WorldWideScience

Sample records for total skeletal mineral

  1. Correlation of radial bone mineral content with total body calcium in chronic renal failure

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Caselnova, R.C.; Asad, S.N.; Letteri, J.M.

    1975-01-01

    Loss of bone mineral of the skeleton in renal disease can be measured directly by total body neutron activation analysis (TBNAA), and also by an absorptiometric technique applied to the appendicular skeleton (radius). In the present study the results of these two techniques are compared in 25 patients with renal insufficiency, 53 patients with end-stage renal failure on dialysis, and 24 normal control subjects. It is apparent that there is good correlation between total body calcium (TBCa) and bone mineral content (BMC) in all groups studied. The correlation in the normal contrast group was 0.944 as compared to 0.919 for the renal patients and 0.892 for patients with end-stage renal failure on dialysis. In order to measure the relative deficit in TBCa in individual patients from the absolute Ca measurement, it is necessary to normalize the data for sex, age, and skeletal size. For this purpose, an empirically derived relationship was used to predict the normal skeletal Ca in each subject, based on weight, height, sex, and age. The measured TBCa divided by the predicted TBCa is referred to as the calcium ratio. This ratio is useful in expressing the relative deficit of Ca in individual renal patients. In similar manner, BMC data were normalized, with the same relationship used to obtain BMC ratios. The normalization procedures allow both the TBCa and BMC measurements to be used to quantitate the Ca deficit in individual patients with renal insufficiency

  2. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis

    Science.gov (United States)

    Chiou, Aaron E.; Loh, Hyun Chae; Lynch, Maureen; Seo, Bo Ri; Song, Young Hye; Hoerth, Rebecca; Bortel, Emely L.; Willie, Bettina M.; Duda, Georg N.; Masic, Admir; Wagermaier, Wolfgang; Fratzl, Peter; Fischbach, Claudia

    2017-01-01

    Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis. PMID:28923958

  3. Exploring the Relationship between Skeletal Mass and Total Body Mass in Birds.

    Science.gov (United States)

    Martin-Silverstone, Elizabeth; Vincze, Orsolya; McCann, Ria; Jonsson, Carl H W; Palmer, Colin; Kaiser, Gary; Dyke, Gareth

    2015-01-01

    Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.

  4. High bone mineral apparent density in children with X-linked hypophosphatemia

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Brixen, K; Gram, J

    2013-01-01

    of the spine compared to femoral neck. INTRODUCTION: BMAD obtained by dual-energy X-ray absorptiometry scans in children with XLH was evaluated, as they are unlikely to have the extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients. METHODS: A total of 15......Bone mineral apparent density (BMAD) in children with X-linked hypophosphatemia (XLH) was evaluated, as they are unlikely to have extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients. Children with XLH also had significantly higher BMAD...

  5. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  6. Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    International Nuclear Information System (INIS)

    Lenora, Janaka; Norrgren, Kristina; Thorsson, Ola; Wollmer, Per; Obrant, Karl J; Ivaska, Kaisa K

    2009-01-01

    Skeletal uptake of 99m Tc labelled methylene diphosphonate ( 99m Tc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99m Tc-MDP. 22 postmenopausal women (52–80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99m Tc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). The median TSU of 99m Tc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99m Tc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

  7. Clinical study evaluating bone mineral mass in the radius during skeletal growth. Single photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome.

  8. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.

    Science.gov (United States)

    Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J

    2005-10-01

    The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.

  9. Minerals and Total Polyphenolic Content of Some Vegetal Powders

    Directory of Open Access Journals (Sweden)

    Roxana E. TUFEANU

    2017-11-01

    Full Text Available The total polyphenolic content and minerals were determined for chia seeds, Psyllium husks and watermelon rind powder. The minerals content was performed by using the Inductively Coupled Plasma Optical Emissions Spectrometer and Atomic Absorption Spectrometer, technique FIAS-Furnace (for Se. The sample with the highest content of polyphenols was chia (2.69 mg GAE/g s. followed by the watermelon rind powder. Reduced amounts of polyphenols were found in the Psyllium husks. Also, the total polyphenol concentration increased with the increase of the extraction time on the ultrasonic water bath. Minerals analysis indicated that powders obtained from chia seeds and watermelon rind contained large amounts of potassium, calcium, phosphorus and magnesium. The most abundant mineral in the Psyllium husks powder was found potassium, followed by calcium. In conclusion, these powders can be used as ingredients for functional food and food supplements production due to the high nutritional content and bioactive properties.

  10. Total skeletal uptake of diphosphonate in Paget's bone disease and rheumatoid arthritis

    International Nuclear Information System (INIS)

    Cabrejas, M.J.; Mautclen, C.A.; Fromm, G.

    1982-01-01

    Sup(99m) Technetium-diphosphonates (99m-Tc-DP) are very satifactory agents to quantify total skeletal uptake (TSU) in normal and pathological conditions. Although the intimate mechanism of skeletal localization of 99m-Tc-DP is not completely understood the test appears to be a very sensitive index of increased bone turnover. TSU can be determined by several methods: urine collection, whole body counter retention and gamma camara body retention studies. The urine collection method seems to be an easy and reliable method, having the advantage that no expensive device is needed. Further studies on the skeletal uptake of 99m-Tc-DP, in normal subjects and pathological conditions, with special emphasis on patients with rheumatoid arthritis, are reported. Correlation of these data with other tests indicating bone turnover, such as cortical bone loss determined by densitometry or urinary hydroxyproline excretion, supports previous reports that the TSU is a useful parameter to evaluate bone metabolism

  11. Inadequate Dietary Phosphorus Levels Cause Skeletal Anomalies and Alter Osteocalcin Gene Expression in Zebrafish

    Directory of Open Access Journals (Sweden)

    Juliana M. Costa

    2018-01-01

    Full Text Available Phosphorus (P is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (Danio rerio, and sought to determine appropriate levels in a diet. We analyzed a total of 450 zebrafish within 31 days of hatching. Animals were distributed in a completely randomized experimental design that consisted of five replications. After an eight-week experiment, fish were diaphanized to evaluate cranial and spinal bone deformities. Increases in dietary phosphorus were inversely proportional to the occurrence of partial spine fusions, the absence of spine fusions, absence of parallelism between spines, intervertebral spacing, vertebral compression, scoliosis, lordosis, ankylosis, fin caudal insertion, and craniofacial deformities. Additionally, osteocalcin expression was inversely correlated to P levels, suggesting a physiological recovery response for bone mineralization deficiency. Our data showed that dietary P concentration was a critical factor in the occurrence of zebrafish skeletal abnormalities. We concluded that 1.55% P in the diet significantly reduces the appearance of skeletal deformities and favors adequate bone mineralization through the adjustment of osteocalcin expression.

  12. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  13. Skeletal and total body volumes of human fetuses: assessment of reference data by spiral CT

    International Nuclear Information System (INIS)

    Braillon, Pierre M.; Buenerd, Annie; Bouvier, Raymonde; Lapillonne, Alexandre

    2002-01-01

    Objective: To define reference data for skeletal and total body volumes of normal human fetuses. Materials and methods: Spiral CT was used to assess the skeletal and total body volumes of 31 normal human stillborn infants with gestational age (GA) and body weight (BW) ranging from 14 to 41.5 weeks and 22 to 3,760 g, respectively. CT scans (slice thickness 2.7 mm, pitch 0.7) were performed within the first 24 h after delivery. Precise bone and soft-tissue windows were defined from analysis of the density along the diaphysis of the fetal long bones and from the measurement of a phantom that mimics soft tissues. Lengths and volumes were obtained from 3D reconstructions. The femur lengths measured from CT images (FLct) were compared with those provided by US studies (FLus). Results: Significant correlations (r>0.9) were found between BW, measured volumes of the entire skeleton or head, long-bone lengths, biparietal diameter and GA. Strong linear correlations (r>0.98) were observed between FLct and FLus. Conclusions: Skeletal and total body volume values obtained using spiral CT were significantly correlated with fetal biometric measurements. These data could complement those obtained in obstetric investigations with US. (orig.)

  14. Does bone measurement on the radius indicate skeletal status. Concise communication

    International Nuclear Information System (INIS)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.; Lange, T.A.; Lindgren, U.; Smith, E. Jr.

    1984-01-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of the lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state

  15. Proteoliposomes as matrix vesicles' biomimetics to study the initiation of skeletal mineralization

    Directory of Open Access Journals (Sweden)

    A.M.S. Simão

    2010-03-01

    Full Text Available During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs. Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.

  16. Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

    NARCIS (Netherlands)

    J.P. Kemp (John); M.C. Medina-Gomez (Carolina); K. Estrada Gil (Karol); B. St Pourcain (Beate); D.H.M. Heppe (Denise); N.M. Warrington (Nicole); L. Oei (Ling); S.M. Ring (Susan); C.J. Kruithof (Claudia); N.J. Timpson (Nicholas); L.E. Wolber (Lisa); S. Reppe (Sjur); K.M. Gautvik (Kaare); E. Grundberg (Elin); B. Ge (Bing); B.C.J. van der Eerden (Bram); J. van de Peppel (Jeroen); M.A. Hibbs (Matthew); C.L. Ackert-Bicknell (Cheryl); K. Choi (Kunho); D.L. Koller (Daniel); M.J. Econs (Michael); F.M. Williams (Frances); T. Foroud (Tatiana); M.C. Zillikens (Carola); C. Ohlsson (Claes); A. Hofman (Albert); A.G. Uitterlinden (André); G. Davey-Smith (George); V.W.V. Jaddoe (Vincent); J.H. Tobias (Jon); F. Rivadeneira Ramirez (Fernando); D.M. Evans (David)

    2014-01-01

    textabstractHeritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we

  17. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    Science.gov (United States)

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  18. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.

    Science.gov (United States)

    Yong, Luok Wen; Yu, Jr-Kai

    2016-08-01

    Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Total body and regional bone mineral content in hemodialysis patients

    International Nuclear Information System (INIS)

    Hagiwara, Satoshi; Aratani, Hideyui; Miki, Takami; Nishizawa, Yoshiki; Okamura, Terue; Koizumi, Yoshiko; Ochi, Hironobu; Morii, Hirotoshi

    1994-01-01

    Bone mineral content (BMC) in the total body and lumbar spine was evaluated in 126 hemodialysis patients (60 males, 66 females) by dual photon absorptiometry with the Norland DBD 2600. Measurements of: 1) total body BMC divided by lean body mass (BMC TB /LBM), 2) bone mineral density (BMD) of total body, 3) BMD of four regional sections (head, trunk, pelvis, and legs), and 4) BMD of lumbar spine, generally showed a significant decrease in the hemodialysis patients compared to the reference population. However, arm BMD did not show a significant difference between patients and control populations. The z-score of BMC TB /LBM declined significantly throughout the duration of hemodialysis, although that of the lumbar spine BMD did not. It should be noted that the degree of decrease in BMC was more prominent in the total body measurement than in the lumbar spine measurement. There was preferential osteopenia of the total body in the hemodialysis patients. Although the lumbar spine BMD showed a lower value than the control population, the lumbar spine is not the recommended region to monitor the BMD change in hemodialysis patients. (author)

  20. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    International Nuclear Information System (INIS)

    Kitazono Hammell, Mary T.; Edgar, J.C.; Jaramillo, Diego; Bunin, Nancy

    2013-01-01

    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  1. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    Science.gov (United States)

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  2. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  3. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    Directory of Open Access Journals (Sweden)

    Nasrin Esfahanizadeh

    2013-01-01

    Full Text Available Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA was carried out to determine bone mineral density (BMD of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson′s correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001. There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005. There was a negative correlation (P < 0.01 between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  4. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    Science.gov (United States)

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  5. Relative Skeletal Maturation and Population Ancestry in Nonobese Children and Adolescents.

    Science.gov (United States)

    McCormack, Shana E; Chesi, Alessandra; Mitchell, Jonathan A; Roy, Sani M; Cousminer, Diana L; Kalkwarf, Heidi J; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon E; Shepherd, John A; Mahboubi, Soroosh; Winer, Karen K; Kelly, Andrea; Grant, Struan Fa; Zemel, Babette S

    2017-01-01

    More rapid skeletal maturation in African-American (AA) children is recognized and generally attributed to an increased prevalence of obesity. The objective of the present study was to evaluate the effects of population ancestry on relative skeletal maturation in healthy, non-obese children and adolescents, accounting for body composition and sexual maturation. To do this, we leveraged a multiethnic, mixed-longitudinal study with annual assessments for up to 7 years (The Bone Mineral Density in Childhood Study and its ancillary cohort) conducted at five US clinical centers. Participants included 1592 children, skeletally immature (45% females, 19% AA) who were aged 5 to 17 years at study entry. The primary outcome measure was relative skeletal maturation as assessed by hand-wrist radiograph. Additional covariates measured included anthropometrics, body composition by dual-energy X-ray absorptiometry (DXA), and Tanner stage of sexual maturation. Using mixed effects longitudinal models, without covariates, advancement in relative skeletal maturation was noted in self-reported AA girls (∼0.33 years, p ancestry groups showed independent positive associations of height, lean mass, fat mass, and puberty with relative skeletal maturation. The effect of ancestry was attenuated but persistent after accounting for covariates: for girls, 0.19 years (ancestry by self-report, p = 0.02) or 0.29 years (ancestry by admixture, p = 0.004); and for boys, 0.20 years (ancestry by self-report, p = 0.004), or 0.29 years (ancestry by admixture, p = 0.004). In summary, we conclude that advancement in relative skeletal maturation was associated with AA ancestry in healthy, non-obese children, independent of growth, body composition, and puberty. Further research into the mechanisms underlying this observation may provide insights into the regulation of skeletal maturation. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and

  6. The effect of locomotion on the mobilization of minerals from the maternal skeleton.

    Directory of Open Access Journals (Sweden)

    Wendy R Hood

    Full Text Available Bone is a dynamic tissue from which minerals are deposited or withdrawn according to the body's demand. During late pregnancy and lactation, female mammals mobilize mineral from bone to support the ossification of offspring skeleton(s. Conversely, in response to mechanical loading, minerals are deposited in bone enabling it to develop a stronger architecture. Despite their central importance to reproductive performance and skeletal integrity, the interactions between these potentially opposing forces remains poorly understood. It is possible that inter-individual differences in the loading imposed by different forms of locomotion may alter the amount of mineral mobilized during reproduction. Here, the impact of vertical versus horizontal locomotion on bone mobilization was examined during reproduction in the laboratory mouse. The vertical, or climbing, group had access to a 60-cm tower, increasing strain on their appendicular skeleton. The horizontal, or tunnel, group had access to a 100-cm tunnel, which encouraged movements within the horizontal plane. Form of locomotion did not impact the amount of bone females mobilized during reproduction or the amount of mineral females deposited in the litter, but maternal bone architecture differed between groups. The climbing group displayed more trabeculae than the tunnel group, whereas the tunnel group displayed greater cortical bone mineral density mid-shaft. Interestingly, pups born to mothers in the climbing group had a higher concentration of total body calcium at 16 days than pups of mothers in the tunnel group. As maternal total body calcium composition and the amount of calcium invested in the full litter were not different between groups, the difference in the relative calcium content of pups between groups is not suspected to reflect difference in mineral allocation. Future research should consider the impact of maternal activity on the efficiency of offspring skeletal ossification via

  7. Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response.

    Science.gov (United States)

    Terova, Genciana; Rimoldi, Simona; Izquierdo, Marisol; Pirrone, Cristina; Ghrab, Wafa; Bernardini, Giovanni

    2018-06-17

    Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and

  8. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  9. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Directory of Open Access Journals (Sweden)

    John P Kemp

    2014-06-01

    Full Text Available Heritability of bone mineral density (BMD varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg and residual (re correlations between BMD measured at the upper limbs (UL-BMD, lower limbs (LL-BMD and skull (SK-BMD, using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC. Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78 between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43. Likewise, the residual correlation between BMD at appendicular sites (r(e = 0.55 was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e = 0.20-0.24. To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395, combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites. In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37, whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14. In addition, we report a novel association between RIN3 (previously associated with Paget's disease and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10. Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  10. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Science.gov (United States)

    Kemp, John P; Medina-Gomez, Carolina; Estrada, Karol; St Pourcain, Beate; Heppe, Denise H M; Warrington, Nicole M; Oei, Ling; Ring, Susan M; Kruithof, Claudia J; Timpson, Nicholas J; Wolber, Lisa E; Reppe, Sjur; Gautvik, Kaare; Grundberg, Elin; Ge, Bing; van der Eerden, Bram; van de Peppel, Jeroen; Hibbs, Matthew A; Ackert-Bicknell, Cheryl L; Choi, Kwangbom; Koller, Daniel L; Econs, Michael J; Williams, Frances M K; Foroud, Tatiana; Zillikens, M Carola; Ohlsson, Claes; Hofman, Albert; Uitterlinden, André G; Davey Smith, George; Jaddoe, Vincent W V; Tobias, Jonathan H; Rivadeneira, Fernando; Evans, David M

    2014-06-01

    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  11. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  12. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  13. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    Science.gov (United States)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  14. Effects of hypodynamic simulations on the skeletal system of monkeys

    Science.gov (United States)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  15. Skeletal and muscular status in juveniles with GFD treated clinical and newly diagnosed atypical celiac disease--preliminary data.

    Science.gov (United States)

    Płudowski, Paweł; Karczmarewicz, Elzbieta; Socha, Jerzy; Matusik, Halina; Syczewska, Małgorzata; Lorenc, Roman S

    2007-01-01

    Undiagnosed and untreated celiac disease (CD) constitutes an increasing skeletal health problem due to its association with low bone density and fractures. Examinations of skeletal status in children using dual-energy X-ray absorptiometry (DXA) are prone to size-related misinterpretation. In contrary, the analysis of muscle-bone relationship seems to limit a possibility of misdiagnosis because skeletal status is evaluated from the functional perspective. The study was aimed to assess skeletal status of children suffering from CD with the use of muscle-bone functional algorithm. The study group comprised 29 celiac patients (13.7yr+/-2.9) on gluten-free diet (GFD), and 24 newly diagnosed atypical celiac patients, including subgroup with normal height (n=14; 12.6yr+/-3.9) and subgroup with short stature (n=10; 12.2yr+/-2.9). Muscular and skeletal status was evaluated by DXA (DPX-L, GE). Anthropometry, total body bone mineral density (TBBMD, g/cm(2)). and total body bone mineral content (TBBMC, g) as well as lean body mass (LBM, g) were evaluated. Muscle-bone interactions were estimated using TBBMC/LBM ratio. Previously established references for healthy controls were used for the calculation of Z-scores (age-matched) and SD-scores (height-matched). GFD treated celiacs and atypical celiacs with normal body height had TBBMD, TBBMC, LBM, and TBBMC/LBM ratio Z-scores and SD-scores within normal range for healthy controls. In contrary, atypical celiacs with short stature had significantly lower Z-scores for TBBMD (-2.3+/-0.4), TBBMC (-2.1+/-0.3), LBM (-1.4+/-0.3). and TBBMC/LBM ratio (-2.3+/-0.6) when compared to respective values observed in GFD treated celiacs (pnormal height (pvalues observed in GFD treated celiacs (+0.04+/-0.2; pnormal height (-0.4+/-0.2; pvalues of DXA assessed indicators of bone and muscle status as well as normal muscle-bone interactions. Untreated atypical celiacs may present a broad spectrum of heterogeneous abnormalities from normal to markedly

  16. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  17. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  18. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  19. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  20. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Poedenphant, J.; Nilas, L.; Christiansen, C.

    1989-01-01

    We investigated the descriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMD spine ) also measured by DPA, and to the bone-mineral content of the forearms (BMC forearm ) measured by single photon absorptiometry (SPA). TBBD, BMD spine and BMC forearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMD spine or BMC forearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures. BMC forearm had an intermediate position, whereas BMD spine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMD spine or BMC forearm , whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements. (author)

  1. Total and regional blood flows in vascularized skeletal muscle grafts in rabbits

    International Nuclear Information System (INIS)

    Burton, H.W.; Stevenson, T.R.; Dysko, R.C.; Gallagher, K.P.; Faulkner, J.A.

    1988-01-01

    The transplantation of whole skeletal muscles is a common clinical procedure. Although atypical blood flows have been reported in small free muscle grafts, the blood flow of large neurovascular-intact (NVI) and neurovascular-anastomosed (NVA) grafts have not been measured. Because the maximum specific force (N/cm 2 ) of NVI and NVA grafts is 65% that of control muscles, we hypothesized that total and regional blood flows of NVI and NVA grafts at rest and during twitch contractions are significantly lower than lower flows of control muscles. In rabbits, blood flows of control rectus femoris (RFM) muscles and NVI and NVA grafts of RFM muscles were measured by the radioactive-microsphere technique. Total blood flows in grafts were not different from the control RFM muscle values, except for a higher resting flow in NVA grafts and a lower flow at 3 Hz in NVI grafts. Minor variations in regional flows were observed. We conclude that the operative procedures of grating and repair of blood vessels affect the vascular bed of muscles minimally, and the deficits observed in grafts do not arise from inadequate perfusion

  2. The skeletal consequences of thyrotoxicosis.

    Science.gov (United States)

    Nicholls, Jonathan J; Brassill, Mary Jane; Williams, Graham R; Bassett, J H Duncan

    2012-06-01

    Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.

  3. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  4. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  5. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  6. Insights on accelerated skeletal repair in Cushing's disease

    Directory of Open Access Journals (Sweden)

    So-Young Kim

    2015-06-01

    In this patient, spontaneous recovery of trabecular bone architecture was reflected by the early correction in TBS. Subsequent TPTD treatment was associated with marked improvement in BMD, presumably due to enhanced mineralization. Complete skeletal repair was achieved by this two-step mechanism in a very short time following successful surgical treatment for Cushing's disease.

  7. Effects of caffeic and chlorogenic acids on the rat skeletal system.

    Science.gov (United States)

    Folwarczna, J; Pytlik, M; Zych, M; Cegieła, U; Nowinska, B; Kaczmarczyk-Sedlak, I; Sliwinski, L; Trzeciak, H; Trzeciak, H I

    2015-02-01

    Caffeic acid, predominantly as esters linked to quinic acid (chlorogenic acids), is a phenolic acid present at high levels in coffee. The aim of the study was to investigate effects of caffeic and chlorogenic acids on the skeletal system of female rats with normal estrogen levels and estrogen-deficient. Caffeic acid (5 and 50 mg/kg p.o. daily) and chlorogenic acid (100 mg/kg p.o. daily) were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized mature Wistar rats, and their effects were compared with appropriate controls. Moreover, estradiol (0.2 mg/kg p.o. daily) was administered to ovariectomized rats. Bone turnover markers, mass, mineralization and mechanical properties were examined. Although caffeic acid at a low dose exerted some unfavorable effects on the skeletal system, at high doses, caffeic and chlorogenic acids slightly increased mineralization in the tibia and improved mechanical properties of the femoral diaphysis (compact bone). Unlike estradiol, they did not counteract the worsening of the tibial metaphysis bone strength (cancellous bone) and increases in osteocalcin concentration induced by estrogen deficiency. High doses of the phenolic acids slightly favorably affected the rat skeletal system independently of the estrogen status.

  8. Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents.

    Science.gov (United States)

    Berger, Claudie; Langsetmo, Lisa; Joseph, Lawrence; Hanley, David A; Davison, K Shawn; Josse, Robert; Kreiger, Nancy; Tenenhouse, Alan; Goltzman, David

    2008-06-17

    Measurement of bone mineral density is the most common method of diagnosing and assessing osteoporosis. We sought to estimate the average rate of change in bone mineral density as a function of age among Canadians aged 25-85, stratified by sex and use of antiresorptive agents. We examined a longitudinal cohort of 9423 participants. We measured the bone mineral density in the lumbar spine, total hip and femoral neck at baseline in 1995-1997, and at 3-year (participants aged 40-60 years only) and 5-year follow-up visits. We used the measurements to compute individual rates of change. Bone loss in all 3 skeletal sites began among women at age 40-44. Bone loss was particularly rapid in the total hip and was greatest among women aged 50-54 who were transitioning from premenopause to postmenopause, with a change from baseline of -6.8% (95% confidence interval [CI] -7.5% to -4.9%) over 5 years. The rate of decline, particularly in the total hip, increased again among women older than 70 years. Bone loss in all 3 skeletal sites began at an earlier age (25-39) among men than among women. The rate of decline of bone density in the total hip was nearly constant among men 35 and older and then increased among men older than 65. Use of antiresorptive agents was associated with attenuated bone loss in both sexes among participants aged 50-79. The period of accelerated loss of bone mineral density in the hip bones occurring among women and men older than 65 may be an important contributor to the increased incidence of hip fracture among patients in that age group. The extent of bone loss that we observed in both sexes indicates that, in the absence of additional risk factors or therapy, repeat testing of bone mineral density to diagnose osteoporosis could be delayed to every 5 years.

  9. Chromium 51 EDTA/technetium 99m MDP plasma ratio to measure total skeletal function

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, A.P.; Edwards, S.; Lazarus, C.R.; Malamitsi, J.; Maisey, M.N.; Mashiter, G.D.; Winn, P.J. (Guy' s Hospital, London (UK))

    1984-08-01

    A method is described for the quantitation of total skeletal activity during bone scans. The method requires a single plasma sample only, taken at the time of imaging. The ratio of % injected dose of /sup 51/Cr EDTA to that of /sup 99/Tcsup(m) MDP is calculated from this sample following combined injection of the two radiopharmaceuticals. The /sup 51/Cr EDTA level corrects for the glomerular filtration of /sup 99/Tcsup(m) MDP. Using this method, which only requires a gamma counter, significant differences from normal controls have been shown in patients with osteomalacia, renal osteodystrophy, Paget's disease and hypercalcaemia. The method provides routine quantitative data to add to the imaging information in the bone scan.

  10. Skeletal Fluorosis Due To Inhalation Abuse of a Difluoroethane-Containing Computer Cleaner.

    Science.gov (United States)

    Tucci, Joseph R; Whitford, Gary M; McAlister, William H; Novack, Deborah V; Mumm, Steven; Keaveny, Tony M; Whyte, Michael P

    2017-01-01

    Skeletal fluorosis (SF) is endemic in many countries and millions of people are affected worldwide, whereas in the United States SF is rare with occasional descriptions of unique cases. We report a 28-year-old American man who was healthy until 2 years earlier when he gradually experienced difficulty walking and an abnormal gait, left hip pain, loss of mobility in his right wrist and forearm, and progressive deformities including enlargement of the digits of both hands. Dual-energy X-ray absorptiometry (DXA) of his lumbar spine, femoral neck, total hip, and the one-third forearm revealed bone mineral density (BMD) Z-scores of +6.2, +4.8, +3.0, and -0.2, respectively. Serum, urine, and bone fluoride levels were all elevated and ultimately explained by chronic sniffing abuse of a computer cleaner containing 1,1-difluoroethane. Our findings reflect SF due to the unusual cause of inhalation abuse of difluoroethane. Because this practice seems widespread, particularly in the young, there may be many more such cases. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  11. Total energy intake according to the level of skeletal muscle mass in Korean adults aged 30 years and older: an analysis of the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008-2011.

    Science.gov (United States)

    Jang, Bo Young; Bu, So Young

    2018-06-01

    Since gain or loss of skeletal muscle mass is a gradual event and occurs due to a combination of lifestyle factors, assessment of dietary factors related to skeletal muscle is complicated. The aim of this study was to investigate the changes in total energy intake according to the level of skeletal muscle mass. A total of 8,165 subjects ≥ 30 years of age from the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008-2011 were included in the analysis, and multivariate-adjusted regression analyses were performed to analyze the association of the quartiles of sarcopenia index (SI) with energy intake of the study population after adjusting for age and metabolic parameters. The increase in SI quartile was in proportion to the gradual decrease in systemic lipids and the anthropometric measurement of fat accumulation ( P energy and energy-producing nutrients than those in lower quartiles ( P energy intake gradually increased according to the increase in SI quartile, and the association between total energy intake and SI was more pronounced in men. However, the risk (odd ratio) of having a low SI was not affected by any single macronutrient intake. In this study, total energy intake was positively associated with SI and relative skeletal mass in both men and women. However, no significant association or a weak association was observed between any single macronutrient intake and skeletal muscle mass. The data indicated that acquiring more energy intake within the normal range of energy consumption may help to maintain skeletal muscle mass.

  12. Skeletal scintigraphic changes in osteoporosis treated with sodium fluoride: concise communication

    International Nuclear Information System (INIS)

    Schulz, E.E.; Libanati, C.R.; Farley, S.M.; Kirk, G.A.; Baylink, D.J.

    1984-01-01

    An appendicular skeletal response to sodium fluoride (NaF) was detected by total skeletal scintigrams. Twelve postmenopausal osteoporotic women were treated with NaF (88 mg/day) and calcium (1500 mg/day). Total skeletal scintigrams were obtained before and during treatment. Within 4 to 21 mo (mean: 8.3), all 12 patients showed new areas of increased uptake corresponding to metaphyseal regions and short bones of the appendicular skeleton. Nine patients showed an increase in serum alkaline phosphatase activity, which was attributed to an increase in the skeletal isoenzyme. Seven of 12 patients developed bone pain in one or more of the regions of increased uptake. This study establishes that the skeletal scintigram is a sensitive index of the peripheral skeletal response to NaF

  13. Skeletal recurrences and metastases of extraskeletal myxoid chondrosarcoma

    International Nuclear Information System (INIS)

    Ehara, Shigeru; Nishida, Jun; Shiraishi, Hideo; Yoshioka, Hiroshi; Okada, Kyoji; Sumiya, Hisashi; Takano, Hideyuki

    2007-01-01

    The objective was to elucidate clinical and imaging features of skeletal involvement, recurrences, and metastases of extraskeletal myxoid chondrosarcoma. Included in this series are 4 patients, aged 44 to 65 years, 3 of whom were men and 1 a woman. The primary lesions were in the thigh (n 3) and the upper arm (n = 1). Three patients with multiple metastases died of the disease, 2 were considered to have local recurrence in the adjacent bone. Skeletal metastases occurred after lung metastases in 2 cases, and before lung metastases in 1 case. Typical imaging findings are well-defined lesions with no sclerotic margin or matrix mineralization. A slow, but persistent growth is noted on the imaging features. Although skeletal metastases of chondrosarcoma of bone and soft tissue are rare, myxoid chondrosarcomas, currently classified tumors of uncertain differentiation, rarely metastasize and/or recur in the bones. The imaging features are typically of a localized lesion with cortical disruption or expansion. (orig.)

  14. Skeletal recurrences and metastases of extraskeletal myxoid chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ehara, Shigeru [Iwate Medical University School of Medicine, Department of Radiology, Morioka (Japan); Nishida, Jun; Shiraishi, Hideo [Iwate Medical University School of Medicine, Department of Orthopedic Surgery, Iwate (Japan); Yoshioka, Hiroshi [University of Tsukuba School of Medicine, Department of Radiology, Tsukuba (Japan); Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Okada, Kyoji [Akita University School of Medicine, Department of Orthopedic Surgery, Akita (Japan); Sumiya, Hisashi [Kanazawa University School of Medicine, Department of Nuclear Medicine, Kanazawa (Japan); Yawata Medical Center, Komatsu (Japan); Takano, Hideyuki [Chiba Cancer Center, Division of Diagnostic Imaging, Chiba (Japan)

    2007-09-15

    The objective was to elucidate clinical and imaging features of skeletal involvement, recurrences, and metastases of extraskeletal myxoid chondrosarcoma. Included in this series are 4 patients, aged 44 to 65 years, 3 of whom were men and 1 a woman. The primary lesions were in the thigh (n = 3) and the upper arm (n = 1). Three patients with multiple metastases died of the disease, 2 were considered to have local recurrence in the adjacent bone. Skeletal metastases occurred after lung metastases in 2 cases, and before lung metastases in 1 case. Typical imaging findings are well-defined lesions with no sclerotic margin or matrix mineralization. A slow, but persistent growth is noted on the imaging features. Although skeletal metastases of chondrosarcoma of bone and soft tissue are rare, myxoid chondrosarcomas, currently classified tumors of uncertain differentiation, rarely metastasize and/or recur in the bones. The imaging features are typically of a localized lesion with cortical disruption or expansion. (orig.)

  15. Skeletal muscle fat content is inversely associated with bone strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Funk, Janet L; Chen, Zhao; Lisse, Jeffrey R; Blew, Robert M; Lee, Vinson R; Laudermilk, Monica; Lohman, Timothy G; Going, Scott B

    2011-09-01

    Childhood obesity is an established risk factor for metabolic disease. The influence of obesity on bone development, however, remains controversial and may depend on the pattern of regional fat deposition. Therefore, we examined the associations of regional fat compartments of the calf and thigh with weight-bearing bone parameters in girls. Data from 444 girls aged 9 to 12 years from the Jump-In: Building Better Bones study were analyzed. Peripheral quantitative computed tomography (pQCT) was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia along with subcutaneous adipose tissue (SAT, mm(2) ) and muscle density (mg/cm(3) ), an index of skeletal muscle fat content. As expected, SAT was positively correlated with total-body fat mass (r = 0.87-0.89, p  .05), except the distal tibia (β = 0.09, p = .03). In conclusion, skeletal muscle fat content of the calf and thigh is inversely associated with weight-bearing bone strength in young girls. Copyright © 2011 American Society for Bone and Mineral Research.

  16. Total body calcium by neutron activation analysis. Reference data for children

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.

    2001-01-01

    There is a paucity of data on the chemical composition of the human body during growth. Total body calcium (TBCa) has been reported for only one male child, aged 41/2 yr. TBCa values for 25 children and 27 young women using in vivo neutron activation analysis have been obtained. TBCa results were lower than those reported for the one male cadaver, as well as the estimates derived for the 'Reference Man' model. It was concluded that the reference values for TBCa may need to be adjusted to appropriately describe skeletal mineralization of contemporary children. (author)

  17. Mineral Composition, Total Phenol Content and Antioxidant Activity of a Macrolichen Everniastrum cirrhatum (Fr. Hale (Parmeliaceae

    Directory of Open Access Journals (Sweden)

    T. R. Prashith Kekuda

    2011-01-01

    Full Text Available In the present study, we investigated for the first time mineral composition, total phenol content and antioxidant activity of a foliose macrolichen Everniastrum cirrhatum (Fr. Hale (Parmeliaceae from Bhadra wildlife sanctuary, Karnataka, India. Mineral content of the lichen was estimated by Atomic absorption spectrophotometer after acid digestion. The secondary metabolites were detected by thin layer chromatography (TLC and phytochemical assays. The lichen material was extracted with methanol in soxhlet apparatus. Total phenol content was estimated by folin ciocalteu method. Antioxidant activity was determined by DPPH, Ferric reducing and metal chelating assays. Among the principal elements, calcium was found in high concentration followed by magnesium, potassium and phosphorus. Among trace elements, iron was detected in high amount followed by zinc, manganese and copper. The DPPH radical scavenging activity was found to be dose dependent with an IC50 of 6.73 μg/mL. In ferric reducing assay, the absorbance increased with the concentration of extract suggesting reducing power. The extract exhibited good metal chelating activity with an IC50 value of 29.28 μg/mL. Total phenol content was 101.2 mg tannic acid equivalents per gram of extract. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins and terpenoids. TLC revealed atranorin, salazinic acid and protolichesterinic acid. The lichen can be consumed as a source of minerals required for the body as appreciable amount of minerals has been detected. The marked antioxidant activity may be attributed to the presence of phenol content in the extract. Further studies on isolation of metabolites and their bioactivities are under investigation.

  18. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    Science.gov (United States)

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Total and regional bone mineral content in healthy Spanish subjects by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Aguado Henche, S.; Rodriguez Torres, R.; Clemente de Arriba, C.; Gomez Pellico, L.

    2008-01-01

    This is an observational cross-sectional study. The aim of the present study was to describe and analyze patterns of change in total and regional bone mineral content in relation to age and gender in a sedentary Spanish sample population (from the Community of Madrid). The age range of the sample population was from birth to 80 years. One thousand one hundred twenty healthy subjects were recruited and divided into 16 groups according to age. Each subject underwent whole-body densitometry using dual-energy X-ray absorptiometry. An analysis was made of the amount of bone mineral content (BMC) in the whole body and in different regions: the head, trunk, upper limbs, and lower limbs. Gender differences in mean values for upper limbs and lower limbs are statistically significant between 16 and 70 years of age. For the head and trunk, the mean BMC values show the most significant gender differences between 16 and 25 years of age (p≤0.001). Total bone mineral content (TBMC) and TBMC-to-height ratio show significant gender differences between 16 and 70 years of age. In females, TBMC values increase up to 20 years of age and in males up to 25 years of age. We have determined an evolutionary normal pattern of bone mineral content in urban Spanish people. (orig.)

  20. Total and regional bone mineral content in healthy Spanish subjects by dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Aguado Henche, S.; Rodriguez Torres, R.; Clemente de Arriba, C.; Gomez Pellico, L. [Universidad de Alcala, Departamento de Anatomia y Embriologia Humana, Facultad de Medicina, Alcala de Henares, Madrid (Spain)

    2008-11-15

    This is an observational cross-sectional study. The aim of the present study was to describe and analyze patterns of change in total and regional bone mineral content in relation to age and gender in a sedentary Spanish sample population (from the Community of Madrid). The age range of the sample population was from birth to 80 years. One thousand one hundred twenty healthy subjects were recruited and divided into 16 groups according to age. Each subject underwent whole-body densitometry using dual-energy X-ray absorptiometry. An analysis was made of the amount of bone mineral content (BMC) in the whole body and in different regions: the head, trunk, upper limbs, and lower limbs. Gender differences in mean values for upper limbs and lower limbs are statistically significant between 16 and 70 years of age. For the head and trunk, the mean BMC values show the most significant gender differences between 16 and 25 years of age (p{<=}0.001). Total bone mineral content (TBMC) and TBMC-to-height ratio show significant gender differences between 16 and 70 years of age. In females, TBMC values increase up to 20 years of age and in males up to 25 years of age. We have determined an evolutionary normal pattern of bone mineral content in urban Spanish people. (orig.)

  1. Mitigating HZE Radiation-Induced Deficits in Marrow-Derived Mesenchymal Progenitor Cells and Skeletal Structure

    Science.gov (United States)

    Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice

    2016-01-01

    Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.

  2. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  3. The Effect of Locomotion on the Mobilization of Minerals from the Maternal Skeleton

    OpenAIRE

    Hood, Wendy R.; Hobensack, Michael

    2015-01-01

    Bone is a dynamic tissue from which minerals are deposited or withdrawn according to the body's demand. During late pregnancy and lactation, female mammals mobilize mineral from bone to support the ossification of offspring skeleton(s). Conversely, in response to mechanical loading, minerals are deposited in bone enabling it to develop a stronger architecture. Despite their central importance to reproductive performance and skeletal integrity, the interactions between these potentially opposi...

  4. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density.

    Science.gov (United States)

    Arentsen, Luke; Hansen, Karen E; Yagi, Masashi; Takahashi, Yutaka; Shanley, Ryan; McArthur, Angela; Bolan, Patrick; Magome, Taiki; Yee, Douglas; Froelich, Jerry; Hui, Susanta K

    2017-07-01

    Temporal and spatial variations in bone marrow adipose tissue (MAT) can be indicative of several pathologies and confound current methods of assessing immediate changes in bone mineral remodeling. We present a novel dual-energy computed tomography (DECT) method to monitor MAT and marrow-corrected volumetric BMD (mcvBMD) throughout the body. Twenty-three cancellous skeletal sites in 20 adult female cadavers aged 40-80 years old were measured using DECT (80 and 140 kVp). vBMD was simultaneous recorded using QCT. MAT was further sampled using MRI. Thirteen lumbar vertebrae were then excised from the MRI-imaged donors and examined by microCT. After MAT correction throughout the skeleton, significant differences (p < 0.05) were found between QCT-derived vBMD and DECT-derived mcvBMD results. McvBMD was highly heterogeneous with a maximum at the posterior skull and minimum in the proximal humerus (574 and 0.7 mg/cc, respectively). BV/TV and BMC have a nearly significant correlation with mcvBMD (r = 0.545, p = 0.057 and r = 0.539, p = 0.061, respectively). MAT assessed by DECT showed a significant correlation with MRI MAT results (r = 0.881, p < 0.0001). Both DECT- and MRI-derived MAT had a significant influence on uncorrected vBMD (r = -0.86 and r = -0.818, p ≤ 0.0001, respectively). Conversely, mcvBMD had no correlation with DECT- or MRI-derived MAT (r = 0.261 and r = 0.067). DECT can be used to assess MAT while simultaneously collecting mcvBMD values at each skeletal site. MAT is heterogeneous throughout the skeleton, highly variable, and should be accounted for in longitudinal mcvBMD studies. McvBMD accurately reflects the calcified tissue in cancellous bone.

  5. Radiometrical, hormonal and biological correlates of skeletal growth in the female rat from birth to senescence.

    Science.gov (United States)

    del Pozo, Emilio; Janner, Marco; Mackenzie, Andrew R; Arampatzis, Spyridon; Dixon, Arnold K; Perrelet, Romain; Ruch, Walter; Lippuner, Kurt; Zapf, Juergen; Lamberts, Steven W; Mullis, Primus E

    2014-01-01

    We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain. Copyright © 2014. Published by Elsevier Ltd.

  6. Progressive skeletal benefits of physical activity when young as assessed at the midshaft humerus in male baseball players.

    Science.gov (United States)

    Warden, S J; Weatherholt, A M; Gudeman, A S; Mitchell, D C; Thompson, W R; Fuchs, R K

    2017-07-01

    Physical activity benefits the skeleton, but there is contrasting evidence regarding whether benefits differ at different stages of growth. The current study demonstrates that physical activity should be encouraged at the earliest age possible and be continued into early adulthood to gain most skeletal benefits. The current study explored physical activity-induced bone adaptation at different stages of somatic maturity by comparing side-to-side differences in midshaft humerus properties between male throwing athletes and controls. Throwers present an internally controlled model, while inclusion of control subjects removes normal arm dominance influences. Throwing athletes (n = 90) and controls (n = 51) were categorized into maturity groups (pre, peri, post-early, post-mid, and post-late) based on estimated years from peak height velocity (10 years). Side-to-side percent differences in midshaft humerus cortical volumetric bone mineral density (Ct.vBMD) and bone mineral content (Ct.BMC); total (Tt.Ar), medullary (Me.Ar), and cortical (Ct.Ar) areas; average cortical thickness (Ct.Th); and polar Strength Strain Index (SSI P ) were assessed. Significant interactions between physical activity and maturity on side-to-side differences in Ct.BMC, Tt.Ar, Ct.Ar, Me.Ar, Ct.Th, and SSI P resulted from the following: (1) greater throwing-to-nonthrowing arm differences than dominant-to-nondominant arm differences in controls (all p benefits beginning prior to and continuing beyond somatic maturation and that a longer duration of exposure to physical activity has cumulative skeletal benefits. Thus, physical activity should be encouraged at the earliest age possible and be continued into early adulthood to optimize skeletal benefits.

  7. Proximate, mineral composition, antioxidant activity, and total ...

    African Journals Online (AJOL)

    ... of protein supplement, valuable minerals and dietary antioxidants. They can serve as scavengers of free radicals reported to be associated with occurrence of chronic and degenerative diseases such as cardiovascular diseases. Keywords: Peppers, phytochemicals, Nutritional composition, Free radicals, Diseases ...

  8. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  9. Bone mineral measurements and the pathogenesis of osteoporosis

    International Nuclear Information System (INIS)

    Aloia, J.F.; Vaswani, A.N.; Ellis, K.J.; Cohn, S.H.

    1986-01-01

    Low bone mass (osteopenia) is a major factor in the development of osteoporotic fractures in women after the menopause. The pathogenesis of postmenopausal osteoporosis has been pursued by dual lines of investigation: (1) development of a model to describe involutional bone loss, (2) identification of those factors which result in some healthy women having a greater risk for osteoporosis than others. Bone mineral measurements have been made using in vivo neutron activation analysis and whole body counting for the measurement of total body calcium (TBCa), single photon absorptiometry for the measurement of bone mineral content of the distal radius and dual photon absorptiometry for measurement of the bone density of the spine. TBCa is higher in men than women and is lost at a slow linear rate in men. Blacks have a skeletal mass about 8-9% higher than Caucasians. Women have a similar loss of TBCa to men prior to menopause, but then have an accelerated rate of loss after menopause. The change in bone density of the radius and spine with increasing age is also best described by a 2 phase regression in women, with appreciable loss after age 50

  10. Favorable effect of moderate dose caffeine on the skeletal system in ovariectomized rats.

    Science.gov (United States)

    Folwarczna, Joanna; Pytlik, Maria; Zych, Maria; Cegieła, Urszula; Kaczmarczyk-Sedlak, Ilona; Nowińska, Barbara; Sliwiński, Leszek

    2013-10-01

    Caffeine, a methylxanthine present in coffee, has been postulated to be responsible for an increased risk of osteoporosis in coffee drinkers; however, the data are inconsistent. The aim of the present study was to investigate the effects of a moderate dose of caffeine on the skeletal system of rats with normal and decreased estrogen level (developing osteoporosis due to estrogen deficiency). The experiments were carried out on mature nonovariectomized and ovariectomized Wistar rats, divided into control rats and rats receiving caffeine once daily, 20 mg/kg p.o., for 4 wk. Serum bone turnover markers, bone mass, mass of bone mineral, calcium and phosphorus content, histomorphometric parameters, and bone mechanical properties were examined. Caffeine favorably affected the skeletal system of ovariectomized rats, slightly inhibiting the development of bone changes induced by estrogen deficiency (increasing bone mineralization, and improving the strength and structure of cancellous bone). Moreover, it favorably affected mechanical properties of compact bone. There were no significant effects of caffeine in rats with normal estrogen levels. In conclusion, results of the present study indicate that low-to-moderate caffeine intake may exert some beneficial effects on the skeletal system of mature organisms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Skeleton Is a Storehouse of Mineral That Is Plundered During Lactation and (Fully?) Replenished Afterwards.

    Science.gov (United States)

    Kovacs, Christopher S

    2017-04-01

    During lactation, mammals resorb mineral from the maternal skeleton to provide calcium to milk. Rodents lose 25% to 35% of skeletal ash weight, ash calcium content, and bone mineral content as measured by dual-energy X-ray absorptiometry (DXA), and have compromised material properties of bone as assessed by crushing vertebrae and 3-point bend tests of femora or tibias. The strength, stiffness, and toughness of vertebrae, femora, and tibias are reduced by as much as 60%. The effects of lactation are not uniform throughout the skeleton, but instead resorption is much more marked in the trabecular-rich spine than in the appendicular skeleton or whole body. Women who breastfeed exclusively lose an average of 210 mg calcium in milk each day, whereas nursing of twins or triplets can double and triple the output of calcium. Clinical data are also consistent with skeletal calcium being released during lactation to provide much of the calcium needed for milk production. Lumbar spine bone mineral density (BMD), as assessed by DXA, declines by a mean of 5% to 10% among numerous studies during 3 to 6 months of exclusive lactation, whereas largely cortical sites (hip, forearm, whole body) show half that loss or no significant changes. Micro-CT of rodents and high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging of women confirm that lactation causes microarchitectural deterioration of bone. These skeletal losses occur through two pathways: upregulated osteoclast-mediated bone resorption and osteocytic osteolysis, in which osteocytes remove mineral from their lacunae and pericanalicular spaces. After weaning, the skeleton is fully restored to its prior mineral content and strength in both animal models and humans, despite persistent microarchitectural changes observed in high-resolution imaging. Osteoblasts upregulate to lay down new osteoid, while osteocytes remineralize their surroundings. The factors that stimulate this post-weaning skeletal recovery

  12. Adaptation of the Skeletal System during Long-duration Spaceflight

    Science.gov (United States)

    Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence

    2008-01-01

    This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that

  13. Periacetabular Bone Mineral Density Changes After Resurfacing Hip Arthroplasty Versus Conventional Total Hip Arthroplasty. A Randomized Controlled DEXA Study

    NARCIS (Netherlands)

    Smolders, J.M.H.; Pakvis, D.F.; Hendrickx, B.W.; Verdonschot, Nicolaas Jacobus Joseph; van Susante, J.L.C.

    2013-01-01

    A randomized controlled trial was performed to evaluate acetabular bone mineral density (BMD) changes after hip resurfacing (RHA) versus an established conventional total hip arthroplasty (THA). A total of 71 patients were allocated randomly to receive either an RHA press-fit cobalt–chromium cup (n

  14. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  15. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    Science.gov (United States)

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of some simulated factors of cosmic flight on mineral and protein metabolism in the maxillodental system of rats

    International Nuclear Information System (INIS)

    Khristova, M.N.

    1985-01-01

    Mineral and protein metabolic changes in hard tissues of the maxillodental system, as opposed to skeletal bone, were studied in model experiments simulating space flight, with extreme factors given solely or combined: hypergravitation, ionizing radiation, magnetically activated water. Alterations occurring in protein synthesis proved to be the key events, whereas those in individual mineral components were either insignificant or of secondary nature. Long-term ingestion of magnetically activated water reduced radiation susceptibility of metabolic processes in mineralized tissues, but affected unfavorably the complex of signs resulting from combined exposure to extreme factors. Administration of a radioprotective drug, Adeturone, in treatments involving acceleration plus radiation led to normalization or partial balancing of metabolic processes in the mineral and organic components of maxillodental hard tissues and skeletal bone. The evidence obtained adds thus an anti-osteolathyrogenic feature to the radioprotective characteristics of Adeturone

  17. Skeletal muscle contraction-induced vasodilation in the microcirculation.

    Science.gov (United States)

    Hong, Kwang-Seok; Kim, Kijeong

    2017-10-01

    Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.

  18. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  19. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  20. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    Science.gov (United States)

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone

  1. Lower Serum Creatinine Is Associated with Low Bone Mineral Density in Subjects without Overt Nephropathy

    Science.gov (United States)

    Huh, Ji Hye; Choi, Soo In; Lim, Jung Soo; Chung, Choon Hee; Shin, Jang Yel; Lee, Mi Young

    2015-01-01

    Background Low skeletal muscle mass is associated with deterioration of bone mineral density. Because serum creatinine can serve as a marker of muscle mass, we evaluated the relationship between serum creatinine and bone mineral density in an older population with normal renal function. Methods Data from a total of 8,648 participants (4,573 men and 4,075 postmenopausal women) aged 45–95 years with an estimated glomerular filtration rate >60 ml/min/1.73 m2 were analyzed from the Fourth Korea National Health and Nutrition Examination Survey (2008–2010). Bone mineral density (BMD) and appendicular muscle mass (ASM) were measured using dual-energy X-ray absorptiometry. Receiver operating characteristic curve analysis revealed that the cut points of serum creatinine for sarcopenia were below 0.88 mg/dl in men and 0.75 mg/dl in women. Subjects were divided into two groups: low creatinine and upper normal creatinine according to the cut point value of serum creatinine for sarcopenia. Results In partial correlation analysis adjusted for age, serum creatinine was positively associated with both BMD and ASM. Subjects with low serum creatinine were at a higher risk for low BMD (T-score ≤ –1.0) at the femur neck, total hip and lumbar spine in men, and at the total hip and lumbar spine in women after adjustment for confounding factors. Each standard deviation increase in serum creatinine was significantly associated with reduction in the likelihood of low BMD at the total hip and lumbar spine in both sexes (men: odds ratio (OR) = 0.84 [95% CI = 0.74−0.96] at the total hip, OR = 0.8 [95% CI = 0.68−0.96] at the lumbar spine; women: OR = 0.83 [95% CI = 0.73–0.95] at the total hip, OR=0.81 [95% CI = 0.67–0.99] at the lumbar spine). Conclusions Serum creatinine reflected muscle mass, and low serum creatinine was independently associated with low bone mineral density in subjects with normal kidney function. PMID:26207750

  2. Age, gender, and race/ethnic differences in total body and subregional bone density.

    Science.gov (United States)

    Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J

    2009-07-01

    Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.

  3. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    International Nuclear Information System (INIS)

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-01-01

    After injection of 10 6 Walker 256 carcinoma cells labelled with 125 I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10 6 Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle

  4. A three-dimensional analysis of skeletal and dental characteristics in skeletal class III patients with facial asymmetry.

    Science.gov (United States)

    Yu, Jinfeng; Hu, Yun; Huang, Mingna; Chen, Jun; Ding, Xiaoqian; Zheng, Leilei

    2018-03-15

    To evaluate the skeletal and dental characteristics in skeletal class III patients with facial asymmetry and to analyse the relationships among various parts of the stomatognathic system to provide a theoretical basis for clinical practice. Asymmetric cone-beam computed tomography data acquired from 56 patients were evaluated using Mimics 10.0 and 3-Matic software. Skeletal and dental measurements were performed to assess the three-dimensional differences between two sides. Pearson correlation analysis was used to determine the correlations among measurements. Linear measurements, such as ramal height, mandible body length, ramal height above the sigmoid notch (RHASN), maxillary height, condylar height, buccal and total cancellous bone thickness, and measurements of condylar size, were significantly larger on the nondeviated side than on the deviated side (P orthodontic camouflage has limitations and potential risks. A combination of orthodontics and orthognathic surgery may be the advisable choice in patients with a menton deviation greater than 4 mm. An important association between vertical skeletal disharmony and dental compensation was also observed.

  5. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics.

    Science.gov (United States)

    Bouleftour, Wafa; Juignet, Laura; Bouet, Guenaelle; Granito, Renata Neves; Vanden-Bossche, Arnaud; Laroche, Norbert; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2016-01-01

    Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. Peripheral bone mineral density and different intensities of physical activity in children 6-8 years old: the Copenhagen School Child Intervention study

    DEFF Research Database (Denmark)

    Hasselstrøm, H; Karlsson, K M; Hansen, S E

    2007-01-01

    -stimulating physical activity, we evaluated different definitions of vigorous physical activity. The boys had 3.2% higher distal forearm bone mineral content (BMC, P girls. They also carried out 9.7% more daily physical activity and spent 14.6-19.0% more...... time in vigorous physical activity (all P girls. In contrast, the girls had 3.8% higher calcaneal BMC (P boys. Both calcaneal and forearm BMD were significantly related to total time of daily physical activity as well......This study aimed to evaluate the association between objectively measured habitual physical activity and calcaneal and forearm bone mineral density (BMD, g/cm(2)), one mechanically more loaded and one less loaded skeletal region, in children aged 6-8 years. BMD was measured in 297 boys and 265...

  7. Generalized skeletal pathology: Results of radionuclide studies

    International Nuclear Information System (INIS)

    Fueger, G.F.; Aigner, R.

    1987-01-01

    Generalized pathological changes may involve the skeleton systematically (bone tissue, bone marrow) or at multiple sites involving destruction or infiltration. Appropriate radionuclide studies include total-body bone or bone marrow scintigraphy, absorptiometry (osteodensitometry) and the 24 h whole-body retention measurement. Established radioindicators are 99m-Tc-(hydroxy)methylendiphosphonate (HMDP or MDP) and 99m-Tc-human serumalbumin-nanocolloid. Absorptiometry of the forearm, extended by computer-assisted transaxial tomography, may be expected to prove as the most efficient method of bone density measurement. The 24 h whole-body retention measurement is useful for the diagnosis and follow-up of metabolic and endocrine osteopathies, if the very same osteotropic 99m-Tc-chelate is used. Whole-body bone scintigraphy today is one of the most important radionuclide studies for diagnosis and follow-up of skeletal metastases. Scintigraphy provides evidence of skeletal metastases several months earlier than radiological examinations. In about 40 percent of patients with cancer of the prostate, scintigraphy provided positive findings of skeletal metastases in the absence of both pain and increased levels of phosphatase. In patients with a history of malignancy, 60 percent of solitary findings on skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy ranges from 2 to 4%. Compared to skeletal scintigraphy, bone marrow scintigraphy frequently yields significant additional findings in cases of plasmocytoma, histiocytoma, lymphoma and haemoblastoses. (orig.) [de

  8. Space medicine considerations: Skeletal and calcium homeostasis

    Science.gov (United States)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  9. Determinants of relative skeletal maturity in South African children.

    Science.gov (United States)

    Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël

    2012-01-01

    The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (pdetermining the rate of skeletal maturation during childhood independently of current stature. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The total body mass of fatty acid ethyl esters in skeletal muscles following ethanol exposure greatly exceeds that found in the liver and the heart.

    Science.gov (United States)

    Salem, Raneem O; Laposata, Michael; Rajendram, Rajkumar; Cluette-Brown, Joanne E; Preedy, Victor R

    2006-01-01

    Skeletal muscle appears to be susceptible to chronic and acute excess alcohol intake, giving rise to alcoholic myopathy, a common disease among alcoholics. Fatty acid ethyl esters (FAEE), non-oxidative metabolites of ethanol, have been shown to be toxic to cells in vitro and in vivo. We hypothesized that accumulation of FAEE in skeletal muscle could contribute to the development of alcoholic myopathy. Male wistar rats were treated either with 75 mmol ethanol/kg body weight or saline, in the fed state or starved for 1 or 2 days before administration. Rats were thus divided into the following groups: fed-saline (n = 8); fed-ethanol (n = 8); starved 1 day, saline (n = 8); starved 1 day, ethanol (n = 9); starved 2 days, saline (n = 7); and starved 2 days, ethanol (n = 8). At the end of the incubation, skeletal muscles (abdominal and gastrocnemius), liver, and heart were isolated and processed for FAEE isolation and analysis by gas chromatography-mass spectrometry (GC-MS). Total mass of FAEE in the muscles was much greater than that found in the liver and the heart. In general, the animals that were fasted for 1 day and received ethanol had the highest FAEE levels among the three groups of animals. The major ethyl ester species in all cases were ethyl 16:0, ethyl 18:0, ethyl 18:1 n-9, and ethyl 18:2 n-6. Ethyl 20:4 n-6 and ethyl 22:6 n-3 were also present, except in the fasted 1-day group, where ethyl 22:6 disappeared, though it reappeared in the fasted 2-day group. These findings demonstrate that skeletal muscles contain high levels of FAEE that are synthesized in the body after ethanol exposure. The concentration of FAEE in skeletal muscle in this study was very similar to FAEE concentration in the liver. This differs from previous studies suggesting a low concentration of skeletal muscle FAEE with ethanol exposure.

  11. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle......PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...

  12. Skeletal and reticuloendothelial imaging in osteopetrosis: case report

    International Nuclear Information System (INIS)

    Park, H.M.; Lambertus, J.

    1977-01-01

    Skeletal and reticuloendothelial images, using Tc-99m HEDP and Tc-99m sulfur colloid, respectively, were obtained from two adult patients with osteopetrosis. Skeletal images demonstrated increased activity in multiple fracture sites, in mandibular osteomyelitis, in ends of splayed long bones adjacent to joints, and in the epiphyseal ends of short tubular bones. The remainder of the skeleton involved with osteopetrosis showed no generalized increased uptake of Tc-99m HEDP. These findings indicate that metabolic activity in this disease is abnormally increased in the usual areas of bone growth but appears normal elsewhere. Reticuloendothelial imaging showed an almost total lack of activity in the axial and peripheral skeletal marrow space. Anemia, however, was only moderate in these patients. Skeletal scintigraphy may be useful to evaluate the presence and extent of the frequent complications of osteopetrosis, namely fractures and osteomyelitis

  13. Total antioxidant capacity, total phenolic content and mineral elements in the fruit peel of Myrciaria cauliflora

    Directory of Open Access Journals (Sweden)

    Clináscia Rodrigues Rocha Araújo

    2013-12-01

    Full Text Available The in vitro antioxidant capacity, total phenolic content and mineral elements of the fruit peel of Myrciaria cauliflora were investigated. The antioxidant capacity was analyzed by the diphenylpicrylhydrazyl (DPPH, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS, ferric reducing antioxidant power (FRAP and β-carotene methods. The assays based on the DPPH (EC50 = 3.18 g sample/g DPPH, ABTS•+ (1017 μmol Trolox/g sample, FRAP (1676 µM Fe2SO4/g sample and β-carotene/linoleic acid (70% of oxidation inhibition methods indicated a high antioxidant capacity of the fruit peel extract of the plant. The Folin-Denis method was more efficient in determining the total phenolic compound contents in the different solvents than the Folin-Ciocalteu one. Extractions made with 4:1 methanol-water, 4:1 ethanol-water, 3:2 ethanol-water and 3:2 acetone-water solutions using the Folin-Denis method exhibited high contents of phenolic compounds (18.95, 14.06, 12.93 and 11.99 mg GAE/g, respectively. Potassium was the major element found in the fruit peel, followed by phosphorus, calcium, magnesium and iron, in that order. As a result, the fruit peel of M. cauliflora can be considered as an important source of natural antioxidants and essential elements of easy access for the population and for application in the food industry.

  14. Quantitative skeletal scintiscanning

    International Nuclear Information System (INIS)

    Haushofer, R.

    1982-01-01

    330 patients were examined by skeletal scintiscanning with sup(99m)Tc pyrophosphate and sup(99m)methylene diphosphonate in the years between 1977 and 1979. Course control examinations were carried out in 12 patients. The collective of patients presented with primary skeletal tumours, metastases, inflammatory and degenerative skeletal diseases. Bone scintiscanning combined with the ''region of interest'' technique was found to be an objective and reproducible technique for quantitative measurement of skeletal radioactivity concentrations. The validity of nuclear skeletal examinations can thus be enhanced as far as diagnosis, course control, and differential diagnosis are concerned. Quantitative skeletal scintiscanning by means of the ''region of interest'' technique has opened up a new era in skeletal diagnosis by nuclear methods. (orig./MG) [de

  15. Colostrum supplementation protects against exercise - induced oxidative stress in skeletal muscle in mice

    Directory of Open Access Journals (Sweden)

    Appukutty Mahenderan

    2012-11-01

    Full Text Available Abstract Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum and each group had three subgroups (day 0, 21 and 42. Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise.

  16. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    Science.gov (United States)

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  17. The radioactivity of bottled mineral waters

    International Nuclear Information System (INIS)

    Vrakova, M.; Babarikova, F.; Belanova, A.

    2005-01-01

    Mineral waters with increased contents of minerals (total mineralization ranging from 1000 to 4000 mg.dm -3 ) can also contain increased concentrations of natural radionuclides. For this reason it is necessary to monitor radioactivity of mineral and thermal springs. Hundreds of springs which are used for drinking purposes are spread in many regions all over Slovakia. In our laboratory we determined these radionuclides in mineral waters: total alpha, total beta, volume activity 222 Rn, concentration of U nat , volume 226 Ra, 228 Ra and 210 Po. From values of determined volume activities of radionuclides we calculated total effective dose from reception mineral waters. By calculation of effective dose we supposed consumption of mineral water 150 dm 3 .year -1 (0.4 dm 3 .day -1 ) for adults (according to UNSCEAR). Conversion factors are initiated in the regulation of Ministry of Health of Slovak Republic (MZ SR No.12/2001). (authors)

  18. Meniscus transplantation in skeletally immature patients.

    Science.gov (United States)

    Kocher, Mininder S; Tepolt, Frances A; Vavken, Patrick

    2016-07-01

    Meniscal pathology in skeletally immature patients includes meniscal tears and discoid lateral meniscus. Total or subtotal meniscectomy may occur in patients with discoid lateral meniscus or severe meniscal tears. Meniscal transplantation may be an option in skeletally immature patients status after total or subtotal meniscectomy with knee symptoms or dysfunction. This study focuses on the surgical technique and short-term outcomes of meniscus transplantation in skeletally immature patients. We reviewed our clinical database for skeletally immature patients who had undergone meniscus transplantation with a minimum of 2 years of follow-up. Patients were contacted, invited for a physical exam, and asked to complete a Pedi-IKDC, Lysholm, and Tegner outcomes questionnaire. The study protocol was approved by the responsible institutional review board. Three patients (two females/one male) were eligible for the study, each of whom responded to our invitation indicating availability for physical exam and questionnaire. Two patients had undergone subtotal discoid meniscus resection, leading to early lateral compartment degeneration. One patient developed advanced degeneration after a delay in treatment for a medial bucket-handle tear associated with anterior cruciate ligament rupture. The mean age of the patients at the time of surgery was 12.6±2.3 years. At a mean follow-up of 31±20 months, the mean Pedi-IKDC score was 68.3±4, the mean Lysholm was 55.7±22.3, and the median Tegner was 7 points. There were no indications of growth deformity during the regular postoperative radiological assessments. One patient required subsequent lysis of adhesions along the lateral mini arthrotomy and mobilization under anesthesia. The other two patients were able to return to sports at the same level as before meniscus transplantation and were able to do so within 9 months postoperatively. Over-resection of discoid menisci as well as untreated meniscus injury, the latter typically in

  19. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype.

    Science.gov (United States)

    Shekaran, Asha; Shoemaker, James T; Kavanaugh, Taylor E; Lin, Angela S; LaPlaca, Michelle C; Fan, Yuhong; Guldberg, Robert E; García, Andrés J

    2014-11-01

    Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and osteocalcin-Cre lines to generate conditional β1 integrin deletions, where Cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte

  20. Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization.

    Science.gov (United States)

    Liu, Pingsheng; Song, Jie

    2013-03-01

    Both positively and negatively charged residues play pivotal roles in recruiting precursor ions or ion clusters, and lowering interfacial energy in natural biomineralization process. Synergistic utilization of opposite charges, however, has rarely been implemented in the design of cytocompatible synthetic scaffolds promoting hydroxyapatite (HA)-mineralization and osteointegration. We report the use of cytocompatible zwitterionic sulfobetaine ligands to enable 3-dimensional in vitro mineralization of HA across covalently crosslinked hydrogels. The overall charge-neutral zwitterionic hydrogel effectively recruited oppositely charged precursor ions while overcame excessive swelling exhibited by anionic and cationic hydrogels under physiological conditions, resulting in denser and structurally well-integrated mineralized composites. Further controls over the size, content, and spatial distribution of the mineral domains within the zwitterionic hydrogel are accomplished by facile adjustments of hydrogel crosslinking densities and the supersaturation rate governing heterogeneous mineral nucleation and growth. These findings should inspire many creative uses of zwitterionic polymers and polymer coatings for skeletal tissue repair and regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery.

    Science.gov (United States)

    Kovacs, Christopher S

    2016-04-01

    During pregnancy and lactation, female physiology adapts to meet the added nutritional demands of fetuses and neonates. An average full-term fetus contains ∼30 g calcium, 20 g phosphorus, and 0.8 g magnesium. About 80% of mineral is accreted during the third trimester; calcium transfers at 300-350 mg/day during the final 6 wk. The neonate requires 200 mg calcium daily from milk during the first 6 mo, and 120 mg calcium from milk during the second 6 mo (additional calcium comes from solid foods). Calcium transfers can be more than double and triple these values, respectively, in women who nurse twins and triplets. About 25% of dietary calcium is normally absorbed in healthy adults. Average maternal calcium intakes in American and Canadian women are insufficient to meet the fetal and neonatal calcium requirements if normal efficiency of intestinal calcium absorption is relied upon. However, several adaptations are invoked to meet the fetal and neonatal demands for mineral without requiring increased intakes by the mother. During pregnancy the efficiency of intestinal calcium absorption doubles, whereas during lactation the maternal skeleton is resorbed to provide calcium for milk. This review addresses our current knowledge regarding maternal adaptations in mineral and skeletal homeostasis that occur during pregnancy, lactation, and post-weaning recovery. Also considered are the impacts that these adaptations have on biochemical and hormonal parameters of mineral homeostasis, the consequences for long-term skeletal health, and the presentation and management of disorders of mineral and bone metabolism.

  2. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  3. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p anabolic actions of GH.

  4. Development and external validation of nomograms to predict the risk of skeletal metastasis at the time of diagnosis and skeletal metastasis-free survival in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong

    2017-09-06

    The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P system (P skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.

  5. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  6. Effects of Trigonelline, an Alkaloid Present in Coffee, on Diabetes-Induced Disorders in the Rat Skeletal System.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Cegieła, Urszula; Śliwiński, Leszek; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2016-03-02

    Diabetes increases bone fracture risk. Trigonelline, an alkaloid with potential antidiabetic activity, is present in considerable amounts in coffee. The aim of the study was to investigate the effects of trigonelline on experimental diabetes-induced disorders in the rat skeletal system. Effects of trigonelline (50 mg/kg p.o. daily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of trigonelline administration, received streptozotocin (60 mg/kg i.p.) or streptozotocin after nicotinamide (230 mg/kg i.p.). Serum bone turnover markers, bone mineralization, and mechanical properties were studied. Streptozotocin induced diabetes, with significant worsening of bone mineralization and bone mechanical properties. Streptozotocin after nicotinamide induced slight glycemia increases in first days of experiment only, however worsening of cancellous bone mechanical properties and decreased vertebral bone mineral density (BMD) were demonstrated. Trigonelline decreased bone mineralization and tended to worsen bone mechanical properties in streptozotocin-induced diabetic rats. In nicotinamide/streptozotocin-treated rats, trigonelline significantly increased BMD and tended to improve cancellous bone strength. Trigonelline differentially affected the skeletal system of rats with streptozotocin-induced metabolic disorders, intensifying the osteoporotic changes in streptozotocin-treated rats and favorably affecting bones in the non-hyperglycemic (nicotinamide/streptozotocin-treated) rats. The results indicate that, in certain conditions, trigonelline may damage bone.

  7. Measurement of bone mineral using multiple-energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Our laboratory has previously reported a method of determining the amount of bone mineral using triple-energy absorptiometry with a continuous x-ray spectrum. In the present study, the experimental properties of the technique were examined. The accuracy, the influence of fat content and body thickness and the in vitro and in vivo precision were analysed. The results found in this investigation showed that despite the complexity of the technique, the amount of bone mineral can be accurately determined. The in vivo precision was determined to be 3.4%, expressed as the coefficient of variation (CV), for different skeletal parts. The in vitro precision was found to be 2.1% (CV). Neither the fat content nor the body thickness had any effect on the measured bone mineral values. Excellent linearity and a close correlation were found between the true and the measured bone mineral values. (author)

  8. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    Science.gov (United States)

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  9. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma

    International Nuclear Information System (INIS)

    Boutry, Nathalie; Dutouquet, Bastien; Cotten, Anne; Leleu, Xavier; Vieillard, Marie-Helene; Duhamel, Alain

    2013-01-01

    To evaluate the low-dose biplanar (LDB) skeletal survey (SS) for the assessment of focal bone involvement in patients with multiple myeloma (MM) as compared with digital SS and to compare the two techniques in terms of image quality, patient comfort and radiation exposure. Fifty-six consecutive patients with newly diagnosed or first relapsed MM underwent LDB and digital SS on the same day. These were assessed by two radiologists for the detection of focal bone lesions. In the case of discordance, whole-body MR imaging was performed. Image quality, patient comfort and radiation dose were also assessed. Fifty-six patients (M:30, F:26, mean age, 62 years) with newly diagnosed (n = 21) or first relapse MM (n = 35) were enrolled. A total of 473 bone lesions in 46 patients (82 %) were detected. Out of that total, digital SS detected significantly more lesions than LDB SS (451 [95.35 %] versus 467 [98.73 %]), especially in osteopenic and obese patients. Overall patient satisfaction was greater with LDB SS (48.6 %) compared with digital SS (2.7 %). The radiation dose was significantly reduced (by a factor of 7.8) with the LDB X-ray device. Low-dose biplanar skeletal surveys cannot replace digital SS in all patients suffering from multiple myeloma. (orig.)

  10. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, Nathalie [University Hospital of Jeanne de Flandre and University of Lille 2, Departments of Pediatric and Musculoskeletal Imaging, Lille (France); University Hospital of Jeanne de Flandre and University of Lille 2, Department of Pediatric Imaging, Lille (France); Hopital Jeanne de Flandre, Service de Radiopediatrie, Lille (France); Dutouquet, Bastien; Cotten, Anne [University Hospital of Roger Salengro and University of Lille 2, Department of Musculoskeletal Imaging, Lille (France); Leleu, Xavier [University Hospital of Claude Huriez and University of Lille 2, Clinical Hematology Department, Lille (France); Vieillard, Marie-Helene [University Hospital of Roger Salengro and University of Lille 2, Rheumatology Department, Lille (France); Duhamel, Alain [University of Lille 2, Department of Medical Statistics, Lille (France)

    2013-08-15

    To evaluate the low-dose biplanar (LDB) skeletal survey (SS) for the assessment of focal bone involvement in patients with multiple myeloma (MM) as compared with digital SS and to compare the two techniques in terms of image quality, patient comfort and radiation exposure. Fifty-six consecutive patients with newly diagnosed or first relapsed MM underwent LDB and digital SS on the same day. These were assessed by two radiologists for the detection of focal bone lesions. In the case of discordance, whole-body MR imaging was performed. Image quality, patient comfort and radiation dose were also assessed. Fifty-six patients (M:30, F:26, mean age, 62 years) with newly diagnosed (n = 21) or first relapse MM (n = 35) were enrolled. A total of 473 bone lesions in 46 patients (82 %) were detected. Out of that total, digital SS detected significantly more lesions than LDB SS (451 [95.35 %] versus 467 [98.73 %]), especially in osteopenic and obese patients. Overall patient satisfaction was greater with LDB SS (48.6 %) compared with digital SS (2.7 %). The radiation dose was significantly reduced (by a factor of 7.8) with the LDB X-ray device. Low-dose biplanar skeletal surveys cannot replace digital SS in all patients suffering from multiple myeloma. (orig.)

  11. Activation of the skeletal alpha-actin promoter during muscle regeneration.

    Science.gov (United States)

    Marsh, D R; Carson, J A; Stewart, L N; Booth, F W

    1998-11-01

    Little is known concerning promoter regulation of genes in regenerating skeletal muscles. In young rats, recovery of muscle mass and protein content is complete within 21 days. During the initial 5-10 days of regeneration, mRNA abundance for IGF-I, myogenin and MyoD have been shown to be dramatically increased. The skeletal alpha-actin promoter contains E box and serum response element (SRE) regulatory regions which are directly or indirectly activated by myogenin (or MyoD) and IGF-I proteins, respectively. We hypothesized that the skeletal alpha-actin promoter activity would increase during muscle regeneration, and that this induction would occur before muscle protein content returned to normal. Total protein content and the percentage content of skeletal alpha-actin protein was diminished at 4 and 8 days and re-accumulation had largely occurred by 16 days post-bupivacaine injection. Skeletal alpha-actin mRNA per whole muscle was decreased at day 8, and thereafter returned to control values. During regeneration at day 8, luciferase activity (a reporter of promoter activity) directed by -424 skeletal alpha-actin and -99 skeletal alpha-actin promoter constructs was increased by 700% and 250% respectively; however, at day 16, skeletal alpha-actin promoter activities were similar to control values. Thus, initial activation of the skeletal alpha-actin promoter is associated with regeneration of skeletal muscle, despite not being sustained during the later stages of regrowth. The proximal SRE of the skeletal alpha-actin promoter was not sufficient to confer a regeneration-induced promoter activation, despite increased serum response factor protein binding to this regulatory element in electrophoretic mobility shift assays. Skeletal alpha-actin promoter induction during regeneration is due to a combination of regulatory elements, at least including the SRE and E box.

  12. A physiological skeletal model for radionuclide and stable element biokinetics in children and adults

    International Nuclear Information System (INIS)

    Richardson, R.B.

    2010-01-01

    A physiological skeletal model (PSM) is described that represents the skeletal uptake, retention and clearance of both bone-surface-seeking and bone-volume-seeking radionuclides and stable elements. A key objective of the PSM is to model the higher skeletal growth and bone turnover in infants and children (compared to adults) in order to to account for their greater uptake and cancer risk from bone-seeking contaminants such as lead and plutonium. The PSM is a compartmental model that allows for the incorporation of organic and inorganic material in the bone volume via quiescent bone surfaces, forming bone surfaces and the lacuno-canaliculi system. The model uniquely incorporates a tertiary phase of mineralization via bone fluids. The PSM's structural concepts and biokinetic parameters - such as realistic mass transfers, organ and tissue masses, and bone remodelling half times - are selected mainly on the basis of physiological and anatomical criteria. For brevity, model parameter values or evaluated for adults only. The PSM is an improvement on existing skeletal models that are based more on compartment structures and pathways that rendered good fits to biokinetic data rather than on being anatomically and physiologically accurate. (author)

  13. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  14. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available Aim. To determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes. Materials and Methods. The study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry. Results. Women with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p

  15. Skeletal coccidioidomycosis: imaging findings in 19 patients

    International Nuclear Information System (INIS)

    Zeppa, M.A.; Greenspan, A.; McGahan, J.P.; Laorr, A.; Steinbach, L.S.

    1996-01-01

    The objective of this study was to describe the distribution and radiologic appearance of skeletal coccidioidomycosis in 19 documented cases. Medical records of 19 patients with clinically confirmed skeletal occidioidomycosis were retrospectively reviewed. The patients were studied with plain radiography, skeletal scintigraphy and MRI. Multiple lesions were seen in 11 of 19 patients (58%). Of a total of 46 lesions, 27 (59%) were described as punched-out lytic, 10 (22%) as permeative/destructive, and 9 (17%) as involving a joint and/or disk space. Lesions were identified in almost every bone (with the exception of the facial bones, ulna, carpus, and fibula) and were most commonly found in the axial skeleton (20 of 46; 43%). Plain radiographs are effective in the initial evaluation of bones and joints, scintigraphic studies can identify disseminated disease, and CT and MRI are effective in determining soft tissue involvement and spinal abnormalities. (orig./MG)

  16. [Size of lower jaw as an early indicator of skeletal class III development].

    Science.gov (United States)

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  17. Radiation induced skeletal changes in beagle: dose rates, dose, and age effect analysis from 226Ra

    International Nuclear Information System (INIS)

    Momeni, M.H.; Williams, J.R.; Rosenblatt, L.S.

    1976-01-01

    Radiation-induced skeletal injury (E) and the rate of skeletal injury were studied as a function of time and dose in beagles administered 226 Ra Cl 2 in eight semimonthly iv injections starting at 2, 4, or 14 months of age. Skeletal changes were evaluated with a radiographic x-ray scoring system in 20 skeletal regions; each region was scored on a 0 to 6 scale. Bone changes in six regions of humeri were qualitatively analyzed for comparison with total skeletal changes. Skeletal changes were classified by endosteal or periosteal cortical sclerosis and thickening, fractures, osteolytic lesions, and trabecular coarsening

  18. Total mineral material, acidity, sulphur, and nitrogen in rain and snow at Kentville, Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F A; Gorham, E

    1957-01-01

    Analyses of total ash, sulphur, ph, ammonia, and nitrate nitrogen have been made on 23 monthly precipitation samples and 17 individual snow samples collected between June 1952 and May 1954 at Kentville, Nova Scotia, in a predominantly agricultural area. Mean annual supply of total mineral ash was 95 kg/ha, of sulphur 9.1 hg/ha, of ammonia nitrogen 2.8 kg/ha, and of nitrate nitrogen 1.1 kg/ha. Average pH was 5.7, and rains more acid than this exhibited higher levels of both nitrate and sulphur, and a marked correlation between the latter and ammonia. Snow samples had much lower concentrations of ash, sulphur, and nitrogen than rain samples collected in the same months, which may perhaps indicate a lower efficiency of snow flakes in removing materials from the atmosphere.

  19. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  20. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  1. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  2. Determination of Antioxidant Capacity, Total Phenolic Content and Mineral Composition of Different Fruit Tissue of Five Apple Cultivars Grown in Chile Determinación de la Capacidad Antioxidante, contenido de Fenoles totales y Composición Mineral de Diferentes Tejidos de Frutos de Cinco Variedades de Manzana cultivadas en Chile

    Directory of Open Access Journals (Sweden)

    Carolina Henríquez

    2010-12-01

    Full Text Available Apples (Malus domestica Borkh. have been identified as one of the main dietary sources of antioxidants, mainly phenolic compounds. These compounds vary in their composition and concentration, among cultivars and fruit tissues. In this research, the total phenolic content (Folin-Ciocalteau assay, antioxidant capacity (Ferric Reducing Antioxidant Power, FRAP assay and mineral composition in three fruit tissues (peel, pulp and whole fruit, of apple cultivars commonly used for dried apple production in Chile, were studied. In addition, the physical-chemical characteristics (dry weight, pH, titratable acidity, soluble solids content and color were also evaluated. The results indicated that the total phenolic content, the antioxidant capacity, and the mineral composition, of peel were substantially higher than those of whole fruit, and pulp for all the cultivars studied. Among cultivars, ‘Red Delicious’ apple peels have a significantly much higher content of total phenolic (11.6 mg gallic acid equivalents [GAE] g-1 FW and a higher FRAP (209.9 µmol Fe+2 g-1 FW. Additionally, a high correlation between total phenolic content and antioxidant capacity was found in all the cultivars and fruit tissues analyzed, except in the apple pulp. On the other hand, the physical and chemical composition differed among cultivars and fruit tissues. In conclusion, our results demonstrated that the total phenolic content, antioxidant capacity, mineral composition, and physical and chemical characteristics vary considerably depending on the apple cultivars and fruit tissues analyzed.Las manzanas (Malus domestica Borkh. han sido identificadas como una de las principales fuentes de antioxidantes en la dieta, principalmente de compuestos fenólicos. Estos compuestos varían en su composición y concentración según el cultivar y el tejido del fruto. En esta investigación se determinó: el contenido de fenoles totales (ensayo de Folin-Ciocalteau, la capacidad

  3. Auditory Ossicles in Archaeological Skeletal Material from Medieval Denmark

    DEFF Research Database (Denmark)

    Qvist, M; Grøntved, A M

    2000-01-01

    Auditory ossicles were collected from two skeletal materials from early medieval Denmark. A total of 147 and 1,162 ossicles were obtained from the 2 materials, constituting 23% and 55% of the possible in vivo ossicles. The numbers and percentages found are among the highest reported from studies...... of archaeological skeletal material. Archaeological ossicles may be used in palaeopathological evaluation of chronic otitis media and otosclerosis, and morphometric studies of the ossicles might be valuable in analysis of population genetics and taxonomy....

  4. Skeletal Effects of the Saturated 3-Thia Fatty Acid Tetradecylthioacetic Acid in Rats

    Directory of Open Access Journals (Sweden)

    Astrid Kamilla Stunes

    2011-01-01

    Full Text Available This study explores the skeletal effects of the peroxisome proliferator activated receptor (PPARpan agonist tetradecylthioacetic acid (TTA. Rats, without (Study I and with ovariectomy (OVX or sham operation (Study II, were given TTA or vehicle daily for 4 months. Bone markers in plasma, whole body and femoral bone mineral density and content (BMD and BMC, and body composition were examined. Histomorphometric and biomechanical analyses (Study I and biomechanical and μCT analyses (Study II of the femur were performed. Normal rats fed TTA had higher femoral BMD and increased total and cortical area in femur compared to controls. The ovariectomized groups had decreased BMD and impaired microarchitecture parameters compared to SHAM. However, the TTA OVX group maintained femoral BMC, trabecular thickness in the femoral head, and cortical volume in the femoral metaphysis as SHAM. TTA might increase BMD and exert a light preventive effect on estrogen-related bone loss in rats.

  5. Clear cell chondrosarcoma of the pelvis in a skeletally immature patient

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Yamamoto, Motoi; Machinami, Rikuo; Goto, Takahiro; Kawano, Hirotaka; Yamamoto, Aiichiro

    1999-01-01

    We report on a case of clear cell chondrosarcoma (CCCS) of the left iliac bone in a 12-year-old skeletally immature boy. Radiographic examination revealed an aggressive osteolytic lesion with areas of mineralization. Fluid-fluid levels were seen on T2-weighted MR images. Laboratory data showed slight elevation of serum alkaline phosphatase. The biopsy specimen showed histological features of CCCS with some resemblance to osteosarcoma, such as prominent irregular osteoid formation among clear tumor cells. Surgical treatment was accomplished without pre- or post-operative chemotherapy. Because of the patient's age, elevated serum alkaline phosphatase, and histopathology with prominent osteoid production, this case could be confused with osteosarcoma. Although CCCS is an extremely rare bone tumor in children, it is important to be aware that it may arise in a skeletally immature patient. CCCS, unlike osteosarcoma, is not treated with neo-adjuvant chemotherapy. (orig.)

  6. Stability of skeletal changes induced by growth modulation procedures in the treatment of skeletal Class II malocclusion

    Directory of Open Access Journals (Sweden)

    Prashantha Govinakovi Shivamurthy

    2016-01-01

    Full Text Available Objective: Objective of this study, based on an evaluation of lateral cephalograms, was to evaluate the degree of skeletal changes produced by the various growth modulative procedures in the treatment of skeletal Class II malocclusion and to characterize the stability of these changes in the years after treatment. Materials and Methods: Total of 40 patients with Class II malocclusion was divided into three groups according to appliance used, i.e. removable or fixed functional appliances (n = 10, combination of functional appliance with headgear (n = 10, and only headgear (n = 10. In addition, almost a matched control group (n = 10 also characterized by skeletal Class II pattern and were under observation, for more than 2 years was also selected. Lateral cephalograms of each patient were taken at the start of treatment (T1, at its completion (T2, and long-term posttreatment (T3. Results: This study showed significant improvement in maxillomandibular relationship in treated group compared to control group, and the changes remained stable in posttreatment phase. Restriction of maxillary growth was evident in headgear and combination groups whereas significant forward movement of the mandible was seen in functional group. Conclusion: Analysis of lateral cephalograms indicates that growth modulation therapy in angle Class II malocclusion brings about desired skeletal changes which remain relatively stable over a long-term period.

  7. Proton microprobe analysis of zinc in skeletal tissues

    Science.gov (United States)

    Doty, S. B.; Jones, K. W.; Kraner, H. W.; Shroy, R. E.; Hanson, A. L.

    1981-03-01

    A proton microprobe with windowless exit port has been used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determination in thick samples with good spatial resolution. Our measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  8. Proton microprobe analysis of zinc in skeletal tissues

    International Nuclear Information System (INIS)

    Doty, S.B.; Jones, K.W.; Kraner, H.W.; Shroy, R.E.; Hanson, A.L.

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage

  9. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  10. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  11. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  12. The usefulness of whole body bone mineral densitometry in the osteopenia of preterm infants: comparison with the wrist radiography and biochemical parameters

    International Nuclear Information System (INIS)

    Cheon, Bong Jin; Huh, Jin Do; Shin, Sang Bum; Cheon, Byung Kook; Joh, Young Duk; Kwon, Jeong Mi; Jeon, Seong Sook

    1997-01-01

    To evaluate the usefulness of whole body bone mineral densitometry in the diagnosis of frequent osteopenia of preterm infants by comparison with the wrist radiographs and biochemical parameters. From January 1995 to January 1996, we obtained whole body bone mineral density(BMD) studies using dual energy X-ray absorptiometry(DXA) and wrist radiographs of 39 preterm infants. They were divided into three groups according to birth weight, under 1500g, 1501g to 2000g and above 2000g, and four grades of skeletal change, as seen on wrist radiography, according to the scoring method of Koo et al. Groups of birth weight and grades of skeletal change were then correlated with whole body BMD and biochemical parameters. For comparison, normal data were obtained from 13 infants born at full term. Data were analyzed by one way analysis of variation(ANOVA) and correlation and regression analysis. A p-value of less than 0.05 was considered significant. Whole body BMDs were significantly lower in the more premature and smaller birth weight infants(r=0.77, p=0.0000), and in the higher grade of skeletal change(r-0.5276, p=0.0000). Aggravated skeletal changes were found in infants with lower birth weight(r= -0.3822, p=0.01). Interobserver variation in grading skeletal change was 42.9%, and intraobserver variation was 18.4%. Biochemical parameters such as serum calcium, phosphate, alkaline phosphatase, parathromone, calcitonin and 25-hydroxy-vitamine D did not vary significantly according to either birth weight or skeletal change(p > 0.05). Premature osteopenia is more effectively diagnosed by measuring whole body BMD using DXA than by grading radiographical skeletal change or by biochemical parameters

  13. The usefulness of whole body bone mineral densitometry in the osteopenia of preterm infants: comparison with the wrist radiography and biochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Bong Jin; Huh, Jin Do; Shin, Sang Bum; Cheon, Byung Kook; Joh, Young Duk [Kosin Univ. Gospel Hospital, Pusan (Korea, Republic of); Kwon, Jeong Mi; Jeon, Seong Sook [Ilsin Christian Hospital, Pusan (Korea, Republic of)

    1997-02-01

    To evaluate the usefulness of whole body bone mineral densitometry in the diagnosis of frequent osteopenia of preterm infants by comparison with the wrist radiographs and biochemical parameters. From January 1995 to January 1996, we obtained whole body bone mineral density(BMD) studies using dual energy X-ray absorptiometry(DXA) and wrist radiographs of 39 preterm infants. They were divided into three groups according to birth weight, under 1500g, 1501g to 2000g and above 2000g, and four grades of skeletal change, as seen on wrist radiography, according to the scoring method of Koo et al. Groups of birth weight and grades of skeletal change were then correlated with whole body BMD and biochemical parameters. For comparison, normal data were obtained from 13 infants born at full term. Data were analyzed by one way analysis of variation(ANOVA) and correlation and regression analysis. A p-value of less than 0.05 was considered significant. Whole body BMDs were significantly lower in the more premature and smaller birth weight infants(r=0.77, p=0.0000), and in the higher grade of skeletal change(r-0.5276, p=0.0000). Aggravated skeletal changes were found in infants with lower birth weight(r= -0.3822, p=0.01). Interobserver variation in grading skeletal change was 42.9%, and intraobserver variation was 18.4%. Biochemical parameters such as serum calcium, phosphate, alkaline phosphatase, parathromone, calcitonin and 25-hydroxy-vitamine D did not vary significantly according to either birth weight or skeletal change(p > 0.05). Premature osteopenia is more effectively diagnosed by measuring whole body BMD using DXA than by grading radiographical skeletal change or by biochemical parameters.

  14. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-01-01

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n = 12) to 1000 ppm lead acetate in drinking water for 90 days while control group (n = 8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ + Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.

  15. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  16. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Joanna Folwarczna

    2017-10-01

    Full Text Available Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally. Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  17. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  18. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  19. Skeletal Geometry and Indices of Bone Strength in Artistic Gymnasts

    Science.gov (United States)

    Dowthwaite, Jodi N.; Scerpella, Tamara A.

    2010-01-01

    This review addresses bone geometry and indices of skeletal strength associated with exposure to gymnastic loading during growth. A brief background characterizes artistic gymnastics as a mechanical loading model and outlines densitometric techniques, skeletal outcomes and challenges in assessment of skeletal adaptation. The literature on bone geometric adaptation to gymnastic loading is sparse and consists of results for disparate skeletal sites, maturity phases, gender compositions and assessment methods, complicating synthesis of an overriding view. Furthermore, most studies assess only females, with little information on males and adults. Nonetheless, gymnastic loading during growth appears to yield significant enlargement of total and cortical bone geometry (+10 to 30%) and elevation of trabecular density (+20%) in the forearm, yielding elevated indices of skeletal strength (+20 to +50%). Other sites exhibit more moderate geometric and densitometric adaptations (5 to 15%). Mode of adaptation appears to be site-specific; some sites demonstrate marked periosteal and endosteal expansion, whereas other sites exhibit negligible or moderate periosteal expansion coupled with endocortical contraction. Further research is necessary to address sex-, maturity- and bone tissue-specific adaptation, as well as maintenance of benefits beyond loading cessation. PMID:19949278

  20. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    Science.gov (United States)

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  1. Bisphophonates in CKD Patients with Low Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Wen-Chih Liu

    2013-01-01

    Full Text Available Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients.

  2. Flotation of sulphide minerals 1990

    Energy Technology Data Exchange (ETDEWEB)

    Forssberg, K S.E. [ed.; Luleaa University of Technology, Luleaa (Sweden). Division of Mineral Processing

    1991-01-01

    A total of 27 papers presented at the workshop on flotation of sulphide minerals, reprinted from the International Journal of Mineral Processing, vol. 33, nos. 1-4, are included in this book. They cover various aspects of flotation of such minerals as chalcopyrite, pyrrhotite, galena, malachite and pyrite.

  3. Histone Deacetylases in Bone Development and Skeletal Disorders

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  4. Skeletal response to diet with soya bean seeds used as primary source of protein in growing broiler chickens.

    Science.gov (United States)

    Olkowski, B; Charuta, A; Radzki, R; Bieńko, M; Toczko, R

    2016-08-01

    The study was conducted using 120 commercial broiler chicks (Ross 308) randomly allocated to two experimental groups. The experimental diets, differing only in protein source, either solvent-extracted soya bean meal (SBM) or traditional (non-genetically modified) full-fat soya bean seeds (FFS), were prepared using practical corn-based formulation designed to meet nutritional requirements of broilers. Performance parameters were monitored weekly. Also, the subjects were evaluated daily for overt changes in skeletal anatomy and gait physiology. Randomly selected chickens from each group (seven males and seven females) were euthanized at 2, 3, 4 and 6 weeks of age, and bone specimens were collected for further study. Bone mineral density (BMD) and bone mineral content (BMC) were determined in tibiotarsal bones. Broilers fed FFS diet showed retarded growth rate and decreased feed intake (both p chickens from the FFS group in comparison with the SBM group. The chickens fed the FFS diet showed higher incidence of skeletal pathology including angular deformities and torticollis (both p chickens. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  5. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  6. Molar height and dentoalveolar compensation in adult subjects with skeletal open bite.

    Science.gov (United States)

    Kucera, Josef; Marek, Ivo; Tycova, Hana; Baccetti, Tiziano

    2011-07-01

    To evaluate the skeletal and dentoalveolar components in adult subjects with skeletal open bite in the presence or absence of dental compensation. The study sample included 69 adult female subjects who belonged to three groups according to skeletal vertical relationships and overbite. A total of 15 variables (5 angular, 10 linear) were evaluated. Values in the dentally compensated open bite group (COBG), the dentally noncompensated open bite group (NCOBG), and the control group with normal vertical skeletal relationships and overbite (CG) were compared by means of parametric statistics. The COBG and the NCOBG showed significantly greater incisor and molar heights in both jaws than the CG. No significant difference in upper or lower molar height was found between COBG and NCOBG. Incisor height was significantly greater in COBG than in NCOBG. Elongation in the incisor region was accompanied by significant narrowing of the lower anterior alveolar process in both skeletal open bite groups. Proclination of the upper incisors was significantly smaller in the COBG than in the other groups. Dentoalveolar components consisting of incisor elongation and inclination play a significant role in compensating for skeletal open bite configuration in adult subjects. Increased molar height is a common finding in adults with skeletal open bite.

  7. Proton microprobe analysis of zinc in skeletal tissues

    International Nuclear Information System (INIS)

    Doty, S.B.; Jones, K.W.; Kraner, H.W.; Shroy, R.E.; Hanson, A.L.

    1981-01-01

    A proton microprobe with windowless exit port has been used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton micorprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Our measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage. (orig.)

  8. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  9. Bone mineral changes in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Richardson, M.L.; Harborview Medical Center, Seattle, WA; Pozzi-Mucelli, R.S.; Trieste Univ.; Kanter, A.S.; Genant, H.K.; Kolb, F.O.; Ettinger, B.

    1986-01-01

    We studied 34 patients with primary hyperparathyroidism in order to assess their bone mineral status, to determine its relationship to biochemical parameters (serum calcium and parathyroid hormone) and surgical status, and to determine the relationship between peripheral cortical bone and spinal trabecular bone in this disease. These patients were studied with radiogrammetry of the metacarpals, Norland-Cameron photon absorptiometry of the radius, quantitative computed tomography (QCT) of the spine, industrial radiography of the hands, and conventional radiography of the thoracolumbar spine. We also calculated a spinal fracture index from thoracolumbar spine films. We found that the appendicular measurements correlated well together, but less well with spinal QCT. The spinal fracture index correlated best with QCT (r = 0.55), although significant dispersion was noted. We found that, in general, these hyperparathyroid patients had statistically significant decrements in bone mineral content in both the appendicular and the axial portions of the skeleton. However, the decrement in the appendicular skeleton did not correlate well with that in the axial skeleton. Therefore we conclude that it is necessary to measure both peripheral and central bone mineral content in order to reliably assess the skeletal demineralizing effects of primary hyperparathyroidism in an individual patient. (orig.)

  10. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    OpenAIRE

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic bla...

  11. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    International Nuclear Information System (INIS)

    Barber, Ignasi; Perez-Rossello, Jeannette M.; Kleinman, Paul K.; Wilson, Celeste R.

    2015-01-01

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  12. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Ignasi [Hospital Vall d' Hebron, Universitat Autonoma de Barcelona, Pediatric Radiology Department, Barcelona (Spain); Perez-Rossello, Jeannette M.; Kleinman, Paul K. [Boston Children' s Hospital, Radiology Department, Boston, MA (United States); Wilson, Celeste R. [Boston Children' s Hospital, Division of General Pediatrics, Boston, MA (United States)

    2014-07-06

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  13. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  14. Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis.

    Science.gov (United States)

    Raisingani, Manish; Preneet, Brar; Kohn, Brenda; Yakar, Shoshana

    2017-06-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases diagnosed in childhood. Childhood and adolescent years are also the most important period for growth in height and acquisition of skeletal bone mineral density (BMD). The growth hormone (GH)/insulin like growth factor -1 (IGF-1) axis which regulates growth, is affected by T1DM, with studies showing increased GH and decreased IGF-1 levels in children with T1DM. There is conflicting data as to whether adolescents with TIDM are able to achieve their genetically-determined adult height. Furthermore, data support that adolescents with T1DM have decreased peak BMD, although the pathophysiology of which has not been completely defined. Various mechanisms have been proposed for the decrease in BMD including low osteocalcin levels, reflecting decreased bone formation; increased sclerostin, an inhibitor of bone anabolic pathways; and increased leptin, an adipocytokine which affects bone metabolism via central and peripheral mechanisms. Other factors implicated in the increased bone resorption in T1DM include upregulation of the osteoprotegerin/ receptor-activator of the nuclear factor-κB ligand pathway, elevated parathyroid hormone levels, and activation of other cytokines involved in chronic systemic inflammation. In this review, we summarize the clinical studies that address the alterations in the GH/IGF-I axis, linear growth velocity, and BMD in children and adolescents with T1DM; and we review the possible molecular mechanisms that may contribute to an attenuation of linear growth and to the reduction in the acquisition of peak bone mass in the child and adolescent with T1DM. Copyright © 2017. Published by Elsevier Ltd.

  15. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available AimTo determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes.Materials and MethodsThe study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry.ResultsWomen with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p <0.05. Patients with osteoporosis had a lower fat mass at the hips, compared with those with normal BMD. Total and truncal fat mass, as well as lean mass were positively correlated with BMD in the lumbar spine and proximal femur, femoral neck and radius. In multivariate regression analysis fat mass was an independent predictor for total BMD, after adjusting for age, BMI, duration of menopause, HbA1c, glomerular filtration rate and other total body composition parameters.ConclusionsIn postmenopausal type 2 diabetic women BMI and fat mass is associated positively with BMD.

  16. Prospective analysis of a first MTP total joint replacement. Evaluation by bone mineral densitometry, pedobarography, and visual analogue score for pain

    DEFF Research Database (Denmark)

    Wetke, Eva; Zerahn, Bo; Kofoed, Hakon

    2012-01-01

    We hypothesized that a total replacement of the first metatarsophalangeal joint (MTP-1) would alter the walking pattern with medialisation of the ground reaction force (GRF) of the foot and subsequently cause an increase in bone mineral density (BMD) in the medial metatarsal bones and a decline o...

  17. Skeletal surveys in multiple myeloma

    International Nuclear Information System (INIS)

    Sebes, J.I.; Niell, H.B.; Palmieri, G.M.A.; Reidy, T.J.

    1986-01-01

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  18. Optimization of Mineral Separator for Recovery of Total Heavy Minerals of Bay of Bengal using Central Composite Design

    Science.gov (United States)

    Routray, Sunita; Swain, Ranjita; Rao, Raghupatruni Bhima

    2017-04-01

    The present study is aimed at investigating the optimization of a mineral separator for processing of beach sand minerals of Bay of Bengal along Ganjam-Rushikulya coast. The central composite design matrix and response surface methodology were applied in designing the experiments to evaluate the interactive effects of the three most important operating variables, such as feed quantity, wash water rate and Shake amplitude of the deck. The predicted values were found to be in good agreement with the experimental values (R2 = 0.97 for grade and 0.98 for recovery). To understand the impact of each variable, three dimensional (3D) plots were also developed for the estimated responses.

  19. Comparison of plasma, liver, and skeletal muscle carnitine concentrations in cats with idiopathic hepatic lipidosis and in healthy cats.

    Science.gov (United States)

    Jacobs, G; Cornelius, L; Keene, B; Rakich, P; Shug, A

    1990-09-01

    Concentrations of total, free, and esterified carnitine were determined in plasma, liver, and skeletal muscle from cats with idiopathic hepatic lipidosis and compared with values from healthy cats. The mean concentrations of plasma, liver, and skeletal muscle total carnitine; plasma and skeletal muscle free carnitine; and plasma and liver esterified carnitine were greater (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. The mean for the ratio of free/total carnitine in plasma and liver was lower (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. These data suggest that carnitine deficiency does not contribute to the pathogenesis of feline idiopathic hepatic lipidosis.

  20. Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors

    International Nuclear Information System (INIS)

    Ghanem, N.; Altehoefer, C.; Winterer, J.; Schaefer, O.; Bley, T.A.; Langer, M.; Kelly, T.; Moser, E.

    2004-01-01

    The aim of this study was to compare the diagnostic efficacy of whole-body magnetic resonance imaging (WB-MRI) as a new and rapid examination technique with skeletal scintigraphy for detection of skeletal metastases from solid tumors. In 129 patients with solid malignant tumors, WB-MRI was performed for individual comparison with skeletal scintigraphy. Examinations were performed with the innovative AngioSURF trademark rolling table with integrated phased array surface coil and coronary TIRM sequences for different body regions. The results for WB-MRI and skeletal scintigraphy were concordant in 81% of the cases, whereby both procedures excluded skeletal metastases in 43%. WB-MRI and skeletal scintigraphy demonstrated skeletal metastases in 38% of the cases, whereby WB-MRI provided more comprehensive findings in 45%. In 12% of the cases, skeletal scintigraphy was superior to WB-MRI and in 19% the findings were discordant, whereby WB-MRI detected skeletal metastases in 15 cases which had not been found on skeletal scintigraphy. In nine cases, skeletal scintigraphy was positive when the WB-MRI was negative. In 60% of the cases, WB-MRI evidenced tumor-associated findings. WB-MRI represents a promising new staging technique for detection of skeletal metastases, which is more sensitive in many cases than skeletal scintigraphy in detecting and assessing the extent of skeletal metastases - and tumor-associated findings that are relevant for treatment strategy. (orig.) [de

  1. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females.

    Science.gov (United States)

    Laing, Emma M; Wilson, Alissa R; Modlesky, Christopher M; O'Connor, Patrick J; Hall, Daniel B; Lewis, Richard D

    2005-03-01

    Gymnasts' bone mineral characteristics are generally not known before starting their sport. Prepubertal females who enrolled in beginning artistic gymnastics (n = 65) had lower bone mineral than controls (n = 78). However, 2 years of gymnastics participation versus no participation led to a significantly greater accrual of forearm bone area and lumbar spine areal BMD. The skeletal response to exercise in children compared with adults is heightened because of the high bone turnover rate and the ability of bone to change its size and shape. Whereas child gymnasts generally have greater rates of bone mineral accrual compared with nongymnasts, it is unknown if some of these skeletal advantages are present before the onset of training or are caused entirely by training. Changes in bone area (BA; cm2), BMC (g), and areal BMD (aBMD; g/cm2) over 24 months were examined in prepubertal females, 4-8 years of age, who selected to perform recreational gymnastics (GYM; n = 65), nongymnastic activities, or no organized activity (CON; n = 78). Participants had essentially no lifetime history of organized athletic participation (spine, total proximal femur, and forearm BA, BMC, and aBMD were measured every 6 months using DXA (Hologic QDR-1000W). Independent samples t-tests determined baseline group differences. Nonlinear mixed effects models were used to model 24-month changes in bone data. In subset analyses, high-level gymnasts advancing to competition (HLG; n = 9) were compared with low-level nonadvancing gymnasts (LLG; n = 56). At baseline, GYM were shorter, lighter, and had lower BA, BMC, and aBMD compared with CON (p 0.05). Controlling for differences in race, baseline measures of body mass, height, and calcium intake, and change in breast development beyond stage II at 24 months, GYM had greater long-term (asymptotic) mean responses for total body aBMD and forearm BMC (p spine aBMD and forearm BA compared with CON over 24 months. Over time, forearm BA increased to a greater

  3. Definition of osteoporosis by bone density criteria in men: effect of using female instead of male young reference data depends on skeletal site and densitometer manufacturer.

    Science.gov (United States)

    Schousboe, John T; Tanner, S Bobo; Leslie, William D

    2014-01-01

    Whether to use young male or young female reference data to calculate bone mineral density (BMD) T-scores in men remains controversial. The third National Health and Nutrition Examination and Survey (NHANES III) data show that the mean and standard deviation of femoral neck and total hip BMD is greater in young men than young women, and therefore differences in T-scores at these sites using NHANES III female vs male norms becomes less as BMD decreases. In contrast, manufacturer-specific reference databases generally assume similar standard deviations of BMD in men and women. Using NHANES III reference data for the femoral neck and total hip, respectively we found that men with T-scores of -2.5 when young male norms are used have T-scores of -2.4 and -2.3 when young female norms are used. Using manufacturer-specific reference data, we found that men with T-scores of -2.5 when young male norms are used at the femoral neck, total hip, lumbar spine, or one-third of the forearm would have T-scores ranging from -2.4 to -0.4 when young female norms are used, depending on skeletal site and densitometer manufacturer. The change of proportions of men diagnosed with osteoporosis when young female norms are used instead of young male reference data differs substantially according to skeletal site and densitometer manufacturer. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  4. Deep bite malocclusion: exploration of the skeletal and dental factors

    International Nuclear Information System (INIS)

    Bhateja, N.K.; Fida, M.; Shaikh, A.

    2016-01-01

    Correction of deep bite is crucial for maintenance of dental hard and soft tissue structures and for prevention of temporomandibular joint disorders. Exploration of underlying skeletal and dental factors is essential for efficient and individualized treatment planning. To date etiological factors of dental and skeletal deep bite have not been explored in Pakistani orthodontic patients. The objectives of this study were to explore frequencies of dental and skeletal etiological factors in deep bite patients and to determine correlations amongst dental and skeletal etiological factors of deep bite. Methods: The study included a total of 113 subjects (males=35; females=78) with no craniofacial syndromes or prior orthodontic treatment. Pre-treatment orthodontic records were used to evaluate various dental and skeletal parameters. Descriptive statistics of each parameter were calculated. The various study parameters were correlated using Pearson's Correlation. Results: Deep curve of Spee was most frequently seen factor of dental deep bite (72.6%), followed by increased coronal length of upper incisors (28.3%), retroclined upper incisors (17.7%), retroclined lower incisors (8%) and increased coronal length of lower incisors (5.3%). Decreased gonial angle was most commonly found factor of skeletal deep bite (43.4%), followed by decreased mandibular plane angle (27.4%) and maxillary plane's clockwise rotation (26.5%). Frankfort mandibular plane angle and gonial angle showed a strong positive correlation (r=0.66, p=0.000). Conclusions: Reduced gonial angle is most frequently seen skeletal factor, signifying the importance of angulation and growth of ramus in development of deep bite. Deep curve of Spee is most frequently seen dental etiological component in deep bite subjects, hence signifying the importance of intruding the lower anterior teeth. (author)

  5. Child Skeletal Fluorosis from Indoor Burning of Coal in Southwestern China

    International Nuclear Information System (INIS)

    Qin, X.; Wang, S.; Yu, M.; Li, X.; Zuo, Z.; Zhang, X.; Wang, L.; Zhang, L.

    2010-01-01

    Objectives. We assess the prevalence and pathogenic stage of skeletal fluorosis among children and adolescents residing in a severe coal-burning endemic fluorosis area of southwest China. Methods. We used a cross-sectional design. A total of 1,616 students aged between 7 and 16 years in Zhijin County, Guizhou, China in late 2004 were selected via a cluster sampling of all 9-year compulsory education schools to complete the study questionnaire. Any student lived in a household that burned coal, used an open-burning stove, or baked foodstuffs over a coal stove was deemed high-risk for skeletal fluorosis. About 23% (370) of students (188 boys, 182 girls) were identified as high-risk and further examined by X-ray. Results. One-third of the 370 high-risk participants were diagnosed with skeletal fluorosis. Overall prevalence of child skeletal fluorosis due to indoor burning of coal was 7.5%. Children aged 12 16 years were significantly more likely to be diagnosed with skeletal fluorosis than children aged 7 11 years (OR = 1.84, 95% CI: 1.17 2.90; P = .0082). Four types of skeletal fluorosis were identified: constrictive (60.7%), raritas (15.6%), mixed (16.4%), and soft (7.4%). Most diagnosed cases (91%) were mild or moderate in severity. In addition, about 97% of 370 high-risk children were identified with dental fluorosis. Dental fluorosis was highly correlated with skeletal fluorosis in this study. Conclusions. Skeletal fluorosis among children may contribute to poor health and reduced productivity when they reach adulthood. Further efforts to reduce fluoride exposure among children in southwestern of China where coal is burned indoors are desperately needed.

  6. Preoperative morphometric differences in the distal femur are based on skeletal size in Japanese patients undergoing total knee arthroplasty.

    Science.gov (United States)

    Nishikawa, Masataka; Owaki, Hajime; Kaneshiro, Shoichi; Fuji, Takeshi

    2014-12-01

    The objectives of this study were to measure the morphometric parameters of preoperative distal femurs to determine the differences by diagnosis and gender after accounting for skeletal size. One-hundred and seventy-nine Japanese patients who underwent total knee arthroplasty (TKA) (25 males and 154 females) were assessed. The anteroposterior length (AP), mediolateral width (ML), aspect ratio (AR), surgical epicondylar axis (SEA) to posterior condylar axis (PCA) angle, and Whiteside to SEA angle were measured on preoperative computed tomography scans. The AP/ML, AR/ML, SEA/PCA, and Whiteside/PCA relationships were evaluated and compared by patient diagnosis and gender. The results were also compared with the sizes of 10 currently available TKA implants in Japan. The mean AP, ML, AR, SEA/PCA angle, and Whiteside/PCA angle were 58.8 mm, 64.7 mm, 0.91, external rotation (ER) 3.5°, and ER 1.6°, respectively. AP and AR each were significantly correlated with ML (p different between patients diagnosed with osteoarthritis and rheumatoid arthritis. AP/ML and AR/ML were significantly correlated within each diagnosis (p differences between the diagnoses. AP and ML were significantly longer (p gender. However, the analysis of covariance showed no significant differences between gender in the AP/ML and AR/MR correlations. The AP/ML ratio of our data was similar to the size variations of the 10 TKA implants, but the AR/ML ratio was quite different from almost all the implants. No differences in preoperative femur morphometry were found between patients with different diagnoses, but the gender difference in AR was related to the difference in skeletal size between males and females. Case series with no comparison groups, Level IV.

  7. Value of fetal skeletal radiographs in the diagnosis of fetal death

    International Nuclear Information System (INIS)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P.; Panuel, M.; Piercecchi-Marti, M.D.; Fredouille, C.; Sigaudy, S.; Philip, N.

    2003-01-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  8. Value of fetal skeletal radiographs in the diagnosis of fetal death

    Energy Technology Data Exchange (ETDEWEB)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P. [Department of Pediatric Radiology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Panuel, M. [Department of Radiology, Hopital Nord, chemin Bourrelys, 13915 Marseille cedex 20 (France); Piercecchi-Marti, M.D.; Fredouille, C. [Department of Pathology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Sigaudy, S.; Philip, N. [Department of Genetics, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France)

    2003-05-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  9. Reliability of various skeletal indicators in assessing vertical facial soft tissue pattern

    International Nuclear Information System (INIS)

    Ahmed, M.; Shaikh, A.; Fida, M.

    2016-01-01

    Background: Angle paradigm has ruled the orthodontic diagnosis and treatment planning for past several decades, but the recent introduction of the soft tissue paradigm has significantly changed the dynamics of orthodontic practice. This study was designed to identify skeletal analyses that best correlates with the parameters use to assess facial soft tissue profile that may lead to an accurate diagnosis and efficient treatment plan. Methods: A total of 192 subjects (96 males and 96 females; mean age 22.95±4.75 years) were included in the study. The total sample was distributed into three equal groups (i.e., long, normal and short face) on the basis of soft tissue vertical pattern. Pre-treatment lateral cephalograms were used to assess various vertical linear and angular parameters. Various skeletal analyses and soft tissue parameters were correlated using the Pearson correlation in different vertical groups, separately for males and females. Results: In males, a weak positive correlation (r=0.485) was found between skeletal anterior facial height ratio (Sk. LAFH/TAFH) and soft tissue anterior facial height ratio (LAFH/TAFH), whereas in females maxillary-mandibular plane angle (MMA) showed a weak positive correlation (r=0.300). In the long face group, a positive but a weak correlation (r=0.349) was present between cranial base angle (SN-GoGn) and LAFH/TAFH. Conclusions: Skeletal analyses (MMA, Sk. LAFH/TAFH) significantly correlated to soft tissue parameters. Males and long faced individuals showed a higher correlation between skeletal and soft tissue parameters as compared to that of the females. (author)

  10. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  11. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  12. Pharyngeal airway dimensions in skeletal class II: A cephalometric growth study

    International Nuclear Information System (INIS)

    Uslu-Akcam, Ozge

    2017-01-01

    This retrospective study aimed to evaluate the nasopharyngeal and oropharyngeal dimensions of individuals with skeletal class II, division 1 and division 2 patterns during the pre-peak, peak, and post-peak growth periods for comparison with a skeletal class I control group. Totally 124 lateral cephalograms (47 for skeletal class I; 45 for skeletal class II, division 1; and 32 for skeletal class II, division 2) in pre-peak, peak, and post-peak growth periods were selected from the department archives. Thirteen landmarks, 4 angular and 4 linear measurements, and 4 proportional calculations were obtained. The ANOVA and Duncan test were applied to compare the differences among the study groups during the growth periods. Statistically significant differences were found between the skeletal class II, division 2 group and other groups for the gonion-gnathion/sella-nasion angle. The sella-nasion-B-point angle was different among the groups, while the A-point-nasion-B-point angle was significantly different for all 3 groups. The nasopharyngeal airway space showed a statistically significant difference among the groups throughout the growth periods. The interaction among the growth periods and study groups was statistically significant regarding the upper oropharyngeal airway space measurement. The lower oropharyngeal airway space measurement showed a statistically significant difference among the groups, with the smallest dimension observed in the skeletal class II, division 2 group. The naso-oropharyngeal airway dimensions showed a statistically significant difference among the class II, division 1; class II, division 2; and class I groups during different growth periods

  13. Pharyngeal airway dimensions in skeletal class II: A cephalometric growth study

    Energy Technology Data Exchange (ETDEWEB)

    Uslu-Akcam, Ozge [Clinic of Orthodontics, Ministry of Health, Tepebasi Oral and Dental Health Hospital, Ankara (Turkmenistan)

    2017-03-15

    This retrospective study aimed to evaluate the nasopharyngeal and oropharyngeal dimensions of individuals with skeletal class II, division 1 and division 2 patterns during the pre-peak, peak, and post-peak growth periods for comparison with a skeletal class I control group. Totally 124 lateral cephalograms (47 for skeletal class I; 45 for skeletal class II, division 1; and 32 for skeletal class II, division 2) in pre-peak, peak, and post-peak growth periods were selected from the department archives. Thirteen landmarks, 4 angular and 4 linear measurements, and 4 proportional calculations were obtained. The ANOVA and Duncan test were applied to compare the differences among the study groups during the growth periods. Statistically significant differences were found between the skeletal class II, division 2 group and other groups for the gonion-gnathion/sella-nasion angle. The sella-nasion-B-point angle was different among the groups, while the A-point-nasion-B-point angle was significantly different for all 3 groups. The nasopharyngeal airway space showed a statistically significant difference among the groups throughout the growth periods. The interaction among the growth periods and study groups was statistically significant regarding the upper oropharyngeal airway space measurement. The lower oropharyngeal airway space measurement showed a statistically significant difference among the groups, with the smallest dimension observed in the skeletal class II, division 2 group. The naso-oropharyngeal airway dimensions showed a statistically significant difference among the class II, division 1; class II, division 2; and class I groups during different growth periods.

  14. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males.

    Science.gov (United States)

    Owens, Daniel J; Webber, Daniel; Impey, Samuel G; Tang, Jonathan; Donovan, Timothy F; Fraser, William D; Morton, James P; Close, Graeme L

    2014-06-01

    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function. Participants (n = 29) received an oral dose of 10,000 IU day(-1) vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12. Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L(-1) for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L(-1)) that remained elevated throughout the trial (P L(-1)) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05). Elevating total serum 25[OH]D to concentrations > 120 nmol L(-1) has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (L(-1)).

  15. INTERACTION BETWEEN DIETARY MINERAL AND PHYTASE ON BIOLOGICAL PERFORMANCES OF JAPANESE FLOUNDER, Paralichthys olivaceus. PART II. MINERAL DIGESTIBILITY AND VERTEBRAL MINERAL CONTENT

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2015-06-01

    Full Text Available Interactive effects between dietary inorganic phosphorus (IP and phytase (P on mineral digestibility and vertebral mineral content were investigated in a 30 days feeding trial followed by three weeks digestibility trial with Japanese flounder, Paralichthys olivaceus. Eight experimental diets were formulated based on two levels of dietary Ca at 0% and 0.2% combined with either 0% or 0.25% of dietary IP and either with 0 and 2,000 fytase unit (FTU/kg of phytase in diet, respectively. Result indicated that digestibility of total phosphorus significantly increased by three dietary compounds where the highest was observed in fish fed diet contained 0.25% IP and 2,000 FTU phytase/kg and dietary Ca also included in diet. Significant interaction was only detected between dietary IP and P on this parameter. Supplementation of IP and Ca not phytase significantly improved Ca digestibility. Ca digestibility was very poor when dietary IP and Ca were not supplemented in diet even with when phytase supplemented in diet. There was significant interaction between dietary IP and Ca on Ca digestibility. Vertebral total phosphorus, Ca, and Mg content as well as Ca:P ratio were significantly enhanced by dietary IP and phytase. Dietary Ca has significant effect only on vertebral total phosphorus. Interaction between dietary IP and Ca was significantly found on vertebral Ca content and Ca:P ratio. No significant second-order interaction was observed among the three dietary mineral on overall parameters. Based on total phosphorus and Ca digestibility as well vertebral phosphorus content found in this study, dietary IP, Ca, and phytase at rate of 0.25%, 0.2%, and 2,000 FTU phytase/kg diet, respectively are needed to supplement in diet for a better mineral absorption and bone mineralization.

  16. Skeletal Maturation and Mineralisation of Children with Moderate to Severe Spastic Quadriplegia

    Science.gov (United States)

    Sitaraman, Sadasivan

    2016-01-01

    Introduction Diminished bone mineral density and delayed skeletal maturation are common in children with spastic quadriplegia. Aim The purpose of our study was to evaluate the Bone Mineral Density (BMD) of children with moderate to severe spastic quadriplegia and its relationship with other variables like nutrition and growth. Materials and Methods This was a hospital based, cross- sectional, case-control study. Forty-two (28 males, 14 females) children with spastic quadriplegia and 42 (24 males, 18 females) healthy children were included in the study. BMD of cases and control were measured by Dual Energy X-ray Absorptiometry (DEXA). Radiographs of left hand and wrist of cases and controls were taken and bone age was determined. Results BMD values of upper extremity, lower extremity, thoraco-lumbar spine and pelvis in cases were lower than those of controls (p quadriplegia and nutritional status is an important contributing factor. PMID:27504366

  17. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  18. Characterizing the Effects of Chronic 2G Centrifugation on the Rat Skeletal System

    Science.gov (United States)

    Johnson, Aimee; Scott, Ryan; Ronca, April E.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Alwood, Joshua S.

    2017-01-01

    During weightlessness, the skeletal system of astronauts is negatively affected by decreased calcium absorption and bone mass loss. Therefore, it is necessary to counteract these changes for long-term skeletal health during space flights. Our long-term plan is to assess artificial gravity (AG) as a possible solution to mitigate these changes. In this study, we aim to determine the skeletal acclimation to chronic centrifugation. We hypothesize that a 2G hypergravity environment causes an anabolic response in growing male rats. Specifically, we predict chronic 2G to increase tissue mineral density, bone volume fraction of the cancellous tissue and to increase overall bone strength. Systemically, we predict that bone formation markers (i.e., osteocalcin) are elevated and resorption markers (i.e., tartrate resistant acid phosphatase) are decreased or unchanged from controls. The experiment has three groups, each with an n8: chronic 2g, cage control (housed on the centrifuge, but not spun), and a vivarium control (normal rat caging). Pre-pubescent, male Long-Evans rats were used to assess our hypothesis. This group was subject to 90 days of 2G via centrifugation performed at the Chronic Acceleration Research Unit (CARU) at University of California Davis. After 90 days, animals were euthanized and tissues collected. Blood was drawn via cardiac puncture and the right leg collected for structural (via microcomputed tomography) and strength quantification. Understanding how counteract these skeletal changes will have major impacts for both the space-faring astronauts and the people living on Earth.

  19. Plant macro- and micronutrient minerals

    Science.gov (United States)

    All plants must obtain a number of inorganic mineral elements from their environment to ensure successful growth and development of both vegetative and reproductive tissues. A total of fourteen mineral nutrients are considered to be essential. Several other elements have been shown to have beneficia...

  20. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  1. A multi-mineral natural product inhibits liver tumor formation in C57BL/6 mice.

    Science.gov (United States)

    Aslam, Muhammad N; Bergin, Ingrid; Naik, Madhav; Hampton, Anna; Allen, Ron; Kunkel, Steven L; Rush, Howard; Varani, James

    2012-06-01

    C57BL/6 mice were maintained for up to 18 months on high-fat and low-fat diets with or without a multi-mineral supplement derived from the skeletal remains of the red marine algae Lithothamnion calcareum. Numerous grossly observable liver masses were visible in animals on the "western-style" high-fat diet sacrificed at 12 and 18 months. The majority of the masses were in male mice (20 out of 100 males versus 3 out of 100 females; p = 0.0002). There were more liver masses in animals on the high-fat diet than on the low-fat diet (15 out of 50 on high-fat versus 5 out of 50 on low-fat; p = 0.0254). The multi-mineral supplement reduced the number of liver masses in mice on both diets (3 out of 25 male mice in the low-fat diet group without the supplement versus 1 out of 25 mice with supplement; 12 of 25 male mice in the high-fat diet group without the supplement versus 3 of 25 mice with supplement [p = 0.0129]). Histological evaluation revealed a total of 17 neoplastic lesions (9 adenomas and 8 hepatocellular carcinomas), and 18 pre-neoplastic lesions. Out of eight hepatocellular carcinomas, seven were found in unsupplemented diet groups. Steatosis was widely observed in livers with and without grossly observable masses, but the multi-mineral supplement had no effect on the incidence of steatosis or its severity. Taken together, these findings suggest that a multi-mineral-rich natural product can protect mice against neoplastic and pre-neoplastic proliferative liver lesions that may develop in the face of steatosis.

  2. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  3. An atlas of normal skeletal scintigraphy

    International Nuclear Information System (INIS)

    Flanagan, J.J.; Maisey, M.N.

    1985-01-01

    This atlas was compiled to provide the neophyte as well as the experienced radiologist and the nuclear medicine physician with a reference on normal skeletal scintigraphy as an aid in distinguishing normal variations in skeletal uptake from abnormal findings. Each skeletal scintigraph is labeled, and utilizing an identical scale, a relevant skeletal photograph and radiograph are placed adjacent to the scintigraph

  4. DEVELOPMENT OF RAPID TECHNIQUE FOR DETERMINATION OF THE TOTAL MINERALIZATION OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2015-01-01

    Full Text Available A new approach has been proposed for rapid and easy evaluation of a indicator of quality and properties of natural water - soluble salt content (mineralization. The method of quartz crystal microbalance is employed at load of the mass-sensitive resonator electrode (BAW-type with investigated water. The degree of correlation between the various indicators related to the contents of salts and insoluble compounds and the level of mineralization obtained by the standard method (gravimetry has been studied. A procedure for salt weighing by single sensor at unilateral load with small sample of natural water has been developed. The optimal conditions for measurement is established using the design of experiment by model 23 . The possibilities of quartz crystal microbalance for determination of non-volatile compounds in the water are described. The calibration of piezosensor is produced by standard solution NaCl (c = 1.000 g / dm3 at optimal conditions of experiment. The adequacy and accuracy of proposed technique is assessed by the correlation between the results of quartz crystal microbalance and conductometry. The correlation between indicators of mineralization established by quartz crystal microbalance and gravimetry is found. It has been obtained an equation that can be used to calculate the standard indicator of the mineralization by the results of a quartz crystal microbalance using single sensor. The approaches to enhance the analytical capabilities of the developed technique for water with low and high mineralization are proposed. The metrological characteristics of quartz crystal microbalance of insoluble compounds in natural water are estimated. A new technique of determination of the mass concentration of the dry residue in water with a conductivity of 0.2 mS or above has been developed, which can be used for rapid analysis of the water at nonlaboratory conditions and in the laboratory for rapid obtaining the information about a sample.

  5. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  6. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  7. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows.

    Science.gov (United States)

    Castillo, A R; St-Pierre, N R; Silva del Rio, N; Weiss, W P

    2013-05-01

    Thirty-nine commercial dairies in Merced County, California were enrolled in the present study to (1) compare lactating cow mineral intakes (via drinking water and total mixed ration) to the National Research Council (NRC) requirements, (2) evaluate the association between dietary concentrations of minerals with and without drinking water and adjusted for mineral concentrations in milk, and (3) compare 4 different methods to estimate excretion of minerals using either assays or estimations of milk mineral outputs and total daily mineral intake per cow with or without minerals coming from drinking water. Dairies were selected to represent a range of herd milk yields and a range of water mineral contents. Samples of total mixed ration, drinking water, and bulk tank milk were taken on 2 different days, 3 to 7d apart in each farm. Across-farm medians and percentile distributions were used to analyze results. The herd median milk yield interquartile ranged (10th to 90th percentile) from less than 25 to more than 39 kg/d and the concentration of total solids in water interquartile ranged from less than 200 to more than 1,490 mg/L. Including drinking water minerals in the diets increased dietary concentrations by minerals except for Na and Cl, which increased by 9.3 and 6.5%, respectively. Concentrations of P and K in milk were essentially the same as the NRC value to estimate lactation requirements. However, NRC milk values of Ca, Cl, and Zn were 10 to 20% greater than dairy farm values; and Na, Cu, Fe, and Mn were no less than 36% below NRC values. Estimated excretion of minerals via manure varied substantially across farms. Farms in the 10th percentile did have 2 to 3 times less estimated mineral excretions than those in the 90th percentile (depending on the mineral). Although including water minerals increased excretion of most minerals, the actual median effect of Ca, Mg, S, Cu, Fe, and Mn was less than 5%, and about 8% for Na and Cl. Replacing assayed concentrations

  8. skeletal complications in gaucher's disease: a case report abstract

    African Journals Online (AJOL)

    2012-09-06

    Sep 6, 2012 ... abscess of the left thigh, multiple left knee swellings and multiple blood transfusions, the latest being ... left knee swellings, palpitations and severe anaemia. (Hb 3.99). At this admission, splenomegaly .... patients by such procedures like Total Hip Replacement in the face of severe skeletal damage. For our ...

  9. Comparison of Active Vitamin D Compounds and a Calcimimetic in Mineral Homeostasis

    OpenAIRE

    Nguyen-Yamamoto, Loan; Bolivar, Isabel; Strugnell, Stephen A.; Goltzman, David

    2010-01-01

    The differential effects between cinacalcet and active vitamin D compounds on parathyroid function, mineral metabolism, and skeletal function are incompletely understood. Here, we studied cinacalcet and active vitamin D compounds in mice expressing the null mutation for Cyp27b1, which encodes 25-hydroxyvitamin D-1α-hydroxylase, thereby lacking endogenous 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Vehicle-treated mice given high dietary calcium had hypocalcemia, hypophosphatemia, and marked secon...

  10. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  11. Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.

    Science.gov (United States)

    Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R

    2016-10-01

    Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  13. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE)

    NARCIS (Netherlands)

    Apschner, Alexander; Huitema, Leonie F A; Ponsioen, Bas; Peterson-Maduro, Josi; Schulte-Merker, Stefan

    In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of

  14. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE)

    NARCIS (Netherlands)

    Apschner, A.; Huitema, L.F.A.; Ponsioen, B.; Peterson-Maduro, J.; Schulte-Merker, S.

    2014-01-01

    In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of

  15. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    Science.gov (United States)

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  16. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    Science.gov (United States)

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  17. Expression of Gla proteins during fish skeletal development

    OpenAIRE

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  18. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  20. One-stop shopping in Africa's minerals supermarket

    International Nuclear Information System (INIS)

    Spira, J.

    1980-01-01

    Johannesburg in South Africa is one of the minerals capitals of the world, providing a one-stop shopping supermarket for the most sought-after strategic minerals. Total annual mineral sales grew from R1563 million in 1970 to R6876 million in 1978. For 1979 the figure exceeded R9700 million. Production, trade and marketing of gold, coal, platinum, uranium, diamonds, iron ore, copper, antimony, mineral sands, asbestos and vanadium are shortly discussed

  1. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    Science.gov (United States)

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  2. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system

    Directory of Open Access Journals (Sweden)

    Manish Gutch

    2013-01-01

    Full Text Available Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  3. Unique biochemical and mineral composition of whale ear bones.

    Science.gov (United States)

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  4. Skeletal muscle and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  5. Relative Skeletal Muscle Mass Is Associated with Development of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Byung Sam Park

    2013-12-01

    Full Text Available BackgroundVisceral adiposity is related to insulin resistance. Skeletal muscle plays a central role in insulin-mediated glucose disposal; however, little is known about the association between muscle mass and metabolic syndrome (MS. This study is to clarify the clinical role of skeletal muscle mass in development of MS.MethodsA total of 1,042 subjects were enrolled. Subjects with prior MS and chronic diseases were excluded. After 24 months, development of MS was assessed using NCEP-ATP III criteria. Skeletal muscle mass (SMM; kg, body fat mass (BFM; kg, and visceral fat area (VFA; cm2 were obtained from bioelectrical analysis. Then, the following values were calculated as follows: percent of SMM (SMM%; %: SMM (kg/weight (kg, skeletal muscle index (SMI; kg/m2: SMM (kg/height (m2, skeletal muscle to body fat ratio (MFR: SMM (kg/BFM (kg, and skeletal muscle to visceral fat ratio (SVR; kg/cm2: SMM (kg/VFA (cm2.ResultsAmong 838 subjects, 88 (10.5% were newly diagnosed with MS. Development of MS increased according to increasing quintiles of BMI, SMM, VFA, and SMI, but was negatively associated with SMM%, MFR, and SVR. VFA was positively associated with high waist circumference (WC, high blood pressure (BP, dysglycemia, and high triglyceride (TG. In contrast, MFR was negatively associated with high WC, high BP, dysglycemia, and high TG. SVR was negatively associated with all components of MS.ConclusionRelative SMM ratio to body composition, rather than absolute mass, may play a critical role in development of MS and could be used as a strong predictor.

  6. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  7. Skeletal-muscle CT, with special reference to polymyositis and myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuto; Ono, Shimato; Yasuda, Takeshi; Morimoto, Kenji; Terao, Akira; Shirabe, Teruo; Yokobayashi, Tsuneo (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1984-10-01

    We here report on skeletal-muscle CT at the thigh level as studied using a whole-body CT scanner, with special reference to polymyositis (PM) and myasthenia gravis (MG). Early diseased muscles appeared homogenous and were likely to be almost normal. The first sign of muscular atrophy was the appearance of small, patchy or linear, low-density tissues in several muscles. These low-density tissues gradually increased in number until finally the diseased muscles were totally replaced by low-density tissue. These pathological findings were more severe in PM than in MG. There was a maldistribution of low-density tissue in several cases of PM. According to these findings, skeletal-muscle CT was thought to be of great help for the recognition of the general condition of muscles and for the follow-up on the patients. We think skeletal-muscle CT has a very practical application for the better selection of suitable muscular biopsy and EMG sites and for the better clinical interpretation of these findings.

  8. Skeletal-muscle CT, with special reference to polymyositis and myasthenia gravis

    International Nuclear Information System (INIS)

    Higashi, Yasuto; Ono, Shimato; Yasuda, Takeshi; Morimoto, Kenji; Terao, Akira; Shirabe, Teruo; Yokobayashi, Tsuneo

    1984-01-01

    We here report on skeletal-muscle CT at the thigh level as studied using a whole-body CT scanner, with special reference to polymyositis (PM) and myasthenia gravis (MG). Early diseased muscles appeared homogenous and were likely to be almost normal. The first sign of muscular atrophy was the apperance of small, patchy or linear, low-density tissues in several muscles. These low-density tissues gradually increased in number until finally the diseased muscles were totally replaced by low-density tissue. These pathological findings were more severe in PM than in MG. There was a maldistribution of low-density tissue in several cases of PM. According to these findings, skeletal-muscle CT was thought to be of great help for the recognition of the general condition of muscles and for the follow-up on the patients. We think skeletal-muscle CT has a very practical application for the better selection of suitable muscular biopsy and EMG sites and for the better clinical interpretation of these findings. (author)

  9. Skeletal muscle metastases: primary tumours, prevalence, and radiological features

    International Nuclear Information System (INIS)

    Surov, Alexey; Spielmann, Rolf Peter; Behrmann, Curd; Hainz, Michael; Holzhausen, Hans-Juergen; Arnold, Dirk; Katzer, Michaela; Schmidt, Joerg

    2010-01-01

    Although skeletal muscles comprise nearly 50% of the total human body mass and are well vascularised, metastases in the musculature are rare. The reported prevalence of skeletal muscle metastases from post-mortem studies of patients with cancer is inconstant and ranges from 0.03 to 17.5%. Of 5,170 patients with metastasised cancer examined and treated at our institution during the period from January 2000 to December 2007, 61 patients with muscle metastases (80 lesions) were identified on computed tomography (CT). Genital tumours (24.6%) were the most frequent malignancies metastasising into the skeletal musculature, followed by gastrointestinal tumours (21.3%), urological tumours (16.4%), and malignant melanoma (13.1%). Other primary malignancies were rarer, including bronchial carcinoma (8.2%), thyroid gland carcinoma (4.9%), and breast carcinoma (3.3%). In 8.2%, carcinoma of unknown primary was diagnosed. Skeletal muscle metastases (SMM) were located in the iliopsoas muscle (27.5%), paravertebral muscles (25%), gluteal muscles (16.3%), lower extremity muscles (12.5%), abdominal wall muscles (10%), thoracic wall muscles (5%), and upper extremity muscles (3.8%). Most (76.3%) of the 80 SMM were diagnosed incidentally during routine staging CT examinations, while 23.7% were symptomatic. Radiologically, SMM presented with five different types of lesions: focal intramuscular masses (type I, 52.5% of SMM), abscess-like intramuscular lesions (type II, 32.5%), diffuse metastatic muscle infiltration (type III, 8.8%), multifocal intramuscular calcification (type IV, 3.7%) and intramuscular bleeding (type V, 2.5%). (orig.)

  10. Skeletal muscle metastases: primary tumours, prevalence, and radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey; Spielmann, Rolf Peter; Behrmann, Curd [Martin-Luther-University Halle-Wittenberg, Department of Radiology, Halle (Germany); Hainz, Michael; Holzhausen, Hans-Juergen [Martin-Luther-University Halle-Wittenberg, Department of Pathology, Halle (Germany); Arnold, Dirk [Martin-Luther-University Halle-Wittenberg, Department of Haematology/Oncology, Halle (Germany); Katzer, Michaela [Martin-Luther-University Halle-Wittenberg, Department of Urology, Halle (Germany); Schmidt, Joerg [Martin-Luther-University Halle-Wittenberg, Department of Medical Statistics and Controlling, Halle (Germany)

    2010-03-15

    Although skeletal muscles comprise nearly 50% of the total human body mass and are well vascularised, metastases in the musculature are rare. The reported prevalence of skeletal muscle metastases from post-mortem studies of patients with cancer is inconstant and ranges from 0.03 to 17.5%. Of 5,170 patients with metastasised cancer examined and treated at our institution during the period from January 2000 to December 2007, 61 patients with muscle metastases (80 lesions) were identified on computed tomography (CT). Genital tumours (24.6%) were the most frequent malignancies metastasising into the skeletal musculature, followed by gastrointestinal tumours (21.3%), urological tumours (16.4%), and malignant melanoma (13.1%). Other primary malignancies were rarer, including bronchial carcinoma (8.2%), thyroid gland carcinoma (4.9%), and breast carcinoma (3.3%). In 8.2%, carcinoma of unknown primary was diagnosed. Skeletal muscle metastases (SMM) were located in the iliopsoas muscle (27.5%), paravertebral muscles (25%), gluteal muscles (16.3%), lower extremity muscles (12.5%), abdominal wall muscles (10%), thoracic wall muscles (5%), and upper extremity muscles (3.8%). Most (76.3%) of the 80 SMM were diagnosed incidentally during routine staging CT examinations, while 23.7% were symptomatic. Radiologically, SMM presented with five different types of lesions: focal intramuscular masses (type I, 52.5% of SMM), abscess-like intramuscular lesions (type II, 32.5%), diffuse metastatic muscle infiltration (type III, 8.8%), multifocal intramuscular calcification (type IV, 3.7%) and intramuscular bleeding (type V, 2.5%). (orig.)

  11. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  12. ASSOCIATION BETWEEN DENTAL AND SKELETAL MATURATION STAGES IN CROATIAN SUBJECTS.

    Science.gov (United States)

    Srkoc, Tamara; Mestrović, Senka; Anić-Milosević, Sandra; Slaj, Mladen

    2015-12-01

    This study investigated the relationships between the stages of calcification of teeth and cervical vertebral maturation. The sample consisted of 295 subjects (129 male and 166 female), mean age 13.36 ± 2.65 (range 7-18) years. Dental age was evaluated from panoramic radiographs according to the method of Demirjian. Cervical vertebral maturation was determined on lateral cephalometric radiographs using cervical vertebrae maturation stages (CVS). For assessing the relationship between cervical vertebral and dental maturation, percentage distributions of the stages of calcification for each studied tooth were calculated. Only in the first CVS stage, boys and girls were of the same age. In all other stages (CVS 2-CVS 6) girls were by 0.98 (range 0.23-1.86) younger than boys. Gender differences in the mineralization pattern were also observed. It was found that dental maturation was finished earlier in female subjects. The highest correlation coefficient between dental and skeletal maturity was found for second premolars. Mineralization pattern of second premolars could be considered as a guideline for prediction of the pubertal growth spurt. Dental maturation stages might be clinically useful as a reliable indicator of facial growth.

  13. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals

    Science.gov (United States)

    Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.

    2010-05-01

    Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly

  14. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  15. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  16. Optimal management of bone mineral disorders in chronic kidney disease and end stage renal disease.

    Science.gov (United States)

    Lundquist, Andrew L; Nigwekar, Sagar U

    2016-03-01

    The review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and end stage renal disease. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of mineral bone disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Mineral bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders, and with the ability to intervene on more than one pathway, are needed to advance patient care.

  17. Osseointegration: a review of the fundamentals for assuring cementless skeletal fixation

    Directory of Open Access Journals (Sweden)

    Isaacson BM

    2014-04-01

    Full Text Available Brad M Isaacson,1,2 Sujee Jeyapalina3,4 1Henry M Jackson Foundation for the Advancement of Military Medicine, 2The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, MD, USA; 3Department of Orthopedics, 4Orthopedic Research Laboratory, University of Utah, Salt Lake City, UT, USA Abstract: Direct skeletal fixation, termed osseointegration, has expanded in the last century and includes use in total joint replacements, the edentulous mandible and maxilla, and percutaneous osseointegrated prosthetics. Although it is well known that titanium and bone have the ability to form a durable bone–implant interface, new applications have emerged in the field of orthopedics, which requires a more thorough assessment of the literature. This review aims to introduce the basic biological principles for attaining osseointegration and discusses the major factors for assuring successful cementless fixation. Keywords: osseointegration, bone, skeletal attachment, total joint replacements, dental implants, percutaneous

  18. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study.

    Science.gov (United States)

    Shen, Wei; Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E; Grunfeld, Carl

    2012-04-01

    An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38-52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = -0.399 to -0.550, P BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = -0. 296 to -0.549, P BMAT (standardized regression coefficients = 0.268-0.614, P BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density.

  19. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  20. Trabecular bone score as a skeletal fragility index in acromegaly patients.

    Science.gov (United States)

    Hong, A R; Kim, J H; Kim, S W; Kim, S Y; Shin, C S

    2016-03-01

    Lumbar spine trabecular bone score (TBS) was significantly decreased in active acromegaly patients. TBS may be useful to assess the skeletal fragility in acromegaly in which bone mineral density (BMD) is not sufficient to represent bone strength and explain the high incidence of fragility fractures in acromegaly patients. Although the data on BMD are controversial, patients with acromegaly have an increased risk of fragility fracture. We examined the lumbar spine TBS to explain the skeletal deterioration in acromegaly patients. We included 14 men and 19 women acromegaly patients who underwent dual-energy X-ray absorptiometry at the time of diagnosis from 2000 to 2014 at Seoul National University Hospital. Ninety-nine age-, sex- and body mass index-matched controls were recruited. Biochemical parameters, lumbar spine TBS, and BMD at all sites were measured. Gonadal status was evaluated at diagnosis. Lumbar spine TBS was lower in acromegaly patients than in controls in both genders (1.345 ± 0.121 vs. 1.427 ± 0.087, P = 0.005 in men; 1.356 ± 0.082 vs. 1.431 ± 0.071, P = 0.001 in women). In contrast, BMD at all sites did not differ between the two groups. Hypogonadal acromegaly patients (men, n = 9; women, n = 12) had lower TBS values compared with controls both in men and women (all P acromegaly patients, lumbar spine TBS was lower than in women controls only (P = 0.041). Skeletal microarchitecture was deteriorated in acromegaly patients as assessed by TBS, which seems to be a consequence of growth hormone excess as well as hypogonadism, especially in women.

  1. Treatment outcome of bimaxillary surgery for asymmetric skeletal class II deformity.

    Science.gov (United States)

    Chen, Yun-Fang; Liao, Yu-Fang; Chen, Yin-An; Chen, Yu-Ray

    2018-05-04

    Facial asymmetry is one of the main concerns in patients with a dentofacial deformity. The aims of the study were to (1) evaluate the changes in facial asymmetry after bimaxillary surgery for asymmetric skeletal class II deformity and (2) compare preoperative and postoperative facial asymmetry of class II patients with normal controls. The facial asymmetry was assessed for 30 adults (21 women and 9 men, mean age: 29.3 years) who consecutively underwent bimaxillary surgery for asymmetric skeletal class II deformity using cone-beam computed tomography before and at least 6 months after surgery. Thirty soft tissue and two dental landmarks were identified on each three-dimensional facial image, and the asymmetry index of each landmark was calculated. Results were compared with those of 30 normal control subjects (21 women and 9 men, mean age: 26.2 years) with skeletal class I structure. Six months after surgery, the asymmetric index of the lower face and total face decreased significantly (17.8 ± 29.4 and 16.6 ± 29.5 mm, respectively, both p class II patients had residual chin asymmetry. The postoperative total face asymmetric index was positively correlated with the preoperative asymmetric index (r = 0.37, p class II deformity resulted in a significant improvement in lower face asymmetry. However, approximately 50% of the patients still had residual chin asymmetry. The total face postoperative asymmetry was moderately related to the initial severity of asymmetry. These findings could help clinicians better understand orthognathic outcomes on different facial regions for patients with asymmetric class II deformity.

  2. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  3. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Science.gov (United States)

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  4. Comparative Evaluation of Dental and Skeletal Fluorosis in an Endemic Fluorosed District, Salem, Tamil Nadu.

    Science.gov (United States)

    Ramesh, Maya; Malathi, N; Ramesh, K; Aruna, Rita Mary; Kuruvilla, Sarah

    2017-11-01

    High levels of fluoride in the drinking water, especially ground water, results in skeletal fluorosis which involves the bone and major joints. This study was conducted to assess the prevalence of skeletal fluorosis to compare with dental fluorosis in an endemically fluorosed population in the District of Salem, Tamil Nadu. Institutional ethical clearance was obtained. A total of 206 patients who reported to the Department of Hematology for blood investigations were the participants in this study. Age, sex, place, weight, height, dental fluorosis, and skeletal complaints were noted down. Body mass index was calculated, and statistical analysis was performed. Dental fluorosis was present in 63.1% and absent in 36.9% of the samples reported. Skeletal fluorosis was present in 24.8% and was absent in 75.2%. A large number of the patients had knee pain and difficulty in bending. Chi-square test was used for statistical analysis. Skeletal fluorosis and age were compared and P value was 0.00 and was significant. Dental fluorosis and skeletal fluorosis were compared and P value was found to be 0.000 and significant. There is a need to take measures to prevent dental and skeletal fluorosis among the residents of Salem district. Calcium balance should be maintained, and fluoride intake should be minimized to reduce the symptoms. The government should provide water with low fluoride level for drinking and cooking. Once the symptoms develop, treatment largely remains symptomatic, using analgesics and physiotherapy.

  5. Validation of a Novel Scoring System for Changes in Skeletal Manifestations of Hypophosphatasia in Newborns, Infants, and Children: The Radiographic Global Impression of Change Scale.

    Science.gov (United States)

    Whyte, Michael P; Fujita, Kenji P; Moseley, Scott; Thompson, David D; McAlister, William H

    2018-05-01

    Hypophosphatasia (HPP) is the heritable metabolic disease characterized by impaired skeletal mineralization due to low activity of the tissue-nonspecific isoenzyme of alkaline phosphatase. Although HPP during growth often manifests with distinctive radiographic skeletal features, no validated method was available to quantify them, including changes over time. We created the Radiographic Global Impression of Change (RGI-C) scale to assess changes in the skeletal burden of pediatric HPP. Site-specific pairs of radiographs of newborns, infants, and children with HPP from three clinical studies of asfotase alfa, an enzyme replacement therapy for HPP, were obtained at baseline and during treatment. Each pair was scored by three pediatric radiologists ("raters"), with nine raters across the three studies. Intrarater and interrater agreement was determined by weighted Kappa coefficients. Interrater reliability was assessed using intraclass correlation coefficients (ICCs) and by two-way random effects analysis of variance (ANOVA) and a mixed-model repeated measures ANOVA. Pearson correlation coefficients evaluated relationships of the RGI-C to the Rickets Severity Scale (RSS), Pediatric Outcomes Data Collection Instrument Global Function Parent Normative Score, Childhood Health Assessment Questionnaire Disability Index, 6-Minute Walk Test percent predicted, and Z-score for height in patients aged 6 to 12 years at baseline. Eighty-nine percent (8/9) of raters showed substantial or almost perfect intrarater agreement of sequential RGI-C scores (weighted Kappa coefficients, 0.72 to 0.93) and moderate or substantial interrater agreement (weighted Kappa coefficients, 0.53 to 0.71) in patients aged 0 to 12 years at baseline. Moderate-to-good interrater reliability was observed (ICC, 0.57 to 0.65). RGI-C scores were significantly (p ≤ 0.0065) correlated with the RSS and with measures of global function, disability, endurance, and growth in the patients aged 6 to 12 years at

  6. A Method for Determining Skeletal Lengths from DXA Images

    Directory of Open Access Journals (Sweden)

    Fogelman Ignac

    2007-11-01

    Full Text Available Abstract Background Skeletal ratios and bone lengths are widely used in anthropology and forensic pathology and hip axis length is a useful predictor of fracture. The aim of this study was to show that skeletal ratios, such as length of femur to height, could be accurately measured from a DXA (dual energy X-ray absorptiometry image. Methods 90 normal Caucasian females, 18–80 years old, with whole body DXA data were used as subjects. Two methods, linear pixel count (LPC and reticule and ruler (RET were used to measure skeletal sizes on DXA images and compared with real clinical measures from 20 subjects and 20 x-rays of the femur and tibia taken in 2003. Results Although both methods were highly correlated, the LPC inter- and intra-observer error was lower at 1.6% compared to that of RET at 2.3%. Both methods correlated positively with real clinical measures, with LPC having a marginally stronger correlation coefficient (r2 = 0.94; r2 = 0.84; average r2 = 0.89 than RET (r2 = 0.86; r2 = 0.84; average r2 = 0.85 with X-rays and real measures respectively. Also, the time taken to use LPC was half that of RET at 5 minutes per scan. Conclusion Skeletal ratios can be accurately and precisely measured from DXA total body scan images. The LPC method is easy to use and relatively rapid. This new phenotype will be useful for osteoporosis research for individuals or large-scale epidemiological or genetic studies.

  7. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  8. Type 2 Diabetes and Risk of Hip Fractures and Non-Skeletal Fall Injuries in the Elderly: A Study From the Fractures and Fall Injuries in the Elderly Cohort (FRAILCO).

    Science.gov (United States)

    Wallander, Märit; Axelsson, Kristian F; Nilsson, Anna G; Lundh, Dan; Lorentzon, Mattias

    2017-03-01

    Questions remain about whether the increased risk of fractures in patients with type 2 diabetes (T2DM) is related mainly to increased risk of falling or to bone-specific properties. The primary aim of this study was to investigate the risk of hip fractures and non-skeletal fall injuries in older men and women with and without T2DM. We included 429,313 individuals (aged 80.8 ± 8.2 years [mean ± SD], 58% women) from the Swedish registry "Senior Alert" and linked the data to several nationwide registers. We identified 79,159 individuals with T2DM (45% with insulin [T2DM-I], 41% with oral antidiabetics [T2DM-O], and 14% with no antidiabetic treatment [T2DM-none]) and 343,603 individuals without diabetes. During a follow-up of approximately 670,000 person-years, we identified in total 36,132 fractures (15,572 hip fractures) and 20,019 non-skeletal fall injuries. In multivariable Cox regression models where the reference group was patients without diabetes and the outcome was hip fracture, T2DM-I was associated with increased risk (adjusted hazard ratio (HR) [95% CI] 1.24 [1.16-1.32]), T2DM-O with unaffected risk (1.03 [0.97-1.11]), and T2DM-none with reduced risk (0.88 [0.79-0.98]). Both the diagnosis of T2DM-I (1.22 [1.16-1.29]) and T2DM-O (1.12 [1.06-1.18]) but not T2DM-none (1.07 [0.98-1.16]) predicted non-skeletal fall injury. The same pattern was found regarding other fractures (any, upper arm, ankle, and major osteoporotic fracture) but not for wrist fracture. Subset analyses revealed that in men, the risk of hip fracture was only increased in those with T2DM-I, but in women, both the diagnosis of T2DM-O and T2DM-I were related to increased hip fracture risk. In conclusion, the risk of fractures differs substantially among patients with T2DM and an increased risk of hip fracture was primarily found in insulin-treated patients, whereas the risk of non-skeletal fall injury was consistently increased in T2DM with any diabetes medication. © 2016 American

  9. Canadian minerals yearbook : 2004 review and outlook

    International Nuclear Information System (INIS)

    2004-01-01

    The main focus of the CMY publication is the non-fuel mineral industry, together with uranium, although all mineral fuels are normally included when the total value of Canada's mineral production is reported. The Yearbook includes chapters devoted to each major mineral commodity produced in Canada: aluminum, coal, copper, diamonds, gold, iron ore, magnesium, nickel, potash, salt, silica, and uranium. The subject matter spans all stages of mineral industry activity from geoscience and exploration, through mining and processing, to markets and use. Although domestic issues receive the greatest attention in each chapter, international developments may also be reviewed because of the global nature of the mineral industry and the significant impact that such developments could have on the Canadian industry

  10. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  11. Trace element analysis of mineral and tap water samples using total reflection x-ray fluorescence (TXRF)

    International Nuclear Information System (INIS)

    Mangala, M.J.; Korir, K.A.; Maina, D.M.; Kinyua, A.M.

    2000-01-01

    Results of trace element analysis by TXRF of tap water and various brands of bottled mineral water samples which are representative of local and imported brands sold in Nairobi are reported. The variation in elemental concentrations in water samples analyzed were as follows: potassium (K) 0.2 to 28.9 μg/ml; calcium (Ca) 2.2 to 120 μg/ml; titanium (Ti) 11 to 60 μg/l; manganese (Mn) 8 to 670 μg/l; iron (Fe) 31 to 540 μg/l; copper (Cu) 8 to 30 μg/l; zinc (Zn) 8 to 4730 μg/l; bromine (Br) 9 to 248 μg/l; rubidium (Rb) 10 to 40 μg/l and strontium (Sr) 10 to 1000 μg/l. Local mineral water samples contain higher levels of trace elements; manganese (Mn), zinc (Zn), bromine (Br), rubidium (Rb) and strontium (Sr) as compared to the imported brands. Principal component analysis of the results revealed three component loading factors clusters for: rubidium (Rb), strontium (Sr) and calcium (Ca); titanium (Ti), iron (Fe), bromine (Br), and zinc (Zn); zinc (Zn), manganese (Mn) and potassium (K) respectively. The percentage of total variance explained by the components was 31.4, 27.3, and 14.8 respectively. In this study, we also found that a limited spread of 5-6 mm for a 10 μl sample was achieved when the quartz sample carrier was dried in a low pressure (300 mbar) oven at 70 o C for 10 hours. (author)

  12. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    Science.gov (United States)

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  13. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    DEFF Research Database (Denmark)

    Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L

    2017-01-01

    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone...... as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total...

  14. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    Science.gov (United States)

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  15. Bone mineral density deficits in childhood cancer survivors: Pathophysiology, prevalence, screening, and management

    Directory of Open Access Journals (Sweden)

    Min Jae Kang

    2013-02-01

    Full Text Available As chemotherapy and other sophisticated treatment strategies evolve and the number of survivors of long-term childhood cancer grows, the long-term complications of treatment and the cancer itself are becoming ever more important. One of the most important but often neglected complications is osteoporosis and increased risk of fracture during and after cancer treatment. Acquisition of optimal peak bone mass and strength during childhood and adolescence is critical to preventing osteoporosis later in life. However, most childhood cancer patients have multiple risk factors for bone mineral loss. Cancer itself, malnutrition, decreased physical activity during treatment, chemotherapeutic agents such as steroids, and radiotherapy cause bone mineral deficit. Furthermore, complications such as growth hormone deficiency and musculoskeletal deformity have negative effects on bone metabolism. Low bone mineral density is associated with fractures, skeletal deformity, pain, and substantial financial burden not only for childhood cancer survivors but also for public health care systems. Thus, it is important to monitor bone health in these patients and minimize their risk of developing osteoporosis and fragility fractures later in life.

  16. Avaliação da correlação entre os estágios de mineralização dos dentes inferiores e a idade esquelética observados sob o gráfico de crescimento puberal Correlationship between the stages of tooth mineralization on the lower arch and the skeletal age expressed through the chart of pubertal growth spurt

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Eto

    2005-04-01

    Full Text Available A radiografia de mão e punho é utilizada em Ortodontia para avaliação dos estágios de maturação dos pacientes e, conseqüentemente, dos estágios do crescimento facial e da estatura. Esta radiografia permite a identificação da idade esquelética do paciente podendo ser correlacionada ao gráfico do surto de crescimento puberal. Já a radiografia panorâmica permite uma avaliação geral da condição de desenvolvimento dos dentes. Intencionou-se com esse trabalho avaliar a possibilidade de correlação entre os estágios de mineralização dos dentes inferiores com a idade esquelética vista pelo gráfico do surto de crescimento puberal, em ambos os gêneros. Um total de 190 radiografias de mão e punho, acompanhadas de radiografias panorâmicas, obtidas em uma mesma época, de 104 jovens do gênero masculino e 86 do feminino foram analisadas. Após a comparação dos resultados, concluiu-se que não existe a possibilidade de correlação consistente entre os estágios de mineralização dentária na arcada inferior e a idade esquelética vista através do gráfico do SCP.X-rays of the hand and the wrist are largely used in orthodontics to provide orientation regarding both body and face growth during one's growing years. Through these x-rays it is possible to obtain the skeletal age of the patients, which can thereafter be expressed through the chart of pubertal growth spurt. Panoramic x-rays are a routine procedure in orthodontics, and its main purpose is the panoramic evaluation of the teeth that have already broken out, and those which have not. The aim of this paper was to correlate the dental mineralization stages of lower teeth and skeletal age as seen through the pubertal growth spurt, by comparing both types of x-rays. Data consisted of 190 panoramic x-rays and 190 x-rays of the hand and wrist, taken of 104 male patients and 86 female ones. The results show that there is no possibility of a consistent correlation between the

  17. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  18. Skeletal sequelae of radiation therapy for malignant childhood tumors

    International Nuclear Information System (INIS)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D'Angio, G.J.; Drummond, D.S.

    1990-01-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy

  19. Traumatic skeletal changes

    International Nuclear Information System (INIS)

    Troeger, J.; Schofer, O.

    1985-01-01

    Skeleton scintiscanning is indicated in the following cases: (1) Suspected bone injury after clinical examination, the radiograph of the skeletal region in question contributing findings that either do not confirm suspision, or make not clear whether the changes observed are traumatic. (2) Polytrauma. (3) When the accident scenario reported by the persons taking care of the child does not sufficiently explain the skeletal changes observed, or when these persons expressly deny the possibility of a trauma being the cause of findings observed. (4) Suspected or proven battered-child syndrome. (orig./MG) [de

  20. Quantitative determination of bone mineral concentrations using quotient densitometry in patients under long-term anticonvulsant therapy

    International Nuclear Information System (INIS)

    Schulz, H.

    1980-01-01

    The effect on bone mineral concentration of anticonvulsive long-term therapy was investigated in order to find out if there is a relation between the occurence and extent of osteomalacial lesions on the one hand and the type and time of application of anticonvulsants. The hydroxyl apatite content was determined by X-ray densitometry. The method is considered to be suitable for yearly skeletal monitoring of epilepticians treated with anticonvulsants. (orig./HP) [de

  1. Skeletal sarcoidosis; Skelettsarkoidose

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, J. [Klinikum Bremen-Mitte, Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany); Freyschmidt, P. [Dermatologische Gemeinschaftspraxis, Schwalmstadt (Germany)

    2016-10-15

    Presentation of the etiology, pathology, clinical course, radiology and differential diagnostics of skeletal sarcoidosis. Noncaseating epithelioid cell granulomas can trigger solitary, multiple or disseminated osteolysis, reactive osteosclerosis and/or granulomatous synovitis. The incidence of sarcoidosis is 10-12 per 100,000 inhabitants per year. Skeletal involvement is approximately 14 %. Skeletal involvement occurs almost exclusively in the stage of lymph node and pulmonary manifestation. Most cases of skeletal involvement are clinically asymptomatic. In the case of synovial involvement, unspecific joint complaints (arthralgia) or less commonly arthritis can occur. Typical skin alterations can be diagnostically significant. Punch out lesions osteolysis, coarse destruction and osteosclerosis can occur, which are best visualized with projection radiography and/or computed tomography. Pure bone marrow foci without interaction with the bone can only be detected with magnetic resonance imaging (MRI) and more recently with positron emission tomography (PET), mostly as incidental findings. There is a predeliction for the hand and trunk skeleton. Skeletal tuberculosis, metastases, multiple myeloma, Langerhans cell histiocytosis and sarcoid-like reactions in solid tumors must be differentiated. The key factors for correct diagnosis are thorax radiography, thorax CT and dermatological manifestations. (orig.) [German] Darstellung von Aetiologie, Pathologie, Klinik, Radiologie und Differenzialdiagnose der Skelettsarkoidose. Nichtverkaesende Epitheloidzellgranulome koennen solitaere, multiple oder disseminierte Osteolysen, reaktive Osteosklerosen und/oder eine granulomatoese Synovialitis ausloesen. Inzidenz der Sarkoidose: 10-12/100.000 Einwohner/Jahr. Skelettbeteiligung ca. 14 %. Skelettbeteiligungen kommen fast ausschliesslich im Stadium einer Lymphknoten- und pulmonalen Manifestation vor. Die meisten Skelettbeteiligungen verlaufen klinisch stumm. Bei synovialer

  2. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  3. A systematic review of genetic skeletal disorders reported in Chinese biomedical journals between 1978 and 2012

    Directory of Open Access Journals (Sweden)

    Cui Yazhou

    2012-08-01

    Full Text Available Abstract Little information is available on the prevalence, geographic distribution and mutation spectrum of genetic skeletal disorders (GSDs in China. This study systematically reviewed GSDs as defined in “Nosology and Classification of genetic skeletal disorders (2010 version” using Chinese biomedical literature published over the past 34 years from 1978 to 2012. In total, 16,099 GSDs have been reported. The most frequently reported disorders were Marfan syndrome, osteogenesis imperfecta, fibrous dysplasia, mucopolysaccharidosis, multiple cartilaginous exostoses, neurofibromatosis type 1 (NF1, osteopetrosis, achondroplasia, enchondromatosis (Ollier, and osteopoikilosis, accounting for 76.5% (12,312 cases of the total cases. Five groups (group 8, 12, 14, 18, 21 defined by “Nosology and Classification of genetic skeletal disorders” have not been reported in the Chinese biomedical literature. Gene mutation testing was performed in only a minor portion of the 16,099 cases of GSDs (187 cases, 1.16%. In total, 37 genes for 41 different GSDs were reported in Chinese biomedical literature, including 43 novel mutations. This review revealed a significant imbalance in rare disease identification in terms of geographic regions and hospital levels, suggesting the need to create a national multi-level network to meet the specific challenge of care for rare diseases in China.

  4. Thoracic and lumbar vertebral bone mineral density changes in a natural occurring dog model of diffuse idiopathic skeletal hyperostosis.

    Directory of Open Access Journals (Sweden)

    Steven De Decker

    Full Text Available Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD. There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH. DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30 or without (n=29 DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001, lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01, and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03 were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001 and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001 were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding.

  5. Pelvic radiograph in skeletal dysplasias: An approach

    Directory of Open Access Journals (Sweden)

    Manisha Jana

    2017-01-01

    Full Text Available The bony pelvis is constituted by the ilium, ischium, pubis, and sacrum. The pelvic radiograph is an important component of the skeletal survey performed in suspected skeletal dysplasia. Most of the common skeletal dysplasias have either minor or major radiological abnormalities; hence, knowledge of the normal radiological appearance of bony pelvis is vital for recognizing the early signs of various skeletal dysplasias. This article discusses many common and some uncommon radiological findings on pelvic radiographs along with the specific dysplasia in which they are seen; common differential diagnostic considerations are also discussed.

  6. New opportunities for U.S. coal and mineral exporters

    International Nuclear Information System (INIS)

    Watkins, J.A.

    1992-01-01

    U.S. exports of coal, metals and industrial minerals to the European Community were valued at $2.4 billion in 1989, representing 47 percent of total export revenues generated by these materials. Coal was the single largest contributor to the value of mineral exports to the EC with total sales of approximately $2 billion in 1989. With the extinction of trade barriers that will be triggered by the economic and political unification of Europe, new opportunities for U.S. minerals exporters are likely to develop. This paper examines the overall impact of European integration on U.S. metal and industrial mineral exports and provides a more rigorous analysis of the outlook for thermal and coking coal exports to the EC during the next decade

  7. Importância das espécies minerais no potássio total da fração argila de solos do Triângulo Mineiro Importance of mineral species in total potassium content of clay fraction in soils of the Triângulo Mineiro, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    V. F. Melo

    2003-10-01

    Full Text Available Poucos trabalhos relacionam a reserva de K em solos desenvolvidos sob clima tropical úmido com os minerais presentes na fração argila. Com esse propósito, coletaram-se amostras de 19 solos no Triângulo Mineiro, originados de diferentes materiais de origem e estádios de desenvolvimento. Dada a significativa ocorrência, tomou-se maior número de amostras no Grupo Bauru, abrangendo todas as formações geológicas encontradas na região. Os teores totais de K foram determinados após digestão das amostras de terra fina e das frações areia, silte e argila com ácidos concentrados (HF, HNO3 e H2SO4. Para avaliar a contribuição de cada espécie mineral nos teores totais de K, amostras da fração argila saturadas por Na foram submetidas a extrações seqüenciais e seletivas de minerais, na seguinte ordem: extração de Al e óxidos de Fe de baixa cristalinidade; extração de óxidos de Fe mais cristalinos; extração de gibbsita e caulinita; extração de minerais do tipo 2:1; extração de feldspatos e minerais resistentes. A composição mineralógica da fração argila refletiu o intenso grau de intemperismo e lixiviação dos solos do Triângulo Mineiro, com baixos teores de minerais de baixa cristalinidade, predomínio de caulinita e presença de outros minerais secundários resistentes. Mesmo com essa mineralogia, a fração argila apresentou o maior teor de K total, principalmente para os solos mais intemperizados. Considerando a abundância de caulinita na fração argila, este mineral foi uma importante fonte de formas não-trocáveis do nutriente. Por outro lado, a contribuição dos óxidos de Fe e de Al de baixa cristalinidade e dos óxidos de Fe mais cristalinos nos teores totais de K da fração argila foi inexpressiva. Em geral, os minerais primários facilmente intemperizáveis (mica e feldspato contribuíram em grande proporção para o K total da fração argila, principalmente para os solos mais jovens desenvolvidos de

  8. Retrospective review to determine the utility of follow-up skeletal surveys in child abuse evaluations when the initial skeletal survey is normal

    Directory of Open Access Journals (Sweden)

    Kachelmeyer Andrea

    2011-09-01

    Full Text Available Abstract Objective The AAP recommends that a follow-up skeletal survey be obtained for all children Methods A retrospective review of radiology records from September 1, 1998 - January 31, 2007 was conducted. Suspected victims of child abuse who were Results Forty-seven children had a negative initial skeletal survey and were included for analysis. The mean age was 6.9 months (SD 5.7; the mean number of days between skeletal surveys was 18.7 (SD 10.1 Four children (8.5% had signs of healing bone trauma on a follow-up skeletal survey. Three of these children (75% had healing rib fractures and one child had a healing proximal humerus fracture. The findings on the follow-up skeletal survey yielded forensically important information in all 4 cases and strengthened the diagnosis of non-accidental trauma. Conclusion 8.5 percent of children with negative initial skeletal surveys had forensically important findings on follow-up skeletal survey that increased the certainty of the diagnosis of non-accidental trauma. A follow-up skeletal survey can be useful even when the initial skeletal survey is negative.

  9. Assessment of mandibular growth by skeletal scintigraphy

    International Nuclear Information System (INIS)

    Kaban, L.B.; Cisneros, G.J.; Heyman, S.; Treves, S.

    1982-01-01

    Accurate assessment of facial skeletal growth remains a major problem in craniomaxillofacial surgery. Current methods include: (1) comparisons of chronologic age with growth histories of the patient and the family, (2) hand-wrist radiographs compared with a standard, and (3) serial cephalometric radiographs. Uptake of technetium-99m methylene diphosphonate into bone is a reflection of current metabolic activity and blood flow. Therefore, scintigraphy with this radiopharmaceutical might serve as a good method of assessing skeletal growth. Thirty-four patients, ranging in age from 15 months to 22 years, who were undergoing skeletal scintigrams for acute pathologic conditions of the extremities, were used to develop standards of uptake based on age and skeletal maturation. The results indicate that skeletal scintigraphy may be useful in evaluation of mandibular growth

  10. Determination of bone mineral density in the third lumbar vertebral body using photon absorptiometry techniques

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Dual-photon absorptiometry and triple-energy X-ray absorptiometry were used to investigate the total bone mineral content and density as well as the trabecular bone mineral density in the third lumbar vertebral body. Both anteroposterior (AP) and lateral (LAT) measurements were performed. By combining the two projections it was found that the mean trabecular bone mineral density for all 202 subjects included in the study was 52% (SD±20%) of the total bone mineral density in the third lumbar vertebral body. The mean trabecular bone mineral density as a fraction of the total vertebral body bone mineral density decreased as a function of age. The relative annual change in this fraction differed between males and females. It was also found that neither trabecular nor total bone mineral density differed significantly between male and female subjects aged 25-35 years, and bone mineral density (BMD), expressed in g/cm 3 , showed no correlation to subject height, body weight or body mass index (BMI). Male and female individuals showed different rates of change of trabecular bone mineral density with age

  11. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  12. Whole Body MR Imaging Versus 99mTC-Methylene Diphosphonate Scintigraphy in Detection of Skeletal Metastases

    International Nuclear Information System (INIS)

    SALEM, H.T.M.

    2009-01-01

    The introduction of new chemotherapy protocols, which include both marrow and stem cell transplantation, has increased the demand for accurate and early detection of skeletal metastases, particularly metastases to marrow (Eustace et al., 1997). All existing methods of detection skeletal metastases have limitations. Metastases to bone only become apparent on radiographs after the loss of more than 50% of the bone mineral content at the site of the disease. Although CT allows earlier detection of cortical destruction by imaging in contiguous tomographic slices, its ability to detect early deposits in marrow is limited (Gold et al., 1990). The use of bone scintigraphy in the assessment of skeletal abnormalities is based on increased sensitivity in detecting abnormalities before other diagnostic imaging techniques. The pitfall of bone scintigraphy is its lack of specificity. There must be close correlation of scintigraphic findings with those of other imaging modalities (Nadel et al., 2001). The high spatial resolution and excellent soft-tissue contrast make MR imaging an ideal tool for the detection of osseous lesions. The limited field of view must be considered a major limitation of conventional MR imaging. Furthermore MR imaging approaches were limited by long acquisition times. Development in MR imaging, such as the development of turbo sequences, have led to renewed interest in MR imaging as a potential whole body screening tool (Johnson et al., 1997 and Lauenstein et al., 2004).

  13. Effect of ethanol on human osteosarcoma cell proliferatation, differentiation and mineralization

    International Nuclear Information System (INIS)

    Vignesh, R.C.; Sitta Djody, S.; Jayasudha, E.; Gopalakrishnan, V.; Ilangovan, R.; Balaganesh, M.; Veni, S.; Sridhar, M.; Srinivasan, N.

    2006-01-01

    The habitual consumption of even moderate quantities of alcoholic beverages is clearly associated with reduced bone mass, increased prevalence of skeletal fracture and also it is the major risk factor for the development of secondary osteoporosis. The present in vitro study was designed to determine the dose response effects of ethanol on osteoblast-like human osteosarcoma cells (SaOS-2) proliferation, differentiation, mineralization and cyto-toxicity. SaOS-2 cells were plated in 48 and 6 well culture plates and exposed to different concentrations of ethanol (1, 10, 100, 200 and 300 mM) for 24, 48 and 72 h. At the end of incubation, proliferation of cells was studied using crystal violet Bioassay. The cell lysate was utilized to determine ALP activity and conditioned media were used to measure LDH activity. Histochemical localization of ALP and mineralized nodules were studied from cells treated with ethanol (10 and 100 mM) for 21 days. At higher doses, there was a significant reduction in cell number, whereas at lower doses there were variable effects. In 24 h treatment, the higher doses showed a significant increase in ALP activity, whereas 48 and 72 h treatments showed an opposite trend. Ethanol treatment caused a dose- and time-dependent increase in LDH activity. Ethanol treatment altered the quality of mineralization at 10 mM dose whereas completely inhibited mineralization at 100 mM dose, despite the presence of serum. In conclusion, the toxic effect of ethanol is reflected on cell proliferation, differentiation and mineralization even at low doses and at extended treatment duration

  14. Skeletal muscle lymphoma: observations at MR imaging

    International Nuclear Information System (INIS)

    Eustace, S.; Winalski, C.S.; McGowen, A.; Lan, H.; Dorfman, D.

    1996-01-01

    We present the MR appearances of three patients with biopsy-proven primary lymphoma of skeletal muscle. In each case lymphoma resulted in bulky expansion of the involved muscle, homogeneously isointense to skeletal muscle on T1-weighted images, homogeneously hyperintense to skeletal muscle on T2-weighted images and diffusely enhancing following intravenous administration of gadopentate dimeglumine. (orig.)

  15. Study of mortality of Ontario miners, 1955-1977. Pt. 1

    International Nuclear Information System (INIS)

    Muller, J.; Kusiak, R.A.; Wheeler, W.C.; Suranyi, G.; Gentleman, J.F.

    1983-05-01

    A mortality study of Ontario Mines covering the period of 1955 to 1977 was carried out. There are 50,201 men in the study for a total of 754,391 person-years and 6,757 deaths were observed in this population over the period of the study. The most serious hazard in this population was death due to violent causes. The population was subdivided into gold miners, nickel-copper miners, iron ore miners, other ore miners, mixed ore miners, and uranium miners. Only in certain types of miners was an increase in deaths from non-neoplastic lung disease detectable. A significant increase was noted in underground gold miners, mixed ore miners and in uranium miners. This increase was largely due to increased death rates from silicosis and chronic interstitial pneumonia. In addition there were 43 deaths due to silicotuberculosis in gold miners and 36 deaths due to the same cause in mixed ore miners. It is estimated that the total difference between observed and expected deaths from silicosis and chronic interstitial pneumonia as well as from silicotuberculosis which was observed gold miners and in mixed ore miners can actually be attributed to gold mining only. Increased cancer risk in non-uranium miners is observed for cancer of the trachea, bronchus and lung in full-time underground gold miners and full-time underground mixed ore miners, and cancer of the stomach in full-time underground gold miners. It is assumed that the increased risk of lung cancer in both these groups of miners is in fact due to underground gold mining only. As to uranium miners, previous studies have already demonstrated an increased lung cancer risk in these men and this finding was confirmed in this study. Men who have also worked for Eldorado Nuclear Limited show a siginificantly increased risk of death from all causes and from all disease causes

  16. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  17. Comparison of second molar eruption patterns in patients with skeletal Class II and skeletal Class I malocclusions.

    Science.gov (United States)

    Brin, Ilana; Camasuvi, Semin; Dali, Nasser; Aizenbud, Dror

    2006-12-01

    The eruptive positions of the second molars in Class I and Class II malocclusions were studied. Pretreatment records of 221 patients with a mean age of 11.3 years were evaluated. About 19% of them had skeletal Class I, 31% had skeletal maxillary Class II, and 50% had skeletal mandibular Class II malocclusions. The mean values of the dental and chronologic ages of the subjects were similar. The eruptive positions in relation to a reference line, the developmental stages of the patients' second molars and dental ages were recorded from the panoramic roentgenograms. The distribution of the various developmental stages in each malocclusion group was similar, and no association between skeletal malocclusion and dental developmental stage of the second molars was encountered. The eruptive position of the maxillary second molars was more occlusal only in the oldest maxillary Class II group, above 12 years of age (P = .02). These results support, in part, previous reports suggesting that the maxillary second molars may erupt earlier in patients with skeletal maxillary Class II malocclusions.

  18. Prevalence of skeletal muscle mass loss and its association with swallowing function after cardiovascular surgery.

    Science.gov (United States)

    Wakabayashi, Hidetaka; Takahashi, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka

    2017-06-01

    The aim of this study was to assess the prevalence of skeletal muscle mass loss and its association with swallowing function in patients with dysphagia after cardiovascular surgery. A retrospective cohort study was performed in 65 consecutive patients with dysphagia after cardiovascular surgery who were prescribed speech therapy. Skeletal muscle index (SMI) was calculated as total psoas muscle area assessed via abdominal computed tomography divided by height squared. Cutoff values were 6.36 cm 2 /m 2 for men and 3.92 cm 2 /m 2 for women. The Food Intake Level Scale (FILS) was used to assess the swallowing function. Univariate and ordered logistic regression analyses were applied to examine the associations between skeletal muscle mass loss and dysphagia. The study included 50 men and 15 women (mean age 73 ± 8 y). The mean SMI was 4.72 ± 1.37 cm 2 /m 2 in men and 3.33 ± 1.42 cm 2 /m 2 in women. Skeletal muscle mass loss was found in 53 (82%) patients. Twelve had tracheostomy cannula. Thirteen were non-oral feeding (FILS levels 1-3), 5 were oral food intake and alternative nutrition (levels 4-6), and 47 were oral food intake alone (levels 7-9) at discharge. The FILS at discharge was significantly lower in patients with skeletal muscle mass loss. Ordered logistic regression analysis of swallowing function showed that skeletal muscle mass loss and tracheostomy cannula were associated independently with the FILS at discharge. The prevalence of skeletal muscle mass loss is very high, and skeletal muscle mass loss is associated with swallowing function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The skeletal endocannabinoid system: clinical and experimental insights.

    Science.gov (United States)

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  20. Predicted high-performing piglets exhibit more and larger skeletal muscle fibers

    NARCIS (Netherlands)

    Paredes Escobar, S.P.; Kalbe, C.; Jansman, A.J.M.; Verstegen, M.W.A.; Hees, van H.M.J.; Lösel, D.; Gerrits, W.J.J.; Rehfeldt, C.

    2013-01-01

    Postnatal (muscle) growth potential in pigs depends on the total number and hypertrophy of myofibers in skeletal muscle tissue. In a previous study an algorithm was developed to predict piglet BW at the end of the nursery period (10 wk of age) on the basis of BW at birth, at weaning, and at 6 wk of

  1. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  2. Exploration of Serum 25-Hydroxy Vitamin D in Total Joint Arthroplasty within a Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Brandon Naylor

    2017-10-01

    Conclusion: The majority (53.8% of an otherwise classically low risk patient population present with vitamin D insufficiency or deficiency prior to undergoing elective total joint arthroplasty, with elderly non-white patients in the winter months at the highest risk. Appropriate vitamin D management is associated with favorable influences on both skeletal and non-skeletal outcomes. Potential complications of total joint arthroplasty (TJA, including periprosthetic joint infection and aseptic loosening, can possibly be decreased with proper identification and treatment, which can be elucidated by future high quality studies.

  3. Mixed total screening for sulfur isotope

    International Nuclear Information System (INIS)

    Cui Bin; Zhao Lei; Zhan Zhaoyang; He Zhijun

    2003-01-01

    The research on modern economic geology indicates that most ore deposits formed with characters of multi-origin, multi-stage and multi-genesis. Quantificational research of Sulfur isotope origin is a difficult problem that puzzles Geochemists all along. So the formation process of an ore deposit can be taken as the mix or the superposition of multi totals, which can be described by the mathematics model of mixed total screening. In the study of mid-down Yangtze River and Dongpo ore field in Hunan province, the authors successfully applied the mathematics model of mixed total screening, quantificationally resolved the problem of Sulfur isotope origin and mineralizing matter origin, and found out the mineralizing mechanism. This is very valuable. (authors)

  4. Comparison of whole body MR diffusion weighted imaging and skeletal scintigraphy in detecting bone metastasis

    International Nuclear Information System (INIS)

    Xu Xian; Ma Lin; Zhang Jinshan; Cai Youquan; Cheng Liuquan; Guo Xinggao; Xu Baixuan

    2008-01-01

    Objective: To evaluate the application of whole body MR diffusion weighted imaging (DWI) in the detection of bone metastasis using skeletal scintigraphy as the reference. Methods: Forty-two healthy volunteers and 38 patients with malignant tumors were enrolled in our study. All the patients received MR examination and skeletal scintigraphy within one week. MR examination was performed on GE signa 3.0T MR scanner using a build-in body coil. The skeletal system was divided into eight regions and the images of the whole body MR DWI and skeletal scintigraphy were reviewed to compare the two modalities patient by patient and region by region. The images were reviewed separately by two radiologists and two nuclear medicine physicians, who were blinded to the results of another imaging modality. Results: A total of 169 metastatic lesions in 69 regions of 30 patients were detected by whole body MR DWI while 156 lesions in 68 regions of 29 patients were identified by skeletal scintigraphy. There were two cases negative in scintigraphy but positive in whole body MR DWI and one case positive in scintigraphy only. There were eight lesions negative in scintigraphy but positive in whole body MR DWI, mainly located in the spine, pelvis and femur. Seven lesions were only detected by scintigraphy, mainly located in the skull, sternum, clavicle and scapula. Conclusion: The whole body MR DWI reveals excellent consistency with skeletal scintigraphy regarding bone metastasis, and the two modalities are complementary for each other. (authors)

  5. Autophagy: a new player in skeletal maintenance?

    Science.gov (United States)

    Hocking, Lynne J; Whitehouse, Caroline; Helfrich, Miep H

    2012-07-01

    Imbalances between bone resorption and formation lie at the root of disorders such as osteoporosis, Paget's disease of bone (PDB), and osteopetrosis. Recently, genetic and functional studies have implicated proteins involved in autophagic protein degradation as important mediators of bone cell function in normal physiology and in pathology. Autophagy is the conserved process whereby aggregated proteins, intracellular pathogens, and damaged organelles are degraded and recycled. This process is important both for normal cellular quality control and in response to environmental or internal stressors, particularly in terminally-differentiated cells. Autophagic structures can also act as hubs for the spatial organization of recycling and synthetic process in secretory cells. Alterations to autophagy (reduction, hyperactivation, or impairment) are associated with a number of disorders, including neurodegenerative diseases and cancers, and are now being implicated in maintenance of skeletal homoeostasis. Here, we introduce the topic of autophagy, describe the new findings that are starting to emerge from the bone field, and consider the therapeutic potential of modifying this pathway for the treatment of age-related bone disorders. Copyright © 2012 American Society for Bone and Mineral Research.

  6. Skeletal metastases of carcinomas of prostate in dependence on tumor size and tumor differentiation

    International Nuclear Information System (INIS)

    Krause, U.

    1981-01-01

    153 patients with carcinoma of the prostate underwent holebody skeletal scintiscanning. It resulted that the tendency to the development of skeletal metastases increases with increasing dedifferentiation of the tumor. Also the tumor size correlated with the metastase identification. The tumor dedifferentiation also increased with the tumor size. The findings proved that the early diagnosis of a carcinoma of the prostate is a necessary prerequisite, because a radical total removal can only be curative when any metastases are absent. The comparative evaluation of the diagnostic methods proved the superiority of the nuclear medical examination. In 68% of the cases the roentgenologic examination led to correctly positive results. This investigation showed with 98% a high diagnostic specificity and therefore it should be applied in addition to scintiscanning in order to obtain supplementary information. The alkaline and the acid phosphatase offering an almost identical informative value resulted to be not useful for establishing an early diagnosis of skeletal metastases. It was found that the determination of the blood sedimentation rate and of the lactate dehydrogenase do also not render possible the early diagnosis of skeletal metastases. (orig./MG) [de

  7. Skeletal shape correspondence via entropy minimization

    Science.gov (United States)

    Tu, Liyun; Styner, Martin; Vicory, Jared; Paniagua, Beatriz; Prieto, Juan Carlos; Yang, Dan; Pizer, Stephen M.

    2015-03-01

    Purpose: Improving the shape statistics of medical image objects by generating correspondence of interior skeletal points. Data: Synthetic objects and real world lateral ventricles segmented from MR images. Method(s): Each object's interior is modeled by a skeletal representation called the s-rep, which is a quadrilaterally sampled, folded 2-sided skeletal sheet with spoke vectors proceeding from the sheet to the boundary. The skeleton is divided into three parts: up-side, down-side and fold-curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along their skeletal parts in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and sampling regularity. The spokes' geometric properties are skeletal position, spoke length and spoke direction. The properties used to measure the regularity are the volumetric subregions bounded by the spokes, their quadrilateral sub-area and edge lengths on the skeletal surface and on the boundary. Results: Evaluation on synthetic and real world lateral ventricles demonstrated improvement in the performance of statistics using the resulting probability distributions, as compared to methods based on boundary models. The evaluation measures used were generalization, specificity, and compactness. Conclusions: S-rep models with the proposed improved correspondence provide significantly enhanced statistics as compared to standard boundary models.

  8. Substrate Deprivation Therapy to Reduce Glycosaminoglycan Synthesis Improves Aspects of Neurological and Skeletal Pathology in MPS I Mice

    Directory of Open Access Journals (Sweden)

    Ainslie L. K. Derrick-Roberts

    2017-02-01

    Full Text Available Mucopolysaccharidosis type I (MPS I is the most common form of the MPS group of genetic diseases. MPS I results from a deficiency in the lysosomal enzyme α-l-iduronidase, leading to accumulation of undegraded heparan and dermatan sulphate glycosaminoglycan (GAG chains in patient cells. MPS children suffer from multiple organ failure and die in their teens to early twenties. In particular, MPS I children also suffer from profound mental retardation and skeletal disease that restricts growth and movement. Neither brain nor skeletal disease is adequately treated by current therapy approaches. To overcome these barriers to effective therapy we have developed and tested a treatment called substrate deprivation therapy (SDT. MPS I knockout mice were treated with weekly intravenous injections of 1 mg/kg rhodamine B for six months to assess the efficacy of SDT. Mice were assessed using biochemistry, micro-CT and a battery of behaviour tests to determine the outcome of treatment. A reduction in female bodyweight gain was observed with the treatment as well as a decrease in lung GAG. Behavioural studies showed slight improvements in inverted grid and significant improvements in learning ability for female MPS I mice treated with rhodamine B. Skeletal disease also improved with a reduction in bone mineral volume observed. Overall, rhodamine B is safe to administer to MPS I knockout mice where it had an effect on improving aspects of neurological and skeletal disease symptoms and may therefore provide a potential therapy or adjunct therapy for MPS I patients.

  9. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  10. Alveolar bone mass in pre- and postmenopausal women with serum calcium as a marker: A comparative study

    Directory of Open Access Journals (Sweden)

    Amitha Ramesh

    2011-01-01

    Conclusion: Postmenopausal women exhibit a reduced alveolar bone mass and lowered levels of serum total calcium with the increasing age. These changes may be useful indicators for low skeletal bone mineral density or osteoporosis.

  11. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency?

    DEFF Research Database (Denmark)

    Klefter, Oliver; Feldt-Rasmussen, Ulla

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  12. Archform comparisons between skeletal class II and III malocclusions.

    Directory of Open Access Journals (Sweden)

    Wei Zou

    Full Text Available The purpose of this cross-sectional research was to explore the relationship of the mandibular dental and basal bone archforms between severe Skeletal Class II (SC2 and Skeletal Class III (SC3 malocclusions. We also compared intercanine and intermolar widths in these two malocclusion types. Thirty-three virtual pretreatment mandibular models (Skeletal Class III group and Thirty-five Skeletal Class II group pretreatment models were created with a laser scanning system. FA (the midpoint of the facial axis of the clinical crownand WALA points (the most prominent point on the soft-tissue ridgewere employed to produce dental and basal bone archforms, respectively. Gained scatter diagrams of the samples were processed by nonlinear regression analysis via SPSS 17.0. The mandibular dental and basal bone intercanine and intermolar widths were significantly greater in the Skeletal Class III group compared to the Skeletal Class II group. In both groups, a moderate correlation existed between dental and basal bone arch widths in the canine region, and a high correlation existed between dental and basal bone arch widths in the molar region. The coefficient of correlation of the Skeletal Class III group was greater than the Skeletal Class II group. Fourth degree, even order power functions were used as best-fit functions to fit the scatter plots. The radius of curvature was larger in Skeletal Class III malocclusions compared to Skeletal Class II malocclusions (rWALA3>rWALA2>rFA3>rFA2. In conclusion, mandibular dental and basal intercanine and intermolar widths were significantly different between the two groups. Compared with Skeletal Class II subjects, the mandibular archform was more flat for Skeletal Class III subjects.

  13. Transverse--Harris--lines in a skeletal population from the 1711 Danish plague site

    DEFF Research Database (Denmark)

    Fiscella, Gabriela N; Bennike, Pia; Lynnerup, Niels

    2008-01-01

    This study examines the occurrence and distribution of transverse lines in skeletal remains from the Copenhagen site, a plague cemetery dated 1711 AD. A relatively low frequency for evidence of line formation was observed in the individuals comprising the total sample and no transverse lines were...

  14. The influence of site factors on nitrogen mineralization in forest soils ...

    African Journals Online (AJOL)

    The influence of site factors on nitrogen mineralization in forest soils of the ... on N mineralization, as well as the effect of N mineralization on forest productivity. ... of the natural log of mean annual temperature, geological substrate and total N ...

  15. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    Science.gov (United States)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  16. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    Science.gov (United States)

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  17. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  18. Can a surgery-first orthognathic approach reduce the total treatment time?

    Science.gov (United States)

    Jeong, Woo Shik; Choi, Jong Woo; Kim, Do Yeon; Lee, Jang Yeol; Kwon, Soon Man

    2017-04-01

    Although pre-surgical orthodontic treatment has been accepted as a necessary process for stable orthognathic correction in the traditional orthognathic approach, recent advances in the application of miniscrews and in the pre-surgical simulation of orthodontic management using dental models have shown that it is possible to perform a surgery-first orthognathic approach without pre-surgical orthodontic treatment. This prospective study investigated the surgical outcomes of patients with diagnosed skeletal class III dentofacial deformities who underwent orthognathic surgery between December 2007 and December 2014. Cephalometric landmark data for patients undergoing the surgery-first approach were analyzed in terms of postoperative changes in vertical and horizontal skeletal pattern, dental pattern, and soft tissue profile. Forty-five consecutive Asian patients with skeletal class III dentofacial deformities who underwent surgery-first orthognathic surgery and 52 patients who underwent conventional two-jaw orthognathic surgery were included. The analysis revealed that the total treatment period for the surgery-first approach averaged 14.6 months, compared with 22.0 months for the orthodontics-first approach. Comparisons between the immediate postoperative and preoperative and between the postoperative and immediate postoperative cephalometric data revealed factors that correlated with the total treatment duration. The surgery-first orthognathic approach can dramatically reduce the total treatment time, with no major complications. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Kristensen, M.; Pötzelsberger, B.; Scheiber, P.

    2015-01-01

    We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen...

  20. Skeletal Stem Cells: Origins, Functions and Uncertainties.

    Science.gov (United States)

    Mohamed, Fatma F; Franceschi, Renny T

    2017-12-01

    The development and maintenance of the skeleton requires a steady source of skeletal progenitors to provide the osteoblasts and chondrocytes necessary for bone and cartilage growth and development. The current model for skeletal stem cells (SSCs) posits that SSC/progenitor cells are present in bone marrow (BM) and other osteogenic sites such as cranial sutures where they undergo self-renewal and differentiation to give rise to the main skeletal tissues. SSCs hold great promise for understanding skeletal biology and genetic diseases of bone as well as for the advancement of bone tissue engineering and regenerative medicine strategies. In the past few years, a considerable effort has been devoted to identifying and purifying skeletal stem cells and determining their contribution to bone formation and homeostasis. Here, we review recent progress in this area with particular emphasis on the discovery of specific SSC markers, their use in tracking the progression of cell populations along specific lineages and the regulation of SSCs in both the appendicular and cranial skeleton.

  1. Skeletal MR imaging: Correlation with skeletal scintigraphy

    International Nuclear Information System (INIS)

    Colletti, P.M.; Raval, J.K.; Ford, P.V.; Benson, R.C.; Kerr, R.M.; Boswell, W.D.; Siegel, M.E.; Ralls, P.W.

    1987-01-01

    Skeletal MR images bone marrow while skeletal scintigraphy uses bone metabolism to demonstrate abnormalities. The purpose of this paper is to correlate these MR and scintigraphic findings. T1 and T2 MR images at 0.5 T were correlated with planar bone scintigraphy (RN) using Tc-99m MDP in 56 patients. Of 23 cases with suspected spinal metastases, 19 were positive by MR imaging, 16 by RN. Individual lesions were shown better by MR imaging in five and by RN in two. These two cases had scoliosis, a potential difficulty with MR imaging. In 14 cases of suspected avascular necrosis (AVN), MR imaging was positive in 13 while RN was positive in ten. One negative case by RN had bilateral AVN by MR imaging. Four skull lesions shown easily by RN were seen only in retrospect on MR images. MR imaging is advantageous in evaluating bones with predominant marrow such as vertebrae or the femoral head, while RN is superior in areas primarily composed of cortical bone such as the skull

  2. Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill. and evaluation using multivariate analysis techniques

    Directory of Open Access Journals (Sweden)

    WALTER N.L. DOS SANTOS

    2016-01-01

    Full Text Available ABSTRACT The atemoya is a hybrid fruit obtained by crossing of cherimoya (Annona cherimola Mill. with sweet sop (Annona squamosa L.. The information about chemical composition of atemoya is scarce. The mineral composition was evaluated employing Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES and the centesimal composition and the physico-chemical parameters were assessed employing procedures described in the AOAC methods. The total phenolic compounds (TPC and total flavonoids (TF were determined using spectroanalytical methods. Considering the Reference Daily Intake (RDI, the concentrations of K, Cu and Vitamin C found in atemoya were the highest, representing about 32, 23 and 37% of the RDI, respectively. The total carbohydrates were 32 g 100g-1 and the soluble solids was equivalent to (32.50 ± 0.03 °Brix. The result for TPC was 540.47 ± 2.32 mgGAE 100 g-1 and the TF was 11.56 ± 1.36 mgQE 100 g-1. The exploratory evaluation of 42 atemoya samples was performed through Principal Component Analysis (PCA, which discriminated green and ripe fruits according to their mineral composition. The elements that contributed most for the variability between green and ripe fruits were: Ba, Ca, Cu, K, Mg and P.

  3. Testosterone Replacement and Bone Mineral Density in Male Pituitary Tumor Patients

    Directory of Open Access Journals (Sweden)

    Min Jeong Lee

    2014-03-01

    Full Text Available BackgroundHypopituitarism is associated with osteoporosis and osteopenia especially when hypogonadotropic hypogonadism is present. Despite hypopituitarism being an important cause of secondary osteoporosis, osteoporosis in patients receiving surgery for pituitary tumors in Korea has not been studied. In this study, we evaluated the effects of testosterone replacement therapy (TRT on bone mineral density (BMD in postoperative hypogonadal patients with pituitary tumors.MethodsTo examine the effect of TRT on BMD, we performed a retrospective observational study in 21 postoperative male patients who underwent pituitary tumor surgery between 2003 and 2012 at the Ajou University Hospital. Testosterone was replaced in postoperative hypogonadal patients by regular intramuscular injection, daily oral medication, or application of transdermal gel. BMD (g/cm2 measurements of central skeletal sites (lumbar spine, femoral neck, and total femur were obtained using dual-energy X-ray absorptiometry (GE Lunar. For lumbar spine BMD, L1 to L4 values were chosen for analysis. Femur neck and total femur were also analyzed.ResultsDuring the follow-up period (mean, 56 months; range, 12 to 99 months serum testosterone levels increased with the administration of TRT (P=0.007. There was significant improvement (4.56%±9.81% in the lumbar spine BMD compared to baseline BMD. There were no significant changes in the femur neck BMD or total femur BMD. We did not find any statistically significant relationships between changes in testosterone levels and BMD using Spearman correlation analysis.ConclusionOur results indicated that TRT used in the postoperative period for hypogonadal pituitary tumor surgery patients may have beneficial effects on the BMD of the spine.

  4. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  5. Premortal data in the process of skeletal remains identification

    Directory of Open Access Journals (Sweden)

    Marinković Nadica

    2012-01-01

    Full Text Available Background/Aim. The basic task of a forensic examiner during the exhumation of mass graves or in mass accidents is to establish identity of a person. The results obtained through these procedures depend on the level of perceptibility of post mortal changes and they are compared with premortal data obtained from family members of those missing or killed. Experience with exhumations has shown significant differences between the results obtained through exhumation and the premortal data. The aim of the study was to suggest the existance of the difference between premortal data and the results obtained by exhumation regarding the some parameters, as well as to direct premortal data colection to the specific skeletal forms. Methods. We performed comparative analysis of the results of exhumation of skeletal remains in a mass grave and the premortal data concerning the identified persons. The least number of individuals in this mass grave was calculated according to the upper parts of the right femur and it helped in calculating the smallest number of individuals in mass graves to be 48. A total of 27 persons were identified. Sex was determined by metrics and morphology of the pelvis. Personal age in the moment of death was determined by morphology features of groin symphisis and morphology of sternal edge of ribs and other parts of scelets observations. The hight was calculated as average results of length of long bones and Rollet coefficients. Results. There was a complete match in terms of sex and age matched within an interval that could be established based on the skeletal remains. All the other parameters were different, however, which made identification significantly more difficult. Conclusion. The premortal data is an important element of identification process and it should be obtained by the forensic doctor and directed towards more detailed examination of the skeletal system.

  6. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    Science.gov (United States)

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.

  8. Regulation of the concentration of 3H-ouabain binding sites in mammalian skeletal muscle

    International Nuclear Information System (INIS)

    Kjeldsen, K.

    1986-01-01

    The major purpose of the present study was the identification and quantification of changes in Na,K-pumps in skeletal muscles with age, K-depletion and thyroid status. Furthermore, the putative difference in skeletal muscle Na,K-pump concentration between spontaneously hypertensive rats and normotensive controls was investigated. On the basis of the observation of major changes in 3 H-ouabain binding site concentration in skeletal muscle with age, K-depletion and thyroid status and the large increase in skeletal muscle Na/K-ratio with K-depletion, the consequences of these variations for cell properties, K-homeostasis and digitalis distribution was evaluated. The present investigation was carried out mainly by measurements of Na,K-pump concentrations, Na,K-contents and K-uptake in skeletal muscles. Hitherto, the Na,K-pump concentration in muscle has mainly been quantified by measurements of the Na,K-ATPase activity in purified membrane fractions. The use of such preparations are, however, complicated by a recovery of plasma membranes of often less than 5% of that in intact tissue. Although this low yield may not affect the interpretation of qualitative studies, it represents a potentially large source of error in quantitative determinations of the Na,K-pumps. Thus, in the present study the Na,K-pumps were quantified by measurements of 3 -ouabain binding, as this method allows the determination of the total Na,K-pump concentration after identification and correction for methodological problems. (author)

  9. Mechanisms of Hyperhomocysteinemia Induced Skeletal Muscle Myopathy after Ischemia in the CBS−/+ Mouse Model

    Directory of Open Access Journals (Sweden)

    Sudhakar Veeranki

    2015-01-01

    Full Text Available Although hyperhomocysteinemia (HHcy elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS−/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.

  10. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  11. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    Directory of Open Access Journals (Sweden)

    Zhiqun Qiu

    Full Text Available Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse.To elucidate the skeletal effects of multi-generational bottled water drinking in female rats.Rats continuously drank tap water (TW, bottled natural water (bNW, bottled mineralized water (bMW, or bottled purified water (bPW for three generations.The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group.Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  12. Significance of skeletal muscle digitalis receptors for [3H]ouabain distribution in the guinea pig

    International Nuclear Information System (INIS)

    Kjeldsen, K.; Norgaard, A.; Hansen, O.; Clausen, T.

    1985-01-01

    The importance of specific digitalis glycoside binding sites in skeletal muscle for the digitalis glycoside distribution in the guinea pig was evaluated using [ 3 H]ouabain and [ 3 H]digoxin binding assays. Measurements of [ 3 H]ouabain binding capacity (EOmax) in gastrocnemius and heart muscles in vitro gave values of 474 +/- 15 and 1,092 +/- 39 pmol/g wet wt., respectively, in 4-week-old guinea pigs. Hence the total amount of [ 3 H]ouabain binding sites in skeletal muscle and the heart was around 42,700 and 1,200 pmol, respectively. The apparent dissociation constants (Kd) for ouabain receptor interaction was 0.7 X 10(-7) and 1.5 X 10(-7) M for skeletal muscle and heart, respectively. Comparison of [ 3 H]ouabain and [ 3 H]digoxin binding revealed that these drugs are competitive. From birth to maturity the concentration of [ 3 H]ouabain binding sites in guinea pigs decreased from 803 +/- 58 to 304 +/- 28 pmol/g wet wt. in gastrocnemius muscle and from 1,458 +/- 31 to 1,079 +/- 19 pmol/g wet wt. in the heart. After i.p. injection, measurements of the distribution of [ 3 H]ouabain in plasma, skeletal muscle and the heart showed an almost equal relative specific occupancy of digitalis glycoside receptors in skeletal muscle and the heart: When 10% of the digitalis receptors in the heart were occupied by [ 3 H]ouabain, 13% of those in the skeletal muscles were occupied. It was calculated that 1 hr after the i.p. administration of [ 3 H]ouabain the amount of [ 3 H]ouabain specifically bound to the skeletal muscles and the heart corresponded to 5 times and 1/10 the amount available in the extracellular pool, respectively

  13. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  14. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  15. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with beta-hydroxy-beta-methylbutyrate (HMB) on femur properties in pigs at slaughter age.

    Science.gov (United States)

    Tatara, Marcin R; Sliwa, Ewa; Krupski, Witold

    2007-06-01

    Alteration in fetal growth and development in response to prenatal environmental conditions such as nutrition has long-term or permanent effects during postnatal life. The aim of this study was to investigate effects of beta-hydroxy-beta-methylbutyrate (HMB) treatment of sows during the last 2 weeks of pregnancy on programming of skeletal development in the offspring. The study was performed on 141 pigs born by 12 sows of Polish Landrace breed. Two weeks before delivery, pregnant sows were divided into two groups. The first group consisted of control sows (N=6) that were treated with placebo. Sows that were orally treated with beta-hydroxy-beta-methylbutyrate (N=6) at the dosage of 0.05 g/kg of body weight per day belonged to the second group. Newborn piglets were weighed and subjected to blood collection for determination of serum levels of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, leptin, glucose and bone alkaline phosphatase (BAP) activity and lipid profile. At the age of 6 months, the piglets were slaughtered, their femur was isolated for analysis and assessment of lean meat content of carcasses was performed. The effects of maternal administration with HMB on skeletal properties in the offspring were evaluated in relation to bone mineral density and geometrical and mechanical properties. Maternal treatment with HMB increased serum levels of GH, IGF-1 and BAP activity in the newborns by 38.0%, 20.0% and 26.0%, respectively (PHMB administration significantly increased volumetric bone mineral density of the trabecular and cortical bone of femur in the offspring at the age of 6 months (PHMB treatment (PHMB induced higher values of maximum elastic strength and ultimate strength of femur (PHMB-treated sows (PHMB has positive long-term effects on bone tissue and improves volumetric bone mineral density, geometrical and mechanical properties of femur in the offspring. These effects were connected with increased level of GH and IGF-1 in the

  16. [Skeletal anchorage in the past, today and tomorrow].

    Science.gov (United States)

    Melsen, Birte; Dalstra, Michel

    2017-03-01

    Skeletal anchorage was not introduced as an alternative to conventional anchorage modalities. The first skeletal anchorage was a ligature through a hole in the infrazygomatic crest. This was replaced by surgical screws and finally the TADs, which were optimized with respect to the material and morphology, were developed. A bracket-like head allows for the use of the mini-implant as indirect anchorage, but should not be a tool for lost control resulting from badly planned biomechanics or failing compliance. Skeletal anchorage should serve as an adjunct to correct biomechanics, to enable treatments that could not be performed prior to the introduction of skeletal anchorage. The aim of this study was to test the hypothesis that temporary anchorage mini-screws help maintain bone density, height and width of alveolar processes in the extraction sites, and thus prevent the thinning of the alveolar ridge usually observed. In adult patients with degenerated dentitions the application of skeletal anchorage can allow for the displacement of teeth where no anchorage units are present, but also for the redevelopment and maintenance of atrophic alveolar bone. The basis for the optimal use of skeletal anchorage is that the correct line of action for the desired tooth displacement is defined and the necessary force system constructed either with the skeletal anchorage as direct or as indirect anchorage. After a period, during which osseointegrated implants were used as anchorage for tooth movement and bone maintenance, it was accepted that the mini-implants could serve also as anchorage for skeletal displacements avoiding loading of teeth. © EDP Sciences, SFODF, 2017.

  17. Knee radiography in the diagnosis of skeletal dysplasias

    International Nuclear Information System (INIS)

    Kwee, Thomas C.; Beek, Frederik J.A.; Nievelstein, Rutger A.J.; Beemer, Frits A.

    2006-01-01

    Flattening of the epiphyses of long bones is seen in several skeletal dysplasias and standardized measurements on a radiograph of the knee to detect skeletal dysplasias using this feature have been described. Since then only two other studies in which this method was used have been published, and both included only a small number of children and neither had a control group. In addition, the Dutch National Working Group on Skeletal Dysplasias began to have doubts about the reliability of the method. We therefore decided to re-evaluate its accuracy in a population of children with and without a skeletal dysplasia. To determine the diagnostic value of standardized measurements on conventional AP radiographs of the knee in children with a skeletal dysplasia. Subjects and methods: We measured the distal femoral metaphysis and epiphysis according to the published method on conventional AP radiographs of the knee in 45 healthy children and 52 children with a skeletal dysplasia. We compared graphically the height of the distal femoral epiphysis with its width and with the width of the femoral metaphysis. Receiver operating characteristic (ROC) curves were calculated for each group of children. All graphs showed a considerable overlap between children with a skeletal dysplasia and healthy children. The size of the area under the ROC curves for the different groups was small, varying between 0.567 and 0.653. This method does not discriminate between children with a skeletal dysplasia and healthy children. We therefore consider it to be of little diagnostic value. (orig.)

  18. Mechanical modeling of skeletal muscle functioning

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  19. Role and metabolism of free leucine in skeletal muscle in protein sparing action of dietary carbohydrate and fat

    International Nuclear Information System (INIS)

    Nakano, Kiwao; Ishikawa, Tamotsu

    1977-01-01

    Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incorporation of L-leucine-1- 14 C into protein fraction of skeletal muscle and reduced its oxidation to 14 CO 2 . These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid. (auth.)

  20. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  1. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  2. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  3. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    Science.gov (United States)

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P BMAT) were not related to changes in BMD.

  4. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  5. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  6. Examiner's finger-mounted near-infrared spectroscopy is feasible to analyze cerebral and skeletal muscle oxygenation in conscious Chihuahuas

    Science.gov (United States)

    Hiwatashi, Keisuke; Doi, Kimiaki; Mizuno, Risuke; Yokosuka, Makoto

    2017-02-01

    To measure regional saturation of oxygen (rSO2) of hemoglobin and total hemoglobin index (HbI) in the brain (through the molera of the head) and skeletal muscle (musculus gracilis) of conscious Chihuahua dogs using an examiner's finger-mounted near-infrared spectroscopy (NIRS) device, Toccare, we investigated brain and skeletal muscle NIRS in 48 Chihuahuas without severe disease. To measure rSO2 and total HbI, a Toccare probe was placed on the molera of the head and musculus gracilis of each dog for real-time recording. Stable NIRS values were obtained within 10 s. We also examined the effect of anesthesia on rSO2 and total HbI of a Chihuahua. Cerebral rSO2 values (59%±7%) were significantly lower than those obtained at femoral regions (67%±6%), whereas total HbI values in the brain (0.38±0.09) were significantly higher than those of the musculus gracilis (0.20±0.05). Sedation with a combination of medetomidine and ketamine decreased cerebral rSO2 along with a corresponding reduction in heart rate. Sevoflurane anesthesia with 100% O2 maintained rSO2 in the brain with an even lower heart rate. In conclusions, we measured brain and skeletal muscle rSO2 of hemoglobin in conscious Chihuahuas using a newly developed NIRS device, Toccare, and found that changes in cerebral oxygenation levels were associated with administration of anesthetics.

  7. Correlation of Bone Mineral Density on Quality of Life in Patients with Osteogenesis Imperfecta during Treatment with Denosumab.

    Science.gov (United States)

    Hoyer-Kuhn, Heike; Stark, Christina; Franklin, Jeremy; Schoenau, Eckhard; Semler, Oliver

    2017-11-01

    Osteogenesis imperfecta (OI) is a rare hereditary skeletal disease leading to recurrent fractures, short stature and impaired mobility. The phenotype varies from mildly affected patients to perinatal lethal forms. In most cases an impaired collagen production due to mutations in COL1A1 or COL1A2 cause this hereditary bone fragility syndrome with an autosomal dominant inheritance. Currently an interdisciplinary therapeutic approach with antiresorptive drugs, physiotherapy and surgical procedures is the state of the art therapy. The effect of such a therapy is evaluated by measuring different surrogate parameters like areal bone mineral density or by using different mobility tests or questionnaires. Up till now the impact of these parameters on quality of life of the patients is not evaluated. Currently pharmacological strategies are based on antiresorptive treatment with bisphosphonates. In this trial we investigated the effect of an antiresorptive therapy with the monoclonal antibody denosumab decreasing the activity of osteoclasts. Denosumab was administered subcutaneously in a dose of 1mg/kg body weight in 10 children with OI (5-10 years of age) every 12 weeks for 48 weeks. Areal bone mineral density, mobility, pain scores and quality of life were measured. The results showed a good effect of the treatment on bone mineral density but this improvement showed no correlation to pain and quality of life. In conclusion further trials have to define parameters to assess interventions which influence activities of daily life of the patients. An interdisciplinary approach including physicians, basic researchers and patient organisation is needed to focus research on topics improving quality of life of patients with severe skeletal diseases. Copyright© of YS Medical Media ltd.

  8. Skeletal remodeling dynamics: New approaches with imaging instrumentation

    International Nuclear Information System (INIS)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed 90 Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from 166 Ho (T 1/2 =26 hr, β max = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report

  9. Upon the triple phase skeletal scintigraphy in traumatology

    International Nuclear Information System (INIS)

    Spitz, W.

    1988-01-01

    A broadly established indication catalogue for skeletal scintigraphy in traumatology is resulting from about 1500 skeletal scans. Aside from the exclusion of any osseous lesion, from the differentiation of uncertain X-ray findings, from the determination of the extent of osseous lesions in polytraumatic conditions and from the assessment of the relative fracture age, the follow-up after trauma and therapeutical intervention, the demonstration of battered child syndromes and of soft tissue lesions are of special importance with regard to these topics. For all that, the high sensitivity of the 3-phase skeletal scintigraphy for every enhancement of osseous turnover represents the elementary prerequisite for the employment of this non-invasive technique as an ideal screening method in traumatological diagnostics. The experiences from the past years have resulted in an increased frequency of skeletal scintigraphic studies to a similarly high level, as it is already established in the majority of institutions with respect to oncological problems, In the development of efficient and cost favourable diagnostic strategies with only little burden to the patient, skeletal scintigraphy will in future play an important role within the palette of modern skeletal diagnostics in traumatology. (orig.) [de

  10. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  11. Evaluating two-dimensional skeletal structure parameters using radiological bone morphometric analysis

    International Nuclear Information System (INIS)

    Asa, Kensuke; Sakurai, Takashi; Kashima, Isamu; Kumasaka, Satsuki

    2005-01-01

    The objectives of this study was to investigate the reliability of two-dimensional (2D) skeletal structure parameters obtained using radiological bone morphometric analysis. The 2D skeletal parameters in the regions of interest (ROIs) were measured on computed radiography (CR) images of first phalanges from racehorses, using radiological bone morphometric analysis. Cancellous bone blocks were made from the phalanges in the same position as the ROI determined on CR images. Three-dimensional (3D) trabecular parameters were measured using micro-computed tomography (μCT). The correlations between the 2D skeletal parameters and 3D trabecular parameters were evaluated in relation to the measured bone strength. The following 2D skeletal structure parameters were correlated with bone strength (r=0.61-0.69): skeletal perimeter (Sk.Pm), skeletal number (Sk.N), skeletal separation (Sk.Sp), skeletal spacing (Sk.Spac), fractal dimension (FD), and skeletal pattern factor (SkPf). The 3D trabecular structure parameters were closely correlated with bone strength (r=0.74-0.86). The 2D skeletal parameters Sk.N, Sk.Pm, FD, SkPf, and Sk.Spac were correlated with the 3D trabecular parameters (r=0.61-0.70). The 2D skeletal parameters obtained using radiological bone morphometric analysis may be useful indicators of trabecular strength. (author)

  12. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    International Nuclear Information System (INIS)

    Sherman, Laura S.; Blum, Joel D.; Basu, Niladri; Rajaee, Mozhgon; Evers, David C.; Buck, David G.; Petrlik, Jindrich; DiGangi, Joseph

    2015-01-01

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ 199 Hg values to Hg derived from ore deposits (mean urine Δ 199 Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ 199 Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ 199 Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed

  13. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  14. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    International Nuclear Information System (INIS)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley; Rajon, Didier; Jokisch, Derek

    2010-01-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  15. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  16. Study of chronic kidney disease-mineral bone disorders in newly detected advanced renal failure patients: A Hospital-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Etta

    2017-01-01

    Full Text Available We aim to evaluate the disturbances in mineral metabolism, abnormalities in bone mineral density (BMD, and extraskeletal calcification in newly detected, untreated predialysis stage 4 and 5 chronic kidney disease (CKD patients at a tertiary care hospital in North India. This is cross-sectional observational study. A total of 95 (68 males, 27 females newly detected patients underwent clinical evaluation, biochemical assessment [serum calcium, phosphorus, alkaline phosphatase (ALP, albumin, creatinine, intact parathyroid hormone (iPTH, 25- hydroxyvitamin D (25(OHD], BMD measurement (at spine, hip, and forearm by dual-energy X-ray absorptiometry (DXA, lateral abdominal radiograph [for abdominal aortic calcification (AAC], skeletal survey (to look for any abnormality including fractures, and echocardiography [for any cardiac valvular calcification (CVC]. Symptoms related to CKD-mineral bone disorder were seen in 33.6% of the study patients. Prevalence of hypocalcemia, hyperphosphatemia, hyperparathyroidism, and hypovitaminosis D was 64.2%, 81.1%, 49.5%, and 89.5%, respectively. CVC was seen in 22.1% of patients on echocardiography, mostly involving the mitral valve. Patients with CVC were more likely to be males and smokers. There was no significant difference in iPTH levels between patients with or without CVC. AAC was seen in 10.5% of patients on lateral abdominal X-ray. Patients with AAC had higher levels of iPTH, phosphorus, and ALP and lower levels of calcium compared to patients without AAC. BMD by DXA showed a low bone mass in 41.05% of our patients and was more prevalent in CKD stage 5. Most of the study patients had hyperparathyroidism and low 25(OHD levels. Our study shows that newly detected, naïve Indian CKD patients have a high prevalence of disturbances of mineral metabolism including hyperparathyroidism, Vitamin D deficiency, abnormal BMD, and valvular and vascular calcification, even before initiating dialysis.

  17. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  18. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  19. Calibration and validation of measures a total alpha beta counter in the tunisian mineral water

    International Nuclear Information System (INIS)

    Nasri, Sihem; Skhiri, Noura

    2009-01-01

    The risks due to contamination of mineral waters are essentially risk internal radiation following ingestion of radionuclides which brought us in this study to determine the global alpha and beta of the Tunisian mineral water. We used an alpha beta global counter. The results obtained by this technique have shown that alpha activity of these 10 waters are all lower than 50 mBq / l and are varied between 3.75 and 8.4 mBq / l and beta activity was found only 9 waters are also lower than 50 mBq / l (between 7.17 and 18.25) when only one is between 100 and 500 mBq / l (101.17).

  20. Expanding the phenome and variome of skeletal dysplasia.

    Science.gov (United States)

    Maddirevula, Sateesh; Alsahli, Saud; Alhabeeb, Lamees; Patel, Nisha; Alzahrani, Fatema; Shamseldin, Hanan E; Anazi, Shams; Ewida, Nour; Alsaif, Hessa S; Mohamed, Jawahir Y; Alazami, Anas M; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Monies, Dorota; Al Tassan, Nada; Alshammari, Muneera; Alsagheir, Afaf; Seidahmed, Mohammed Zain; Sogati, Samira; Aglan, Mona S; Hamad, Muddathir H; Salih, Mustafa A; Hamed, Ahlam A; Alhashmi, Nadia; Nabil, Amira; Alfadli, Fatima; Abdel-Salam, Ghada M H; Alkuraya, Hisham; Peitee, Winnie Ong; Keng, W T; Qasem, Abdullah; Mushiba, Aziza M; Zaki, Maha S; Fassad, Mahmoud R; Alfadhel, Majid; Alexander, Saji; Sabr, Yasser; Temtamy, Samia; Ekbote, Alka V; Ismail, Samira; Hosny, Gamal Ahmed; Otaify, Ghada A; Amr, Khalda; Al Tala, Saeed; Khan, Arif O; Rizk, Tamer; Alaqeel, Aida; Alsiddiky, Abdulmonem; Singh, Ankur; Kapoor, Seema; Alhashem, Amal; Faqeih, Eissa; Shaheen, Ranad; Alkuraya, Fowzan S

    2018-04-05

    PurposeTo describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.MethodsDetailed phenotyping and next-generation sequencing (panel and exome).ResultsOur analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.ConclusionBy expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.GENETICS in MEDICINE advance online publication, 5 April 2018; doi:10.1038/gim.2018.50.

  1. Association of visceral fat area with abdominal skeletal muscle distribution in overweight Japanese adults.

    Science.gov (United States)

    Tanaka, Noriko I; Murakami, Haruka; Ohmori, Yumi; Aiba, Naomi; Morita, Akemi; Watanabe, Shaw; Miyachi, Motohiko

    2016-07-20

    Quantitative evaluation of visceral fat mass and skeletal muscle mass is important for health promotion. Recently, some studies suggested the existence of adipocyte-myocyte negative crosstalk. If so, abdominal skeletal muscles may easily and negatively affected not only by the age but also the visceral fat because age-related reduction in abdominal region is greater compared with limbs. We cross-sectionally examined the existence of quantitative associations between visceral fat area and abdominal skeletal muscle distribution in overweight people. A total of 230 Japanese males and females who aged 40-64 years and whose body mass index (BMI) was 28.0-44.8kg/m 2 participated in this study. The cross-sectional area (CSA) of the visceral fat, subcutaneous fat, and abdominal skeletal muscles, namely, the rectus abdominis, abdominal oblique, erector spinae, and iliopsoas muscles were measured by the computed tomography images. Stepwise regression analyses revealed the existence of sex difference in the relation between visceral fat CSA and other morphological variables. In males, BMI was a positive, and the iliopsoas muscle group CSA was a negative contributor of the visceral fat CSA. In females, both age and BMI were selected as positive contributors. These data suggested that the visceral fat CSA may negatively associated with iliopsoas muscle group CSA in males. In females, the visceral fat CSA was not significantly related to the distribution of the abdominal skeletal muscle groups. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men.

    Science.gov (United States)

    Stunes, Astrid Kamilla; Syversen, Unni; Berntsen, Sveinung; Paulsen, Gøran; Stea, Tonje H; Hetlelid, Ken J; Lohne-Seiler, Hilde; Mosti, Mats Peder; Bjørnsen, Thomas; Raastad, Truls; Haugeberg, Glenn

    2017-06-01

    Resistance training is beneficial for maintaining bone mass. We aimed to investigate the skeletal effects of high doses of antioxidants [vitamin C + E (α-tocopherol)] supplementation during 12-week supervised strength training in healthy, elderly men METHODS: Design: double-blinded randomized placebo-controlled study. Participants followed a supervised, undulating periodic exercise program with weekly adjusted load: 3 sessions/week and 3-15 repetitions maximum (RM) sets/exercise. The control group (CG, n = 17, 67 ± 5 years) received placebo and the antioxidant group (AO, n = 16, 70 ± 7 years) 1000 mg vitamin C + 235 mg vitamin E, daily. Areal bone mineral density (aBMD) at whole body, lumbar spine (L1-L4), total hip, and femoral neck were measured by dual energy X-ray absorptiometry and muscle strength by 1RM. Serum analyses of bone-related factors and adipokines were performed. In the CG, total hip aBMD increased by 1.0% (CI: 0.3-1.7) versus pretest and lumbar spine aBMD increased by 0.9% (CI: -0.2 to 2.0) compared to the AO. In the CG, there was an increase in serum concentrations of insulin-like growth factor 1 [+27.3% (CI: -0.3 to 54.9)] and leptin [+31.2% (CI: 9.8-52.6)) versus pretest, and a decrease in sclerostin [-9.9% (CI: 4.4-15.3)] versus pretest and versus AO. Serum bone formation markers P1NP and osteocalcin increased in both groups, while the bone resorption marker CTX-1 remained unchanged. High doses of antioxidant supplementations may constrain the favorable skeletal benefits of 12 weeks of resistance exercise in healthy elderly men.

  3. [Significance of bone mineral density and modern cementing technique for in vitro cement penetration in total shoulder arthroplasty].

    Science.gov (United States)

    Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M

    2010-12-01

    Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography

  4. Camouflage treatment of skeletal Class III malocclusion with conventional orthodontic therapy.

    Science.gov (United States)

    Park, Jae Hyun; Yu, Joseph; Bullen, Ryan

    2017-04-01

    Nonextraction camouflage treatment along with Class III elastics was used to treat a 39-year-old woman with a skeletal Class III pattern and a low mandibular plane angle and short lower anterior facial height. The total active treatment time was 26 months. Her occlusion, smile esthetics, and soft tissue profile were significantly improved after treatment. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles.

    Science.gov (United States)

    Wagner, Martin; Oehlmann, Jörg

    2009-05-01

    Food consumption is an important route of human exposure to endocrine-disrupting chemicals. So far, this has been demonstrated by exposure modeling or analytical identification of single substances in foodstuff (e.g., phthalates) and human body fluids (e.g., urine and blood). Since the research in this field is focused on few chemicals (and thus missing mixture effects), the overall contamination of edibles with xenohormones is largely unknown. The aim of this study was to assess the integrated estrogenic burden of bottled mineral water as model foodstuff and to characterize the potential sources of the estrogenic contamination. In the present study, we analyzed commercially available mineral water in an in vitro system with the human estrogen receptor alpha and detected estrogenic contamination in 60% of all samples with a maximum activity equivalent to 75.2 ng/l of the natural sex hormone 17beta-estradiol. Furthermore, breeding of the molluskan model Potamopyrgus antipodarum in water bottles made of glass and plastic [polyethylene terephthalate (PET)] resulted in an increased reproductive output of snails cultured in PET bottles. This provides first evidence that substances leaching from plastic food packaging materials act as functional estrogens in vivo. Our results demonstrate a widespread contamination of mineral water with xenoestrogens that partly originates from compounds leaching from the plastic packaging material. These substances possess potent estrogenic activity in vivo in a molluskan sentinel. Overall, the results indicate that a broader range of foodstuff may be contaminated with endocrine disruptors when packed in plastics.

  6. Rn daughter exposure to U miners

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1982-04-01

    Radon exposures to U.S. uranium miners under present conditions average about 1.3 WLM per year approximately or equal to 60 WLM per full working lifetime. This is intermediate between the lowest exposures for which there have been excess lung cancers reported among U.S. miners (120-240 WLM) and average environmental radon exposures (16 WLM), so models based on these two situations are used to estimate expected effects on present uranium miners. In Model A, the loss of life expectancy is 45 days, the SMR (standardized mortality ratio) for lung cancer is 1.10, and the SMR for all causes between ages 18 and 65 is 1.013. In Model B these are 10 days, 1.03 and 1.002 respectively. It is shown that the radon exposures to miners are similar to those to millions of Americans from environmental exposure, and that miner health risks are comparable to those of other radiation workers. Their lung cancer risk from radon is 7-50 times less than their job-related accident mortality risk, and represents 0.7-4% of their total risk in mining. Miners suffer from many diseases with SMR very much larger than that for radon-induced lung cancer, and there are many other occupations and industries with far higher SMR for lung cancer than that from radon exposure to miners.

  7. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  8. Is skeletal anchorage changing the limit of orthodontics?

    DEFF Research Database (Denmark)

    Melsen, Birte

    2007-01-01

    The limits for orthodontic treatment are often set by the lack of suitable anchorage. The mini-implant is used where conventional anchorage cannot be applied; not as a replacement for conventional anchorage. In patients with lack of teeth and reduced periodontium, skeletal anchorage allows...... and can be loaded immediately. The course will be addressed the following topics: Are the mini-implants replacing conventional anchorage? Why are orthodontic mini-implants necessary? The development of the skeletal anchorage systems The biological basis for the skeletal anchorage systems...... The characteristics of the different skeletal anchorage systems The insertion procedure The indications for the use of orthodontic mini-implants Treatment planning in relation to the use of mini-implants Case presentations...

  9. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    Science.gov (United States)

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  10. Histologic findings in the tracheobronchial tree of uranium miners and non-miners with lung cancer

    International Nuclear Information System (INIS)

    Auerbach, O.; Saccomanno, G.; Kuschner, M.; Brown, R.D.; Garfinkel, L.

    1978-01-01

    The remaining tissue of the tracheobronchial tree from 210 men who died from lung cancer was studied to compare the histologic alterations leading to further sites of primary cancer. These men were uranium miners matched with nonminers for age and smoking habits. In the examination of a total of 28,928 cross-sections carcinoma in situ was found in 96 percent of the miners and in 92 percent of the nonminers. The number of slides from miners showing degree 2 or 3 atypia in areas of carcinoma in situ was about double the number found from the nonminers. Although the difference was not statistically significant, 32 percent of the miners had at least one section showing early primary invasive carcinoma compared with 22 percent of the nonminers. The data indicate that the synergistic effect of the exposure to uranium dust along with cigarette smoking increases the risk of lung cancer and that in addition to a main tumor mass, other sites of tissue alterations leading to tumor development are frequently already present in the lung

  11. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    Science.gov (United States)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  12. Skeletal muscle injury induced by a pneumatic tourniquet: an enzyme- and immunohistochemical study in rabbits.

    Science.gov (United States)

    Pedowitz, R A; Fridén, J; Thornell, L E

    1992-03-01

    The pathophysiology of skeletal muscle injury induced by compression beneath pneumatic tourniquets is poorly understood. Tourniquet hemostasis was induced in rabbit hindlimbs for 2 hr with a cuff inflation pressure of either 125 mm Hg (n = 5) or 350 mm Hg (n = 5). Skeletal muscle biopsies, taken 2 days later from tissue beneath and distal to the tourniquet, were frozen and analyzed using enzyme- and immunohistochemical techniques. In the 350 mm Hg tourniquet group, four of 10 thigh muscle samples demonstrated significant regional necrosis (mean 37.3% of the total cross-sectional area). Regional necrosis was not observed in thigh muscles of the 125 mm Hg tourniquet group or in any of the ischemic leg muscles. A topographic pattern of necrosis consistent with the arterial distribution of skeletal muscle suggested pathogenic events during the reperfusion period, such as granulocyte-mediated superoxide radical formation. Extremely large and rounded fibers (histochemically identified as Type IIB fibers) were observed in compressed thigh muscles, indicating differential fiber sensitivity to tourniquet compression and ischemia. The present study demonstrated significant skeletal muscle necrosis after a 2 hr tourniquet applied at a clinically relevant cuff inflation pressure. Recent studies of systemic changes associated with limb "ischemia" should be reassessed in consideration of the confounding effects of tissue compression induced beneath pneumatic tourniquets.

  13. Effects of tallow, choice white grease, palm oil, corn oil, or soybean oil on apparent total tract digestibility of minerals in diets fed to growing pigs.

    Science.gov (United States)

    Merriman, L A; Walk, C L; Parsons, C M; Stein, H H

    2016-10-01

    An experiment was conducted to determine the effect of supplementing diets fed to growing pigs with fat sources differing in their composition of fatty acids on the apparent total tract digestibility (ATTD) of minerals. A diet based on corn, potato protein isolate, and 7% sucrose was formulated. Five additional diets that were similar to the previous diet with the exception that sucrose was replaced by 7% tallow, choice white grease, palm oil, corn oil, or soybean oil were also formulated. Diets were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P. Growing barrows ( = 60; 15.99 ± 1.48 kg initial BW) were allotted to a randomized complete block design with 2 blocks of 30 pigs, 6 dietary treatments, and 10 replicate pigs per treatment. Experimental diets were provided for 12 d with the initial 5 d being the adaptation period. Total feces were collected for a 5-d collection period using the marker-to-marker approach, and the ATTD of minerals, ether extract, and acid hydrolyzed ether extract was calculated for all diets. Digestibility of DM was greater ( soybean oil compared with the diet containing choice white grease or the basal diet, with all other diets being intermediate. The ATTD of Ca, S, and P was greater ( soybean oil, corn oil, palm oil, or tallow than for pigs fed the basal diet or the diet containing choice white grease. The ATTD of Mg, Zn, Mn, Na, and K were not different among dietary treatments. The ATTD of ether extract was greater ( oil, corn oil, or soybean oil compared with the diet containing choice white grease, and the ATTD of acid hydrolyzed ether extract in the diet containing soybean oil was also greater ( oil, corn oil, or soybean oil may increase the ATTD of some macrominerals, but that appears not to be the case if choice white grease is used. There was no evidence of negative effects of the fat sources used in this experiment on the ATTD of any minerals.

  14. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  15. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  16. Skeletal stem cells in space and time

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...

  17. Myosin heavy chain and Na+,K+-ATPase isoforms in equine skeletal muscle : Comparison of mRNA and protein expression profiles

    NARCIS (Netherlands)

    van den Burg, M.M.M.

    2009-01-01

    Adaptations to training and exercise can be measured in blood, muscle, and bones and are also reflected in behavior. Since equine total muscle mass represents approximately 42% of total body weight, a major role for skeletal muscle in adaptation to training can be expected. The plasticity of

  18. Comparative sulfur analysis using thermal combustion or inductively coupled plasma methodology and mineral composition of common livestock feedstuffs.

    Science.gov (United States)

    Kerr, B J; Ziemer, C J; Weber, T E; Trabue, S L; Bearson, B L; Shurson, G C; Whitney, M H

    2008-09-01

    The objective of this study was to compare the use of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total S content in plant-, animal-, and mineral-based feedstuffs, and to provide concentrations of other macro- and micro-minerals contained in these feedstuffs. Forty-five feedstuffs (464 total samples) were obtained from suppliers as well as swine feed and pet food manufacturers throughout the United States. Mineral data from IPC analysis were summarized on a DM basis using sample mean and SD, whereas the comparison of total S content between CNS and ICP was examined by bivariate plot and correspondence correlation. Analyses of a wide range of feedstuffs by CNS and ICP for total S were comparable for all but a few feedstuffs. For potassium iodide and tribasic copper chloride, ICP estimated total S to be lower than when analyzed by CNS (bias = 2.51 +/- 0.15 SE, P phosphate and limestone, ICP estimated total S to be greater than when analyzed by CNS (bias = -1.46 +/- 0.51 SE, P < 0.01). All other samples had similar estimates of total S, whether analyzed by CNS or ICP. As expected, S composition varied greatly among feedstuffs. For total S, plant-based feedstuffs generally had lower total S compared with animal-based feedstuffs, whereas minerals supplied in sulfate form had the greatest concentration of total S. In addition to total S, mineral composition data are provided for all feedstuffs as obtained by ICP analysis. Within specific feedstuffs, mineral composition was quite variable, potentially due to low concentrations in the feed-stuff causing high mathematical variation or due to the source of feedstock obtained. In general, analyzed values of P were similar to previous tabular values. These data provide feed formulators a database from which modifications in dietary minerals can be accomplished and from which mineral requirements can be met more precisely to reduce losses of minerals into the environment.

  19. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls.

    Science.gov (United States)

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4-10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (PBMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race.

  20. Primary sacrococcygeal chordoma with unusual skeletal muscle metastasis

    Directory of Open Access Journals (Sweden)

    Lisa Vu, MD

    2014-01-01

    Full Text Available Chordomas are rare neoplasms that do not often metastasize. Of the small percent that do metastasize, they very infrequently involve skeletal muscle. Only a few cases of skeletal muscle metastases have been reported in the literature. We report an unusual case of a patient with a primary sacrococcygeal chordoma who experienced a long period of remission but who subsequently developed recurrence and multiple metastatic lesions to skeletal muscles including the deltoid, triceps, and pectineus.

  1. Registry of Mineral and Petroleum Titles

    Energy Technology Data Exchange (ETDEWEB)

    Maclellan, I. M.; Kaizer, J. L.; McCulloch, P. D.; Ratcliffe, R.; Wenning, A. S. [Nova Scotia Dept. of Natural Resources, Halifax, NS (Canada)

    2000-07-01

    Activities of the Nova Scotia Registry of Mineral and Petroleum Titles are described, including statistical information about staking and mining activity in the province during 1999. In terms of activities, the Registry receives applications and issues licenses and leases for mineral and petroleum rights, receives statements of exploration expenditures and assessment reports that pertain to renewal of licenses and leases, maintains maps showing the disposition of lands under license or lease, and maintains a system of prospector registration. In addition, the Registry processes applications for underground gas storage rights and treasure trove rights and maintains a database of information concerning production and employment in Nova Scotia mines and quarries. At the end 1999 there were 230,660 hectares under exploration licence. Exploration expenditures, including engineering, economic and feasibility studies during 1999 totalled $4.2 million, mostly by junior mining companies searching for industrial mineral commodities. Mining activity during 1999 generated revenues of $340 million. Coal production dropped by 25 per cent, due mainly to the closure of the Phalen Mine. Gypsum production was up to 7.9 million tonnes; shipments of cement, barite and clay products also increased during 1999; salt production remained unchanged from 1998 with 842,000 tonnes. Production of construction aggregates totalled 10.6 million tonnes, down slightly from the year before. Mineral industry employment was roughly 2,500 persons, down by 24 per cent from 1998 levels, due primarily to the closure of the Phalen Mine.

  2. An analysis of correlation between occlusion classification and skeletal pattern

    International Nuclear Information System (INIS)

    Lu Xinhua; Cai Bin; Wang Dawei; Wu Liping

    2003-01-01

    Objective: To study the correlation between dental relationship and skeletal pattern of individuals. Methods: 194 cases were selected and classified by angle classification, incisor relationship and skeletal pattern respectively. The correlation of angle classification and incisor relationship to skeletal pattern was analyzed with SPSS 10.0. Results: The values of correlation index (Kappa) were 0.379 and 0.494 respectively. Conclusion: The incisor relationship is more consistent with skeletal pattern than angle classification

  3. [Effects of lycopene on the skeletal system].

    Science.gov (United States)

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-02-21

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.

  4. Status of mineral resources evaluation and forecast

    International Nuclear Information System (INIS)

    Ma Hanfeng; Li Ziying; Luo Yi; Li Shengxiang; Sun Wenpeng

    2007-01-01

    The work of resources evaluation and forecast is a focus to the governments of every country in the world, it is related to the establishment of strategic policy on the national mineral resources. In order to quantitatively evaluate the general potential of uranium resources in China and better forecast uranium deposits, this paper briefly introduces the method of evaluating total amount of mineral resources, especially 6 usual prospective methods which are recommended in international geology comparison programs, as well as principle of usual mineral resources quantitative prediction and its steps. The work history of mineral resources evaluation and forecast is reviewed concisely. Advantages and disadvantages of each method, their application field and condition are also explained briefly. At last, the history of uranium resources evaluation and forecast in China and its status are concisely outlined. (authors)

  5. Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2010-01-01

    During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative...... proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics...... of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188...

  6. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    Science.gov (United States)

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    Science.gov (United States)

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  8. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  9. Vitamin D as a possible independent predictor of bone mineral density in Estonian adults: a cross-sectional population-based study.

    Science.gov (United States)

    Kull, M; Kallikorm, R; Lember, M

    2012-06-01

    Vitamin D insufficiency and deficiency are prevalent worldwide, with the highest prevalence in the northern countries due to the lack of ultraviolet exposure. The individual effect of vitamin D on bone mineral density (BMD) has been studied but the results are inconclusive. The aim of our study was to investigate the effect of vitamin D on BMD in a random population-based cohort of Estonian adults. A cross-sectional population-based study. A total of 273 individuals free of diseases or states known to affect bone or vitamin D metabolism participated in the study. We measured BMD, vitamin D and parathyroid hormone concentrations (in winter and in summer). Several co-variables were included in the regression analysis, including age, smoking, alcohol consumption, body mass index, physical activity, fresh milk consumption, caffeinated beverage consumption, lean tissue mass and total body fat percentage, and in women the number of children and breastfeeding history. We show that summer vitamin D independently correlates with BMD in lumbar spine, trochanter and total body regions (P vitamin D predicts independently lumbar spine (P body BMD (P mass and fat mass were additional contributors of the BMD (P body composition indices, vitamin D could be an independent contributor of BMD in several skeletal regions in men and women. © 2010 The Authors. Internal Medicine Journal © 2010 Royal Australasian College of Physicians.

  10. Correlation of chronological, skeletal, and dental age in North Indian population

    Directory of Open Access Journals (Sweden)

    Madhurima Nanda

    2017-01-01

    Full Text Available Aim and Objectives: The aim of the study was to find out the correlation between chronological, dental, and skeletal age. Materials and Methods: Lateral cephalograms and orthopantomograms of 100 subjects of age ranging 9–14 years were obtained for the estimation of skeletal and dental age. Dental age was assessed using Demirjian's method; skeletal age was assessed using the new improved version of the cervical vertebral maturation method given by Baccetti, Franchi, and McNamara. Statistical analysis was carried out. Student's t-test and Spearman's coefficient correlation were used to assess the relation between chronological, skeletal, and dental age. Results: The Spearman's correlation coefficient was 0.777 (P < 0.001 between chronological and dental age, 0.516 (P < 0.001 between chronological and skeletal age, and 0.563 (P < 0.001 between dental and skeletal age. Conclusion: There is a good correlation between chronological and dental age in North Indian population which was higher for males as compared to females. A moderate correlation was found between chronological and skeletal age as well as between dental and skeletal age.

  11. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  12. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  13. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    exercise, exercise capacity is worsened, most likely due to the sympatho-adrenergt response, that increases heart rate and blocks gluconeogenesis. Substrate turnover studies in patients with McArdle disease and phosphorylase b kinase deficiency showed that palmitate lipolysis, utilization and plasma concentration was higher and total CHO lower in the patients during exercise vs. healthy subjects. In patients with low muscle mass glucose homeostasis is impaired, and our findings showed that these patients are prone to develop hypoglycaemia during prolonged fasting. The following studies emphasize the importance of skeletal muscle in production of energy, both when skeletal muscle lack important metabolic enzymes (metabolic myopathies), and when skeletal muscle mass is low.

  14. Orthodontic camouflage in the case of a skeletal class III malocclusion.

    Science.gov (United States)

    Costa Pinho, Teresa M; Ustrell Torrent, Josep M; Correia Pinto, João G R

    2004-01-01

    To describe the clinical problem of a male patient, 15 years of age, who had a dolichofacial biotype and a Class III skeletal type at the beginning of treatment, manifesting itself at the dental level. To resolve the dental problems, orthodontic camouflage (dentoalveolar compensation) with the extraction of two mandibular premolars was performed. This procedure allowed a more harmonious occlusal relationship at the canine level and provided better occlusal stability of the final result. The procedure choice was based on the fact that some cephalometric values were favorable to attenuation of the skeletal Class III. For example, according to the analyses of Björk and Jarabak, these values are the total sum of 1, 2, 3 (sella angle, articular angle, and gonial angles) and the anterior/posterior facial height (S-Go/Na-Me). However, the same cephalometric data indicate a possible worsening of the existing open bite, which might be corrected with dental extractions and the use of intermaxillary elastics.

  15. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Basu, Niladri [McGill University, Faculty of Agricultural and Environmental Sciences, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 (Canada); Rajaee, Mozhgon [University of Michigan, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Evers, David C.; Buck, David G. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Petrlik, Jindrich [Arnika Association, Chlumova 17, Prague 3 (Czech Republic); DiGangi, Joseph [IPEN, Box 7256, SE-402 35 Gothenburg (Sweden)

    2015-02-15

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.

  16. Unusual Features of Extraarticular Skeletal Tuberculosis: New Classification and Differential Diagnosis

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Park, Soo Soung

    1983-01-01

    Twenty two cases of extra articular skeletal tuberculosis which showed unusual radiological features are reported and classified into several categories with discussion on the differential diagnosis. Radiological patterns of skeletal tuberculosis is so variable that with any kind of skeletal changes the possibility of the skeletal tuberculosis should not be excluded between of lack of its classical patterns.

  17. A comparison of skeletal maturation in patients with tooth agenesis and unaffected controls assessed by the cervical vertebral maturation (CVM) index.

    Science.gov (United States)

    Casey, Christine; Gill, Daljit S; Jones, Steven P

    2013-12-01

    The aims of this study were to (1) investigate if there is a difference in skeletal maturation between tooth agenesis and control patients and (2) whether skeletal maturation is affected by the severity of tooth agenesis. The cervical vertebral maturation (CVM) index can be used to assess skeletal maturation. A retrospective cross-sectional study. Eastman Dental Hospital, London, UK. A total of 360 cephalograms of patients aged 9-17 years (164 males and 196 females) allocated to four subgroups (mild, moderate and severe tooth agenesis patients, and controls) were assessed retrospectively. There were 90 patients in each of the four subgroups. The skeletal maturation of each subject was assessed both quantitatively and qualitatively using the CVM index. All patients in the study were either currently receiving treatment or had been discharged from the hospital. There was no statistically significant relationship between skeletal maturation and the presence of tooth agenesis. Furthermore, there was no statistically significant relationship between the skeletal maturity of patients and different severities of tooth agenesis. The data obtained from this group of patients and using this measurement tool alone does not supply sufficient reason to reject the null hypothesis. However, it suggests that it is possible that no difference exists between the groups.

  18. Tissue transglutaminase (TG2 activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line

    Directory of Open Access Journals (Sweden)

    Xiaoxue Yin

    2012-08-01

    Full Text Available Tissue transglutaminase (type II, TG2 has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14 to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC mRNA, bone morphogenetic protein-2 (BMP-2 and collagen I, significantly high alkaline phosphatase (ALP activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.

  19. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  20. Health Occupations Module. The Skeletal System--I.

    Science.gov (United States)

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on the skeletal system is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic, three objectives (e.g., define the skeletal system and list its functions), and three learning…

  1. The essence of biophysical cues in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Langelaan, M.L.P.

    2010-01-01

    Skeletal muscle is an appealing topic for tissue engineering because of its variety in applications. Evidently, tissue engineered skeletal muscle can be used in the field of regenerative medicine to repair muscular defects or dystrophies. Engineered skeletal muscle constructs can also be used as a

  2. Apparent Consumption vs. Total Consumption--A Lead-Acid Battery Case Study

    Science.gov (United States)

    Wilburn, David R.; Buckingham, David A.

    2006-01-01

    Introduction: This report compares estimates of U.S. apparent consumption of lead with estimates of total U.S. consumption of this mineral commodity from a materials flow perspective. The difference, attributed to the amount of lead contained in imported and exported products, was found to be significant for this sector. The study also assesses the effects of including mineral commodities incorporated in manufactured products on the interpretation of observed trends in minerals consumption and trade. Materials flow is a systems approach to understanding what happens to the materials we use from the time a material is extracted, through its processing and manufacturing, to its ultimate disposition. The U.S. Geological Survey (USGS) provides accurate and detailed mineral production and mineral commodity consumption statistics that are essential for government, nongovernment organizations, and the public to gain a better understanding of how and where materials are used and their effect on the environment and society. Published statistics on mineral apparent consumption are limited to estimates of consumption of raw material forms (ore, concentrate, and [or] refined metal). For this study, apparent consumption is defined as mine production + secondary refined production + imports (concentrates and refined metal) ? exports (concentrates and refined metal) + adjustments for government and industry stock changes. These estimates do not account for the amount of mineral commodities contained in manufactured products that are imported to the United States, nor do they deduct the amount of these mineral commodities contained in manufactured products that are exported from the United States. When imports or exports of manufactured products contribute significantly to the total use of a particular raw material, an estimate of consumption that does not consider the incorporated forms of these mineral commodities within imported or exported manufactured products can be either

  3. Role of Akirin in Skeletal Myogenesis

    Directory of Open Access Journals (Sweden)

    Dingbiao Long

    2013-02-01

    Full Text Available Akirin is a recently discovered nuclear factor that plays an important role in innate immune responses. Beyond its role in innate immune responses, Akirin has recently been shown to play an important role in skeletal myogenesis. In this article, we will briefly review the structure and tissue distribution of Akirin and discuss recent advances in our understanding of its role and signal pathway in skeletal myogenesis.

  4. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Sisman, S. Lara

    2015-01-01

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  5. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  6. Growth Performance, Mineral Digestibility, and Blood Characteristics of Ostriches Receiving Drinking Water Supplemented with Varying Levels of Chelated Trace Mineral Complex.

    Science.gov (United States)

    Seyfori, Hossein; Ghasemi, Hossein Ali; Hajkhodadadi, Iman; Nazaran, Mohammad Hassan; Hafizi, Maryam

    2018-05-01

    The effