray hydromorphic soil was eliminated by liming. The total nitrogen content of bean plants which were dependent on symbiotic nitrogen fixation decreased linearly with the logarithm of the manganese concentration in the plants. This did not happen when the plants were grown with mineral nitrogen. The role of manganese toxicity in the well known sensitivity to acid soil conditions of certain legumes and the importance of selection of manganese tolerant Rhizobium strains for the inoculation of beans in acid tropical soils, are discussed. 25 references, 1 figure, 6 tables.

  1. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  2. The influence of site factors on nitrogen mineralization in forest soils ...

    African Journals Online (AJOL)

    The influence of site factors on nitrogen mineralization in forest soils of the ... on N mineralization, as well as the effect of N mineralization on forest productivity. ... of the natural log of mean annual temperature, geological substrate and total N ...

  3. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  4. Soil emissions of gaseous reactive nitrogen from North American arid lands: an overlooked source.

    Science.gov (United States)

    Sparks, J. P.; McCalley, C. K.; Strahm, B. D.

    2008-12-01

    The biosphere-atmosphere exchange and transformation of nitrogen has important ramifications for both terrestrial biogeochemistry and atmospheric chemistry. Several important mechanisms within this process (e.g., photochemistry, nitrogen deposition, aerosol formation) are strongly influenced by the emission of reactive nitrogen compounds from the Earth's surface. Therefore, a quantification of emission sources is a high priority for future conceptual understanding. One source largely overlooked in most global treatments are the soil emissions from arid and semi-arid landscapes worldwide. Approximately 35-40% of global terrestrial land cover is aridland and emission of reactive nitrogen from soils in these regions has the potential to strongly influence both regional and global biogeochemistry. Here we present estimates of soil emission of oxidized (NO, total NOy including NO2 and HONO) and reduced (NH3) forms of reactive nitrogen from two North American arid regions: the Mojave Desert and the Colorado Plateau. Soil fluxes in these regions are highly dependent on soil moisture conditions. Soil moisture is largely driven by pulsed rain events with fluxes increasing 20-40 fold after a rain event. Using field measurements made across seasons under an array of moisture conditions, precipitation records, and spatially explicit cover type information we have estimated annual estimates for the Mojave Desert (1.5 ± 0.7 g N ha-1 yr-1), the shale derived (1.4 ± 0.9 g N ha-1 yr-1), and sandy soil derived (2.8 ± 1.2 g N ha-1 yr-1) regions of the Colorado Plateau. The chemical composition of soil emissions varies significantly both with season and soil moisture content. Emissions from dry soils tend to be dominated by ammonia and forms of NOy other than NO. In contrast, NO becomes a dominant portion of the flux post rain events (~30% of the total flux). This variability in chemical form has significant implications for the tropospheric fate of the emitted N. NO and other

  5. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements

    Science.gov (United States)

    Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.

    2017-12-01

    Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.

  6. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  7. Nitrogen fixation by free-living organisms in rice soils. Studies with 15N

    International Nuclear Information System (INIS)

    Rao, V.R.; Charyulu, P.B.B.N.; Nayak, D.N.; Ramakrishna, C.

    1979-01-01

    Heterotrophic nitrogen fixation as influenced by water regime, organic matter, combined nitrogen and pesticides was investigated in several Indian rice soils by means of the 15 N 2 tracer technique. Soil submergence accelerated nitrogen fixation. Addition of cellulose to both non-flooded and flooded soils enhanced nitrogen fixation. Under submerged conditions, addition of sucrose, glucose and malate in that order stimulated nitrogen fixation in alluvial soil, while only sucrose enhanced nitrogen fixation in laterite soil. Nitrogen fixation in flooded alluvial and laterite soils decreased with increasing concentration of combined nitrogen. Nitrogen fixation was appreciable in acid sulphate and saline soils under both flooded and non-flooded conditions, despite high salinity and acidity. Application of certain pesticides at rates equivalent to recommended field level greatly influenced nitrogen fixation in flooded rice soils. Additions of benomyl (carbamate fungicide) and carbofuran (methyl carbamate insecticide) to alluvial and laterite soils resulted in significant stimulation of nitrogen fixation. Gamma-BHC stimulated nitrogen fixation only in alluvial soil, with considerable inhibition in a laterite soil. Nitrogen fixation by Azospirillum lipoferum was investigated by 15 N 2 . Large variations in 15 N 2 incorporation by A. lipoferum isolated from the roots of several rice cultivars was observed. Specific lines of rice harbouring A. lipoferum with high nitrogenase activity might be selected. Nitrogen fixed by heterotrophic organisms in a complex system such as soil could not be evaluated precisely. Indigenous nitrogen fixation in a flooded soil would be in the range of 5-10 kg N/ha, increasable 3 to 4-fold by appropriate fertilizers and cultural practices

  8. The budget between transportation and accumulation of organic carbon and total nitrogen in black soil at a sloping farmland

    International Nuclear Information System (INIS)

    Fang Huajun; Zhang Xiaoping; Liang Aizhen

    2006-01-01

    Based on the rate of soil redistribution at a sloping farmland using 137 Cs tracer technique and spatial variation of soil organic carbon (SOC) and total nitrogen (TN), the spatial distribution of SOC and TN loss and the budget between transportation and accumulation for recently 50 years was calculated. The results showed that the rate of soil redistribution ranged from -24.61 t/hm 2 /a to 33.56 t/hm 2 /a, most of study area was in medium and weakly erosion phase and accounted for 83.66%; and the area of soil deposition accounted for 15.62%; The variation of the loss of SOC and TN was consistent with that of soil redistribution, shoulder-slope had the most serious loss with the rate of 407.57 kg/hm 2 /a for SOC and 39.94 kg/hm 2 /a for TN, back-slope and summit had the secondly loss with the average rate of 244.2 kg/hm 2 /a for SOC and -20.56 kg/hm 2 /a for TN. For the whole area, relative loss of SOC and TN more than 50% accounted for 10.45% and 11.21%, respectively; The net loss of sediment in the study area was 45.54 t/a for recent 48 years, among which SOC and TN were 612.62 kg/a and 47.20 kg/a, respectively, which was 52% more than that of without consideration of the enrichment of sediment on soil organic matter. (authors)

  9. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    Freitas, J.R. de.

    1984-12-01

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15 N and ammonium sulphate - 15 N. The soil was sampled every 15 days in three different depths. N as NH + 4 , NO - 3 , total-N and (%)C and (%) moisture was analysed. (M.A.C.) [pt

  10. Nitrogen Soil Testing for Corn in Virginia

    OpenAIRE

    Evanylo, Gregory K.; Alley, Marcus M., 1947-

    2009-01-01

    An adequate supply of plant-available nitrogen (N) is crucial for efficient corn production, and corn N requirements are greater than any other nutrient. This publication reviews the link between nitrogen and corn production, nitrogen behavior, soil testing, test procedures and recommendations.

  11. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem.

    Science.gov (United States)

    Chen, Xinxin; Song, Beizhou; Yao, Yuncong; Wu, Hongying; Hu, Jinghui; Zhao, Lingling

    2014-02-15

    Aromatic plants can substantially improve the diversity and structure of arthropod communities, as well as reduce the number of herbivore pests and regulate the abundance of predators and parasitoids. However, it is not clear whether aromatic plants are also effective in improving soil quality by enhancing nutrient cycling. Here, field experiments are described involving intercropping with aromatic plants to investigate their effect on soil nitrogen (N) cycling in an orchard ecosystem. The results indicate that the soil organic nitrogen and available nitrogen contents increased significantly in soils intercropped with aromatic plants. Similarly, the activities of soil protease and urease increased, together with total microbial biomass involved in N cycling, including nitrifying bacteria, denitrifying bacteria and azotobacters, as well as the total numbers of bacteria and fungi. This suggests that aromatic plants improve soil N cycling and nutrient levels by enriching the soil in organic matter through the regulation of both the abundance and community structure of microorganisms, together with associated soil enzyme activity, in orchard ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. What is the prognosis of nitrogen losses from UK soils?

    Science.gov (United States)

    Burt, T. P.; Worrall, F.; Whelan, M.; Howden, N. J.

    2009-12-01

    The UK’s high population density, intensive agriculture and relative short, unimpeded rivers mean that the UK is a known “hotspot” of fluvial nitrogen flux. Furthermore, it is known that the fluvial flux of nitrogen from the UK is increasing. This study estimates the release of nitrate from the UK terrestrial biosphere to understand this rising fluvial flux and i to assess the in-stream losses of nitrate, thusgiving an assessment of the fluvial component of the total nitrogen budget of UK. The approach taken by the study is to use an export coefficient model coupled with a description of mineralisation and immobilisation of nitrogen within soil reserves. The study applies the modelling approach to the whole of the UK from 1925 to 2007 using long term records of: land use (including - agricultural, forestry and urban uses); livestock; human population and atmospheric deposition. The study shows that: i) The flux of nitrate from the UK soils varied from 420 to 1463 Ktonnes N/yr with two peaks in the period since 1925, one in 1944 and one in 1967, the first is caused by mineralisation of soil organic matter following large-scale land use change in the Second World War, and the second is a multifactorial response to land use change and intensification. ii) The current trend in the release from soils is downward whilst the current fluvial flux at the tidal limit is upwards. With the current trends fluvial flux at the tidal limit will be greater than release from the soils of the UK, i.e. there will be net gain across the fluvial network. This apparent gain can be explained by the breakthrough of high nitrate groundwater into surface waters.

  13. Transformation of fertilizer nitrogen in soil

    International Nuclear Information System (INIS)

    Soechting, H.

    1980-01-01

    Pot experiments are described in which the transformations between nitrogen added as fertilizer urea, plant-assimilated nitrogen, and different chemical fractions of soil or added straw nitrogen were studied with 15 N as a tracer. The data indicated that: (a) The transformation of added fertilizer nitrogen to immobilized amide nitrogen is decreased with added decomposable organic carbon. The transformation to immobilized α-amino N is increased, on the other hand, by the addition of decomposable organic carbon. (b) The freshly immobilized amide nitrogen is more readily remineralized than the α-amino form. The immobilization of added nitrogen continues in the presence of growing plants. (c) Mineralization of nitrogen added as 15 N-labelled straw is also increased with increasing fertilizer-nitrogen additions. (author)

  14. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation

    NARCIS (Netherlands)

    Lagomarsino, A.; Moscatelli, M.C.; Hoosbeek, M.R.; Angelis, de P.; Grego, S.

    2008-01-01

    Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total

  15. [Distribution characteristics and erosion risk of nitrogen and phosphorus in soils of Zhuangmu town in Lake Wabuhu basin].

    Science.gov (United States)

    Li, Ru-Zhong; Zou, Yang; Xu, Jing-Jing; Ding, Gui-Zhen

    2014-03-01

    To understand the loss risk of soil erosion in the Zhuangmu town in Lake Wabuhu watershed, concentration and spatial distribution of nitrogen and phosphorus in 162 surface soil samples collected from the farmlands in ten administrative villages of the town were investigated. The risk assessment was conducted by using the nitrogen and phosphorus index method after speciation analysis of soil nitrogen and phosphorus. Based on ArcGIS technology, the spatial interpolation of total nitrogen (TN), total phosphorus (TP), and bioavailable nitrogen and phosphorus contents as well as nitrogen and phosphorus index values were performed by means of Kriging interpolation. The results show that, generally, average contents of TN and TP were obtained at 1.67 g x kg(-1) and 0.71 g x kg(-1), respectively. And the mean concentration of bioavailable nitrogen and phosphorus were estimated at 0.26 g x kg(-1) and 0.33 g x kg(-1), accounting for 14.93% and 47.30% of TN and TP contents, respectively. Spatially, the samples with high concentration of TN were mostly from Houji, Yangwan and Liuqian villages, whereas the samples sites with higher contents of TP located in Houji, Yangwan and Zaolin villages. The mean values of nitrogen index (NI) and phosphorus index (PI) for the whole town are 2.11 and 2.13, respectively. According to the numeric size of NI and PI, ten villages ranged in the order of Yangwan > Zhuangmu > Xueqiao > Liuqian > Lizhuang > Jinqiao > Zaolin > Zhangwei > Houji > Xugang village. In general, the soil nitrogen loss is dominated by low and medium risks in the Zhuangmu town, and high risk sporadically appears in local area of the Yangwan village. Like the nitrogen, soil phosphorus loss risk also gives priority to low, and above medium risk concentrates in the Yangwan village as well.

  16. Integrated effects of reduction dose of nitrogen fertilizer and mode of biofertilizer application on soil health under mung bean cropping system

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-12-01

    Full Text Available To study the integrated effects of reduced dose of chemical fertilizer with different methods and times of application of Rhizobium biofertilizer on soil health and fertility under mung bean (Vigna radiata cropping, field experiments were carried out during three years (2009, 2010, and 2011 in West Bengal, India, in randomized block design. In the first year, varietal screening of mung bean under recommended dose of chemical fertilizer (20:40:20 were performed with five available varieties adapted to local climate. Reduced nitrogen fertilizer doses (20%, 30%, 40%, 50%, and 60% and the recommended dose, as well as the Rhizobium biofertilizer application (basal, soil, and spray, were done, and data were recorded for pH, electrical conductivity, organic carbon, total nitrogen, total phosphorus, total potassium, and bacterial population of soil, both before sowing and after harvesting. The results indicated significant improvement in the soil quality with gradual buildup of soil macronutrient status after harvesting of crop. Application of biofertilizer has contributed significantly towards higher soil organic matter, nitrogen, phosphorus, and potassium. The use of biofertilizer significantly improved soil bacterial population count in the soil thereby increasing the soil health.

  17. Phosphorus Characteristics with Controlled Nitrogen in Fertile Soils in Protected Vegetable Field

    Directory of Open Access Journals (Sweden)

    WANG Heng

    2014-06-01

    Full Text Available There is an unreasonable phenomenon of fertilization in vegetable facility cultivation, with the serious imbalance of soil nutrient. In purpose of understanding the absorption characteristics of phosphorus from nitrogen-rich soil, a long-term nitrogen-controlled experiment was carried from the year 2004 to 2007, and a split plot experiment of leaching was carried in winter-spring season of 2007. The results showed that the content of phosphorus varied with different nitrogen control. The TP was decreased with nitrogen supply of none(NN 、organic manure(MN 、organic manure and straw(MN+S, and the decreased range was NN>MN>MN+S, meanwhile the increase range of TP was traditional-nitrogen(CN >traditional-nitrogen+straw(CN+S >optimized-nitrogen+straw(SN+S >optimized-nitrogen(SN. The available P with CN and CN+S reached to 213.7 mg· kg -1 、225.4 mg·kg -1, which increased by 17.1 percent and 23.5 percent, which declared the phosphorus was accumulated; The available P with other nitrogen controlled decreased with the range of NN>MN>MN+S>SN+S>SN跃CN>CN+S, which showed that the supply reduction of nitrogen could slowdown the phosphorus accumulated and promote the utilization ratio of phosphorus. The organophosphorus was increased except NN, with obvious increase with CN、CN+S(308.4 mg·kg -1 、331.4 mg·kg -1 by 28.5 percent and 38.2 percent. The absorption coefficient of phosphorus with SN+S(P 2 O 5,mg· 100 g -1 reached to 1 571, increased by 143.6 percent; Otherwise the absorption coefficient of phosphorus with CN、CN+S showed negative growth, the CN dipped to 416(P 2 O 5,mg·100 g -1 by 35.5 percent. Adding wheat straw could greatly improved the capacity of absorption of phosphorus and slow down the accumulation of available phosphorus to some extent. The concentrations of total phosphorus in the filtrate with SN+S were less than SN, contrary to the concentration of organophosphorus, thus the straw returning had a certain effect on

  18. Fate of fertilizer nitrogen in flooded rice soil - I. Leaching losses of nitrogen

    International Nuclear Information System (INIS)

    Daftardar, S.Y.; Deb, D.L.; Datta, N.P.

    1979-01-01

    A greenhouse experiment on rice (Oryza sativa L. cv IR 22) was conducted under flooded conditions using CO( 15 NH 2 ) 2 , 15 NH 4 NO 3 and NH 4 ( 15 NO 3 ) to study the leaching loss of added fertilizer nitrogen in two typical rice soils. The loss of nitrogen was in the order: NO 3 -N (4 to 25.6 percent) > amide-N (1.2 to 16.2 percent) > NH 4 -N (0.07 to 0.3 percent). The basal applied urea was lost by percolation in the first month while the basal applied NO 3 -N was lost in the first 8 days. Leaching loss did not occur after split application of fertilizer nitrogen at primordial initiation stage. The loss of nitrogen in kaolinitic Dapoli clay loam soil was about 2.5 to 4.5 times more than that in montmorillonitic Karjat sandy loam soil. Cropping reduced the percolation loss of N by 40 to 60 percent. (auth.)

  19. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    Science.gov (United States)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-01-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  20. The Effects of Source and Rate of Nitrogen Fertilizer and Irrigation on Nitrogen Uptake of Silage Corn and Residual Soil Nitrate

    Directory of Open Access Journals (Sweden)

    M. A. Khodshenas

    2016-09-01

    oven at 70ºC for at least 3 days before weighting. Total N concentration in the plant samples were determined using kjeldahl method. Nitrogen uptake by plants was calculated based on the total N concentration in plants multiplied by dry matter. Residual nitrate concentrations were determined in soil samples (0-30 and 30-60 cm depths by diazo method. Combined analysis of variance was accomplished using the MSTAT-C software. Mean comparisons were done using Duncan multiple rang test (DMRT. Results: The results showed that the main effect of water stress on dry matter yield was negative and significant (P

  1. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    Directory of Open Access Journals (Sweden)

    Enoch A. Akinpelu

    2017-10-01

    Full Text Available Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  2. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil.

    Science.gov (United States)

    Akinpelu, Enoch A; Adetunji, Adewole T; Ntwampe, Seteno K O; Nchu, Felix; Mekuto, Lukhanyo

    2017-10-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK ® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  3. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...

  4. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  5. Effect of combined N applied at low level on the nitrogen fixation by grasses and contribution to nitrogen fertility in soil

    International Nuclear Information System (INIS)

    Yao Yunyin; Chen Ming; Ma Changlin

    1990-01-01

    This paper reports the study on the effect of combined N applied at low level on teh nitrogen fixation by alfalfa in monoculture and mixed culture with meadow fescue, and the effect on the absorption and utilization of indigenous soil nitrogen and nitrogen fertilizer. Amount of nitrogen fixed by alfalfa could be raised and duration of high peak of symbiotic nitrogen fixation activity could be extended when nitrogen fertilizer was applied reasonably. It was especially important for the early pastures or pastures with low supporting nitrogen capacity. Transfer of nitrogen fixed by alfalfa to meadow fescue occured in mixed culture. Nitrogen fixed from alfalfa was uptaken more easily than indigenous nitrogen in soil. Planting alfalfa could raise soil fertility significantly. Meadow fescue may be able to fix nitrogen from the air in some way. When combined N was appropriately applied to soil, on which alfalfa and meadow fescue had been planted, it could promote increasing nitrogen fertility in soil

  6. Spatial variability of nitrogen-15 and its relation to the variability of other soil properties

    International Nuclear Information System (INIS)

    Selles, F.; Karamanos, R.E.; Kachanoski, R.G.

    1986-01-01

    The spatial variability of natural 15 N abundance of a cultivated Chernozemic soil and its native prairie counterpart were smaller than that of total N, organic C, and the C/N ratio. Further, the number of samples required to estimate the true mean of total N with a given precision at various probability levels were twofold those required to estimate the true mean of total N with a given precision at various probability levels were twofold those required to determine the mean 15 N abundance of total soil N in the surface horizons may reflect the isotopic composition of the nitrogenous substances entering the soil system or changes in the isotopic composition of soil N due to humification processes, probably induced by variations in topographic and microrelief features of the soil

  7. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  8. Translocation of labelled fertilizer nitrogen in soil columns

    International Nuclear Information System (INIS)

    Haunold, E.; Zvara, J.

    1975-01-01

    The translocation of 15 labeled ammonium and nitrate fertilizer was studied under normal weather conditions for two years in columns filled with different soils. At the end of the experimental period, which usually lasted for 9 months, between 5.9-10.3% of the ammonium fertilizer was leached out, 33.7-50.1% remained in the soil and 39.5-59.7% was lost as gas. For nitrate nitrogen the figures were: 22.6-47.3% leached out, 16.7-40% remaining in the soil, 12.7-60.0% lost as gas. The ammonium fertilizer moving through the soil interchanged with 1-13% of the soil nitrogen, the nitrate fertilizer with only 0.5-2%

  9. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China.

    Science.gov (United States)

    Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou

    2015-11-01

    Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain

  10. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  11. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  12. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  13. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    Science.gov (United States)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  14. Use of nitrogen-15 in soil-plant studies

    International Nuclear Information System (INIS)

    Sachdev, M.S.; Sachdev, P.; Subbiah, B.V.

    1996-01-01

    In this paper an overview of the selected work carried out in the country and elsewhere on the fertilizer nitrogen use efficiency, fate and balance-sheet, soil and fertilizer nitrogen transformations and biological nitrogen fixation using 15 N is given. 129 refs., 4 tabs

  15. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  16. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  17. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  18. The effects of soil water conditions on nitrogen fertilization use efficiency

    International Nuclear Information System (INIS)

    Zhou Lingyun

    1996-01-01

    Concerning with applied nitrogen fertilizer, the uptake as well as loss of nitrogen is mainly related to soil water content. The effects of soil water condition in wheat field on the uptake, leach and loss of nitrogen fertilizer were studied using 15 N tracing technique. The results showed that within certain range of soil water supply, from 180 to 360 mm of available water storage, the loss of nitrogen was in direct proportion to the amount of fertilizer application and the nitrogen use efficiency decreased with the increase of nitrogen application. In other words, the nitrogen use efficiency descended with the nitrogen application increased in an order of 75 kgN/ha, 150 kgN/ha, 225 kgN/ha. One interesting result was that the nitrogen use efficiencies ranged from 17.0% to 30.5% for the treatments receiving the same application rate of 75 kgN/ha

  19. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  20. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    Science.gov (United States)

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  1. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    Science.gov (United States)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  2. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  3. 15N isotopic techniques to study nitrogen cycle in soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Kumar, Manoj; Chandrakala, J.U.; Sachdev, M.S.; Sachdev, P.

    2009-01-01

    Intensification of agriculture to meet the increasing food demand has caused severe disruption in natural balance of global as well as regional nitrogen cycle, potentially threatening the future sustainability of agriculture and environment of the total fertilizer nitrogen used in agriculture globally, only less than half is recovered by crop plants, rest is lost to the environment, resulting in several environmental problems such as ground water pollution and global warming, besides huge economic loss of this costly input in agriculture. Improving fertilizer nitrogen use efficiency and minimising N loss to the environment is the key to regain the lost control of nitrogen cycle in agriculture. Fertilizer nitrogen use efficiency depends largely on N requirement of crops, N supply from soil and fertilizer through N transformations in soil, and N losses from the soil-water-plant system. 15 N isotopic techniques have the potential to provide accurate measurement quantification of different processes involved in N cycle such as fixation of atmospheric N 2 , transformations- mineralization and immobilization- of soil and fertilizer N which governs N supply to plants, and N losses to the environment through ammonia volatilization, denitrification and nitrate leaching. 15 N tracers can also give precise identification of ways and sources of N loss from agriculture. These information can be used to develop strategies for increasing fertilizer N use efficiency and minimizing the loss of this costly input from agriculture to environment, which in turn will help to achieve the tripartite goal of food security, agricultural profitability and environmental quality. (author)

  4. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  5. Organic nitrogen storage in mineral soil: Implications for policy and management

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  6. Nitrogen dynamics in a soil-sugar cane system

    International Nuclear Information System (INIS)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Bacchi, Osny O.S.; Timm, Luis Carlos; Tominaga, Tania Toyomi; Castro Navarro, Roberta de; Cassaro, Fabio Augusto Meira; Dourado-Neto, Durval; Trivelin, Paulo Cesar Ocheuse; Piccolo, Marisa de Cassia

    2000-01-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a 15 N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The 15 N label permitted to determine, at the end of the growing season, amounts of nitrogen derived from the fertilizer, present in the above mentioned compartments. (author)

  7. A Dynamic Economic Analysis of Nitrogen-Induced Soil Acidification in China

    OpenAIRE

    Yang, Ziyan

    2015-01-01

    This paper studies the environmental value of nitrogen fertilizer in a rapeseed-rice double-crop system in China to address the issue of nitrogen-induced soil acidification in China’s farmland. Previous literature always regarded the acid rain as the most important contributor to soil acidification. Thus, previous literature seldom linked soil quality with nitrogen leaching but studied acidification as a side product of air pollution. However, the latest scientific evidences show that China’s...

  8. Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L. growing

    Directory of Open Access Journals (Sweden)

    Zuzana PANAKOVA

    2016-12-01

    Full Text Available The objective of this research was to investigate the effect of nitrification inhibitors (dicyandiamide and 1,2,4 triazole on the content of nitrate and ammonium nitrogen in the soil and the effectiveness of nitrogen-sulphur nutrition of maize. The research was conducted in field small-plot experiment with maize on Haplic Luvisol with dominance of clay fraction in experimental years 2012 to 2015. The dose of nitrogen in all experimental treatments was 160 kg*ha-1 and was applied at one shot or split in three partial doses. Soil samples from all examined treatments were taken from three soil depths (0.0-0.3 m, 0.3-0.6 m and 0.6-0.9 m, respectively by probe rod in 4-5 week intervals. Achieved results indicate that on the average of four years and three depths of the soil profile, application of nitrification inhibitors contained in fertilizer ENSIN considerably reduced portion of nitrate nitrogen from the content of mineral nitrogen in the soil by 7-32 relative %. The application of fertilizer ENSIN considerably increased content of ammonium nitrogen in the soil by 10-59 relative %. A favourable effect on increase of ammonium nitrogen content and reduction of nitrate nitrogen content was found out in spite of the fact that in this treatment the total dose of fertilizer was applied at one shot.

  9. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3--N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  10. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  11. Effect of nitrogen sources on the biodegradation of diesel fuel in unsaturated soil

    International Nuclear Information System (INIS)

    Brook, T. R.; Stiver, W. H.; Zytner, R. G.

    1997-01-01

    The various factors involved in controlling the rate and efficiency of the bioremediation process were studied, among them the type and concentration of contaminants, temperature, oxygen content and nutrient status. This study emphasized the effect of the nitrogen source on the degradation rate of diesel fuel in nutrient-limited soil. Various nitrogen sources were studied, including ammonium nitrate, urea, and urea oligomers. Treatment with urea produced the highest rate of hydrocarbon degradation, but ammonium levels were a better indicator of nutrient performance than total inorganic nitrogen. Other nitrogen sources produced little or no effect on the rate of biodegradation; there was no evidence that nitrate at 0.5 mg N/g concentration was inhibitory. 11 refs., 6 figs

  12. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  13. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  14. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    International Nuclear Information System (INIS)

    Sumi, A.; Katayama, T.C.

    2000-01-01

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f 0 ) + B(g + g 0 )/(f - f 0 ) + C/[(f - f 0 ) (g + g 0 )] + D/(g + g 0 ) + E, where f 0 and g 0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S 0 ) + B/(f - f 0 ) + C(f - f 0 ) + D, where S 0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  15. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  16. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  17. Contribution of bacterial cell nitrogen to soil humic fractions

    International Nuclear Information System (INIS)

    Knowles, R.; Barro, L.

    1981-01-01

    Living cells of Serratia marcescens, uniformly labelled with 15 N, were added to samples of maple (Acer saccharum) and black spruce (Picea mariana) forest soils. After different periods of incubation from zero time to 100 days, the soils were subjected to alkali-acid and phenol extraction to provide humic acid, fulvic acid, humin and 'humoprotein' fractions. Significant amounts of the cell nitrogen were recovered in the humic and fulvic acids immediately after addition. After incubation, less cell nitrogen appeared in the humic acid and more in the fulvic acid. The amount of cell nitrogen recovered in the humin fraction increased with incubation. Roughly 5 to 10 per cent of the added cell nitrogen was found as amino acid nitrogen from humoprotein in a phenol extract of the humic acid. The data are consistent with the occurrence of co-precipitation of biologically labile biomass nitrogen compounds with humic polymers during the alkaline extraction procedure involved in the humic-fulvic fractionation. (orig.)

  18. Nitrogen fractions in the microbial biomass in soils of southern Brazil

    Directory of Open Access Journals (Sweden)

    F. A.O. Camargo

    1999-03-01

    Full Text Available The reaction of nitrogen compounds with ninhydrin can be used as an indicator of cytoplasmic materials released from microbial cells killed by fumigation. Total-N, ninhydrin-reactive-N (NR-N, ammonium-N (A-N, and α-amino-N in the microbial biomass of soils from the State of Rio Grande do Sul, Brazil, were determined, in 1996, in 0.5 mol L-1 K2SO4 extracts of fumigated and non-fumigated soils. Total-N varied from 20.3 to 104.4 mg kg-1 and the ninhydrin-reactive-N corresponded, in average, to 27% of this. The ninhydrin-reactive-N was made up of 67% ammonium-N and 33% aminoacids with the amino group at the α-carbon position. It was concluded that colorimetric analysis of NR-N and A-N may be used as a direct measure of microbial N in soil. This simple and rapid procedure is adequate for routine analyses.

  19. Effect of inorganic nitrogenous fertilizer on productivity of recently reclaimed saline sodic soils with and without biofertilizer.

    Science.gov (United States)

    Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G

    2007-07-15

    Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.

  20. Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system.

    Science.gov (United States)

    Mienis, Omer; Arye, Gilboa

    2018-05-01

    The long term behavior of total nitrogen and its components was investigated in a soil aquifer treatment system of the Dan Region Reclamation Project (Shafdan), Tel-Aviv, Israel. Use is made of the previous 40 years' secondary data for the main nitrogen components (ammonium, nitrate and organic nitrogen) in recharged effluent and observation wells located inside an infiltration basin. The wells were drilled to 106 and 67 m, both in a similar position within the basin. The transport characteristics of each nitrogen component were evaluated based on chloride travel-time, calculated by a cross-correlation between its concentration in the recharge effluent and the observation wells. Changes in the source of recharge effluent, wastewater treatment technology and recharge regime were found to be the main factors affecting turnover in total nitrogen and its components. During aerobic operation of the infiltration basins, most organic nitrogen and ammonium will be converted to nitrate. Total nitrogen removal in the upper part of the aquifer was found to be 47-63% by denitrification and absorption, and overall removal, including the lower part of the aquifer, was 49-83%. To maintain the aerobic operation of the infiltration fields, the total nitrogen load should remain below 10 mg/L. Above this limit, ammonium and organic nitrogen will be displaced into the aquifer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Redução do tempo de digestão na determinação de nitrogênio em solos Reduction of digestion time in the determination of total nitrogen in soils

    Directory of Open Access Journals (Sweden)

    Flávio Verlengia

    1968-01-01

    Full Text Available Foi estudada a redução do tempo de digestão na determinação do nitrogênio total em solos, assim como a perda dêsse nutriente durante a sua determinação. Procurou-se comparar o efeito de alguns catalisadores, como sulfato de cobre, óxido de mercúrio e selênio. Diversos tempos de ataques foram estudados, desde 10 até 960 minutos (16 horas. Verificou-se que as maiores reduções de tempo foram obtidas com o selênio, utilizado como catalisador, em presença de óxido de mercúrio, particularmente em solos onde o ataque se mostrou mais difícil. O catalisador tradicional - sulfato de cobre - foi o menos eficiente. A utilização do selênio, não provocou perda de nitrogênio durante a digestão.By using the Kjeldahl method in the determination of total nitrogen in soils, the effect of various catalysts related with digestion time and with possible nitrogen losses was studied. The experiment was carried out by using the catalysts CuSO4.5H2O; HgO and Se in six treatments. Results indicated that a pronounced reduction on digestion time was obtained by using selenium as catalyst. Best results, however, were obtained by using a mixture of selenium and mercury oxide, principally for soils of very difficult digestion (organic soil and "terra roxa" soil. In all treatments CuSO4.5H2O was the less efficient. Use of selenium did not cause loss of nitrogen.

  2. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  3. [Effects of biochar on soil nitrogen cycle and related mechanisms: a review].

    Science.gov (United States)

    Pan, Yi-Fan; Yang, Min; Dong, Da; Wu, Wei-Xiang

    2013-09-01

    Biochar has its unique physical and chemical properties, playing a significant role in soil amelioration, nutrient retention, fertility improvement, and carbon storage, and being a hotspot in the research areas of soil ecosystem, biogeochemical cycling, and agricultural carbon sequestration. As a kind of anthropogenic materials, biochar has the potential in controlling soil nitrogen (N) cycle directly or indirectly, and thus, has profound effects on soil ecological functions. This paper reviewed the latest literatures regarding the effects of biochar applications on soil N cycle, with the focuses on the nitrogen species adsorption and the biochemical processes (nitrification, denitrification, and nitrogen fixation) , and analyzed the related action mechanisms of biochar. The future research areas for better understanding the interactions between biochar and soil N cycle were proposed.

  4. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  5. Temporal and spatial variation of nitrogen transformations in a coniferous soil.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  6. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    Science.gov (United States)

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  7. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  8. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  9. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  10. The effect of glyphosate and nitrogen on plant communities and the soil fauna in terrestrial biotopes at field margins

    DEFF Research Database (Denmark)

    Damgaard, Christian; Strandberg, Beate; Dupont, Yoko

    were assessed at the ecosystem level by measuring biodiversity and functional traits. We have obtained an increased understanding of the causal relationship between plant communities and the soil fauna at the ecosystem level and increased knowledge on how and by what mechanisms important drivers...... that are known to affect plant communities may affect pollination and the soil fauna. The combined use of plant trait and soil fauna trait data in a full-factorial field experiment of glyphosate and nitrogen has never been explored before. The focus on plant and soil fauna traits rather than species enabled...... nitrogen, generally, resulted in increasing total plant cover and biomass, especially of fast-growing and competitive species as grasses and a few herbs such as Tanacetum vulgare. Using plant traits we found that increase in nitrogen promoted an increase in the average specific leaf area (SLA) and canopy...

  11. Effect of soil-moisture stress on nitrogen uptake and fixation by plants

    International Nuclear Information System (INIS)

    Mitrosuhardjo, M.M.

    1983-01-01

    The effect of four levels of soil moisture, namely 25, 30, 35, and 40% (g/g) on nitrogen uptake and fixation by plants was studied in a greenhouse experiment. Soybean and wheat were used in this experiment. Both crops were grown in pots containing 7 kg loamy alluvial soil. Rhizobium japonicum was used as an inoculant for soybean, one week after planting. Nitrogen-15 labelled urea with 10% atom excess was applied to each pot with a dose rate of 70 mg N/pot (20 kg N/ha) two weeks after planting. Soil moisture was regularly controlled with porous-cup mercury tensiometers, and the amount of water consumed by plants was always recorded. Water was applied to each pot with a distribution pipe which was laid down in the centre of the soil depth, horizontally in a circular form, and was connected with a smaller pipe to the soil surface. The result obtained showed that the amount of water consumed by plants grown in a higher level of soil moisture was increased until soil aeration problems arose. A different amount of water consumption between soybean and wheat was observed at least until a certain period of growing time. Fertilizer nitrogen taken up by both crops varied with the different levels of soil moisture. Generally, greater fertilizer nitrogen was taken up by both crops grown in a higher level of soil moisture. The symbiotic fixation of nitrogen was reasonable, although no clarification has been found about the role of the four levels of soil-moisture treatment on it. A similar effect of soil-moisture stress on nodule dry matter and acetylene reduction was found. (author)

  12. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  13. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil and bec...... and that transfer of N to the soil is not facilitated by fungal hyphae....

  14. [Effects of slopes on nitrogen transport along with runoff from sloping plots on a lateritic red soil amended with sewage sludge].

    Science.gov (United States)

    Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng

    2010-10-01

    The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.

  15. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  16. Analysis of total iodine in soils of some agro-ecological zones of Ghana

    International Nuclear Information System (INIS)

    Kwakye, P.K.; Osei-Agyeman, K.; Frimpong, K.A.; Adams, A.B.; Okae-Anti, D.

    2004-10-01

    Iodine is beneficial in human nutrition and to a lesser extent in plant nutrition. Availability of this element in the soil is thought to be via ocean-atmosphere precipitation, iodine minerals and redistribution by vegetation, but very little is known about levels of iodine in Ghanaian soils. We analyzed for the content of total iodine alongside pH, organic carbon, total nitrogen, cation exchange capacity, sand, silt and clay in top soils of selected agro-ecological zones. These soils occur at various locations spanning from the coastline to the far interior. Variations in nutrient elements were attributed to diverse parent materials from which these soils originated and the complex interactions of organic matter, type of clay, acidity-alkalinity and leaching processes. The soils recorded low total iodine content of 0.08 - 3.92 μg g - 1. There was a decreasing trend of iodine from the coastal zone inwards in the order of 1.85, 0.84 and μg g - 1 for the coastal savanna, semi-deciduous rainforest and Guinea savanna agro-ecological zones respectively. Iodine very weakly negatively correlated with C and N and showed a moderate positive correlation with clay content and moderate negative correlations with pH and sand content. (author)

  17. Influence of the form and rate of 15N-labelled nitrogen fertilizers on nitrogen uptake by maize grown on two different soils

    International Nuclear Information System (INIS)

    Balabanova-Georgieva, R.; Ikonomova, E.

    1996-01-01

    The influence of 15 N-labelled urea and ammonium sulfate on the yield and uptake of fertilizer nitrogen and soil nitrogen by maize was studied under the conditions of pot experiments on calcareous black earth and leached black earth. The nitrogen fertilizers were applied in rates: N 1 =250 mg, N 2 =500 mg, N 3 =750 mg and N 4 =1000 mg/1 kg of soil, on phosphorus(P)-potassium(K) background (P=200 and K=600 mg/kg soil). When treating with N 3 and N 4 , the application of the whole nitrogen rate was compared with its split application. It was found that the form of the nitrogen fertilizer played no important role for the formation of the yield of biomass and the uptake of nitrogen with the yield when it is applied in low nitrogen rates and maize was grown on calcareous black earth. The yield of biomass and the uptake of nitrogen with the yield of maize reach their maximum under the conditions of calcareous black earth and high nitrogen rates applied as urea depressed the plants which proves the statement that in case of calcareous black earth application of ammonium sulfate should be preferred rather that urea, fertilization with which should be avoided. No depression of plants was observed under the conditions of leached black earth and application of high urea rates. The amount of nitrogen taken up is growing with the increasing of the nitrogen rate (excluding the N-treatment). The split application of high nitrogen rates increased notably the yield of maize-vegetation mass which proved the great ability of this crop for effective utilization of the nitrogen fertilizers when applied in portions and at suitable phases of plant vegetation. The role of the fertilizer nitrogen on the formation of the plant mass yield is much greater compared to that of the soil nitrogen; in the split application of urea the soil nitrogen plays a much bigger role than in its single application. The additional mobilization of the soil nitrogen under the influence of the applied nitrogen

  18. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  19. Effects of Wheat and Faba Bean Intercropping on Microorganism Involved in Nitrogen Transformation in the Rhizosphere Soils

    Directory of Open Access Journals (Sweden)

    TANG Yan-fen

    2016-09-01

    Full Text Available Soil microorganism is one of the key factors that affects soil ecological activity. It is an important symbol of soil health, and the soil nitrogen cycle is closely related to the microorganisms. The relationship between nitrogen and microorganisms under the intercropping is im-portant for the farmland ecosystem. In this paper, phospholipid fatty acids(PLFA analysis was used to determine soil microbial communi-ties, e.g., biomasses of anaerobic bacteria, aerobic bacteria, bacteria, fungi and actinobacteria. The abundance of nitrifying genes(AOB, AOA and three denitrifying genes (nirK, norB, nosZ were measured using real-time quantitative polymerase chain reaction. The enzymes, nitrate and ammonium concentrations were measured using conventional methods. The results showed that along with the growth period, the TPLFAs(total phospholipid fatty acids increased and the bacterias, fungus, actinomyces and aerobic bacterias significantly(P<0.05 dif-fered between intercropping and monoculture. The greater abundance of AOB than AOA and the variation range of 105~106 were observed in all samples. The gene copies of norB and nosZ were pronounced by intercropping in the rhizosphere of faba bean at elongation and heading stages, respectively. The abundance of nirK remarkably(P<0.05differed between intercropping and monoculture. In intercropping rhizo-sphere, the contents of NO3--N were lower than monoculture, while the NH4+-N contents were converse (P<0.05. Conclusively, wheat and fa-ba bean intercropping system could change rhizosphere microenvironment, and then the microbial community structure in the soils, which would facilitate the conservation and supplying of soil nitrogen and reduce the nitrogen loss and pollution under the intercropping conditions to some extent. This might be the nitrogen nutrition mechanism for the overyielding of wheat and faba bean intercropping system.

  20. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  1. Influence of composted dairy manure and perennial forage on soil carbon and nitrogen fractions during transition into organic management

    Science.gov (United States)

    Composted dairy manure (CDM) is among the management practices used in transitioning from a conventional to an organic agricultural system. The objectives of this study are to evaluate the impact of several organic nitrogen (N) sources on: (i) soil organic C (SOC) and soil total N (STN) content; (ii...

  2. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  3. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  4. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  5. Effect of different nitrogen application types on nitrogen utilization efficiency and fate of fertilizer for sugacane

    International Nuclear Information System (INIS)

    Wei Jianfeng; Wei Dongping; Liu Huanyu; Chen Chaojun; Lan Libin; Liang He

    2013-01-01

    A pot experiment in greenhouse was conducted with "1"5N-labeled urea 5 g/pot (equal to 450 kg · hm"-"2) total nitrogen by three kinds of treatments of disposable bottom application nitrogen before sowing (T1), 50% nitrogen before sowing and 50% nitrogrn during tillering stage (T2), and 30% nitrogen before sowing, 30% nitrogen during tillering stage and 40% nitrogen applied during elongation stage (T3) to investigate the use efficiency and fate of fertilizer nitrogen using the sugarcane cultivar ROC22. Results showed that almost 18% ∼ 29% of total N uptake by sugarcane was supplied by fertilizer, and 71% ∼ 82% N derived from soil and seed-stem. Nitrogen use efficiency ranged from 21.0% to 34.52%, with "1"5N-fertilizer residue of 37.61% ∼ 44.13%, and "1"5N-fertilizer loss of 21.35% ∼ 41.39% among three treatments. Under the three levels of nitrogen application, residual was "1"5N-fertilizer was mainly distributed in 0 ∼ 20 cm top soil. The uptake of nitrogen and the proportion of total N from fertilizer in sugarcane plant, the yield of stalk and sugar after the nitrogen applied, and the use efficiency and residue ratio of "1"5N-fertilizer increased significantly over time, while loss rate of "1"5N-fertilizer decreased significantly with a slight decline trend of nitrogen distribution and sucrose accumulation in stalk. The results also indicated that after the nitrogen applied the amounts "1"5N-fertilizer residue in 0 ∼ 20 cm top soil showed a rising trend, but dropped in 20 ∼ 40 cm soil profile. From the viewpoints of economic benefit and ecological benefit, the nitrogen fertilizer applied of T3 could be optimal treatment. (authors)

  6. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  7. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients.

    Science.gov (United States)

    Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew

    2018-04-28

    Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Soil nitrogen dynamics in high-altitude ski runs during the winter season (Monterosaski - Vallée d

    Science.gov (United States)

    Freppaz, M.; Icardi, M.; Filippa, G.; Zanini, E.

    2009-04-01

    In many Alpine catchments, the development of winter tourism determined a widespread change in land use, shifting from forested and cultivated lands to ski slopes. The construction of a ski slope implies a strong impact on the landscape, with potential consequences on the soil quality. In most cases, the construction procedures include the total or partial removal of the soil body, the reallocation of the fine hearth fraction, the subsequent seeding of plants and the use of organic fertilizers. This work aims to evaluate soil physical and chemical properties and nitrogen (N) dynamics in anthropogenic soils from ski slopes of different age. Study sites were located in Champoluc (AO)- NW Italy between 2400 and 2700 m ASL. Topsoils (0-10 cm depth) were sampled in 4 ski slopes hydroseeded with commercial mixtures 4, 6, 10 and 12 years earlier, and in 4 control plots at the same exposure and altitude as the ski slopes. Soil samples were characterized, N dynamics in winter was evaluated with the buried bag technique and snowpack was analyzed for chemical and physical properties. Total nitrogen (TN) content in topsoil ranged 0.75-1.06 g kg-1 and was not correlated with the ski slope age. In all but one site, the TN content was significantly lower in the ski slope than in the control plot. A positive net ammonification and nitrification throughout the winter were found in all but one ski runs. These results suggest a high variability in the evolution degree of these anthropogenic soils. The net overwinter N mineralization that we report demonstrates that these soils are biologically active during the winter season. Such activity results in a pool of labile inorganic nitrogen potentially available for plant demand at the spring snowmelt.

  9. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  10. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.

    Science.gov (United States)

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2018-04-01

    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Temporal and spatial variation of nitrogen transformations in a coniferous forest soils.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  12. Soil warming opens the nitrogen cycle at the alpine treeline.

    Science.gov (United States)

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  13. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  14. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  15. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  16. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  17. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  18. Study on the reduction and hysteresis effect of soil nitrogen pollution by Alfalfa in channel buffer bank

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying

    2018-01-01

    Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.

  19. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  20. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    Science.gov (United States)

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation ( 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes.

  1. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  2. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  3. Bermudagrass Management in the Southern Piedmont U.S. IV. Soil Surface Nitrogen Pools

    Directory of Open Access Journals (Sweden)

    Alan J. Franzluebbers

    2001-01-01

    Full Text Available The fate of nitrogen (N applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer on surface residue and soil N pools during the first 5 years of ̒Coastal̓ bermudagrass (Cynodon dactylon [L.] Pers. management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g ‧ kg–1‧ year–11 greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76–82% than under ungrazed systems (35–71%. As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g ‧ m–2 ‧ year–1. Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.

  4. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  6. Nitrogen mineralization and volatilization from controlled release urea fertilizers in selected malaysian soils

    International Nuclear Information System (INIS)

    Singh, K.J.K.A.; Yusop, M.K.; Oad, F.C.

    2017-01-01

    Controlled release urea fertilizers are usually used for extended duration in supplying nitrogen. The rate of urea hydrolysis could be efficiently minimized through these fertilizers. Various controlled released fertilizers i.e Uber-10 (30%N), Meister-20 (40%N), Meister-27 (40%N), Humate Coated Urea (45%N), Duration Polymer Coated Urea Type-V (43%N), Gold-N-Sulfur Coated Urea (41%N) and common urea (46%N) were applied to inland soil series of Malaysia. The soil series investigated were: Serdang (Typic Paleudult), Munchong (Typic Hapludox), Segamat (Typic Hapludox), Selangor (Typic Tropaquept), Rengam (Typic Kandiudult) and Holyrood (Typic Kandiudult). The maximum release of ammonium (NH/sub 4/-N) was noted in Gold-N-Sulfur Coated Urea, Humate Coated Urea and common Urea over 8 weeks of incubation. However, the release of NH4-N under the influence of Duration Type-V and Uber-10 took 2nd place. The Meister-20 and Meister-27 had minimum release of NH4-N. Munchong series was efficient in releasing higher NH4-N compared to rest of soils during 8th week of incubation due to higher soil total carbon, low /sub 4/-N and total nitrogen. Ammonia (NH/sub 3/-N) loss progressively increased with unit increase in incubation week and was higher during 6th week of fertilizer application. The higher loss of NH3-N was found in common Urea. However, Meister-20, Meister-27, Duration Polymer Coated Urea Type-V and Uber-10 had lower loss of NH/sub 3/-N due to slow release property and this character could be beneficial for supplying nutrients to next season crop. (author)

  7. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  8. Fate of nitrogen (15N) from velvet bean in the soil-plant system

    International Nuclear Information System (INIS)

    Scivittaro, Walkyria Bueno; Muraoka, Takashi; Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze

    2004-01-01

    Because of their potential for N 2 biological fixation, legumes are an alternative source of nitrogen to crops, and can even replace or supplement mineral fertilization. A greenhouse experiment was carried out to evaluate temporal patterns of velvet bean (Mucuna aterrima) green manure release of nitrogen to rice plants, and to study the fate of nitrogen from velvet bean in rice cultivation. The isotopic dilution methodology was used. Treatments consisted of a control and 10 incubation periods of soil fertilized with 15 N-labeled velvet bean (0, 20, 40, 60, 90, 120, 150, 180, 210, and 240 days). The plant material was previously chopped, sifted (10 mm mesh sieve) and oven-dried (65 deg C). Incubation of the plant material (2.2 g kg -1 soil) was initiated by the longest period, in order to synchronize the planting of the test crop, rice (Oryza sativa), at time zero for all treatments. Green manure incorporation promoted increases in rice dry matter yield and nitrogen uptake. These variables showed maximum values at incubation periods of 38 and 169 days, respectively. Green manure nitrogen utilization by rice plants was highest at an incubation period corresponding to 151 days. More than 60% of the green manure nitrogen remained in the soil after rice cultivation. The highest green manure nitrogen recovery from the soil-plant system occurred at an incubation period equivalent to 77 days. (author)

  9. Differences in nitrogen cycling and soil mineralisation between a ...

    African Journals Online (AJOL)

    Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. ... An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the ...

  10. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  11. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    Science.gov (United States)

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  12. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    Science.gov (United States)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  13. LBA-ECO ND-08 Soil Respiration, Soil Fractions, Carbon and Nitrogen, Para, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides (1) carbon (C) and nitrogen (N) concentration measurements of two soil aggregate fractions (250-2000 micon, small macro-aggregates...

  14. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon

    Directory of Open Access Journals (Sweden)

    Said Nawar

    2017-10-01

    Full Text Available Accurate and detailed spatial soil information about within-field variability is essential for variable-rate applications of farm resources. Soil total nitrogen (TN and total carbon (TC are important fertility parameters that can be measured with on-line (mobile visible and near infrared (vis-NIR spectroscopy. This study compares the performance of local farm scale calibrations with those based on the spiking of selected local samples from both fields into an European dataset for TN and TC estimation using three modelling techniques, namely gradient boosted machines (GBM, artificial neural networks (ANNs and random forests (RF. The on-line measurements were carried out using a mobile, fiber type, vis-NIR spectrophotometer (305–2200 nm (AgroSpec from tec5, Germany, during which soil spectra were recorded in diffuse reflectance mode from two fields in the UK. After spectra pre-processing, the entire datasets were then divided into calibration (75% and prediction (25% sets, and calibration models for TN and TC were developed using GBM, ANN and RF with leave-one-out cross-validation. Results of cross-validation showed that the effect of spiking of local samples collected from a field into an European dataset when combined with RF has resulted in the highest coefficients of determination (R2 values of 0.97 and 0.98, the lowest root mean square error (RMSE of 0.01% and 0.10%, and the highest residual prediction deviations (RPD of 5.58 and 7.54, for TN and TC, respectively. Results for laboratory and on-line predictions generally followed the same trend as for cross-validation in one field, where the spiked European dataset-based RF calibration models outperformed the corresponding GBM and ANN models. In the second field ANN has replaced RF in being the best performing. However, the local field calibrations provided lower R2 and RPD in most cases. Therefore, from a cost-effective point of view, it is recommended to adopt the spiked European dataset

  15. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  16. Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2006-06-01

    Full Text Available The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCl and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30 and extractable P (4.11 μg g-1, n = 30 in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11. Rev. Biol. Trop. 54(2: 357-361. Epub 2006 Jun 01.A través del cociente foliar N/P, se investigó la disponibilidad de nitrógeno y fósforo en una selva húmeda tropical con suelo fértil. Como hipótesis se esperaba encontrar una alta disponibilidad de N y P en el ecosistema debido a un suelo rico en N y P. Se determinó el N total y el P extraible en el suelo superficial (10 cm en tres sitios de la selva. El N total se analizó por el método Kjeldahl y el P por extracción con HCl y NH4F. El cociente foliar N/P se evaluó a partir de hojas seniles de 11 especies arbóreas dominantes de la selva madura. Se recolectaron muestras de 5 g de hojas recién caídas de tres árboles de cada especie. El nitrógeno se analizó por digestión microkjeldahl con ácido sulfúrico y destilación con ácido bórico, y el fósforo por digestión con ácido nítrico y ácido perclórico, y determinación con fotometría. Las concetraciones de N

  17. Carbon dioxide emission from maize straw incubated with soil under various moisture and nitrogen levels

    International Nuclear Information System (INIS)

    Abro, S.A.; Tian, X.; Hussain, Q.; Talpur, M.; Singh, U.

    2012-01-01

    A laboratory incubation experiment was conducted to investigate the decomposition of maize straw incorporated into soil amended with nitrogen (N) and moisture (M) levels. Clay loam topsoil amended with maize straw was adjusted to four initial nitrogen treatments (C/N ratios of 72, 36, 18, and 9) and four moisture levels (60%, 70%, 80% and 90 % of field capacity) for the total of 16 treatments and incubated at 20 deg. C for 51 days. CO/sub 2/-C evolved was regularly recorded for all treatments during entire incubation period. Results showed that the mixing of straw with soil accelerated decomposition rates and enhanced cumulative CO/sub 2/-C production. The incorporation of straw brought about 50% increase in the cumulative CO/sub 2/-C production as compared with controls. About 45% of added maize straw C was mineralized to CO/sub 2/-C in 51 days. We conclude that incorporation of straw into soil along with the addition of N and moisture levels significantly affected CO/sub 2/-C evolution, cumulative CO/sub 2-C/, C mineralization and soil organic carbon deposition. The CO/sub 2/ emission was in positive correlation with (R2=0.99) N, moisture and incubation time (days). The straw returning into soil may enhance carbon pools and, thus will improve soil and environmental quality. (author)

  18. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P nitrogen cycle in recently abandoned croplands.

  19. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    Science.gov (United States)

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  20. The effects of antecedent dry days on the nitrogen removal in layered soil infiltration systems for storm run-off control.

    Science.gov (United States)

    Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong

    2011-01-01

    The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.

  1. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  2. Fate of fertilizer nitrogen in soil-plant system under irrigating condition. Pt.1: Effect of nitrogen level

    International Nuclear Information System (INIS)

    Chen Qing; Wen Xianfang; Zheng Xingyun; Pan Jiarong

    1997-01-01

    Three nitrogen fertilization levels including optimum rate of nitrogen applied (N1.0, 150 kg N·ha -1 ), 150% of optimum rate (N1.5, 225 kg N·ha -1 ) and 50% of optimum rate (N0.5, 75 kg N·ha -1 ) were selected to determine the fate of nitrogen in soil plant system by 15 N technique in 1994∼1995 field experiment which was conducted in Shijiazhuang. The results showed that under irrigated condition the nitrogen use efficiencies (NUE) of ammonium bicarbonate by winter wheat in fertilized treatments were 38.5%, 32.3% and 22.4% respectively, while the highest NUE of winter wheat was found in N0.5 treatment due to a relatively high fertility. The highest yield (6.8 x 10 3 kg grain·ha -1 , 14.7 x 10 3 kg top·ha -1 ) was obtained in N1.0 treatment, but nitrogen uptake and grain yield in N1.5 treatment were lower than those of other fertilizer treatments and there was no significant difference between N0.0 and N1.5 in grain yield. the highest residue of fertilizer N was determined in N1.5 treatment, of which 46% existed in the top layer of the soil (0∼50 cm). There was no significant difference in residual fertilizer N in soil between the other two treatments (31.28% in N0.5, 31.12% in N1.0). In 15 N balance calculation, the unaccounted part of applied N which was leaching down 50 cm in the soil profile as nitrate or gaseous loss through volatilization, denitrification were 30.20%, the soil profile as nitrate or gaseous loss through volatilization, denitrification were 30.20%, 36.56%, 31.25% in N0.5, N1.5 treatments, respectively. It is very important to control residual N in order to prevent N pollution and promote the growth of next crop

  3. Soil microbes shift C-degrading activity along an ambient and experimental nitrogen gradient

    Science.gov (United States)

    Moore, J.; Frey, S. D.

    2017-12-01

    The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of soil microbes, and yet their sensitivity to global changes remains unresolved. Atmospheric nitrogen (N) deposition has increased 22% (for NH4+) in the last two decades despite initiation of the Clean Air Act. Nitrogen deposition alters ecosystem processes by changing nutrient availability and soil pH, creating physiologically stressful environments that select for stress tolerant microbes. The functional fungal community may switch from domination by species with traits associated with decomposition via oxidative enzymes to traits associated with stress tolerance if global changes push fungal physiological limits. We examined changes in soil microbial activity across seven sites representing a gradient of ambient atmospheric N deposition, and five of these sites also had long-term N addition experiments. We measured changes in abundance of decomposition genes and C mineralization rates as indicators of microbial activity. We expected microbes to be less active with high N deposition, thus decreasing C mineralization rates. We found that C mineralization rates declined with total N deposition (ambient plus experimental additions), and this decline was more sensitive to N deposition where it occurred naturally compared to experimental treatments. Carbon mineralization declined by 3% in experimentally fertilized soils compared to 10% in control soils for every 1 kg/ha/y increase in ambient N deposition. Thus, microbes exposed to ambient levels of N deposition (2 - 12 kg/ha/y) had a stronger response than those exposed to fertilized soils (20 - 50 kg/ha/y). Long-term experimental N-addition seems to have selected for a microbial community that is tolerant of high N deposition. In sum, we provide evidence that soil microbial activity responded to N deposition, and may shift over time to a community capable of tolerating environmental change.

  4. [Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages].

    Science.gov (United States)

    Li, Wei; Zheng, Zi-cheng; Li, Ting-xuan

    2015-01-01

    This study selected 4 tea plantations with different ages (12-15, 20-22, 30-33 and >50 year-old) located in Ya' an, Sichuan Province, China to investigate the distribution patterns of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) , and to examine the ecological stoichiometric characteristics of C, N and P within soil aggregates. The results showed that the coefficients of variation of SOC, TN and TP were 17.5%, 16.3% and 9.4%, respectively in the 0-20 cm soil layer and were 24.0%, 21.0% and 9.2%, respectively in the 20-40 cm soil layer. The spatial variation of TP was lower than that of SOC and TN but there were significant positive correlations among them. SOC and TN were distributed in the small-size aggregates and both of them had the greatest values in the >50 year-old tea plantation, however, the distribution of TP was relatively uniform among aggregates and ages. The coefficients of variation of C/N, C/P, and N/P were 9.4%, 14.0% and 14.9%, respectively in the 0-20 cm soil layer and were 7.4%, 24.9% and 21.8%, respectively in the 20-40 cm soil layer. Variation of C/N was lower than that of C/P and N/P. Averaged C/P and N/P values in the small-size aggregates were higher than in aggregates of other sizes, and the maximum values were in the >50 year-old plantation. C/N, C/P and N/P had good indication for soil organic carbon storage.

  5. Total carbon and nitrogen in the soils of the world

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil

  6. Effects of nitrogen addition on soil microbes and their implications for soil C emission in the Gurbantunggut Desert, center of the Eurasian Continent.

    Science.gov (United States)

    Huang, Gang; Cao, Yan Feng; Wang, Bin; Li, Yan

    2015-05-15

    Nitrogen (N) deposition can influence carbon cycling of terrestrial ecosystems. However, a general recognition of how soil microorganisms respond to increasing N deposition is not yet reached. We explored soil microbial responses to two levels of N addition (2.5 and 5 gN m(-2) yr(-1)) in interplant soil and beneath shrubs of Haloxylon ammodendron and their consequences to soil respiration in the Gurbantunggut Desert, northwestern China from 2011 to 2013. Microbial biomass and respiration were significantly higher beneath H. ammodendron than in interplant soil. The responses of microbial biomass carbon (MBC) and microbial respiration (MR) showed opposite responses to N addition in interplant and beneath H. ammodendron. N addition slightly increased MBC and MR in interplant soil and decreased them beneath H. ammodendron, with a significant inhibition only in 2012. N addition had no impacts on the total microbial physiological activity, but N addition decreased the labile carbon substrate utilization beneath H. ammodendron when N addition level was high. Phospholipid fatty acid (PLFA) analysis showed that N addition did not alter the soil microbial community structure as evidenced by the similar ratios of fungal to bacterial PLFAs and gram-negative to gram-positive bacterial PLFAs. Microbial biomass and respiration showed close correlations with soil water content and dissolved carbon, and they were independent of soil inorganic nitrogen across three years. Our study suggests that N addition effects on soil microorganisms and carbon emission are dependent on the respiratory substrates and water availability in the desert ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Soil carbon accumulation in a Populus spp. plantation supplied with high atmospheric CO2 and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Lagomarsino A

    2009-06-01

    Full Text Available This work was carried out in the experimental area POPFACE (Tuscania, Viterbo, where a poplar short rotation forest (SRF was treated with 550 ppm of atmospheric CO2 for six years. The experimental plots (Control and FACE were divided in two halves, one of which was treated with nitrogen fertilization. The general aim of this research was to quantify the impact of the two rotation cycles, the CO2 enrichment and the nitrogen fertilization on: i soil organic matter fractions more relevant for microbial metabolism; ii microbial C mineralization activity and iii the ecosystem capacity to store C in the soil. On soil samples collected from 2000 to 2004, the soil Organic C (TOC, the total extractable C (TEC and several labile C fractions (MBC, WSC, ExC were analysed. The microbial mineralization activity was also analysed. In comparison with the previous culture crop, the plantation increased the organic C storage in soil by about 23% in the second rotation cycle. Under elevated CO2, the increase of above- and belowground productivity supported a greater accumulation of labile C in soil, favouring a microbial C immobilization process. Fertilization treatment induced short-term changes in the soil C content, without overall modifications in the second rotation cycle.

  8. Nitrogen-rich higher-molecular soil organic compounds patterned by lignin degradation products: Considerations on the nature of soil organic nitrogen

    Science.gov (United States)

    Liebner, Falk; Bertoli, Luca; Pour, Georg; Klinger, Karl; Ragab, Tamer; Rosenau, Thomas

    2016-04-01

    The pathways leading to accumulation of covalently bonded nitrogen in higher-molecular soil organic matter (SOM) are still a controversial issue in soil science and geochemistry. Similarly, structural elucidation of the variety of the types of nitrogenous moieties present in SOM is still in its infancy even though recent NMR studies suggest amide-type nitrogen to form the majority of organically bonded nitrogen which is, however, frequently not in accordance with the results of wet-chemical analyses. Following the modified polyphenol theory of Flaig and Kononova but fully aware of the imperfection of a semi-abiotic simulation approach, this work communicates the results of a study that investigated some potential nitrogen accumulation pathways occurring in the re-condensation branch of the theory following the reactions between well-known low-molecular lignin and carbohydrate degradation products with nitrogenous nucleophiles occurring in soils under aerobic conditions. Different low-molecular degradation products of lignin, cellulose, and hemicellulose, such as hydroquinone, methoxyhydroquinone, p-benzoquinone, 2,5-dihydroxy-[1,4]benzoquinone, glucose, xylose, and the respective polysaccharides, i.e. cellulose, xylan as well as various types of lignin were subjected to a joint treatment with oxygen and low-molecular N-nucleophiles, such as ammonia, amines, and amino acids in aqueous conditions, partly using respective 15N labeled compounds for further 15N CPMAS NMR studies. Product mixtures derived from mono- and polysaccharides have been comprehensively fractionated and analyzed by GC/MS after derivatization. Some of ammoxidized polyphenols and quinones have been analyzed by X-ray photoelectron spectroscopy. Some products, such as those obtained from ammoxidation of methoxy hydroquinone using 15N labeled ammonia were fractionated following the IHSS protocol. Individual humin (H), humic acid (HA), and fulvic acid (FA) fractions were subjected to elemental analyses

  9. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Z.; Kalembasa, S.; Wyszkowski, M.; Rolka, E. [University of Warmia & Mazury Olsztyn, Olsztyn (Poland). Dept. of Environmental Chemistry

    2004-07-01

    The aim of this study was to determine the effect of cadmium (10, 20, 30 and 40 mg Cd/kg of soil) contamination in soil with the application of different substances (compost, brown coal, lime and bentonite) on the intake of nitrogen by some plants. The correlations between the nitrogen content in the plants and the cadmium concentration in the soil, as well as the plant yield and the content of micro- and macroelements in the plants were determined. Plant species and cadmium dose determined the effects of soil contamination with cadmium on the content of nitrogen. Large doses of cadmium caused an increase in nitrogen content in the Avena sativa straw and roots and in the Zea mays roots. Soil contamination with cadmium resulted in a decrease of nitrogen content in the Avena sativa grain, in above-ground parts and roots of the Lupinus luteus, in the above-ground parts of the Zea mays and in the above-ground parts and roots of Phacelia tanacaetifolia. Among the experimental different substances, the application of bentonite had the strongest and a usually negative effect on the nitrogen content in plants. The greatest effect of bentonite was on Avena sativa grain, above-ground parts Zea mays and Lupinus luteus and Phacelia tanacaetifolia. The content of nitrogen in the plants was generally positively correlated with the content of the macroelements and some of the microelements, regardless of the substances added to the soil.

  10. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  11. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in Maritime Antarctica.

    Science.gov (United States)

    Pires, C V; Schaefer, C E R G; Hashigushi, A K; Thomazini, A; Filho, E I F; Mendonça, E S

    2017-10-15

    The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO 2 emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO 2 emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO 2 under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg -1 and 5.22gkg -1 for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO 2 mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO 2 by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO 2 than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO 2 emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of Nitrogen Fertilizer on Combined Forms and Transformation of Fluorine in Tea Garden Soil

    Directory of Open Access Journals (Sweden)

    ZHANG Yong-li

    2015-10-01

    Full Text Available In order to investigate the effect of nitrogen fertilizer on combined forms and transformation of fluorine in tea garden soil, soil pot experiment was carried out. The research object was red-yellow soil in Shizipu tea plantation in the south of Anhui Province. Five treatments were N0P0K0 (CK, N0P1K1 (N0, N1P1K1 (N1, N2P1K1 (N2, N3P1K1 (N3. Water-soluble fluorine content, exchangeable fluorine content, Fe/Mn oxide-bound fluorine content, organic matter-bound fluorine content, ammonium nitrogen content and soil pH value in 0~15 cm soil layer were analyzed in 10, 20, 30, 50, 70, 90 days after fertilization. The results showed that compared with CK, in the short term (10 or 20 days after applying NPK, the content of water-soluble fluorine in 0~15 cm soil layer was decreased and the content of exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were increased. After 20 days, the content of soil water-soluble fluorine was increased and the content of soil exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were reduced. The effect on water-soluble fluorine and exchangeable fluorine increased with time and the application rate of nitrogen. The content of water-soluble fluorine in tea garden soil had a moderately positive correlation with the application rate of nitrogen while the content of exchangeable fluorine had a moderately or highly negative correlation with the application rate of nitrogen. The content of water-soluble fluorine had a quite highly negative correlation with the soil pH (P<0.01, but the content of exchangeable fluorine had a moderately or highly negative correlation with the soil pH (P<0.01. Therefore, nitrogen fertilizer changed the soil pH during its form transformation and thus affected the transformation and the availability of fluorine in soil.

  13. Comparisons between three nitrogen fertilizers (nitric, ammoniacal and uric) in an andic soil of the Comoro Islands. Studies in a controlled medium with nitrogen 15

    International Nuclear Information System (INIS)

    Egoumenides, C.; Pichot, J.; Haribou, A.

    1980-01-01

    The fixation rate (nitrogen in the plant + nitrogen remaining in the soil) was measured for nitrogen from three different labelled fertilizers: calcium nitrate, ammonium sulfate and urea. This experiment, which was realized in pots with and without cultures led to the following observations: the same fixation rates occur for all fertilizers, which are greater when cultures are employed then when they are not employed (86% ans 72% respectively); the utilization rate of nitrogen fertilizers by plants is significantly higher with the nitric form of fertilizer than with the two other forms (73% and 63% respectively). With cultures, the nitrogen nonutilized by the plant is found in nitrogen organic forms of the soil. On the other hand, in the case of bare soil, the reorganization of nitrogen fertilizers (above all nitric fertilizers) is found to be highly limited, the greatest proportion of the fertilizer's nitrogen remaining in the mineral form [fr

  14. Effects of land use change on soil gross nitrogen transformation rates in subtropical acid soils of Southwest China.

    Science.gov (United States)

    Xu, Yongbo; Xu, Zhihong

    2015-07-01

    Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).

  15. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone

    Science.gov (United States)

    Wang, Guan; Li, Junran; Ravi, Sujith; Dukes, David; Gonzales, Howell B.; Sankey, Joel B.

    2018-01-01

    The rapid conversion of grasslands into shrublands has been observed in many arid and semiarid regions worldwide. Studies have shown that fire can provide certain forms of reversibility for shrub-grass transition due to resource homogenization and shrub mortality, especially in the early stages of shrub encroachment. Field-level post-fire soil resource redistribution has rarely been tested. Here we used prescribed fire in a shrubland-grassland transition zone in the northern Chihuahuan Desert to test the hypothesis that fire facilitates the remobilization of nutrient-enriched soil from shrub microsites to grass and bare microsites and thereby reduces the spatial heterogeneity of soil resources. Results show that the shrub microsites had the lowest water content compared to grass and bare microsites after fire, even when rain events occurred. Significant differences of total soil carbon (TC) and total soil nitrogen (TN) among the three microsites disappeared one year after the fire. The spatial autocorrelation distance increased from 1~2 m, approximately the mean size of an individual shrub canopy, to over 5 m one year after the fire for TC and TN. Patches of high soil C and N decomposed one year after the prescribed fire. Overall, fire stimulates the transfer of soil C and N from shrub microsites to nutrient-depleted grass and bare microsites. Such a redistribution of soil C and N, coupled with the reduced soil water content under the shrub canopies, suggests that fire might influence the competition between shrubs and grasses, leading to a higher grass, compared to shrub, coverage in this ecotone.

  16. Fate of nitrogenous fertilizers in forest soil

    International Nuclear Information System (INIS)

    Pang, P.C.K.

    1984-01-01

    The fate of the nitrogenous fertilizers through the processes of denitrification, ammonia volatilization, immobilization and uptake by a conifer is determined, with the aid of 15 N-labelled fertizers. The foliage of Douglas-fir was able to absorb gaseous ammonia under optimal conditions. Denitrification and immobilization of fertilizer-N by forest soil were highest with forest floor samples and decreased with depth. Laboratory studies with four-year-old Douglas-fir demostrated that a higher quantity of fertilizer-N was utilized by trees when the nitrogen was supplied as NO 3 - rather than NH 4 + . (M.A.C.) [pt

  17. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey

    Science.gov (United States)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.

    2011-12-01

    In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not

  18. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  19. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  20. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  1. Soil respiration, microbial biomass and exoenzyme activity in switchgrass stands under nitrogen fertilization management and climate warming.

    Science.gov (United States)

    Jian, S.; Li, J.; de Koff, J.; Celada, S.; Mayes, M. A.; Wang, G.; Guo, C.

    2016-12-01

    Switchgrass (Panicum virgatum L.), as a model bioenergy crop, received nitrogen fertilizers for increasing its biomass yields. Studies rarely investigate the interactive effects of nitrogen fertilization and climate warming on soil microbial activity and carbon cycling in switchgrass cropping systems. Enhanced nitrogen availability under fertilization can alter rates of soil organic matter decomposition and soil carbon emissions to the atmosphere and thus have an effect on climate change. Here, we assess soil CO2 emission, microbial biomass and exoenzyme activities in two switchgrass stands with no fertilizer and 60 lbs N / acre. Soils were incubated at 15 ºC and 20 ºC for 180-day. Dry switchgrass plant materials were added to incubation jars and the 13C stable isotopic probing technique was used to monitor soil CO2 respiration derived from relatively labile litter and indigenous soil. Measurements of respiration, δ13C of respiration, microbial biomass carbon and exoenzyme activity were performed on days 1, 5, 10, 15, 30, 60, 90, 120, 150 and 180. Soil respiration rate was greater in the samples incubated at 20 ºC as compared to those incubated at 15 ºC. Exoenzyme activities were significantly altered by warming, litter addition and nitrogen fertilization. There was a significant interactive effect of nitrogen fertilization and warming on the proportion of CO2 respired from soils such that nitrogen fertilization enhanced warming-induced increase by 12.0% (Pmineralization. Fertilization increased soil microbial biomass carbon at both temperatures (9.0% at 15 ºC and 14.5% at 20 ºC). Our preliminary analysis suggested that warming effects on enhanced soil respiration can be further increased with elevated fertilizer input via greater microbial biomass and exoenzyme activity. In addition to greater biomass yield under N fertilization, this study informs potential soil carbon loss from stimulated soil respiration under nitrogen fertilization and warming in

  2. Response of a two-year sugar beet-sweet sorghum rotation to an agronomic management approach diversified by soil tillage and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    A. Domenico Palumbo

    2014-08-01

    Full Text Available Conservative agriculture and nitrogen fertilisation have been evaluated for the purpose of assessing their impact on the sustainability of a cropping system based on a two-year rotation with two crops considered for the bio-ethanol supply chain: sugar beet (Beta vulgaris L. subsp. vulgaris and sweet sorghum (Sorghum bicolor L. Moench. The experimental activity started in 2009 in Foggia (Apulia, southern Italy. We discuss the results obtained in the 2010-2011 period. Soil minimum tillage (MT vs no tillage (NT combined with two doses of nitrogen fertilisation (75 and 150 kg ha–1 of mineral nitrogen as ammonium nitrate were compared. The experimental system, which is still operational (soil tillage plus nitrogen fertilisation, was arranged with a split-plot design with three replicates. Treatments were applied on the same plots every year with both crops present at the same time. At the first harvest in 2010, no difference was observed. As to the second year, the comparison between NT vs MT treatments showed that sugar beet had lower total yield (35 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.7 vs 8.2 t ha–1. Total soluble solids, on average 19%, were not influenced by the experimental treatments. Nitrogen (N control was less productive than the fertilised treatments (average between N75 and N150 in terms of total fresh root yield (32 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.0 vs 8.1 t ha–1. As with sugar beet, during the second year, also sweet sorghum sown in NT vs MT plots had a reduced yield, although the difference was more marked for fresh biomass (–35% than for dry biomass (–20%. No interaction in terms of soil tillage nitrogen fertilisation occurred. In summary, in the first two-year period (2010-2011 of the experimental trial, no tillage soil management showed decreased yields of both crops. Sugar beet displayed a higher sensitivity to the lack of nitrogen supply than sweet

  3. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics.

    Science.gov (United States)

    Chen, Dingjiang; Huang, Hong; Hu, Minpeng; Dahlgren, Randy A

    2014-05-20

    This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures.

  4. Studies in utilization of fertilizer and soil nitrogen by carrots

    International Nuclear Information System (INIS)

    Moussa, A.G.; Markgraf, G.; Geissler, T.

    1985-01-01

    Pot experiments were conducted to determine the extent of fertilizer N utilization by carrots, using double-labelled 15 N-ammonium nitrate. The degree of soil N utilization was also studied. The residual effect of nitrogen in the individual variants was determined in spinach grown as succeeding crop. Under the experimental conditions, N utilization was highest at high water supply (100 % of water capacity). Due to the daily rhythm of pot watering to approximately 100 % of water capacity, gas exchange (air and oxygen) was ensured as well, providing optimum growth conditions. At medium nitrogen rates (12.5 g N/m 2 ), carrots took up 44.5 % of the fertilizer N on sand and 54.5 % on loess soil. When water supply decreased to 70 % of the water capacity, utilization of fertilizer N declined to 26 % on sand and 43.8 % on loess soil. Spinach grown as succeeding crop took up more soil N than fertilizer N. (author)

  5. Soil-pit Method for Distribution and Leaching Loss of Nitrogen in Winter Wheat’s Soil, Weishan Irrigation District

    Science.gov (United States)

    Zhao, Erni; Xu, Lirong; Wang, Rongzhen

    2018-01-01

    Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.

  6. Non-Linear Nitrogen Cycling and Ecosystem Calcium Depletion Along a Temperate Forest Soil Nitrogen Gradient

    Science.gov (United States)

    Sinkhorn, E. R.; Perakis, S. S.; Compton, J. E.; Cromack, K.; Bullen, T. D.

    2007-12-01

    Understanding how N availability influences base cation stores is critical for assessing long-term ecosystem sustainability. Indices of nitrogen (N) availability and the distribution of nutrients in plant biomass, soil, and soil water were examined across ten Douglas-fir (Pseudotsuga menziesii) stands spanning a three-fold soil N gradient (0-10 cm: 0.21 - 0.69% N, 0-100 cm: 9.2 - 28.8 Mg N ha-1) in the Oregon Coast Range. This gradient is largely the consequence of historical inputs from N2-fixing red alder stands that can add 100-200 kg N ha-1 yr-1 to the ecosystem for decades. Annual net N mineralization and litterfall N return displayed non-linear relationships with soil N, increasing initially, and then decreasing as N-richness increased. In contrast, nitrate leaching from deep soils increased linearly across the soil N gradient and ranged from 0.074 to 30 kg N ha-1 yr-1. Soil exchangeable Ca, Mg, and K pools to 1 m depth were negatively related to nitrate losses across sites. Ca was the only base cation exhibiting concentration decreases in both plant and soil pools across the soil N gradient, and a greater proportion of total available ecosystem Ca was sequestered in aboveground plant biomass at high N, low Ca sites. Our work supports a hierarchical model of coupled N-Ca cycles across gradients of soil N enrichment, with microbial production of mobile nitrate anions leading to depletion of readily available Ca at the ecosystem scale, and plant sequestration promoting Ca conservation as Ca supply diminishes. The preferential storage of Ca in aboveground biomass at high N and low Ca sites, while critical for sustaining plant productivity, may also predispose forests to Ca depletion in areas managed for intensive biomass removal. Long-term N enrichment of temperate forest soils appears capable of sustaining an open N cycle and key symptoms of N-saturation for multiple decades after the cessation of elevated N inputs.

  7. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively. The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  8. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  9. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  10. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  11. Effects of pumice mining on soil quality

    Science.gov (United States)

    Cruz-Ruíz, A.; Cruz-Ruíz, E.; Vaca, R.; Del Aguila, P.; Lugo, J.

    2015-04-01

    México is the worl's fourth most important maize producer; hence, there is a need to maintain soil quality for a sustainable production in the upcoming years. Pumice mining, a superficial operation, modifies large areas in Central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed-time since pumice mining (0-15 years), in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10 and 15 year-old reclaimed soils were compared with adjacent undisturbed site. Our results indicate that soil organic carbon, total nitrogen, microbial biomass carbon and microbial quotients were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance. Recovery of soil total nitrogen was faster than soil organic carbon. Principal components analysis was applied. The first three components together explain 71.72 % of the total variability. First factor reveals strong associations between total nitrogen, microbial biomass carbon and pH. The second factor reveals high loading of urease and catalase. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were: total nitrogen, microbial biomass carbon and soil organic carbon.

  12. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    Science.gov (United States)

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  14. Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile

    OpenAIRE

    Moya, Héctor; Verdejo, José; Yáñez, Carolina; Álvaro, Juan E.; Sauvé, Sébastien; Neaman, Alexander

    2017-01-01

    Microbiological bioassays of nitrification and nitrogen mineralization have been used for evaluation of soil quality on metal-contaminated soils. We evaluated the effectiveness of nitrification and nitrogen mineralization bioassays as quality indicators of soil degradation caused by metal contamination. We performed standard tests based on protocols of ISO 14238 (2012) and ISO 15685 (2012) on 90 soil samples collected from agricultural areas in central Chile that were historically contaminate...

  15. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI

    International Nuclear Information System (INIS)

    Leip, Adrian; Britz, Wolfgang; Weiss, Franz; Vries, Wim de

    2011-01-01

    We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha -1 yr -1 in a soil budget and 65 kg N 2 O-N ha -1 yr -1 and 67 kg N ha -1 yr -1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE. - Highlights: → Farm, land and soil N-budgets are important tools to characterize agricultural systems. → Farm N Use Efficiency (NUE) is lower than soil NUE; farm nitrogen surplus is higher. → On EU27 average, farm NUE is 31%, soil NUE is 63%, N surplus is 55-67 kg N ha -1 yr -1 . → Soil NUE is best explained by the share of imported feedstuff. → Intensive farming and specialization to animal production cause a high NS and low NUE. - Consistent calculations of farm, land and soil N-budgets for agriculture in Europe are presented and discussed at the national level and for EU27.

  16. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    Science.gov (United States)

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  17. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  18. Nitrogen Transformations in Broiler Litter-Amended Soils

    Directory of Open Access Journals (Sweden)

    Kokoasse Kpomblekou-A

    2012-01-01

    Full Text Available Nitrogen mineralization rates in ten surface soils amended with (200 μg N g−1 soil or without broiler litter were investigated. The soil-broiler litter mixture was incubated at 25±1∘C for 28 weeks. A nonlinear regression approach for N mineralization was used to estimate the readily mineralizable organic N pools (N0 and the first-order rate constant (k. The cumulative N mineralized in the nonamended soils did not exceed 80 mg N kg−1 soil. However, in Decatur soil amended with broiler litter 2, it exceeded 320 mg N kg−1 soil. The greatest calculated N0 of the native soils was observed in Sucarnoochee soil alone (123 mg NO3− kg−1 soil which when amended with broiler litter 1 reached 596 mg N kg−1 soil. The added broiler litter mineralized initially at a fast rate (k1 followed by a slow rate (k2 of the most resistant fraction. Half-life of organic N remaining in the soils alone varied from 33 to 75 weeks and from 43 to 15 weeks in the amended soils. When N0 was regressed against soil organic N (=0.782∗∗ and C (=0.884∗∗∗, positive linear relationships were obtained. The N0 pools increased with sand but decreased with silt and clay contents.

  19. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...... measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content...

  20. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  1. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    Science.gov (United States)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  2. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  3. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel.

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Jumei; Wei, Dongpu; Li, Bo; Ma, Yibing

    2015-01-01

    Soil soluble nickel (Ni) concentration is very important for determining soil Ni toxicity. In the present study, the relationships between soil properties, total and soluble Ni concentrations in soils were developed in a wide range of soils with different properties and climate characteristics. The multiple regressions showed that soil pH and total soil Ni concentrations were the most significant parameters in predicting soluble Ni concentrations with the adjusted determination coefficients (Radj2) values of 0.75 and 0.68 for soils spiked with soluble Ni salt and the spiked soils leached with artificial rainwater to mimic field conditions, respectively. However, when the soils were divided into three categories (pH 8), they obtained better predictions with Radj2 values of 0.78-0.90 and 0.79-0.94 for leached and unleached soils, respectively. Meanwhile, the other soil properties, such as amorphous Fe and Al oxides and clay, were also found to be important for determining soluble Ni concentrations, indicating that they were also presented as active adsorbent surfaces. Additionally, the whole soil speciation including bulk soil properties and total soils Ni concentrations were analyzed by mechanistic speciation models WHAM VI and Visual MINTEQ3.0. It was found that WHAM VI provided the best predictions for the soils with pH 8. The Visual MINTEQ3.0 could provide better estimation for pH 8. These results indicated the possibility and applicability of these models to predict soil soluble Ni concentration by soil properties.

  4. Soil Nitrogen Storage, Distribution, and Associated Controlling Factors in the Northeast Tibetan Plateau Shrublands

    Directory of Open Access Journals (Sweden)

    Xiuqing Nie

    2017-11-01

    Full Text Available Although the soils in the Tibetan Plateau shrublands store large amounts of total nitrogen (N, the estimated values remain uncertain because of spatial heterogeneity and a lack of field observations. In this study, we quantified the regional soil N storage, spatial and vertical density distributions, and related climatic controls using 183 soil profiles sampled from 61 sites across the Northeast Tibetan Plateau shrublands during the period of 2011–2013. Our analysis revealed a soil N storage value of 132.40 Tg at a depth of 100 cm, with an average density of 1.21 kg m−2. Soil N density was distributed at greater levels in alpine shrublands, compared with desert shrublands. Spatially, soil N densities decreased from south to north and from east to west, and, vertically, the soil N in the upper 30 and 50 cm accounted for 42% and 64% of the total soil N stocks in the Tibetan Plateau. However, compared with desert shrublands, the surface layers in alpine shrublands exhibited a larger distribution of soil N stocks. Overall, the soil N density in the top 30 cm increased significantly with the mean annual precipitation (MAP and tended to decrease with the mean annual temperature (MAT, although the dominant climatic controls differed among shrubland types. Specifically, MAP in alpine shrublands, and MAT in desert shrubland, had a weak effect on N density. Soil pH can significant affect soil N density in the Tibetan Plateau shrublands. In conclusion, changes in soil N density should be monitored over the long term to provide accurate information about the effects of climatic factors.

  5. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  6. Effect of blue-green algae on soil nitrogen | Paudel | African Journal ...

    African Journals Online (AJOL)

    Effect of blue-green algae on soil nitrogen. ... African Journal of Biotechnology ... In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual build up of soil fertility with a residual effect on succeeding crop ...

  7. Nitrogen fertilization of Cabernet Sauvignon grapevines: yield, total nitrogen content in the leaves and must composition

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    2015-08-01

    Full Text Available Grapevines grown on sandy soils are subjected to the application of supplemental nitrogen (N; however, there is little information available regarding the impact of these applications on yield, plant nutritional state and must composition. The aim of this study was to evaluate the yield, nutritional state and must composition of grapevines subjected to N fertilization. Cabernet Sauvignon grapevines were subjected to annual applications of 0, 10, 15, 20, 40, 80 and 120 kg N ha-1 in 2008, 2009 and 2010. During the 2008/09, 2009/10 and 2010/11 harvest seasons, leaves were collected during full flowering and when the berries changed color, and the total N content was analyzed. The grape yield and the enological characteristics of the must were evaluated. The response to applied N was low, and the highest Cabernet Sauvignon grape yield was obtained in response to an application of 20 kg N ha-1 year-1. The application of N increased the nutrient content in the leaf collected at full flowering, but it had little effect on the total nutrient content in the must, and it did not affect the enological characteristics of the must, such as soluble solids, pH, total acidity, malic acid and tartaric acid.

  8. Nitrogen balance in grasses of the genus Brachiaria

    International Nuclear Information System (INIS)

    Loureiro, M. de F.

    1985-01-01

    A 15 N aided nitrogen balance experiment was performed in posts in the greenhouse to quantify the contribution of biological nitrogen fixation to four species of Brachiaria grow in two soils. The effects of adding molybdenum to the pots was also investigated. Among various methods for the analysis of total nitrogen in plant material and soil, a technique utilizing a pre-digestion with Devarda's alloy was found to be most efficient. In the nitrogen analyses the sample size and particle size were found to be factors limiting the precision of the analyses. In an analysis of the sources of error, the sampling of the soil was found to be the greatest source of variation on the nitrogen balance. (author)

  9. Using 137Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China

    International Nuclear Information System (INIS)

    Wei Guoxiao; Wang Yibo; Wang Yanlin

    2008-01-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and 137 Cs in a control plot and a treatment plot. The amounts of SOC, 137 Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30 cm soil layer at upper, middle and lower portions and 137 Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of 137 Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that 137 Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of 137 Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion

  10. Using (137)Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China.

    Science.gov (United States)

    Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang

    2008-12-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.

  11. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China

    Science.gov (United States)

    Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It...

  12. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  13. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  14. Soil-N tagging - a method for measurement of biological nitrogen fixation in cereal-legume intercropping system

    International Nuclear Information System (INIS)

    Patra, D.D.; Subbiah, B.V.; Sachdev, M.S.

    1985-01-01

    The quantitative estimates of atmospheric dinitrogen fixed by the legume crop and transferred to the associated cereal in cereal-legume intercropping system of maize-cowpea and wheat-gram using soil and fertilizer nitrogen labelling with 15 N have been reported. The estimates of N-fixation have been compared with the similar data from A-value method. Under field conditions sole cropped cowpea fixed 53.7 per cent of its total N uptake while as intercrop with maize fixed 43.5 per cent. Maize crop got 27.6 per cent of its total N uptake by transference of the nitrogen fixed by the intercropped cowpea. In the wheat-gram intercropping system the corresponding values under greenhouse conditions were 35.0, 44.8 and 20.2 per cent, respectively. (author)

  15. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  16. Nitrogen loss from grassland on peat soils through nitrous oxide production.

    NARCIS (Netherlands)

    Koops, J.G.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in

  17. Soil nitrogen availability in the open steppe with Stipa tenacissima

    Science.gov (United States)

    Novosadova, Irena; Damian Ruiz Sinoga, Jose; Záhora, Jaroslav

    2010-05-01

    functioning, particularly in Mediterranean areas, where nutrient availability, mainly nitrogen and phosphorous, represents a limiting factor (Sardans et al., 2005) together with water availability. Soil N availability has been found to affect plant water use efficiency (Sardans et al., 2008a). This strong link between N availability and water use efficiency makes particularly important the understanding of factors affecting soil N availability in Mediterranean ecosystems in view of the future predicted increasing drought in this area. Changes in the soil nitrogen availability in the open steppe with S. tenacissima were monitored over a two distinct period of time during the years 2008 and 2009 at a field site in semi-arid south-eastern Spain (Novosádová et al., 2010). The availability of ammonia-nitrogen and nitrate nitrogen was estimated in situ according to Binkley at Matson (1982) by the trapping of mineral N into the ion exchange resin inserted into special cover. The availability of soil ammonia-N as well as the availability of nitrate-N were in the 2008 year significantly influenced by the addition of different substrate (only 38% of control after the cellulose addition and 176% of control after the raw silk addition). In the following 2009 year was the N availability probably due to favorable soil moisture nearly the same in all experimental variants. The availability of ammonia-N was, in general, higher than the availability of nitrate-N, but the differences were less noticeable in 2008 year. It can be concluded, that the microbial competition for available nitrogen is very high and spatially and/or temporary significantly different.

  18. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    Science.gov (United States)

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  19. Dicyandiamide as nitrification inhibitor of pig slurry ammonium nitrogen in soil

    Directory of Open Access Journals (Sweden)

    Rogério Gonzatto

    2016-05-01

    Full Text Available ABSTRACT: Inhibition of nitrification of ammoniacal nitrogen pig slurry after its application to the soil can mitigate nitrogen (N losses by nitrate (NO3 - denitrification and leaching, with economical and environmental benefits. However, the use of this strategy is incipient in Brazil and, therefore, requires further assessment. The aim of this study was to evaluate the efficiency of dicyandiamide (DCD nitrification inhibitor in slowing the nitrification of ammoniacal N applied to the soil with pig slurry (PS. For this, incubation was performed in laboratory, where nitrification was assessed by NO3 - accumulation in the soil. Rates of 2.8, 5.7 and 11.3kg DCD ha-1 were compared, being applied to the soil during PS addition. Nitrification was inhibited by DCD, and inhibition magnitude and duration depended on DCD applied rate. At a dose of 11.3kg ha-1 DCD, nitrification was completely inhibited in the first 12 days. During the first month after PS application, each 2.8kg of DCD increase applied per hectare promoted NO3 --N reduction in the soil of 13.3kg ha-1, allowing longer ammoniacal N maintenance in the soil.

  20. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  2. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  3. 15N abundance in Antarctica: origin of soil nitrogen and ecological implications

    International Nuclear Information System (INIS)

    Wada, E.; Shibata, R.; Torii, T

    1981-01-01

    The results of an investigation of the nitrogen cycle in Antartica are reported which show that nitrate in Antarctic soils is extremely depleted in 15 N compared with biogenic nitrogen and that algae collected from a nitrate-rich saline pond and from a penguin rookery exhibit, respectively, the lowest and the highest 15 N/ 14 N ratios among terrestrial biogenic nitrogen so far observed. The possible causes of these extreme nitrogen isotopic compositions are discussed. (U.K.)

  4. Using USDA's National Cooperative Soil Survey Soil Characterization Data to detect soil change: A cautionary tale

    Science.gov (United States)

    Recently, the USDA-NRCS National Cooperative Soil Survey Soil Characterization Database (NSCD) was reported to provide evidence that total nitrogen (TN) stocks of agricultural soils have increased across the Mississippi basin since 1985. Unfortunately, due to omission of metadata from the NSCD, hist...

  5. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content in the leaf in different parts of the crambe plant, depending on the doses of nitrogen applied to the canopy. Randomized block design in a split plot experimental design was used. The plots ...

  6. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  7. Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance.

    Science.gov (United States)

    Yan, Xiaodan; Shi, Lin; Cai, Rumeng

    2018-01-01

    A mineral soil conditioner (MSC) composed of activated potash feldspar, gypsum, and calcium carbonate and containing an amount of available mineral nutrients, is shown to be effective for plant growth and acidic soil amelioration. In this study, a field test was conducted over four rice seasons by examining treatment with control check (CK), MSC, biological active carbon, and lime to investigate the nitrogen-use efficiency and mechanism of soil characteristic variations due to the desilicification and allitization of soil as well as the unrestrained use of nitrogen (N) fertilizer in recent years. Influences of MSC on the xylem sap intensity and mean rice yields were evaluated, and the soil type was also analyzed using the FactSage 6.1 Reaction, phase diagram, and Equilib modules. The results of the field trial showed that MSC application increased the xylem sap intensity and nitrogen export intensity by 37.33-39.85% and 31.40-51.20%, respectively. A significant increase (5.63-15.48%) in mean grain yields was achieved with MSC application over that with biological active carbon and lime application. The effects of MSC had a tendency to increase with time in the field experiment results, and grain yields increased after the initial application. The new formation of clay minerals exhibits a significant influence on [Formula: see text] fixation, especially for 2:1 phyllosilicates with illite, owing to the interlayers of the clay minerals. Our preliminary results showed that kaolinite, the main 1:1 phyllosilicate clay mineral in ferralsol, transformed to illite at room temperature as a consequence of the presence of H 4 SiO 4 and available K + supplied by MSC. This indicated that improving the soil quality combined with reducing N losses from soils is an efficient way to control non-point source pollution from agriculture without the risk of decreased in grain yield.

  8. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  9. Determinação das formas de nitrogênio e nitrogênio total em rochas-reservatório de petróleo por destilação com arraste de vapor e método do indofenol Determination of nitrogen forms and total nitrogen in petroleum reservoir rocks by steam distillation and the indophenol method

    Directory of Open Access Journals (Sweden)

    Lílian Irene Dias da Silva

    2006-02-01

    Full Text Available Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3 and the detection limit (9 mg kg-1 NH4+-N are better than those of published procedures.

  10. Effects of Soil Compaction on Carbon and Nitrogen Sequestration in Soil and Wheat, Soil Physical Properties and Aggregates Stability (Case study: Northern of Aq Qala

    Directory of Open Access Journals (Sweden)

    Z. Saieedifar

    2016-09-01

    . Results and Discussion: The results showed that the different levels of soil compaction significantly increased soil bulk density. All the soil compaction treatments have caused a significant reduction on carbon and nitrogen sequestration in soil and wheat, soil aggregates stability and saturated soil moisture values. In the other hand the amount of soil pH and EC has increased significantly by increasing soil compaction levels that Indicates the negative effect of compaction on salinization of arable land. Conclusion: The results of this study showed that the negative effects of soil compaction on soil physiochemical attributes are dependent on escalation of compaction. In total, even low levels of soil compaction (the treatment of two passes of a heavy tractor is able to remarkably alter soil physiochemical attributes and thus carbon and nitrogen sequestration in soil and wheat. Induced changes in nitrogen and carbon sequestration levels are important for who concerned of global warming and climate change. Regarding the inability of deactivating soil compaction adverse effects in the deep soil layers of agricultural fields is the best way of handling and preventing soil compaction. Using these sluggish renewable resources should be consistence with land capability and its physical nature. This type of land use will result in sustainable development. From the remarks given here, it might be concluded that revising agricultural regimes and production methods is inevitable. On this ground, revisiting current agricultural systems should be considered and an urgent demand for state-of-the-art methods consistent with environmental objectives is being felt. To prevent soil compaction as much as possible, tractors and machinery traffic must be avoided to an acceptable level and this is of high priority during the time which soil is wet. It is more preferable to perform the operations with lighter machineries. As much as possible in a sophisticated agricultural plan these

  11. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1982-01-01

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  12. Simulation of Soil Nitrogen Content Effect on Weed Seedling Emergence Pattern in Moldavian Balm (Dracocephalum moldavica L.

    Directory of Open Access Journals (Sweden)

    Afsaneh Moradian

    2016-06-01

    Full Text Available The soil nitrogen content with impact on weed seed dormancy breaking can change their seedling emergence pattern. A trial was carried out in 2014 to predict seedling emergence of Xanthium strumarium, Chenopodium album, Echinocloa cruss-galli,  Amaranthus retroflexus andConvolvulus arvensis,  and to evaluate the impact of soil nitrogen content (Control with 0.07% nitrogen, adding 50 and 100 kg N.ha-1 on seedling emergence pattern in Moldavian balm. The experimental design was randomized complete block design. Weed seedlings were counted and removed on a weekly basis throughout the season. The data were converted to percent of cumulative emergence and percentage of cumulative emergence values was compared with thermal time using Gompertz modified functions. The all species showed different emergence patterns and thermal time required for the onset of emergence. The results also showed that the emergence patterns of Chenopodium and Convolvulus  not affected by nitrogen treatments. However, soil nitrogen content significantly changed emergence patterns of A. retroflexus, E. cruss-galli and X. strumarium. According to our model, A. retroflexus, E. cruss-galli and X. strumarium emergence, respectively, started at 237, 96 and 63 TT with 50 kg additional nitrogen.ha-1, while the respective value in control were 340, 117 and 135, respectively. Due to influence of soil nitrogen on emergence pattern of A. retroflexus, E. cruss-galli and X. strumarium, soil nitrogen content should be considered as an important parameter in the modeling of these weed seedling emergence.

  13. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  14. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...

  15. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  16. Do soil tests help forecast nitrogen response in first-year corn following alfalfa on fine-textured soils?

    Science.gov (United States)

    Improved methods of predicting grain yield response to fertilizer N for first-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) on fine-textured soils are needed. Data from 21 site-years in the North Central Region were used to (i) determine how Illinois soil nitrogen test (ISNT) and pr...

  17. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  18. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  19. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  20. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  1. Are Nitrogen Fertilizers Deleterious to Soil Health?

    Directory of Open Access Journals (Sweden)

    Bijay- Singh

    2018-04-01

    Full Text Available Soil is one of the most important natural resources and medium for plant growth. Anthropogenic interventions such as tillage, irrigation, and fertilizer application can affect the health of the soil. Use of fertilizer nitrogen (N for crop production influences soil health primarily through changes in organic matter content, microbial life, and acidity in the soil. Soil organic matter (SOM constitutes the storehouse of soil N. Studies with 15N-labelled fertilizers show that in a cropping season, plants take more N from the soil than from the fertilizer. A large number of long-term field experiments prove that optimum fertilizer N application to crops neither resulted in loss of organic matter nor adversely affected microbial activity in the soil. Fertilizer N, when applied at or below the level at which maximum yields are achieved, resulted in the build-up of SOM and microbial biomass by promoting plant growth and increasing the amount of litter and root biomass added to soil. Only when fertilizer N was applied at rates more than the optimum, increased residual inorganic N accelerated the loss of SOM through its mineralization. Soil microbial life was also adversely affected at very high fertilizers rates. Optimum fertilizer use on agricultural crops reduces soil erosion but repeated application of high fertilizer N doses may lead to soil acidity, a negative soil health trait. Site-specific management strategies based on principles of synchronization of N demand by crops with N supply from all sources including soil and fertilizer could ensure high yields, along with maintenance of soil health. Balanced application of different nutrients and integrated nutrient management based on organic manures and mineral fertilizers also contributed to soil health maintenance and improvement. Thus, fertilizer N, when applied as per the need of the field crops in a balanced proportion with other nutrients and along with organic manures, if available with the

  2. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    Science.gov (United States)

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  3. Irrigation and Nitrogen Regimes Promote the Use of Soil Water and Nitrate Nitrogen from Deep Soil Layers by Regulating Root Growth in Wheat.

    Science.gov (United States)

    Liu, Weixing; Ma, Geng; Wang, Chenyang; Wang, Jiarui; Lu, Hongfang; Li, Shasha; Feng, Wei; Xie, Yingxin; Ma, Dongyun; Kang, Guozhang

    2018-01-01

    Unreasonably high irrigation levels and excessive nitrogen (N) supplementation are common occurrences in the North China Plain that affect winter wheat production. Therefore, a 6-yr-long stationary field experiment was conducted to investigate the effects of irrigation and N regimes on root development and their relationship with soil water and N use in different soil layers. Compared to the non-irrigated treatment (W0), a single irrigation at jointing (W1) significantly increased yield by 3.6-45.6%. With increases in water (W2, a second irrigation at flowering), grain yield was significantly improved by 14.1-45.3% compared to the W1 treatments during the drier growing seasons (2010-2011, 2012-2013, and 2015-2016). However, under sufficient pre-sowing soil moisture conditions, grain yield was not increased, and water use efficiency (WUE) decreased significantly in the W2 treatments during normal precipitation seasons (2011-2012, 2013-2014, and 2014-2015). Irrigating the soil twice inhibited root growth into the deeper soil depth profiles and thus weakened the utilization of soil water and NO 3 -N from the deep soil layers. N applications increased yield by 19.1-64.5%, with a corresponding increase in WUE of 66.9-83.9% compared to the no-N treatment (N0). However, there was no further increase in grain yield and the WUE response when N rates exceeded 240 and 180 kg N ha -1 , respectively. A N application rate of 240 kg ha -1 facilitated root growth in the deep soil layers, which was conducive to utilization of soil water and NO 3 -N and also in reducing the residual NO 3 -N. Correlation analysis indicated that the grain yield was significantly positively correlated with soil water storage (SWS) and nitrate nitrogen accumulation (SNA) prior to sowing. Therefore, N rates of 180-240 kg ha -1 with two irrigations can reduce the risk of yield loss that occurs due to reduced precipitation during the wheat growing seasons, while under better soil moisture conditions, a

  4. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  5. Gaseous Nitrogen Losses from Tropical Savanna Soils of Northern Australia: Dynamics, Controls and Magnitude of N2O, NO, and N2 emissions

    Science.gov (United States)

    Werner, C.; Hickler, T.; Hutley, L. B.; Butterbach-Bahl, K.

    2014-12-01

    potential N release. For most soil moisture and temperature settings, N2 emissions dominated the release of gaseous nitrogen loss (82-99% of total gaseous N loss).

  6. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    Science.gov (United States)

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  7. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  8. Predicting soil nitrogen content using narrow-band indices from ...

    African Journals Online (AJOL)

    Optimal fertiliser applications for sustainable forest stand productivity management, whilst protecting the environment, is vital. This study estimated soil nitrogen content using leaf-level narrow-band vegetation indices derived from a hand-held 350–2 500 nm spectroradiometer. Leaf-level spectral data were collected and ...

  9. Limiting nitrogen and veterinary pharmaceutical input into groundwater: combining hydrogeophysics and soil science

    Science.gov (United States)

    Noell, Ursula; Stadler, Susanne

    2017-04-01

    The EU Interreg project TOPSOIL investigates opportunities to improve surface and groundwater quality as well as water management strategies under the consideration of climate adaptation challenges. Within the framework of the project, we investigate the transport behavior of percolation water in the unsaturated zone, the migration of nitrogen and veterinary pharmaceuticals in soils, and - together with different stakeholders (e.g. farmers, water supply companies) - develop common strategies to minimize the migration of these substances into the groundwater. In our study we focus on distinguishing preferential and diffuse flow using soil scientific and geophysical methods. During the first investigation campaign, we combined soil sampling with radiometry and electrical conductivity overview measurements on the typical sandy soil of the studied area south of Oldenburg, Germany. We used the CMD explorer for the electromagnetic mapping (horizontal and vertical dipoles, intercoil spacing of 1.48/2.82/4.49 m, investigations depths of appr. 0 - 6 m) and the radiometry detector comprised five sodium-iodide crystals each with a volume of 4 litres. The spectral data are evaluated for potassium (1.37 - 1.57 MeV), uranium (Bi-214) (1.66 - 1.86MeV) and thorium (T-208) (2.41 - 2.81MeV) and total counts (0.41-2.81MeV). A total of 292 soil samples were taken from 46 ram coring profiles (depth range: 0 to 3 m) and analyzed for soil chemical parameters and water content. The first evaluation showed a good correlation between conductivity and radiometry measurements. While the uranium and thorium values are generally low, the potassium values possibly reflect higher clay contents as do the higher conductivity values. The geophysical overview measurements were used to select the locations for soil sampling and we specifically targeted presumably clay-rich as well as clay-poor areas for sampling.

  10. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Science.gov (United States)

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  11. Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Xiaosheng Lin

    2016-03-01

    Full Text Available Riparian buffers can influence water quality in downstream lakes or rivers by buffering non-point source pollution in upstream agricultural fields. With increasing nitrogen (N pollution in small agricultural watersheds, a major function of riparian buffers is to retain N in the soil. A series of field experiments were conducted to monitor pollutant transport in riparian buffers of small watersheds, while numerical model-based analysis is scarce. In this study, we set up a field experiment to monitor the retention rates of total N in different widths of buffer strips and used a finite element model (HYDRUS 2D/3D to simulate the total N transport in the riparian buffer of an agricultural non-point source polluted area in the Liaohe River basin. The field experiment retention rates for total N were 19.4%, 26.6%, 29.5%, and 42.9% in 1,3,4, and 6m-wide buffer strips, respectively. Throughout the simulation period, the concentration of total N of the 1mwide buffer strip reached a maximum of 1.27 mg/cm3 at 30 min, decreasing before leveling off. The concentration of total N about the 3mwide buffer strip consistently increased, with a maximum of 1.05 mg/cm3 observed at 60 min. Under rainfall infiltration, the buffer strips of different widths showed a retention effect on total N transport, and the optimum effect was simulated in the 6mwide buffer strip. A comparison between measured and simulated data revealed that finite element simulation could simulate N transport in the soil of riparian buffer strips.

  12. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-04-01

    The impacts of climate and management on the water balance and nutrient leaching of montane grasslands have rarely been investigated, though such ecosystems may represent a major source for ground and surface water nitrates. In this study nitrogen (nitrate, ammonium, dissolved organic nitrogen) and dissolved organic carbon leaching as well as water balance components (precipitation, evapotranspiration, and groundwater recharge) were quantified (2012-2014) by means of replicated (N=3 per site/ treatment) measurements of weighable grassland lysimeters (1 m2 area, 1.2 m soil depth) at three sites (E860: 860 m a.s.l., E770: 770 m a.s.l. and E600: 600 m a.s.l.) in the pre-alpine region of S-Germany. Two grassland management strategies were investigated: a) intensive management with 5 cuts per year and cattle slurry application rates of 280 kg N ha-1 yr-1, and b) extensive management with 3 cuts per year and cattle slurry application rates of 56 kg N ha-1 yr-1. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the E860 site, i.e. the site with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). On the other hand groundwater recharge was substantial lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of grassland management on water balance components were negligible. However, intensive management significantly increased mean total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7 %) and equally less by ammonium (14.6 %) and DON (20.7 %). The rather low rates of N leaching (0.8 - 6.9 % of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest

  13. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  14. Nitrogen fixation by free-living microorganisms in tropical rice soils using labelled fertilizer. Part of a coordinated programme on isotope techniques in studies of biological nitrogen fixation for the dual purpose of increasing crop production and decreasing nitrogen fertilizer use to conserve the environment

    International Nuclear Information System (INIS)

    Rao, V.R.

    1981-11-01

    Both acetylene-reduction and 15 N techniques were used to study heterotrophic N fixation in the rhizosphere of rice plants. Soils subjected to flooding in 4 soil types in both greenhouse and the field were found to stimulate greater heterotrophic nitrogen fixation than moist soils. The addition of organic materials, in particular, cellulose and rice straw, in general, enhanced nitrogen fixed by heterotrophic organisms living in the rhizosphere of rice plants. The highest amount of N fixed was 38 kg N/ha, and was obtained in a flooded lateritic soil to which had been added cellulose. Heterotrophic nitrogen fixation was influenced by soil type. In this study, the lowest value for fixed N was recorded in an acid sulphate soil of low pH. The addition of increasing amounts of inorganic nitrogen fertilizer in the form of ammonium sulphate suppressed rhizospheric nitrogen fixation in all soils, but the extent of suppression differed in the different soils. Benomyl fungicide and methyl carbamate insecticide had a stimulatory effect on heterotrophic nitrogen fixation in soils under rice roots. Different rice cultivars stimulated strains of Azospirillum to varying extent, and thus did not fix nitrogen to the same extent. It is thus possible that varieties of rice could be selected on the basis of their ability to support non-symbiotic N fixation in their rhizosphere

  15. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  16. Determination of nitrite, nitrate and total nitrogen in vegetable samples

    Directory of Open Access Journals (Sweden)

    Manas Kanti Deb

    2007-04-01

    Full Text Available Yellow diazonium cation formed by reaction of nitrite with 6-amino-1-naphthol-3-sulphonic acid is coupled with β-naphthol in strong alkaline medium to yield a pink coloured azo dye. The azo-dyes shows absorption maximum at 510 nm with molar absorptivity of 2.5 ×104 M-1 cm-1. The dye product obeys Beer's law (correlation coefficient = 0.997, in terms of nitrite concentration, up to 2.7 μg NO2 mL-1. The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content in the samples. Variety of vegetables have been tested for their N-content (NO2-/NO3-/total-N with % RSD ranging between 1.5 to 2.5 % for nitrite determination. The effects of foreign ions in the determination of the nitrite, nitrate, and total nitrogen have been studied. Statistical comparison of the results with those of reported method shows good agreement and indicates no significant difference in precision.

  17. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  18. Isotope studies on the comparative efficiency of nitrogenous sources

    Energy Technology Data Exchange (ETDEWEB)

    Dev, G; Rennie, D A [Saskatchewan Univ., Saskatoon (Canada). Dept. of Soil Science

    1979-03-01

    In a growth chamber experiment with /sup 15/N-labelled potassium nitrate, ammonium sulphate and urea at 75 and 150kg nitrogen/ha and ammonium nitrate at 150kg nitrogen/ha, nitrogen application produced significant responses of dry matter yield and total nitrogen uptake by shoot and root of barley in chernozemic dark brown Elstow silt loam and deep black Hoey clay soil. Total nitrogen removal per pot and isotope-derived criteria, viz. percentage nitrogen derived from fertilizer, 'A' value and percentage fertilizer nitrogen utilization, indicated that potassium nitrate was the most efficient and urea the least.

  19. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    Science.gov (United States)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  20. Evaluation of soil water and plant nitrogen Status by nuclear techniques

    International Nuclear Information System (INIS)

    Reichardt, K.; Kirda, C.; Zapata, F.; Hardarson, G.; Axmann, H.

    1984-01-01

    Methodologies used to estimate soil water and nitrogen status of crops in field experiments are studied. Sampling procedures in a pasture experiment, consisting of three soil transects of 1.8 x 96m, one bare, one cropped to rye grass and one to alfafa, are discussed. Data are analysed with respect to soil water contents measured through the use of neutron probes, N fertilizer uptake using 15 N labelled fertilizer and N 2 fixation, also using isotopic methodology. (Author) [pt

  1. Convergence of soil nitrogen isotopes across global climate gradients

    Science.gov (United States)

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  2. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    Science.gov (United States)

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  3. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  4. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  5. Application of Statistical Method of Path Analysis to Describe Soil Biological Indices

    Directory of Open Access Journals (Sweden)

    Y. Kooch

    2016-09-01

    Full Text Available Introduction: Among the collection of natural resources in the world, soil is considered as one of the most important components of the environment. Protect and improve the properties of this precious resource, requires a comprehensive and coordinated action that only through a deep understanding of quantitative (not only recognition of the quality the origin, distribution and functionality in a natural ecosystem is possible. Many researchers believe that due to the quick reactions of soil organisms to environmental changes, soil biological survey to estimate soil quality is more important than the chemical and physical properties. For this reason, in many studies the nitrogen mineralization and microbial respiration indices are regarded. The aim of the present study were to study the direct and indirect effects of soil physicochemical characteristics on the most important biological indicators (nitrogen mineralization and microbial respiration, which has not been carefully considered up to now. This research is the first study to provide evidence to the future planning and management of soil sciences. Materials and Methods: For this, a limitation of 20 ha area of Experimental Forest Station of Tarbiat Modares University was considered. Fifty five soil samples, from the top 15 cm of soil, were taken, from which bulk density, texture, organic C, total N, cation exchange capacity (CEC, nitrogen mineralization and microbial respiration were determined at the laboratory. The data stored in Excel as a database. To determine the relationship between biological indices and soil physicochemical characteristics, correlation analysis and factor analysis using principal component analysis (PCA were employed. To investigate all direct and indirect relationships between biological indices and different soil characteristics, path analysis (path analysis was used. Results and Discussion: Results showed significant positive relations between biological indices

  6. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  7. Forest calcium depletion and biotic retention along a soil nitrogen gradient

    Science.gov (United States)

    Perakis, Steven S.; Sinkhorn, Emily R.; Catricala, Christina; Bullen, Thomas D.; Fitzpatrick, John A.; Hynicka, Justin D.; Cromack, Kermit

    2013-01-01

    High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0–100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N–Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N

  8. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.

    Science.gov (United States)

    Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  9. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    OpenAIRE

    Cheng Zhu; Yiping Ma; Honghui Wu; Tao Sun; Kimberly J. La Pierre; Zewei Sun; Qiang Yu

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4?mol N m?2 yr?1 vs 1.6?mol N m?2 yr?1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plan...

  10. Nitrogen turnover, crop use efficiency and soil fertility in a long-term field experiment amended with different qualities of urban and agricultural waste

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Magid, Jakob; Jensen, Lars Stoumann

    2017-01-01

    manure and deep litter) have been applied annually for 11 years (at normal and accelerated rates), were used to estimate the effects of the different qualities of organic wastes on soil fertility, N turnover and crop N availability. Soil physical fertility parameters, such as water retention and total......Organic wastes contain significant amounts of organic matter and nutrients and their recycling into agriculture can potentially contribute to closing the natural ecological cycle. The aim of this study was to evaluate the improvement in overall soil fertility and soil nitrogen (N) supply capacity...... carbon, improved with the application of organic wastes. Cattle manure, sewage sludge and composted household waste in single or accelerated rates of application increased soil total N by 13–131% compared to the mineral fertiliser NPK treatment. The highest net N mineralisation capacity was observed...

  11. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    OpenAIRE

    Ima Yudha Perwira; Kiwako S. Araki; Motoki Kubo; Dinesh Adhikari

    2016-01-01

    Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC) and total nitrogen (TN) in 427 agricultural soils. The soil bacterial biomass was generally p...

  12. [Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels].

    Science.gov (United States)

    Chu, Jun; Xue, Jian-Hui; Wu, Dian-Ming; Jin, Mei-Juan; Wu, Yong-Bo

    2014-09-01

    Characteristics of soil nitrogen loss were investigated based on field experiments in two types of poplar-amaranth intercropping systems (spacing: L1 2 m x 5 m, L2 2 m x 15 m) with four N application rates, i. e., 0 (N1), 91 (N2), 137 (N3) and 183 (N4) kg · hm(-2). The regulation effects on the soil surface runoff, leaching loss and soil erosion were different among the different types of intercropping systems: L1 > L2 > L3 (amaranth monocropping). Compared with the amaranth monocropping, the soil surface runoff rates of L1 and L2 decreased by 65.1% and 55.9%, the soil leaching rates of L1 and L2 with a distance of 0.5 m from the poplar tree row de- creased by 30.0% and 28.9%, the rates with a distance of 1. 5 m decreased by 25. 6% and 21.9%, and the soil erosion rates decreased by 65.0% and 55.1%, respectively. The control effects of two intercropping systems on TN, NO(3-)-N and NH(4+)-N in soil runoff and leaching loss were in the order of L1 > L2 > L3. Compared with the amaranth monocropping, TN, NO(3-)-N and NH(4+)-N loss rates in soil runoff of L1 decreased by 62.9%, 45.1% and 69.2%, while the loss rates of L2 decreased by 23.4%, 6.9% and 46.2% under N1 (91 kg · hm(-2)), respectively. High- er tree-planting density and closer positions to the polar tree row were more effective on controlling the loss rates of NO(3-)-N and NH(4+)-N caused by soil leaching. The loss proportion of NO(3-)-N in soil runoff decreased with the increasing nitrogen rate under the same tree-planting density, while that of NH(4+)-N increased. Leaching loss of NO(3-)-N had a similar trend with that of NH(4+)-N, i. e. , N3 > N2 > N1 > N0.

  13. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    Science.gov (United States)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  14. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  15. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  16. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  17. The influence of wildfire severity on soil char composition and nitrogen dynamics

    Science.gov (United States)

    Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene

    2017-04-01

    both indicate that C contained or leached from severely-burned char layers has higher aromaticity and thus chemical stability compared to C in unburned soils. Mineral soil (0-5 cm depth) beneath char layers in high severity portions of the Hayman Fire had significantly more soil N and C and lower pH. Potential net mineralization - an index of the supply of plant-available nitrogen - differed between the severely-burned areas and both unburned and moderately-burn areas. Negative net mineralization in unburned and moderately burned soils indicates immobilization or retention of inorganic N by soil microbes. In contrast, soils burned at high severity produced inorganic N sources available to plants, leaching and gas losses. Water soluble nitrate comprised a larger proportion of inorganic N leached from the char layer of high severity burns. Mineral soil in those areas had both higher water soluble nitrate and total inorganic N in leachate. Char layers that have persisted for fifteen years influence soil N turnover within the Hayman Fire affected area and may contribute to elevated N losses in streams burned at high severity. The chemical stability of soil char layers perpetuates their importance for C sequestration and N dynamics in burned landscapes.

  18. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    Science.gov (United States)

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  19. Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil

    Science.gov (United States)

    B. G. Blackmon; E. H. White

    1972-01-01

    Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.

  20. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    Science.gov (United States)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  1. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  2. Effects of re-application of nitrogen fertilizer on forest soil-water chemistry, with special reference to cadmium

    International Nuclear Information System (INIS)

    Hoegbom, Lars; Nohrstedt, Hans-Oerjan

    2000-09-01

    A greatly increased concentration of cadmium was found in soil water following the application of nitrogen fertilizer. Our study was conducted at an experimental site in the western part of central Sweden. Prior to this, the area had been used to study the effects of the repeated application of fertilizer, under different regimes, on forest production. In this experiment, we examined the residual effects of previous nitrogen fertilizer application regimes on soil-water chemistry, following a final, additional fertilizer application. Soil water was sampled using suction lysimeters installed at a depth of 50 cm. However, due to the failure of the lysimeters at two of the study plots, the differences between fertilizer regimes could not be evaluated. Instead, we focused on changes in the solubility of cadmium and aluminium caused by soil-water acidification due to the re-application of nitrogen fertilizer. Every fourth or eighth year, between 1981 and 1997, the study plots received 150 kg N ha -1 , in the form of ammonium nitrate (AN) and calcium ammonium nitrate (CAN). The effects of the final fertilizer application (CAN) were studied. Application of nitrogen fertilizer resulted in a rapid increase in NO 3 - concentration in soil-water, and a decrease in pH. The increased soil-water acidity resulted in some metals becoming more soluble and occurring in higher concentrations within the soil water. The increase in concentration of some toxic heavy metals, such as cadmium, was of concern. The highest measured cadmium concentration was 2.7 μg l -1 , compared to the government health limit of 5 μg l -1 for drinking water. The cadmium detected must originate from the soil since it was not present in the nitrogen fertilizer. Cadmium is highly toxic to both animals and plants, and knowledge of its occurrence, in relation to various silvicultural operations, is of great importance

  3. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?

    Science.gov (United States)

    Xiaofei Liu; Zhijie Yang; Chengfang Lin; Christian P. Giardina; Decheng Xiong; Weisheng Lin; Shidong Chen; Chao Xu; Guangshui Chen; Jinsheng Xie; Yiqing Li; Yusheng Yang

    2017-01-01

    Global change such as climate warming and nitrogen (N) deposition is likely to alter terrestrial carbon (C) cycling, including soil respiration (Rs), the largest CO2 source from soils to the atmosphere. To examine the effects of warming, N addition and their interactions on Rs, we...

  4. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    Science.gov (United States)

    Brian H. Hill; Terri M. Jicha; LaRae L.P. Lehto; Colleen M. Elonen; Stephen D. Sebestyen; Randy Kolka

    2016-01-01

    Wecompared nitrogen (N) storage and flux in soils froman ombrotrophic bogwith that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northernMinnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflowswere analyzed for nitrogen species. Upland and peatland soil sampleswere analyzed for N content,...

  5. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  6. Empirical model for mineralisation of manure nitrogen in soil

    DEFF Research Database (Denmark)

    Sørensen, Peter; Thomsen, Ingrid Kaag; Schröder, Jaap

    2017-01-01

    A simple empirical model was developed for estimation of net mineralisation of pig and cattle slurry nitrogen (N) in arable soils under cool and moist climate conditions during the initial 5 years after spring application. The model is based on a Danish 3-year field experiment with measurements...... of N uptake in spring barley and ryegrass catch crops, supplemented with data from the literature on the temporal release of organic residues in soil. The model estimates a faster mineralisation rate for organic N in pig slurry compared with cattle slurry, and the description includes an initial N...

  7. Applications of 15N-isotopic dilution techniques to study the recovery of nitrogen fertilizer in the soil and plant uptake in wheat cropping system

    International Nuclear Information System (INIS)

    Rouanet, Juan Luis; Godoy, Alejandra; Montenegro, Adolfo; Mera, Mario; Uribe, Hamil; Pino, Ines; Parada, Ana Maria; Nario, Adriana

    1999-01-01

    nitrogen absorbed by plants, was higher under the no-burn/no-till treatment. Under no-burn/no-till, 20 kg ha-1 of total N and 8.8 kg ha-1 of Nddf were recovered in crop residues, which are recycled in the soil and may become available to subsequent crops in the rotation. Burning on the traditional and burning/no-till systems otherwise loses this nitrogen. Soil 15 N recovery by soil was 59.3% for burning/no-till, 57.9% for no-burning/no-till, and 40.1% for the traditional system. During grain development, the water use efficiency had higher values on no-burn/no-till as compared to the treatments that eliminate crop residues by burning

  8. Soil organic nitrogen mineralization across a global latitudinal gradient

    Science.gov (United States)

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  9. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    Science.gov (United States)

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  10. Modelling the soil nitrogen denitrification

    International Nuclear Information System (INIS)

    Budoi, G.H.; Danuso, F.; Giovanardi, R.; Gavriluta, A.; Alexandrescu, A.; Bireescu, L.

    1999-01-01

    The paper presents the differential equations used to compute the daily amounts of N denitrified and to compute the amount of N denitrified in a given period of time. It shows also the equations which compute the correction factors of the maximum denitrification rate as a function of soil temperature (F td ), moisture (F md ) and pH (F pHd ), original equations used by NICROS - nitrogen crop simulation model to describe the influence of these abiotic factors. The temperature factor, F td . The optimum temperature for denitrification is between 25-37 o C. The process is slow at temperatures below 10 o C, there is an increased inhibition below 5 o C and stop completely at 0 o C. The maximum temperature for denitrification is practically that which limits the soil microbiological activity, generally 75 o C. The following relations are used to compute the F td factor: F td 1/(1 + e -0,3347 tmed+ 4,99 ) if t med ≤ 37; F td = 1 - (t med - 37)/38 if 75 > t med > 37; F td = 0 if t med ≥ 75, where t med is the average daily soil temperature. The moisture factor, F md . The denitrification has maximum intensity at soil water saturation, U sat , and stop below 80 % from U sat . F md = 0 if soil moisture U s ≤ 0,8*U sat , and F md = (U s - 0,8*U sat )/(U sat - 0,8*U sat ) if U s > 0,8*U sat . The pH factor, F pHd . Denitrification takes place at pH between 4-9 and is maximum at pH between 7-8. The relations used to compute the F pHd factor are: F pHd = 1/(1 + e -3,1923 pH + 18,87 ) if pH ≤ 8; F pHd = (9 - pH) when pH is between 8-9, and F pHd = 0 if pH > 9. Refs. 6 (author)

  11. Productivity, total and utilized nitrogen and water use efficiency of soybean grown in reclaimed sandy soil as affected by water regime

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2002-01-01

    Field experiment was performed at the experimental farm, Inshas, atomic energy authority, Egypt, in tafla and sand mixture soil (1:7). The experiment was laid out using sprinkler irrigation system with a line source which allows a gradual variation of irrigation from high to low irrigation, whereas the calculated amount of irrigation water levels were 1565, 1050 and 766.5 (m 3 / feddan). Two soybean varieties (crawford and giza 35) were planted. The obtained results indicated that: a) irrigation with high (1562 m 3 /fed.) and medium (1050 m 3 /fed.) water levels increased total seed wield of the two soybean varieties. b) the highest value of water use efficiency was observed when both soybean varieties irrigated with water level of 1050 m 3 /fed. c) seed protein content in crawford variety was higher in giza 35 variety at the irrigation level of 1562 m 3 /fed. d) seeds of both two soybean varieties showed increase of its atom excess percentage at high and medium water levels, and reflecting increase of nitrogen use efficiency. e) significant increment in seed yield kg/plot. Has been indicated by irrigation with water level of 1050 m 3 /fed. As compared to higher and lower water levels

  12. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  14. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  15. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshurica plantations

    OpenAIRE

    Haifeng Zhuang; Yue Sun; Jiacun Gu; Yang Xu; Zhengquan Wang

    2010-01-01

    Soil fauna play a key role in regulating carbon allocation and nutrient cycling in terrestrial ecosystems. As soil fauna are sensitive to environmental changes, increases in soil nitrogen (N) availability resulting from global changes may profoundly influence the structure and function of soil faunal communities. However, the response of soil fauna in forest ecosystems to increases in soil N availability is still poorly understood. In order to explore the relationship between soil N availabil...

  16. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  17. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  18. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake

    Science.gov (United States)

    Hu, Cong; Li, Feng; Xie, Yong-hong; Deng, Zheng-miao; Chen, Xin-sheng

    2018-02-01

    Soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry greatly affects plant community succession and structure. However, few studies have examined the soil stoichiometric changes in different vegetation communities of freshwater wetland ecosystems along an elevation gradient distribution. In the present study, soil nutrient concentrations (C, N, and P), soil stoichiometry (C:N, C:P, and N:P ratios), and other soil physicochemical characteristics were measured and analyzed in 62 soil samples collected from three dominant plant communities (Carex brevicuspis, Artemisia selengensis, and Miscanthus sacchariflorus) in the East Dongting Lake wetlands. The concentration ranges of soil organic carbon (SOC), total soil nitrogen (TN), and total soil phosphorus (TP) were 9.42-45.97 g/kg, 1.09-5.50 g/kg, and 0.60-1.70 g/kg, respectively. SOC and TN concentrations were the highest in soil from the C. brevicuspis community (27.48 g/kg and 2.78 g/kg, respectively) and the lowest in soil from the A. selengensis community (17.97 g/kg and 1.71 g/kg, respectively). However, the highest and lowest TP concentrations were detected in soil from the A. selengensis (1.03 g/kg) and M. sacchariflorus (0.89 g/kg) communities, respectively, and the C:N ratios were the highest and lowest in soil from the M. sacchariflorus (12.72) and A. selengensis (12.01) communities, respectively. C:P and N:P ratios were the highest in soil from the C. brevicuspis community (72.77 and 6.46, respectively) and the lowest in soil from the A. selengensis community (45.52 and 3.76, respectively). Correlation analyses confirmed that SOC concentrations were positively correlated with TN and TP, and C:N and N:P ratios were positively correlated with C:P. These data indicated that soil C, N, and P stoichiometry differed significantly among different plant communities and that these differences might be accounted for by variations in the hydrological conditions of the three communities.

  19. EFFECTS OF NITRIFICATION INHIBITORS ON MINERAL NITROGEN DYNAMICS IN AGRICULTURE SOILS

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; ohannes Carl Gottlieb Ottow

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dimethylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD ...

  20. Effects of Nitrification Inhibitors on Mineral Nitrogen Dynamics in Agriculture Soils

    OpenAIRE

    Tindaon, Ferisman; Benckiser, Gero; Ottow, Johannes Carl Gottlieb

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dime-thylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD...

  1. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  2. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  3. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  4. Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics

    International Nuclear Information System (INIS)

    Oulehle, F.; Cosby, B.J.; Wright, R.F.; Hruška, J.; Kopáček, J.; Krám, P.; Evans, C.D.; Moldan, F.

    2012-01-01

    We present a new formulation of the acidification model MAGIC that uses decomposer dynamics to link nitrogen (N) cycling to carbon (C) turnover in soils. The new model is evaluated by application to 15–30 years of water chemistry data at three coniferous-forested sites in the Czech Republic where deposition of sulphur (S) and N have decreased by >80% and 40%, respectively. Sulphate concentrations in waters have declined commensurately with S deposition, but nitrate concentrations have shown much larger decreases relative to N deposition. This behaviour is inconsistent with most conceptual models of N saturation, and with earlier versions of MAGIC which assume N retention to be a first-order function of N deposition and/or controlled by the soil C/N ratio. In comparison with earlier versions, the new formulation more correctly simulates observed short-term changes in nitrate leaching, as well as long-term retention of N in soils. The model suggests that, despite recent deposition reductions and recovery, progressive N saturation will lead to increased future nitrate leaching, ecosystem eutrophication and re-acidification. - Highlights: ► New version of the biogeochemical model MAGIC developed to simulate C/N dynamics. ► New formulation of N retention based directly on the decomposer processes. ► The new formulation simulates observed changes in nitrate leaching and in soil C/N. ► The model suggests progressive N saturation at sites examined. ► The model performance meets a growing need for realistic process-based simulations. - Process-based modelling of nitrogen dynamics and acidification in forest ecosystems.

  5. Changes in soil water availability in vineyards can be traced by the carbon and nitrogen isotope composition of dried wines.

    Science.gov (United States)

    Spangenberg, Jorge E; Zufferey, Vivian

    2018-04-13

    The grapevine is one of the most important edible fruit plants cultivated worldwide, and it is highly sensitive to changes in the soil water content. We studied the total carbon and nitrogen contents and stable isotope compositions (C/N WSR , δ 13 C WSR and δ 15 N WSR values) of the solid residues obtained by freeze-drying wines produced from two white grapevine cultivars (Vitis vinifera L. cv Chasselas and Petite Arvine) field grown under different soil water regimes while maintaining other climatic and ecopedological conditions identical. These experiments simulated the more frequent and extended climate change-induced periods of soil water shortage. The wines were from the 2009-2014 vintages, produced using the same vinification procedure. The plant water status, reflecting soil water availability, was assessed by the predawn leaf water potential (Ψ pd ), monitored in the field during the growing seasons. For both wine varieties, the δ 13 C WSR values are highly correlated with Ψ pd values and record the soil water availability set by soil water holding capacity, rainfall and irrigation water supply. These relationships were the same as those observed for the carbon isotope composition of fruit sugars (i.e., must sugars) and plant water status. In Chasselas wines, the nitrogen content and δ 15 N WSR values decreased with soil water deficit, indicating control of the flux of soil-water soluble nutrients into plants by soil water availability. Such a correlation was not found for Petite Arvine, probably due to different N-metabolism processes in this genetically atypical cultivar. The results presented in this study confirm and generalize what was previously found for red wine (Pinot noir); the carbon isotope composition of wine solid residues is a reliable indicator of the soil and the plant water status and thus can be used to trace back local climatic conditions in the vineyard's region. In most wines (except Petite Arvine) the C/N WSR and δ 15 N WSR

  6. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Science.gov (United States)

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  7. Effect of the major components of industrial air pollution on nonsymbiotic nitrogen-fixation activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, S S; Chunderova, A I

    1976-01-01

    Industrial pollution of atmosphere inhibits the activity of non-symbiotic nitrogen fixation in soils. The inhibiting effect of polluted air can be explained by the presence of carbon monoxide and nitrogen dioxide in it. Sulfur dioxide does not depress the nitrogenase complex of aerobic and anaerobic nitrogen fixing microorganisms.

  8. Response of Soil Bulk Density and Mineral Nitrogen to Harvesting and Cultural Treatments

    Science.gov (United States)

    Minyi Zhou; Mason C. Carter; Thomas J. Dean

    1998-01-01

    The interactive effects of harvest intensity, site preparation, and fertilization on soil compaction and nitrogen mineralization were examined in a loblolly pine (Pinus taeda L.) stand growing on a sandy, well-drained soil in eastern Texas. The experimental design was 2 by 2 by 2 factorial, consisting of two harvesting treatments (mechanical whole-...

  9. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  10. Soil carbon and nitrogen stocks in traditional agricultural and agroforestry systems in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Amorim Silva do Sacramento

    2013-06-01

    Full Text Available In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C and nitrogen (N stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.

  11. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure.

    Science.gov (United States)

    Butler, S M; Melillo, J M; Johnson, J E; Mohan, J; Steudler, P A; Lux, H; Burrows, E; Smith, R M; Vario, C L; Scott, L; Hill, T D; Aponte, N; Bowles, F

    2012-03-01

    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.

  12. Variations of the natural isotopic composition (15N) of mineral nitrogen from calcareous soils, studied during incubation experiment and on the field

    International Nuclear Information System (INIS)

    Mariotti, A.; Guillemot, J.

    1980-01-01

    This study was intended to follow the variations of isotope composition of mineral nitrogen formed during incubation of calcareous soils (rendzine), humidity and temperature conditions approximating natural ones. We compared the isotope composition with that of mineral nitrogen formed in a lysimeter cut out from a natural soil with the same pedological features. During the incubation experiments, two steps were recognized. A step with production of nitrates and nitrites depleted in 15 N and a second step where the isotope composition leans towards an equilibrium value. During the first step, the 15 N depletion for the sum NO 3 + NO 2 correlates with a 15 N enrichment for ammonium. On the whole, the total mineral nitrogen isotope composition is approximately constant. This first step corresponds also to a great speed of nitrification, to the presence of nitrite and to a large evolution (production or use) of ammonium. On the contrary, nitrites have disappeared and ammonium is in dynamic equilibrium (constant concentration) when the delta 15 N of nitrates is stabilized. In another set of experiments, with the same conditions, small quantity of a nitrogen substrate (vegetal proteins or amino acids) easily mineralizable, was added to the soil: the 15 N depletion of NO 3 + NO 2 formed during the first step is much greater than with the mere soil. It is concluded that the initial step corresponds to the fast mineralization of a very labile organic component which could be, for the mere soil, the microbial biomass destroyed during air-drying of sample before incubations: this could correspond to the 'flush effect'. On the contrary, the step when nitrates becomes constant could correspond to the mineralization (slower and more regular) of an another organic pool, perhaps part of humified organic matter [fr

  13. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    Science.gov (United States)

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  14. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    Science.gov (United States)

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.

  15. Biological and Physicochemical Parameters Related to the Nitrogen Cycle in the Rhizospheric Soil of Native Potato (Solanum phureja Crops of Colombia

    Directory of Open Access Journals (Sweden)

    Nathalia Flórez-Zapata

    2011-01-01

    Full Text Available Nitrogen (N plays an important role in agricultural production. This study was designed to evaluate the presence of cultivable N cycle-associated microorganisms (nitrogen-fixing bacteria—NFB, proteolytic bacteria—PR, ammonifiers—AMO, ammonium-oxidizing bacteria—AOB, nitrite-oxidizing bacteria—NOB, and denitrifiers—DEN, and their relationship with physical-chemical and agronomic soil descriptors, in Solanum phureja rhizospheric soil samples, from traditional and organic crop management farms. A cluster analysis with the physical and chemical properties of soil, allowed to identify the organic matter content as an important factor that determines the outcome of that grouping. Significant differences (<0.05 between farms were found in the abundance of this groups, but correlation analysis showed that proteolytic and nitrogen fixing bacteria were the main nitrogen associated functional groups affected by soils' physical-chemical characteristics. The amount of ammonia available is affected by the agricultural management strategy, which consequently affects the NFB abundance. Finally the results showed that PR, protease activity and soil properties related with organic matter transformation has a positive relationship with productivity, which given the high organic matter content of the Andean soils being studied, we conclude that nitrogen mineralization process has an important role in the nitrogen cycle and its bioavailability in this ecosystem.

  16. Biological and Physicochemical Parameters Related to the Nitrogen Cycle in the Rhizospheric Soil of Native Potato (Solanum phureja) Crops of Colombia

    International Nuclear Information System (INIS)

    Zapata, N.F; Velez, D.U

    2011-01-01

    Nitrogen (N) plays an important role in agricultural production. This study was designed to evaluate the presence of cultivable N cycle-associated microorganisms (nitrogen-fixing bacteria NFB, proteolytic bacteria PR, ammonifiers AMO, ammonium-oxidizing bacteria AOB, nitrite-oxidizing bacteria NOB, and denitrifiers DEN), and their relationship with physical-chemical and agronomic soil descriptors, in Solanum phureja rhizospheric soil samples, from traditional and organic crop management farms. A cluster analysis with the physical and chemical properties of soil, allowed to identify the organic matter content as an important factor that determines the outcome of that grouping. Significant differences (P<0.05) between farms were found in the abundance of this groups, but correlation analysis showed that proteolytic and nitrogen fixing bacteria were the main nitrogen associated functional groups affected by soils' physical-chemical characteristics. The amount of ammonia available is affected by the agricultural management strategy, which consequently affects the NFB abundance. Finally the results showed that PR, protease activity and soil properties related with organic matter transformation has a positive relationship with productivity, which given the high organic matter content of the Andean soils being studied, we conclude that nitrogen mineralization process has an important role in the nitrogen cycle and its bioavailability in this ecosystem.

  17. Nitrogen Cycling throughout Secondary Succession following Agricultural Disturbance in North-Central Virginia

    Science.gov (United States)

    Parisien, A.; Epstein, H. E.

    2017-12-01

    While much is known about the carbon cycle during succession that follows agricultural disturbance, less understood are the dynamics of the nitrogen cycle throughout secondary succession, and how plant-available nitrogen may or may not limit vegetation transitions and net primary productivity over time. Two chronosequences at the Blandy Experimental Farm in Boyce, north-central Virginia were examined to elucidate the complexities of the nitrogen cycle over a temporal successional gradient. Each chronosequence consists of one early, one mid, and one late secondary successional field ( 15 years, 30 years, and 100 years post agricultural abandonment, respectively). Five 10x10 m plots were established in each of the 6 fields for a total of 30 plots. Total soil nitrogen (and carbon) data were collected from soils to 30 cm depth at 10-cm intervals, and net nitrogen mineralization and nitrification were estimated using an in situ soil core with anion-cation exchange resin bag technique. Previous studies of carbon cycling at this location have indicated relatively constant soil CO2 efflux of approximately 1100 g C/m2, as well as increasing net primary production and therefore net ecosystem production, with time since abandonment. In addition, soil C and N, and the soil C:N ratio have been shown to increase from the early to late successional plots. Our current study marks the first comprehensive examination of soil nitrogen dynamics including mineralization and nitrification over a successional gradient at Blandy Farm. A thorough understanding of nitrogen dynamics during secondary succession is especially important in the southeastern United States, where a large portion of previously cultivated land has been abandoned over the past century, due to advances in farming efficiency and the move westward to more fertile soils. Much of the southeastern U.S. is now undergoing secondary succession, and quality data on the dynamics of nitrogen cycling during this procession can

  18. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22–0.04 ha plots in six different land cover types—rural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...

  19. Grassland Soil Carbon Responses to Nitrogen Additions

    Science.gov (United States)

    Hofmockel, K. S.; Tfailly, M.; Callister, S.; Bramer, L.; Thompson, A.

    2017-12-01

    Using a long-term continental scale experiment, we tested if increases in nitrogen (N) inputs augment the accumulation of plant and microbial residues onto mineral soil surfaces. This research investigates N effects on molecular biogeochemistry across six sites from the Nutrient Network (NutNet) experiment. The coupling between concurrently changing carbon (C) and N cycles remains a key uncertainty in understanding feedbacks between the terrestrial C cycle and climate change. Existing models do not consider the full suite of linked C-N processes, particularly belowground, that could drive future C-climate feedbacks. Soil harbors a wealth of diverse organic molecules, most of which have not been measured in hypothesis driven field research. For the first time we systematically assess the chemical composition of soil organic matter (SOM) and functional characteristics of the soil microbiome, to enhance our understanding of the molecular underpinnings of ecosystem C and N cycling. We have acquired soils from 5 ecosystem experiments across the US that have been subjected to 8 years of N addition treatments. These soils have been analyzed for chemical composition to identify how the soil fertility and stability is altered by N fertilization. We found distinct SOM signatures from our field experiments and shifts in soil chemistry in response to 8 years of N fertilization. Across all sites, we found the molecular composition of SOM varied with clay content, supporting the importance of soil mineralogy in the accumulation of specific chemical classes of SOM. While many molecules were common across sites, we discovered a suite of molecules that were site specific. N fertilization had a significant effect on SOM composition. Differences between control and N amended plots were greater in sites rich in lipids and more complex molecules, compared to sites with SOM rich in amino-sugar and protein like substances. Our results have important implications for how SOM is

  20. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  1. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  2. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Andersen, Mathias Neumann

    2015-01-01

    Aim To study maize (Zea mays L.) growth and soil nitrogen (N) dynamics in monocrop and intercropped systems in a North European climate and soil conditions with the support of a simulation model. Methods Field data for 3 years at two sites/soil types in Denmark and three main factors: (i) cropping...

  3. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  4. The Effects of Rainfall Pulses on Soil Nitrogen Availability in a Chihuahuan Desert Grassland During the Summer Monsoon

    Science.gov (United States)

    Brown, R. F.; Collins, S. L.; White, C. S.; Sinsabaugh, R. L.

    2015-12-01

    Nitrogen (N) is an essential but limiting nutrient in most terrestrial environments. While numerous studies have demonstrated a tight coupling between soil N availability and soil volumetric water content, this relationship is not well understood in desert ecosystems where rain events create pulses of biological activity, such as microbial secretion of extracellular enzymes that enable nutrient acquisition. Moreover, climate models are projecting shifts in the size and frequency of rain events across semi-arid ecosystems as a result of anthropogenic activities; therefore these changes are expected to have consequences for soil N availability in these regions. The goals of this study were to determine (1) if soil N availability pulses in response to monsoon rain events of differing size and frequency, and (2) how soil N availability varies over the course of a monsoon season in a semi-arid grassland. To answer these questions, we analyzed soils collected from a northern Chihuahuan Desert grassland during the 2014 summer monsoon. Soils were collected monthly over a period of eight days in conjunction with experimentally manipulated irrigation treatments that varied in both size (small=5mm and large=20mm) and frequency (small=weekly (n=12) and large=monthly (n=3)). Using KCl extraction, soils were processed for their inorganic plant-available nitrogen content (NH4+-N and NO3--N). We found that while soil N availability increased over the monsoon season across all treatment types, large events appeared to saturate soils, creating anaerobic conditions that stimulated nitrogen loss most likely through the denitrification pathway. Soils were also assayed for nitrogen specific extracellular enzyme activities, specifically leucine aminopeptidase (LAP), which breaks down the bond in leucine amino acids to mobilize nitrogen, and N-acetylglucosaminidase (NAG), which breaks down amino sugars in microbial cell walls. Preliminary results suggest that by mid-monsoon, LAP activity

  5. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    S Tandisseh

    2017-03-01

    Full Text Available Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is an extreme need of vegetable oilseed in our country and also wide extent of saline soils in Iran, this study was conducted to determine the best type and amount of nitrogen fertilizers between calcium nitrate and ammonium sulfate under saline conditions. Materials and Methods A greenhouse experiment was conducted in a completely randomized design (factorial with three replications in February 2012 in the Research greenhouse of the Ferdowsi University of Mashhad. The treatments were consisted of two types of nitrogen fertilizer (calcium nitrate and ammonium sulfate, each with three levels of N (40, 80 and 120 mg per kg of soil in three levels of soil salinity (C0= control, C1= 5 and C2= 10dS m-1. Experimental soil (control collected from agricultural experimental station was leached by salt solutions containing salts of calcium chloride, magnesium chloride and sodium sulfate with specified concentrations and ratios during 50 days to reach the similar salt concentrations of leached water consisting the desired levels of salinity. The seeds of mustard were planted at a depth of one centimeter in soil of each pot and were irrigated with tap water to field capacity (by weight. Plants were harvested after 5 months and plant fresh and dry weights and nitrogen concentration and uptake of plant were measured by the Kjeldahl method. Irrigation water and physical and chemical properties of soil before and after harvest were determined. Data obtained were analyzed using

  6. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame; Obuobi, Daniel

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  7. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    Energy Technology Data Exchange (ETDEWEB)

    Okae-Anti, Daniel [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)] E-mail: dokaent@yahoo.co.uk; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); Obuobi, Daniel [Department of Computer Science and Information Technology, University of Cape Coast, Cape Coast (Ghana)

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, {alpha}, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  8. Soil nitrogen dynamics within profiles of a managed moist temperate forest chronosequence consistent with long-term harvesting-induced losses

    Science.gov (United States)

    Kellman, Lisa; Kumar, Sanjeev; Diochon, Amanda

    2014-07-01

    This study investigates whether clear-cut forest harvesting leads to alterations in the decadal-scale biogeochemical nitrogen (N) cycles of moist temperate forest ecosystems. Using a harvested temperate red spruce (Picea rubens Sarg.) forest chronosequence in Nova Scotia, Canada, representing 80 year old postharvest conditions, alongside a reference old-growth (125+ year old) site with no documented history of disturbance, we examine harvesting-related changes in soil N pools and fluxes. Specifically, we quantify soil N storage with depth and age across the forest chronosequence, examine changes in physical fractions and δ15N of soil N through depth and time, and quantify gross soil N transformation rates through depth and time using a 15N isotope dilution technique. Our findings point to a large loss of total N in the soil pool, particularly within the deep soil (>20 cm) and organomineral fractions. A pulse of available mineralized N (as ammonium) was observed following harvesting (mean residence time (MRT) > 6 days), but its MRT dropped to estimates that suggest soil N may not reaccrue for almost a century following this disturbance.

  9. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    Science.gov (United States)

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  10. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain

    NARCIS (Netherlands)

    García-Díaz, Andrés; Bienes, Ramón; Sastre, Blanca; Novara, Agata; Gristina, Luciano; Cerda Bolinches, Artemio

    2017-01-01

    The soils of Mediterranean vineyards are usually managed with continuous tillage, resulting in bare soil, low infiltration and high soil erosion rates. Soil nutrients, such as nitrogen, could be lost dissolved in the runoff, causing a decrease in soil fertility on such degraded soils and producing

  11. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  12. Effect of Phosphorous and Potassium Fertilization on Nitrogen Utilized by wheat Grown in Saline Soil Amended with Organic Manures

    International Nuclear Information System (INIS)

    Soliman, S.M.; Gadalla, A.M.; Kotb, E.A.; Mostafa, S.M.A.; Mansour, M.M.F.

    2008-01-01

    This study was carried out on poor saline soil located at Wad Ras Sudr, South Saini Governorate, and suffers from shortage of water resources. Therefore, we aimed to utilize this soil as well as the saline ground water for plant production. Organic fertilizers such as green manure(GM) or poultry manure(PM) can be used as nutrient sources, where it improves the physical, chemical and biological properties of the soil. Economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. Also, phosphorus and/or potassium supplementation separately or in combination with green or poultry manures improved the growth of wheat plants under such adverse condition of salinity. Application of 15 N technique indicated that labeled nitrogen added as ammonium sulphate (AS) to investigate and discrimination between the different N sources i.e. nitrogen derived from fertilizer (Ndff) and nitrogen derived from soil (Ndfs) as well as nitrogen use efficiency (FUE %)

  13. Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism

    Science.gov (United States)

    Mohamad, K. A.; Mohd, S. Y.; Sarah, R. S.; Mohd, H. Z.; Rasyidah, A.

    2017-09-01

    Aquaculture is one of dominant food based industry in the world with 8.3% annual growth rate and its development had led to adverse effect on the environment. High nutrient production in form of nitrogenous compound and phosphorus contributed to environmental deterioration such as eutrophication and toxicity to the industry. Usage of Effective Microorganism (EM), one of the biological approaches to remove Total Nitrogen (TN) and Total Phosphorus (TP) in aquaculture pond was proposed. Samples were obtained from the Sea Bass intensive brackish aquaculture wastewater (AW) from fish farm at Juru, Penang and the parameters used to measure the removal of nitrogenous compounds include, pH, EM dosage, shaking, contact time and optimum variable conditions. From the study, for effective contact time, day 6 is the optimum contact time for both TN and TP with 99.74% and 62.78% removal respectively while in terms of optimum pH, the highest TN removal was at pH 7 with 66.89 %. The optimum dosage of EM is 1.5 ml with ratio 1:166 for 81.5 % TN removal was also found appropriate during the experiment. At varied optimum conditions of EM, the removal efficiency of TN and TP were 81.53% and 38.94% respectively while the removal mechanism of TN was highly dependent on the decomposition rate of specific bacteria such as Nitrobacter bacteria, Yeast and Bacillus Subtilis sp. The study has established the efficacy of EM's ability to treat excessive nutrient of TN and TP from AW.

  14. 137Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau

    International Nuclear Information System (INIS)

    Nie Xiaojun; Wang Xiaodan; Liu Suzhen; Gu Shixian; Liu Haijun

    2010-01-01

    There is a shortage of research concerning the relationships between land-use change, soil erosion, and soil organic carbon (SOC) and nitrogen (N) dynamics in alpine environments such as those found in the Tibetan plateau. In this paper, typical sloping farmlands converted from grassland 50 years ago in eastern Tibet were selected to determine dynamics of soil erosion, SOC, and total N associated with land-use change. Soil samples were collected from sloping farmland and control fields (grassland). The 137 Cs, SOC, total N contents, and soil particle size fractions were analyzed in these samples. As compared with the control fields, 137 Cs, SOC, and total N inventories in the sloping farmlands decreased by 30%, 27%, and 33%, respectively. Meanwhile variations in the three parameters were enhanced in the sloping farmlands, with coefficients of variation (CVs) of 38%, 23%, and 20%, respectively, for 37 Cs, SOC, and total N. In addition, SOC and total N inventories significantly decreased with increasing soil erosion in the sloping farmland. In a sloping farmland with a steep 24 o gradient, the 137 Cs inventory gradually increased along a downslope transect with its lowest value at 0 Bq m -2 in the top-slope position (0 m). The soil clay ( 137 Cs and clay (r=0.92, p=0.003), SOC (r=0.96, p=0.001), or total N (r=0.95, p=0.001) were also found in the farmland. These results showed that converting alpine grassland to sloping farmland accelerates soil erosion, losses in SOC and N, and increases the soil's spatial variability. The combined impacts of tillage and water erosion contributed a significant decrease in the soil's organic carbon and N storages. Particularly in steep sloping farmlands, tillage erosion contributed for severe soil loss, but the soil redistribution pattern was dominated by water erosion, not tillage erosion, due to the lack of boundaries across the field patches. It was also found that 137 Cs, SOC, and total N moved along the same pathway within these

  15. Root distribution pattern and nitrogen uptake of some wheat and triticale germplasms in relation to rates and methods of nitrogen application

    International Nuclear Information System (INIS)

    Meena, N.L.; Seth, Jagdish

    1975-01-01

    A field experiment was conducted under irrigated conditions with four germplasms viz. Triticale(70-2), and wheat varieties HD 4502(durum), Kalyan Sona and Moti (aestivums) at the Indian Agricultural Research Institute Farm, New Delhi, during rabi season of 1972-73. The treatments comprised of three rates of nitrogen viz. 0,60 and 120 kg/ha and two methods of nitrogen application viz. (1) soil + foliar and (2) soil. The root distribution of the four germplasms, studied by 32 P injection technique was increased both vertically and horizontally with the addition of nitrogen. Root distribution of triticale was observed to be deep and spreading in habit, while durum proved to be shallow rooted and compact in nature. The total uptake of nitrogen was significantly increased with higher rates of nitrogen in all the germplasms. The maximum uptake of nitrogen was observed in the durum wheat. (author)

  16. Molecular nitrogen fixation and nitrogen cycle in nature

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, A I

    1952-01-01

    The origin of nitrogen oxides in the atmosphere is discussed. Evidently only a small proportion of the nitrate-and nitrite-nitrogen found in the precipitation is formed through electric discharges from molecular nitrogen, photochemical nitrogen fixation being probably of greater importance. Formation of nitrate nitrogen through atmospheric oxidation of nitrous oxide (N/sub 2/O) evaporating from the soil is also considered likely. Determination of nitrogen compounds at different altitudes is indispensable for gaining information of the N/sub 2/-fixation in the atmosphere and, in general, of the origin of nitrogen oxides and their decomposition. International cooperation is needed for this as well as for the quantitative determination of the nitrogen compounds removed from the soil by leaching and brought by waters into the seas.

  17. Exchangeable basic cations and nitrogen distribution in soil as affected by crop residues and nitrogen

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2011-06-01

    Full Text Available In this work, a greenhouse experiment was conducted to study the effects of N fertilization and residues of pearl millet, black oats and oilseed radish on pH and Ca, Mg, K, NO3-, and NH4+ distribution within the profile of a Distroferric Red Latosol. The equivalent of 8 t ha-1 of plant residues were placed on soil surface. Lime was applied on the soil surface and nitrogen was applied over the straw at 0, 50, 100, and 150 mg kg-1, as ammonium nitrate. Corn was grown for 57 days. Calcium contents and pH in the soil profile were decreased by Pearl millet residue, while black oat and oilseed radish increased Ca contents and these effects are not related with Ca contents in residue tissue. However, the presence of plant residues increased nitrate, ammonium, and potassium contents in the deeper layers of the pots.

  18. BIOCHAR AS SOIL CONDITIONER IN THE SUCCESSION OF UPLAND RICE AND COWPEA FERTILIZED WITH NITROGEN

    Directory of Open Access Journals (Sweden)

    NEYTON DE OLIVEIRA MIRANDA

    2017-01-01

    Full Text Available The effects of biochar and nitrogen application on yields of upland rice and cowpea and on soil fertility were determined in a greenhouse in Macaíba, RN, Brazil. The trial consisted of the succession of two crops in a completely randomized design and a factorial scheme, with four replicates. Initially, four doses of biochar and four doses of nitrogen were tested for cultivation of rice. Subsequently, four doses of biochar and two doses of nitrogen were tested in half of the pots maintained for planting cowpea. Soil was sampled after rice harvest for half of the pots and at end of the trial for the remaining pots. We evaluated the following parameters: mass of hundred grains of rice, dry shoot mass, panicle number, number of filled spikelets and of empty spikelets, and grain production. Determinations for cowpea were: pod number per pot, grain number per pod, and grain production per pot. Measured soil parameters were: pH, contents of organic carbon, P, K, Ca, Mg, Na, cation exchange capacity, and exchangeable sodium percentage. Biochar addition did not influence yield components of upland rice and cowpea, but resulted in increased soil N retention, which influenced rice dry shoot mass, spikelets sterility, panicle number, and grain mass. Biochar also promoted increased soil pH, potassium content, and exchangeable sodium percentage and decreased calcium and magnesium concentrations.

  19. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  20. Nitrogen and carbon isotopes in soil with special reference to the diagnosis of organic matter

    International Nuclear Information System (INIS)

    Wada, Eitaro; Nakamura, Koichi.

    1980-01-01

    Distributions of nitrogen and carbon isotopes in terrestrial ecosystems are described based on available data and our recent findings for soil organic matters. Major processes regulating N-isotope and C-isotope ratios in biogenic substances are discussed. The biological di-nitrogen fixation and the precipitation are major sources which lower the delta 15 N value for forested soil organic matters. Denitrification enhances delta 15 N value for soil in cultivated fields. An addition of chemical fertilizer lowers 15 N content in soils. The permiation of soil water is an important factor controlling vertical profiles of delta 15 N in soil systems. Among soil organic matters, non-hydrolizable fraction seems to give unique low delta 15 N value, suggesting the utility of delta 15 N analysis in studying the nature of the fractions. delta 13 C of soil organic matter is significantly lower than that for marine sediments. delta 13 C for soil humus varies with respect to chemical forms as well as an age of soil organic matters. The variation is large in paddy fields. It is, thus, probable that delta 13 C is an useful parameter in studying the early epidiagenesis of soil organic matters. Based on the known delta 15 N-delta 13 C relationships, a two-source mixing model has been applied to assess sources of organic matters in coastal sediment. (author)

  1. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    Science.gov (United States)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen

  2. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  3. Nitrogen dynamics in soils cultivated with maize and fertilized with pig slurry

    Directory of Open Access Journals (Sweden)

    Maria Emília Borges Alves

    2012-04-01

    Full Text Available The proper disposal of pig manure is of great importance because, when mishandled, it can contaminate water resources. This study aimed to evaluate the nitrogen dynamics in a Cerrado Oxisol and its absorption, over time, by a maize crop managed with pig slurry associated with mineral fertilization (N P K. The study was conducted at a private farm, in the region of Sete Lagoas, Minas Gerais, Brazil. The maize crop was able to recover 62% of the mineral nitrogen that entered the soil-plant system, while 9% leached as nitrate and, to a lesser amount, as ammonium. The maximum average content of nitrate and ammonium of 92 kg ha-1 and 43 kg ha-1, respectively, was observed in the 0 to 0.3 m soil layer during the early crop development stage. A minimum content of 5.8 kg ha-1 of nitrate and 9.0 kg ha-1 of ammonium, respectively, was measured at the end of the cycle. In addition, the nitrate content at that soil layer, at the end of the maize cycle, remained below the values measured at the native Cerrado, indicating that the agricultural use of the land poses no additional risk to the nitrate accumulation and leaching into the soil profile.

  4. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  5. Fluxes of total reactive atmospheric nitrogen (ΣNr using eddy covariance above arable land

    Directory of Open Access Journals (Sweden)

    Christophe R. Flechard

    2013-02-01

    Full Text Available The amount and timing of reactive nitrogen exchange between agricultural land and the atmosphere play a key role in evaluating ecosystem productivity and in addressing atmospheric nitrogen budgets and transport. With the recent development of the Total Reactive Atmospheric Nitrogen Converter (TRANC apparatus, a methodology has been provided for continuous measurement of the sum of all airborne nitrogen containing species (ΣNr allowing for diurnal and seasonal investigations. We present ΣNr concentration and net flux data from an 11-month field campaign conducted at an arable field using the TRANC system within an eddy-covariance setup. Clear diurnal patterns of both ΣNr concentrations and fluxes with significant dependencies on atmospheric stability and stomatal regulation were observed in the growing season. TRANC data were compared with monthly-averaged concentrations and dry deposition rates of selected Nr compounds using DELTA denuders and ensemble-averages of four inferential models, respectively. Similar seasonal trends were found for Nr concentrations from DELTA and TRANC measurements with values from the latter being considerably higher than those of DELTA denuders. The variability of the difference between these two systems could be explained by seasonally changing source locations of NOx contributions to the TRANC signal. As soil and vegetation Nr emissions to the atmosphere are generally not treated by inferential (dry deposition models, TRANC data showed lower monthly deposition rates than those obtained from inferential modelling. Net ΣNr exchange was almost neutral (~0.072 kg N ha−1 at the end of the observation period. However, during most parts of the year, slight but permanent net ΣNr deposition was found. Our measurements demonstrate that fertilizer addition followed by substantial ΣNr emissions plays a crucial role in a site's annual atmospheric nitrogen budget. As long-term Nr measurements with high temporal

  6. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Science.gov (United States)

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  7. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Science.gov (United States)

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  8. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Carly J., E-mail: c.j.stevens@open.ac.uk [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Dupre, Cecilia [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, Edu [Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, PO Box 80.058, 3508 TB Utrecht (Netherlands); Gaudnik, Cassandre [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Gowing, David J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bleeker, Albert [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten (Netherlands); Diekmann, Martin [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Alard, Didier [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bobbink, Roland [B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, David [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Corcket, Emmanuel [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Mountford, J. Owen [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, Vigdis [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway)

    2011-10-15

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha{sup -1} yr{sup -1}) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: > N deposition is negatively correlated with forb richness as a proportion of species richness. > Soil C:N ratio increased with increasing N deposition. > Soil extractable nitrate and ammonium were not related to nitrogen deposition. > Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  9. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Dupre, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J.G.; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis

    2011-01-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha -1 yr -1 ) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: → N deposition is negatively correlated with forb richness as a proportion of species richness. → Soil C:N ratio increased with increasing N deposition. → Soil extractable nitrate and ammonium were not related to nitrogen deposition. → Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  10. Recycling soil nitrate nitrogen by amending agricultural lands with oily food waste.

    Science.gov (United States)

    Rashid, M T; Voroney, R P

    2003-01-01

    With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.

  11. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  12. Integrated use of biochar: a tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern

    International Nuclear Information System (INIS)

    Ali, K.; Arif, M.; Jan, M.T.

    2015-01-01

    Wheat quality, nutrient uptake and nutrient use efficiency are significantly influenced by nutrient sources and application rate. To investigate the integrative effect of biochar, farmyard manure (FYM) and nitrogen (organic and inorganic soil amendments) in a wheat-maize cropping system, a two year study was designed to assess the interactive outcome of biochar, FYM and nitrogenous fertilizer on wheat nitrogen (N) parameters and associated soil quality parameters. Three levels of biochar (0, 25 and 50 t ha-1), two levels of FYM (5 and 10 t ha-1) and two levels of nitrogen fertilizer (60 and 120 kg ha-1) were used in the study. Biochar application displayed a significantly increased in wheat leaf, stem, straw and grain N content; grain and total N-uptake and grain protein content by 24, 20, 24, 56, 50, 17 and 20% respectively. Similarly, biochar application significantly increased soil total N (TN) and soil mineral N (SMN) by 63 and 40% respectively in second year. FYM application increased grain, leaf and straw N content by 20, 19.5 and 18% respectively, and increased total N-uptake and grain protein content by 49 and 19% respectively. FYM increased soil TN and SMN by 63 and 32% in both the years of the experiment. Mineral N application increased soil TN by over a half and SMN by a third, and grain protein content increased 16%. In contrast, nitrogen use efficiency (NUE) decreased for all amendments relative to the control. However, biochar treated plots improved NUE by 38% compared to plots without biochar. In conclusion, this field experiment has illustrated the potential of biochar to bring about short-term benefits in wheat and soil quality parameters in wheat-maize cropping systems. However, the long-term benefits remain to be quantified. (author)

  13. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  14. Comparative changes in monthly blood urea nitrogen, total protein ...

    African Journals Online (AJOL)

    The objective of this study was to determine the comparative changes in the monthly blood urea nitrogen (BUN) concentration, total protein (TP) concentration in blood serum and the body condition score of Nguni cows and heifers raised on sweetveld. Twenty-four clinically healthy animals in different parities, namely Parity ...

  15. Nitrogen mineralization in forestry-drained peatland soils in the Stołowe Mountains National Park (Central Sudetes Mts

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej

    2016-06-01

    Full Text Available The aim of this work was to determine the intensity of nitrogen mineralization in forestry drained ombrotrophic peatland soils in the Stołowe Mountains National Park, SW Poland. Additionally discussion about the shallow organic soils classification according to Polish Soil Classification (2011 is presented. For the study three research transects were established on forestry drained ombrotrophic peatlands in the Stołowe Mountains. Each of the transect consisted of four (site A and B or five (site C sampling plots. Sampling was conducted in the year 2012. The soil samples for the basic soil properties analysis were sampled in April, whereas undisturbed soil samples were collected in stainless steel rings (100 cm3 every 10 cm in April (spring, July (summer and October (autumn to show the seasonal dynamics of nitrogen mineralization. Statistical analysis showed that the content of N-NH4 was mainly determined by actual soil moisture and precipitation rate, whereas the content of N-NO3 was positively correlated with air temperature. Among investigated peatlands the highest concentrations of mineral nitrogen forms was observed in the Długie Mokradło bog, situated on the Skalniak Plateau-summit. Additionally, the results obtained showed that implementation of new subtype: shallow fibric peat soils (in Polish: gleby torfowe fibrowe płytkie within the type of peat soils (in polish: gleby torfowe should be considered during developing of the next update of Polish Soil Classification.

  16. Correlation between soil chemical characteristics and soil-borne mycoflora in cucumber tunnels

    International Nuclear Information System (INIS)

    Qudsia, H.; Javaid, A.; Mahmood, R.; Akhtar, N.

    2017-01-01

    Twelve soil samples were collected from fields of cucumber (Cucumis sativus L.) tunnels from various localities of Lahore and Shekhupura districts, Pakistan. Soil samples were analyzed for various characteristics viz. pH, EC/sub e/, organic matter, nitrogen (N), phosphorus (P) and potassium (K). Soil mycoflora was isolated using dilution plate method. Soil pH, EC/sub e/, organic matter, N, P and K were in the range of 7.42-8.13, 107-2520 (meu S cm-1), 0.98-1.40%, 0.039-0.070%, 7-357 mg kg/sup -1/ and 88-946 mg kg/sup -1/ in different soil samples, respectively. A total of 18 fungal species belonging to 10 genera viz. Aspergillus, Alternaria, Cladosporium, Drechslera, Emericella, Fusarium, Mortierella, Mucor, Penicillium and Sclerotium were isolated from various soil samples. Saprophytic fungi were more prevalent than pathogenic ones. Number of colonies of saprophytic fungi ranged from 360-2754 g/sup -1/ soil in different samples. In contrast, number of pathogenic fungal colonies were limited to 1-234 g/sup -1/ soil. Number of colonies of pathogenic fungi were positively and significantly correlated with soil organic matter and nitrogen contents. This study concludes that high nitrogen and organic matter in cucumber tunnels favour population of pathogenic fungi. (author)

  17. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  18. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China].

    Science.gov (United States)

    Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan

    2014-05-01

    This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.

  19. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  20. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data.

    Science.gov (United States)

    Tashi, Sonam; Singh, Balwant; Keitel, Claudia; Adams, Mark

    2016-06-01

    High-altitude soils potentially store a large pool of carbon (C) and nitrogen (N). The assessment of total C and N stocks in soils is vital to understanding the C and N dynamics in terrestrial ecosystems. In this study, we examined effects of altitude and forest composition on soil C and N along a transect from 317 to 3300 m a.s.l. in the eastern Himalayas. We used meta-analysis to establish the context for our results on the effects of altitude on soil C, including variation with depth. Total C and N contents of soils significantly increased with altitude, but decreased with soil depth. Carbon and N were similarly correlated with altitude and temperature, and temperature was seemingly the main driver of soil C along the altitudinal gradient. Altitude accounted for 73% of the variation in C and 47% of the variation in N stocks. Soil pH and cation exchange capacity were correlated with both soil C and N stocks. Increases in soil C and N stocks were related to forest composition, forest basal area as well as quantity of leaf litter that were in turn influenced by altitude and temperature. Concentrations of C in foliage increased by 2.1% for every 1000 m rise in altitude, while that in leaf litter increased by 2.3%. © 2016 John Wiley & Sons Ltd.

  1. Towards improved nitrogen management in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schroeder, J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this

  2. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  3. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  4. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  5. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    Science.gov (United States)

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  6. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  7. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  8. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  9. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany.

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-10-01

    In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha -1 year -1 (range: 0.5-6.0 kg N ha -1 year -1 ) to 4.8 kg N ha -1 year -1 (range: 0.9-12.9 kg N ha -1 year -1 ). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive. Copyright © 2017. Published by Elsevier Ltd.

  10. Plants' use of different nitrogen forms in response to crude oil contamination

    International Nuclear Information System (INIS)

    Nie Ming; Lu Meng; Yang Qiang; Zhang Xiaodong; Xiao Ming; Jiang Lifen; Yang Ji; Fang Changming; Chen Jiakuan; Li Bo

    2011-01-01

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15 N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  11. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  12. Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland

    Directory of Open Access Journals (Sweden)

    Zhiwei Ge

    2017-01-01

    Full Text Available Aquatic plants play an essential role and are effective in mitigating lake eutrophication by forming complex plant-soil system and retaining total nitrogen (TN and phosphorus (TP in soils to ultimately reduce their quantities in aquatic systems. Two main vegetation types (Phragmites australis community and P. australis + Typha latifolia community of Qin Lake wetland were sampled in this study for the analysis of TN and TP contents and reserves in the wetland soils. The results showed that (1 the consumption effect of Qin Lake wetland on soluble N was much more significant than on soluble P. (2 The efficiency of TN enrichment in wetland soil was enhanced by vegetation covering of P. australis and T. latifolia. (3 Wetland soil P was consumed by P. australis community and this pattern was relieved with the introduction of T. latifolia. (4 According to the grey relativity analysis, the most intensive interaction between plants and soil occurred in summer. In addition, the exchange of N in soil-vegetation system primarily occurred in the 0–15 cm soil layer. Our results indicated that vegetation covering was essential to the enrichment of TN and TP, referring to the biology-related fixation in the wetland soil.

  13. Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: A model approach.

    Science.gov (United States)

    Zhang, Xubo; Xu, Minggang; Liu, Jian; Sun, Nan; Wang, Boren; Wu, Lianhai

    2016-02-01

    Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment. Copyright © 2015

  14. Relative influence of soil chemistry and topography on soil available micronutrients by structural equation modeling

    OpenAIRE

    Zhu, Hongfen; Zhao, Ying; Nan, Feng; Duan, Yonghong; Bi, Rutian

    2016-01-01

    Soil chemical and topographic properties are two important factors influencing available micronutrient distribution of soil in the horizontal dimension. The objective of this study was to explore the relative influence of soil chemistry (including soil pH, soil organic matter, total nitrogen, available phosphorus, and available potassium) and topography (including elevation, slope, aspect, and wetness index) on the availability of micronutrients (Fe, Mn, Cu, Zn, and B) using structural equati...

  15. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel.

    Science.gov (United States)

    Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal

    2016-09-01

    This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).

  16. Research concerning the influence of soil type and fertilization prescriptions on nitrogen and phosphorus absorption by grapevine from fertilizers using 15N and 32P

    International Nuclear Information System (INIS)

    Serdinescu, A.

    1994-01-01

    A pot experiment was conducted with the aim to study the effect of two types of soils (reddish-brown and podzol) fertilized with different N, P, K rates and ratios, on nitrogen and phosphorus absorption by grapevine from fertilizers. The mineral fertilizers were applied in pots as binary and ternary combinations between N, P and K. In case of each combination there were applied different levels for each nutrient (two levels for nitrogen and three levels for phosphorus and potassium). Nitrogen was applied at 3 mg NO 3 /100 g soil (N 1 ) as 2.375% 15 N atom excess labelled ammonium nitrate, phosphorus at 5 mg P 2 O 5 /100 g soil (P 1 ) as monosodium phosphate labelled with 32 P (0.30 mCi/pot) and potassium at 10 mg K 2 0/100 g soil (K 1 ) as potassium sulphate. Nitrogen and phosphorus absorption was estimated by means of Ndff% and Pdff% values, established in grapevine at blooming and at the beginning of ripening. The experimental data indicated a higher nitrogen and phosphorus absorption from mineral fertilizers in the reddish-brown soil, as compared to podzol. In both soils the nitrogen absorption was positively influenced by the increase of the nitrogen rate and by the simultaneous administration of phosphorus and potassium. Phosphorus absorption was not thoroughly influenced by the use of nitrogen and potassium. (author)

  17. A Study on soybean cultivar and rhizobium strain interaction related to biological nitrogen fixation in different soils

    International Nuclear Information System (INIS)

    Pirvali Biranvand, N.

    1999-01-01

    Since, symbiotic effectiveness is affected by three important factors such as bacteria genotype, plant cultivar and environmental conditions (e.g. soil properties). In this research, simple and interaction effects of the first two factors about symbiosis of three soybean cultivar, which are most commonly cultivated soybean, with several commercial strain of bacteria with three different soils is investigated. For this purpose five Bradyrhizobium japonicum commercial strains (Rhizoking, Helinitro, Goldoat, Biodoz and CB 1809) were taken from soil and water rea search institute. Based on assurance of bacteria strains purity and ineffectiveness with cultivars, for comparison of strains symbiotic effectiveness with soybean cultivars and the best strain selection performed a factorial experiment with RCBD in 24 treatments and 4 replication. The seeds of soybean cultivars were cultivated in Growth chamber under Leonard jar system. The treatment used were 3 levels of soybean cultivar, 5 levels of Bradyrhizobium strains and 3 levels of Nitrogen (0, 35 and 70 PPM). Plants were fed with Brought on and Dil worth solution (1970) for 75 days. Then, plants were harvested and dried. Selective parameters were analysed by MSTATC program. The results indicated that, all bacteria stains were highly effective as far as symbiotic effectiveness is concerned. Eventually Rhizoking, Gold coat and Helinitro stains selected for soybean inoculation. Provided for pot culture, two soil samples from soybean original planting area (in the subregion of Gorgan and Sari cities) and another sample from Karaj countryside were taken with moderate, high and zero symbiont indigenous bacteria levels respectively. For study of interaction and simple effects of Bacteria strain and soybean cultivar in each soil; a factorial experiment with RCBD in 4 replication performed. Factors were contained soybean cultivar (three levels) and three Bacteria strain with a blank treatment for inoculation. In this respect

  18. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  19. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    Science.gov (United States)

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  20. Soil nitrogen as fertilizer or pollutant

    International Nuclear Information System (INIS)

    1980-01-01

    The results of 22 studies and surveys are reported on a global scale on N fertilizer applications and the fate of 15 N-labelled fertilizer in various soils, water and nitrate movement, residues, soil-N transformations in relation to leaching, nitrate pollution, nitrogen balance and related aspects under a variety of climatic conditions and crop cultivation are described. Some studies did not contain actual isotope applications, and have therefore not been entered in INIS as individual items. A 13-page report on research coordination includes background information, common methodology, field lysimeter experiments and their results, and the collection and evaluation of data. In conclusion, variations in the fate and behaviour of N residues are considered as are water pollution, the critical role of models and the need for behaviour prediction, the fate of agricultural N residues, the conservation of useful N residues, and future programmes. The report concludes with 7 recommendations, 20 references, and 3 annexes. Annex 1 lists programme participants by country, chief investigator, basis of collaboration and subject area, Annex 2 the titles and authors of working papers; Annex 3 gives guidelines for 15 N-residue experiment objectives, data presentation, etc. All participants in the Coordination Meeting are listed

  1. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  2. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2016-02-01

    Full Text Available This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic. A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS region. The following eight soil properties were analyzed: pH, organic carbon (C, organic nitrogen (N, ammonium nitrogen (NH4+-N, silicate silicon (SiO42--Si, nitrite nitrogen (NO2--N, phosphate phosphorus (PO43--P and nitrate nitrogen (NO3--N. A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs were found. Of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>8 soil samples were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda and analysis of similarities (ANOSIM revealed that soil pH (p=0.001 was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soil samples of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  3. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  4. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (monitoring may be beneficial.

  5. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    O. V. Syshchykova

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil. Keywords: microorganisms, nitrogen compounds, technozems, mining recultivation.

  6. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  7. Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region.

    Science.gov (United States)

    Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin

    2018-04-15

    Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Science.gov (United States)

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  10. Black Nitrogen as a source for the built-up of microbial biomass in soils

    Science.gov (United States)

    López-Martín, María; Milter, Anja; Knicker, Heike

    2016-04-01

    In areas with frequent wildfires, soil organic nitrogen (SON) is sequestered in pyrogenic organic matter (PyOM) due to heat-induced transformation of proteinaceous compounds into N-heterocycles, i.e. pyrrole, imidazole and indole compounds. These newly formed structures, known as Black Nitrogen (BN), have been assumed to be hardly degradable by microorganisms, thus being efficiently sequestered from the N cycle. On the other hand, a previous study showed that nitrogen of BN can be used by plants for the built-up of their biomass (de la Rosa and Knicker 2011). Thus, BN may play an important role as an N source during the recovery of the forest after a fire event. In order to obtain a more profound understanding of the role of BN within the N cycle in soils, we studied the bioavailability and incorporation of N derived from PyOM into microbial amino acids. For that, pots with soil from a burnt and an unburnt Cambisol located under a Mediterranean forest were covered with different amendments. The toppings were mixtures of unlabeled KNO3 with 15N labeled grass or 15N-labeled PyOM from burned grass and K15NO3 mixed with unlabeled grass material or PyOM. The pots were kept in the greenhouse under controlled conditions for 16 months and were sampled after 0.5, 1, 5, 8 and 16 months. From all samples the amino acids were extracted after hydrolysis (6 M HCl, 22 h, 110 °C) and quantified via gas chromatography mass spectrometry (GC/MS). The fate of 15N was followed by isotopic ratio mass spectrometry (IRMS). The results show that the contribution of extractable amino acids to total soil organic matter was always higher in the unburnt than in the burnt soil. However, with ongoing incubation their amount decreased. Already after 0.5 months, some PyOM-derived 15N was incorporated into the extractable amino acids and the amount increased with experiment time. Since this can only occur after prior microbial degradation of PyOM our results clearly support a lower biochemical

  11. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  12. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  13. Impact of Indian Mustard (Brassica juncea and Flax (Linum usitatissimum Seed Meal Applications on Soil Carbon, Nitrogen, and Microbial Dynamics

    Directory of Open Access Journals (Sweden)

    Autumn S. Wang

    2012-01-01

    Full Text Available There is a critical need to investigate how land application of dedicated biofuel oilseed meals affects soil ecosystems. In this study, mustard (Brassica juncea and flax (Linum usitatissimum seed meals and sorghum-sudangrass (Sorghum bicolor were added to soil at levels of 0, 1, 2.5, and 5% (w/w. Both the type of amendment and application rate affected soil organic C, total C & N, and C & N mineralization. Mustard meal amendment initially inhibited C mineralization as compared to flax, but >50% of mustard and flax organic C was mineralized within 51 d. Nitrogen mineralization was similar for flax and mustard, except for the 2.5% rate for which a lower proportion of mustard N was converted to nitrate. The mustard meal greatly impacted microbial community composition, appearing to select for specific fungal populations. The potential varying impacts of different oilseed meals on soil ecosystems should be considered when developing recommendations for land application.

  14. {sup 137}Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau

    Energy Technology Data Exchange (ETDEWEB)

    Nie Xiaojun, E-mail: niexj2005@126.co [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Wang Xiaodan; Liu Suzhen; Gu Shixian [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservation, Chengdu 610041 (China); Liu Haijun [Institute of Water Resources Planning, Surveying, Design, and Research, Lhasa 850000 (China)

    2010-09-15

    There is a shortage of research concerning the relationships between land-use change, soil erosion, and soil organic carbon (SOC) and nitrogen (N) dynamics in alpine environments such as those found in the Tibetan plateau. In this paper, typical sloping farmlands converted from grassland 50 years ago in eastern Tibet were selected to determine dynamics of soil erosion, SOC, and total N associated with land-use change. Soil samples were collected from sloping farmland and control fields (grassland). The {sup 137}Cs, SOC, total N contents, and soil particle size fractions were analyzed in these samples. As compared with the control fields, {sup 137}Cs, SOC, and total N inventories in the sloping farmlands decreased by 30%, 27%, and 33%, respectively. Meanwhile variations in the three parameters were enhanced in the sloping farmlands, with coefficients of variation (CVs) of 38%, 23%, and 20%, respectively, for {sup 37}Cs, SOC, and total N. In addition, SOC and total N inventories significantly decreased with increasing soil erosion in the sloping farmland. In a sloping farmland with a steep 24{sup o} gradient, the {sup 137}Cs inventory gradually increased along a downslope transect with its lowest value at 0 Bq m{sup -2} in the top-slope position (0 m). The soil clay (<0.002 mm) content in such an area increased with decreasing elevation (r=-0.95, p=0.001). Significant correlations between {sup 137}Cs and clay (r=0.92, p=0.003), SOC (r=0.96, p=0.001), or total N (r=0.95, p=0.001) were also found in the farmland. These results showed that converting alpine grassland to sloping farmland accelerates soil erosion, losses in SOC and N, and increases the soil's spatial variability. The combined impacts of tillage and water erosion contributed a significant decrease in the soil's organic carbon and N storages. Particularly in steep sloping farmlands, tillage erosion contributed for severe soil loss, but the soil redistribution pattern was dominated by water erosion

  15. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L..

    Directory of Open Access Journals (Sweden)

    Xiukang Wang

    Full Text Available Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK, plastic film mulching with no basal fertilizer and no top dressing (MN0, basal fertilizer with no top dressing and no mulching (BN1, plastic film mulching and basal fertilizer with no top dressing (MN1, basal fertilizer and top dressing with no mulching (BN2 and plastic film mulching with basal fertilizer and top dressing (MN2. In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm, and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and

  16. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: graig@cecs.pdx.edu [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)

    2011-08-15

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  17. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  18. Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils

    Science.gov (United States)

    Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...

  19. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  20. Nitrogen in soil water at five nitrogen-enriched forest sites in Sweden

    International Nuclear Information System (INIS)

    Ring, Eva

    2001-01-01

    Increased inputs of N to forest land may increase acidification and eutrophication. This thesis deals with N in soil water at 50 cm depth in N-enriched coniferous forests in Sweden. The experimental sites were enriched in N, either by fertilization or deposition. Soil water was collected by suction cups at varying degrees of N enrichment, after clear felling at two sites in central (Billingsjoen) and S Sweden (Farabol), and in three closely situated Norway spruce stands in SW Sweden. Billingsjoen was fertilized with ammonium nitrate at totals of 360-1800 kg N ha -1 , and Farabol with urea at totals of 600 kg N ha -1 . At clearfelling, which was performed six and seven years after the last fertilization, the soil N storage was increased by fertilization at Billingsjoen but not at Farabol. At Billingsjoen, the soil-water concentration of nitrate increased with increasing N dose. The increased nitrate concentrations reduced pH by up to nearly two units. In the eighth year after clear felling, the effects on all major cations and anions in the control, the 360 and 1800 kg N ha -1 treatments were examined. At the high N dose, nitrate and aluminium had significantly increased, and the pH and acid-neutralizing capacity had decreased, compared with the control and the low N dose. At Farabol, the estimated total leaching of nitrate-N in the control surpassed that of the N treatment by approximately 40%. The difference in leaching appears attributable to the greater biomass and N storage of the field-layer vegetation in the N treatment than in the control. At Farabol, the field-layer vegetation seems to have acted as an important sink for N as opposed to the Billingsjoen clearcut where the field layer was sparse. The Norway spruce stands in SW Sweden had a similar N deposition, but the concentrations of nitrate in soil water and estimated leaching rates differed substantially. In the soil with the highest leaching rate, potential nitrification was largest and the C to N

  1. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  2. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  3. Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon

    Science.gov (United States)

    M. Keiluweit; J.J. Bougoure; L. Zeglin; D.D. Myrold; P.K. Weber; J. Pett-Ridge; M. Kleber; P.S. Nico

    2012-01-01

    Amino sugars in fungal cell walls (such as chitin) represent an important source of nitrogen (N) in many forest soil ecosystems. Despite the importance of this material in soil nitrogen cycling, comparatively little is known about abiotic and biotic controls on and the timescale of its turnover. Part of the reason for this lack of information is the inaccessibility of...

  4. Characterizing agricultural soil nitrous acid (HONO) and nitric oxide (NO) emissions with their nitrogen isotopic composition

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2017-12-01

    Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for

  5. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest

    Science.gov (United States)

    John L. Campbell; Anne M. Socci; Pamela H. Templer

    2014-01-01

    The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen...

  6. Effect of nitrogen, potassium and lime on soil and manganese availability and uptake by bean

    International Nuclear Information System (INIS)

    Muraoka, T.; Nascimento Filho, V.F. do; Salvador, J.O.

    1982-01-01

    A pot experiment was conducted to assess the effect of nitrogen, potassium and lime on the availability of soil Zn and Mn and the absorption of these elements by bean (Phaseolus vulgaris, L.). The TE (Terra Roxa Estruturada) soil, used in this experiment, had been uniformily labelled with 65 Zn and 54 Mn and incubated prior to the seeding. The nitrogen favoured the absorption of manganese and zinc, tripling the manganese content in the plant and increasing by 2.5 fold the Zn content. The potassium also increased significantly the manganese uptake, but did not affect the zinc uptake. In the case of the Zn, however, the effect continued, though with less intensity. The lime alone reduced by almost 5 times the Mn content in the plant and by 50% the Zn content. Based on the results of the soil analysis (pH, CaCl 2 O.5M extractable Mn and EDTA + CaCl 2 extractable Zn) and on the 65 Zn and 54 Mn specific activities, it is suggested that the effets of nitrogen and potassium could be, partly, of synergic nature and that of the lime, due, also partly, to Ca-Mn and Ca-Zn antagonism in the plant. (Author) [pt

  7. Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees

    Directory of Open Access Journals (Sweden)

    Purwanto .

    2007-05-01

    Full Text Available The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in coffee farming is not yet well understood. The objectives of this study are to investigate the influence of various legume shading trees on the concentration of soil mineral N (N-NH4 + and N-NO3-, potential nitrification and to study the controlling factors of nitrification under field conditions. This field explorative research was carried out in Sumberjaya, West Lampung. Twelve observation plots covered four land use systems (LUS, i.e. 1 Coffee agroforestry with Gliricidiasepium as shade trees; 2 Coffee agroforestry with Gliricidiaas shade trees and Arachis pintoias cover crops; 3Coffee agroforestry with Paraserianthes falcataria as shade trees; and 4 Mixed/multistrata coffee agroforestry with Gliricidiaand other fruit crops as shade trees. Measurements of soil mineral-N concentration were carried out every three weeks for three months. Results showed that shade tree species in coffee agroforestry significantly affected concentrations of soil NH4 +, NO3- and potential nitrification. Mixed coffee agroforestry had the highest NH4+/N-mineral ratio (7.16% and the lowest potential nitrification (0.13 mg NO2-kg-1 hour -1 compared to other coffee agroforestry systems using single species of leguminous shade trees. Ratio of NH4 + /N-mineral increased 0.8—21% while potential nitrification decreased 55—79% in mixed coffee agroforestry compared to coffee agroforestry with Gliricidia or P. falcatariaas shade trees. Coffee agroforestry with P. falcatariaas shade trees had potential nitrification 53% lower and ratio of NH4 + /N-mineral concentration 20% higher than that with Gliricidia. Coffee agroforestry with P. falcataria as shade trees also had organic C content 17% higher, total N 40% higher, available P 112% higher than that with Gliricidia. The presence of A. pintoiin

  8. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  9. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia.

    Science.gov (United States)

    Muqaddas, Bushra; Zhou, Xiaoqi; Lewis, Tom; Wild, Clyde; Chen, Chengrong

    2015-12-01

    Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0-10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2-C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  11. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  12. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  13. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  14. Total mineral material, acidity, sulphur, and nitrogen in rain and snow at Kentville, Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F A; Gorham, E

    1957-01-01

    Analyses of total ash, sulphur, ph, ammonia, and nitrate nitrogen have been made on 23 monthly precipitation samples and 17 individual snow samples collected between June 1952 and May 1954 at Kentville, Nova Scotia, in a predominantly agricultural area. Mean annual supply of total mineral ash was 95 kg/ha, of sulphur 9.1 hg/ha, of ammonia nitrogen 2.8 kg/ha, and of nitrate nitrogen 1.1 kg/ha. Average pH was 5.7, and rains more acid than this exhibited higher levels of both nitrate and sulphur, and a marked correlation between the latter and ammonia. Snow samples had much lower concentrations of ash, sulphur, and nitrogen than rain samples collected in the same months, which may perhaps indicate a lower efficiency of snow flakes in removing materials from the atmosphere.

  15. Influence of soil moisture on uptake and utilization of applied nitrogen in tea

    International Nuclear Information System (INIS)

    Marimuthu, S.; Raj Kumar, R.

    1999-01-01

    An experiment was conducted with pot-grown young tea plants to study N uptake under different soil moisture regime. Labelled urea nitrogen was found effectively utilized under rainfed conditions. However, N loss through percolation/leaching in response to saturated moisture was as high as 33.3%. Plants grown under controlled conditions utilized less amount of applied N and the rest was retained in the soil. Unaccounted loss, in both the cases, was approximately 9%. Fertilizer-use efficiency of young tea plants under rain fed conditions was about 35% while it was 15% under moisture deficient conditions. Results on N balance in tea soils are discussed. (author)

  16. Adjustment of nitrogen fertilization to the needs of plants and limitations posed by the risk of nitrate accumulation and pollution of the soil and subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J C

    1980-01-01

    In chalky Champagne, nitrogen balance is study to adjust availability to plant response. For this, it is necessary to know some parameters whose measurement is obtained progressively; plants exportation, nitrogen transformations in terms of transport processes in soil system, kinetic of mineralization of soil organic nitrogen, plants residus and agricultural waste waters. Lysimeters with rotation of Champagne (wheat, sugarbeet, potatoes...) are used to measure losses of nitrogen and follow transport of nitrates by mean of soil solution captors. Comparisons with field results, lysimeters results and laboratory experimentations are used to adjust an experimental model. Two examples show: 1) Nitrogen fertilizer requirement for wheat. 2) Possibility of maximum application for agricultural waste waters.

  17. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.

    Science.gov (United States)

    Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T

    2018-01-01

    When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  19. Severe soil frost reduced losses of carbon and nitrogen from the forest floor during simulated snowmelt: A laboratory experiment

    Science.gov (United States)

    Andrew B. Reinmann; Pamela H. Templer; John L. Campbell

    2012-01-01

    Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected...

  20. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  1. A Simple and Rapid Method to Evaluate Potentially Mineralizable Nitrogen in Sewage Sludge Amended Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Yazdan Lotfi

    2005-06-01

    Full Text Available Potentially mineralizable nitrogen (PMN can be usually considered as labile nitrogen. Measurement of PMN is expensive and time consuming; therefore, a simpler and more rapid alternative may facilitate routine laboratory analysis. The objective of this study was to determine the relationship between PMN and biological index of nitrogen availability (BINA. The studied soil was previously treated with 0, 25, and 100 tons ha-1 of sewage sludge with 0, 1, 2 and 3 consecutive years of application. Soil samples were taken 6 months after the latest application. PMN was measured according to Stanford and Smith procedure (20 weeks of aerobic incubation with 2 weeks leaching intervals and BINA measured as described by Bundy and Meisinger (7 days of anaerobic incubation at 40˚ C followed by extraction of NH4+. Results showed that PMN was significantly correlated with BINA (r = 0.938, P

  2. 200 years of soil carbon nitrogen and phosphorus change across the United Kingdom

    Science.gov (United States)

    Tipping, Ed; Quinton, John; Davies, Jessica; Bell, Vicky; Carnell, Ed; Dragosits, Ulli; Muhammed, Shibu; Naden, Pam; Stuart, Marianne; Tomlinson, Sam; Whitmore, Andy; Wu, Lianhai

    2015-04-01

    Human intervention over the last 200 years has resulted in vast changes to the fluxes of nitrogen (N) and phosphorus (P) entering the United Kingdom's landscape. Industrialisation has resulted in N deposition, agricultural intensification has seen widespread use of N and P fertilizers and societal actions have resulted in extensive land use change. To understand the consequences of these anthropogenic inputs for our soils, freshwaters and ecosystems it is necessary to take an integrated long term large scale approach. Integration across the compartments of the critical zone - from atmosphere, plants to soil and stream - is necessary in order to trace the effects of deposition, fertilization, cultivation and land use change. Coherent integration of C, N and P dynamics is also crucial, as biological processes tightly couple these cycles, so that in unison C N and P control the generation of biomass and consequent production of soil organic matter, having knock on effects for dissolved and particulate fluxes and ecosystem function. The Long-Term Large-Scale (LTLS) project is developing an integrated model that simulates the pools and fluxes of carbon, nitrogen and phosphorus (C, N, and P) between atmospheric, vegetation, soil and aquatic systems for the whole of the United Kingdom for a period spanning from the onset of the industrial revolution up until the present day. In this paper we will present results demonstrating the changes in the soil macronutrient cycles in response to agrarian and social change in the United Kingdom over the last 200 years

  3. Carbon and nitrogen in Danish forest soils - Contents and distribution determined by soil order

    DEFF Research Database (Denmark)

    Vejre, Henrik; Callesen, Ingeborg; Vesterdal, Lars

    2003-01-01

    ). The average total organic C and N contents were 12.5 and 0.61 kg m(-2) respectively. There were large differences in total C and N among soil orders. Spodosols had the greatest C content (14.6 kg m(-2)), and Alfisols the least (8.8 kg m(-2)), while the N content was highest in Alfisols (0.75 kg m(-2......)) and least in Spodosols (0.51 kg m(-2)). The main contributor to the high C content in Spodosols is the spodic horizons containing illuvial humus, and thick organic horizons. Carbon and N concentrations decreased with soil depth. Soil clay content was negatively correlated to C content and positively...

  4. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    Science.gov (United States)

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  5. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  6. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    Science.gov (United States)

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  7. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  8. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  9. Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Cosby, B. J.; Evans, C. D.; Hruška, J.; Moldan, F.; Oulehle, F.; Šantrůčková, H.; Tahovská, K.; Wright, R. F.

    2013-01-01

    Roč. 115, 1-3 (2013), s. 33-51 ISSN 0168-2563. [BIOGEOMON : international symposium on ecosystem behavior /7./. Northport, 15.07.2012-20.07.2012] R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : nitrogen * carbon * sulphur * acidification * forest soil * modelling Subject RIV: DJ - Water Pollution ; Quality Impact factor: 3.730, year: 2013

  10. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  11. Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades.

    Science.gov (United States)

    Bae, Hee-Sung; Morrison, Elise; Chanton, Jeffrey P; Ogram, Andrew

    2018-04-01

    The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK / S , with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota , in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N 2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H 2 plus CO 2 and acetate as electron donors and carbon sources. Methanogenic N 2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands. IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling

  12. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2018-01-01

    Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.

  14. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Horswill, Paul [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: paul.horswill@naturalengland.org.uk; O' Sullivan, Odhran; Phoenix, Gareth K.; Lee, John A.; Leake, Jonathan R. [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-09-15

    Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10 years with 35-140 kg N ha{sup -2} y{sup -1} as NH{sub 4}NO{sub 3}. Historic data suggests both grasslands have acidified over the past 50 years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes. - Nitrogen deposition causes base cation depletion, acidification and eutrophication of semi-natural grassland soils.

  15. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China.

    Science.gov (United States)

    Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng

    2017-12-31

    Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship

  16. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    Science.gov (United States)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  17. Effect of residual nitrogen and fertilizer nitrogen on sugar beet production in Finland

    Directory of Open Access Journals (Sweden)

    Veikko Brummer

    1974-09-01

    Full Text Available Preliminary determinations for NO3- and NH4-N in topsoil from nitrogen field experiments are discussed. The amounts of residual nitrogen as well as the dates and depth for sampling are considerd in order to investigate the need of fertilizer-N for continuous sugar beet. Tops ploughed down as manure increased the available soil nitrogen by about 50 kg/ha. In practice nitrogen from fertilizer and farmyard manure given to previous beet crops seems to accumulate in the beet soils of Finland. The concentrations of nitrate and ammonium nitrogen in topsoil were low in the spring of 1972 and 1973. NO3-N increased in topsoil during the early summer, and the highest concentrations were found at the beginning of July. Starting from the middle of July the amount of NH4-N began to increase both in topsoil and in subsoil. With increasing amounts of nitrogen in the topsoil the sugar content decreases continuously. Also the α-amio N content of beets correlates with the soil nitrogen. There is experimental evidence that 150 180 kg/ha nitrate nitrogen in topsoil (residual + fertilizer N in early July gives the best economic result. The effects of fertilizer and accumulated soil nitrogen on the sugar beet quality together with som other experimental data have been statistically analysed. Regression coefficients indicated that both forms of nitrogen affected the suger content, the α-amino N concentration and clear juice purity, in a similar way.

  18. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    Science.gov (United States)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  20. A new detailed map of total phosphorus stocks in Australian soil.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Bui, Elisabeth N

    2016-01-15

    Accurate data are needed to effectively monitor environmental condition, and develop sound policies to plan for the future. Globally, current estimates of soil total phosphorus (P) stocks are very uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of total P in Australian soil. Data from several sources were harmonized to produce the most comprehensive inventory of total P in soil of the continent. They were used to produce fine spatial resolution continental maps of total P in six depth layers by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of percent total P were predicted at the nodes of a 3-arcsecond (approximately 90 m) grid and mapped together with their uncertainties. We combined these predictions with those for bulk density and mapped the total soil P stock in the 0-30 cm layer over the whole of Australia. The average amount of P in Australian topsoil is estimated to be 0.98 t ha(-1) with 90% confidence limits of 0.2 and 4.2 t ha(-1). The total stock of P in the 0-30 cm layer of soil for the continent is 0.91 Gt with 90% confidence limits of 0.19 and 3.9 Gt. The estimates are the most reliable approximation of the stock of total P in Australian soil to date. They could help improve ecological models, guide the formulation of policy around food and water security, biodiversity and conservation, inform future sampling for inventory, guide the design of monitoring networks, and provide a benchmark against which to assess the impact of changes in land cover, land use and management and climate on soil P stocks and water quality in Australia. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Syshchykova Oksana Vitalyevna

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil.

  2. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    International Nuclear Information System (INIS)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-01-01

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO 3 was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl 2 Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm

  3. Application of the soil perturbation index to evaluate created and restored wetlands

    Science.gov (United States)

    Rebecca Smith Maul; Marjorie M. Holland

    2000-01-01

    Biogeochemical properties of wetlands have recently been investigated to assess recovery of wetland ecosys-tems following human alteration. Analyses of soil samples have shown that the natural regeneration of timber-harvested wetlands exhibits predictable trends for soil organic matter, total organic carbon, total Kjeldahl nitrogen, and total phosphorus. Incorporating...

  4. Study of the effect of the repeated incorporation of millet straw on the availability of nitrogen in a sandy tropical soil using 15N

    International Nuclear Information System (INIS)

    Guiraud, G.; Ganry, F.; Llimous, Gisele.

    1980-01-01

    In order to maintain the level of organic materials in the sandy soils of Senegal, compost was injected in these soils over a period of four consecutive years. The effects of this injection were studied by carrying out tests in pots with a nitrogen 15 labelled fertilizer. The use of compost significantly increased the amount of organic matter in the soil and led to higher yields. The nitrogen present is used by the culture, but appears to be insufficient. A proportion of this nitrogen is lost. Fertilizers still enable high yields to be maintained. The use of compost, however, enables an irreversible drop in the potential fertility of these soils over a longer term period to be avoided [fr

  5. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Directory of Open Access Journals (Sweden)

    Guoqing Hu

    Full Text Available In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N. However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009. From the 2nd to 4th year (2010-2012, one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9% was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%, but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9% and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  6. Nitrogen cycling in young mine soils in southwest Virginia

    International Nuclear Information System (INIS)

    Li, Rensheng.

    1991-01-01

    This investigation was conducted to study the nature of N form and dynamics in southwest Virginia mine soils. Fresh mine spoils contained a large amount of indigenous N, ranging from 650 to 2,500 mg/kg soil, which complicated N studies. Most of the indigenous N was geologic N which was unavailable to plants. The geologic N came from either 2:1 silicate minerals or coal fragments. Active N, consisting of hydrolyzable organic N and exchangeable N, comprised the minor fraction of indigenous N available to plants. With mine soil development, N accumulated mainly in the surface layer of mine soils via symbiotic fixation. Based on this fact, a simple, accurate method for measuring N accumulation which is corrected for indigenous N (Corr-N) has been developed. Corr-N is obtained by subtracting soil total N at 10-20 cm from soil total N at 0-5 cm. Under natural conditions the annual rate of N accumulation estimated by this method was 26 kg N/ha. Careful management enhanced N accumulation, and thus reduced the time required to build up soil N and to establish a vigorous, self-sustaining vegetative community in mine soils. Selecting proper overburn materials as a topsoil substitute, planting suitable legume species, and adding sewage sludge are effective methods for stimulating quick N accumulation and successful reclamation. For example, in experimental plots containing birdsfoot trefoil (Lotus corniculatus) the accumulation rate was more than 150 kg N/ha per year. This work also showed that about 43%-63% of litter N was released during one year's decomposition, and about 2.3%-11.6% of litter N was subsequently taken up by plants depending on the plant species and soil N level. This indicates that N will effectively cycle through the plant-litter-soil system once a vegetative community is established on the young mine soil

  7. Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa; Nicolaisen, Mette Haubjerg; Hansen, Hans Chr. Bruun

    2016-01-01

    nitrogen sensing status in both experimental systems. Hence, for nitrogen sources, regulatory patterns that emerge in soil reflect those observed in liquid cultures. The current study shows how distinct regulatory traits can lead to discrete environmental consequences; and it underpins that attempts......The nitrogen species available in the growth medium are key factors determining expression of xyl genes for biodegradation of aromatic compounds by Pseudomonas putida. Nitrogen compounds are frequently amended to promote degradation at polluted sites, but it remains unknown how regulation observed...... that NO3(-) compared with NH4(+) had a stimulating effect on xyl gene expression in pure culture as well as in soil, and that this stimulation was translated into increased m-xylene mineralization in soil. Furthermore, expression analysis of the nitrogen-regulated genes amtB and gdhA allowed us to monitor...

  8. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil.

    Science.gov (United States)

    Hawthorne, Iain; Johnson, Mark S; Jassal, Rachhpal S; Black, T Andrew; Grant, Nicholas J; Smukler, Sean M

    2017-05-01

    Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N 2 O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO 2 and N 2 O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH 4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO 2 emissions compared to biochar amended soil without fertilizer. In terms of CO 2 -eq, the net change in GHG emissions was mainly controlled by CO 2 emissions, regardless of treatment, with CH 4 and N 2 O together accounting for less than 1.5% of the total emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of automated analysis of 15N and total N in plant material and soil

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    Simultaneous determination of N-15 and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance...... was lower than 0.1%. The CV of repeated analyses of N-15-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproducibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method...... analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3- and the NH4+ in aqueous solution were recovered in the trap after combined diffusion. The method is most suited...

  10. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  11. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  12. Nitrogen dynamics in flooded soil systems: An overview on concepts and performance of models

    NARCIS (Netherlands)

    Khairudin, Nurul; Gaydon, Donald S.; Jing, Qi; Zakaria, Mohamad P.; Struik, Paul C.; Keesman, Karel J.

    2018-01-01

    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multi-disciplinary research, and with substantial progress in understanding

  13. Evaluation of biological attributes of soil type latossol under agroecological production

    Directory of Open Access Journals (Sweden)

    Marisol Rivero Herrada

    2016-10-01

    Full Text Available Biological soil attributes have shown to be good indicators of soil changes as a result of the management function. The aim of this study was to evaluate the effect of using cover crops, as well as planting and tillage systems on the biological attributes of a yellowish red latosol soil. Soil samples were taken at 0 to 0.10 m depth, seven days before the bean harvest. Microbial biomass carbon and nitrogen, basal soil respiration, metabolic ratio and total enzyme activity were evaluated in this study. The best agroecological management was achieved under the association of the ground cover with millet and in direct seeding because they showed higher soil microbial biomass carbon and nitrogen content and lower metabolic quotient, being pork bean the best plant coverage. All biological soil attributes were sensitive to the tillage system, which showed the best results of the total enzyme activity and of the soil metabolic quotient which resulted to be the most efficient.

  14. Drip irrigation and fertigation of potato under light-textured soils of cappadocia region

    International Nuclear Information System (INIS)

    Halitgil, M. B.; Onaran, H.; Munsuz, N.; Kislal, H.; Akin, A.; Unlenen, A. L.; Cayci, G.; Kutuk, C.

    2002-01-01

    In order to evaluate potato response to drip irrigation and N fertigation; and also to improve nitrogen and water use efficiencies of potato and eventually to obtain less nitrogen polluted surface and water, 10 field experiments were carried out at three different locations in Cappadocia Region of Turkey in 1997, 1998, 1999 and 2000 growing seasons. Nitrogen as ammonium sulphate ((NH 4 ) 2 So 4 ), was supplied by drip irrigation water (fertigation) at rates of 0, 30, 60 and 90 kg N/da. Also, soil N application treatment equivalent to the fertigation treatment of 60kg N/da was included. These five treatments were investigated in a completely randomized block design with four replicants. Agria potato variety was used in all experiments and potato was planted in mid May and harvested at the end of October.''1''5N-labelled ammonium sulphate fertilizer were applied in isotope-sub plots within the macroplots for each treatment, in order to determine the amount of nitrogen taken up by the plant, nitrogen use efficiency and the distribution of residual nitrogen at different depths in the soil profile. Each year, during the growth period, total 12 irrigations were done and 50 mm of water was applied at each irrigation. At harvest, plant samples (tuber and leaf+vein) and soil samples were taken from each plot and N%, ''1''5N% atom excess (''1''5N% a.e.) and Ndff% determinations were done. Soil water contents at differrent soil depths were determined by soil moisture neutron probe at plantingand at harvest period so that water contents at different soil layers and water use efficiencies were calculated for each treatment. The results obtained showed that 3350 kg/da mean total marketable tuber yield was obtained with application of 600 mm irrigation water. Also,it was found that water did not move below 90 cm of soil layer in drip irrigation-fertigation system, which showed clearly that no nitrogen movement occured beyond 90 cm soil depth. Tuber yields and %Ndff increased when

  15. Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability

    Directory of Open Access Journals (Sweden)

    Xiuyuan eLi

    2015-04-01

    Full Text Available Competition for nitrogen (N, particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, 15N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With interspecific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to interspecific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with interspecific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech.

  16. Effects of Refined Petroleum Hydrocarbon on Soil Physicochemical ...

    African Journals Online (AJOL)

    Nitrogen and phosphorous decreased from 0.15% to 0.07% and 35.1ppm to 10.88pm respectively while ammonium nitrate and nitrite were not affected in all soils. Calcium and potassium decreased beyond the control soil level in gasoline — contaminated soil after week 16. Counts of total viable aerobic heterotrophs ...

  17. Nitrogen nutrition of the grape-vine (Vitis vinifera spp)

    International Nuclear Information System (INIS)

    Conradie, W.J.

    1985-12-01

    A thorough knowledge concerning the nitrogen relationship in the grape-vine is essential in order to appreciate how different patterns of uptake, assimilation, storage and utilisation of nitrogen might be advantageous in particular environmental situations. The 15 N-isotope technique has been used to determine the uptake and distribution of nitrogen absorbed during early spring, early summer and autumn. Apart from the total N fraction, protein N and soluble N were determined as well. The utilisation of labelled N applied in the field, was determined for vineyards on heavier and lighter soils

  18. Study On Ammonia Accumulation of Cellulose-Utilizing and Nitrogen-Fixing Bacteria Isolated from Various Soils

    International Nuclear Information System (INIS)

    Soe Myat Thandar; Aung Ko Ko Oo; Weine Nway Nway Oo

    2011-12-01

    Cellulose-utilizing and nitrogen-fixing bacteria were isolated from various soil. 42 bacterial strains were obtained. Among those stains, 13 strains were screened for nitrogen-fixing activity. Among them, 4 strains coded as CPB1, CMB1, GPB2 and 3LC4 showed the high nitrogen-fixing activity. Different strains produced different amount of ammonium compounds at various incubation periods. CMB1 produced the maximum amount of ammonium 1.2 mg/L NH4+ at 6th day culture but 3LC4, GPB2 and CPB1 produced more amount of NH4+ with 2, 2.5 and 3 mg/L NH4+ respectively at 5th day culture.

  19. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  20. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  1. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  2. Effects of the duration and inorganic nitrogen composition of a nutrient-rich patch on soil exploration by the roots of Lolium perenne in a heterogeneous environment.

    Science.gov (United States)

    Nakamura, Ryoji; Kachi, N; Suzuki, J-I

    2010-05-01

    We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.

  3. Carbon mineralisation in litter and soil organic matter in forests with different nitrogen status

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Patrik

    2000-07-01

    The objective of this thesis was to investigate the effect of both organic and inorganic nitrogen (N) on carbon (C) mineralisation of litter and soil organic matter, in order to increase the understanding of factors affecting decomposition and, ultimately, soil C sequestration. Fresh recently fallen needle litter with three contrasting total N concentrations were sampled, along with litter, humus and mineral soil layers from coniferous and deciduous forest sites in Europe. The sampled substrates were incubated in the laboratory at constant temperature (15 deg C) and near-optimal moisture. The fresh needles further received additions of ammonium and nitrate. Initial C mineralisation rates were higher in fresh N-rich needles than in fresh N-poor needles. However, after a 559-day incubation at 15 deg C cumulative C mineralisation was lower in the fresh N-rich needles than in the fresh N-poor needles. Negative effects of high N on C mineralisation were also found in litter and humus layers in the European forests and at sites with N-fertilisation trials, where low C mineralisation rates were associated with high total N concentrations. During early stages of decomposition, addition of ammonium and nitrate to fresh needles did not increase cumulative C mineralisation, suggesting that the decomposing organisms were not limited by low N supply even in the low-N needles. The initially higher C mineralisation in N-rich compared with N-poor needles is suggested to be a consequence of higher C quality in the N-rich substrates. In later stages of decomposition, the question why N seemed to have a negative effect on decomposition could not be satisfactorily answered, although there were indications that recalcitrant N-containing compounds were formed in fresh needles with high N concentration. This thesis presents some probable explanations of the negative effect on decomposition of high N.

  4. Effects of CO(sub 2) and nitrogen fertilization on soils planted with ponderosa pine; FINAL

    International Nuclear Information System (INIS)

    Johnson, D.W.

    1996-01-01

    The effects of elevated CO(sub 2) (ambient, 525, and 700(micro)l l(sup -1))and N fertilization (0, 10, and 20 g N m(sup 2) yr(sup -1)) on soil pCO(sub 2), CO(sub 2) efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO(sub 2) and CO(sub 2) efflux were significantly greater with elevated CO(sub 2), at first (second growing season) in the 525(micro)l l(sup -1) and later (fourth and fifth growing seasons) in the 700(micro)l l(sup -1) CO(sub 2) treatments. Soil solution HCO(sub 3)(sup -) concentrations were temporarily elevated in the 525(micro)l l(sup -1) CO(sub 2) treatment during the second growing season, consistent with the elevated pCO(sub 2). Nitrogen fertilization had no consistent effect on soil pCO(sub 2) or CO(sub 2) efflux, but did have the expected negative effect on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), presumed to be caused by increased nitrate leaching. Elevated CO(sub 2) had no consistent effects on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), but did cause temporary reductions in soil NO(sup 3(sup -)) (second growing season). Statistically significant negative effects of elevated CO(sub 2) on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO(sub 2) on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO(sub 2) was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO(sub 2) in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  5. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  6. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  7. Total Nitrogen Sources of the Three Gorges Reservoir--A Spatio-Temporal Approach.

    Directory of Open Access Journals (Sweden)

    Chunping Ren

    Full Text Available Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world's third longest river, and impounded the famous Three Gorges Reservoir (TGR. In this study, we analyzed total nitrogen (TN concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR's total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River. Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence. TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.

  8. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  9. Alterations in soil microbial community composition and biomass following agricultural land use change.

    Science.gov (United States)

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-04

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  10. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil.

    Science.gov (United States)

    Zhou, Fengwu; Cui, Jian; Zhou, Jing; Yang, John; Li, Yong; Leng, Qiangmei; Wang, Yangqing; He, Dongyi; Song, Liyan; Gao, Min; Zeng, Jun; Chan, Andy

    2018-03-27

    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha -1 when its ratio of NH 4 + /NO 3 - -N (R N ) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha -1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and R N (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha -1 ) had similar reduced effects on microbial activity. Furthermore, both ADN flux and R N significantly reduced soil bacterial alpha diversity (pADN flux and R N were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  12. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  13. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    Science.gov (United States)

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment

  14. IMPACT OF WOODY PLANTS SPECIES ON SOIL PHYSIO-CHEMICAL PROPERTIES ALONG GRAZING GRADIENTS IN RANGELANDS OF EASTERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available In the lowlands of arid and semiarid rangelands woody plants plays an important role in soil fertility maintenance, providing food, medicine, cosmetics, fodder, fuel wood and pesticides. A better understanding of the interaction of woody plants on their immediate environment is needed to guide optimum management of native vegetation in the production landscapes. However, the impact of woody plant species on soil properties remains poorly understood. This study evaluates the impact of two dominant woody plant species (A. senegal and B. aegyptica on soil physico-chemical properties along grazing gradients in rangelands of eastern Ethiopia. Six trees of each species were selected from light, moderate and heavy grazing sites.  Soil sample data at two depths (0-15 and 16-30 cm were collected from under and open areas of A. senegal and B. aegyptica from each grazing sites, and analysed for nutrient contents. The nutrient status of soil under both woody species was significantly higher especially with regard to soil organic matter (4.37%, total nitrogen (0.313%, and available phosphorus (11.62 than the open grassland with soil organic matter (3.82%, total nitrogen (0.246%, and available phosphorus (10.94 mg/Kg soil for A. Senegal. The soil organic matter (3.93%, total nitrogen (0.285%, available phosphorus (11.66 mg/Kg soil were significantly higher than open grassland with soil organic matter (3.52%, total nitrogen (0.218%, available phosphorus (10.73 mg/Kg soil for B. aegyptica. This was more pronounced in the top 15 cm of soil under A. senegal woody plant species and on the light and moderate grazing site. Therefore, this tree has a significant effect on soil fertility improvement in resource poor rangelands and as a result, it is important to retain scattered A. senegal and B. aegyptica plants in the lowlands of eastern Ethiopia.

  15. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  16. Effect of Continuous Agriculture of Grassland Soils of the Argentine Rolling Pampa on Soil Organic Carbon and Nitrogen

    Directory of Open Access Journals (Sweden)

    Luis A. Milesi Delaye

    2013-01-01

    Full Text Available Long-term soil organic carbon (SOC and soil organic nitrogen (SON following cultivation of grassland soils (100/120-year tillage (T + 20/30-year no tillage (NT of the Rolling Pampa were studied calibrating the simple AMG model coupled with the natural 13C abundance measurements issued from long-term experiments and validating it on a data set obtained by a farmer survey and by long-term NT experiments. The multisite survey and NT trials permitted coverage of the history of the 140 years with agriculture. The decrease in SOC and SON storage that occurred during the first twenty years by a loss through biological activity was 27% for SOC and 32% for SON. The calibrated model described the SOC storage evolution very well and permitted an accurate simultaneous estimation of their three parameters. The validated model simulated well SOC and SON evolution. Overall, the results analyzed separately for the T and NT period indicated that the active pool has a rapid turnover (MRT ~9 and 13 years, resp. which represents 50% of SOC in the native prairie soil and 20% of SOC at equilibrium after NT period. NT implementation on soils with the highest soil organic matter reserves will continue to decrease (17% for three decades later under current annual addition.

  17. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  18. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  19. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Science.gov (United States)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  20. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies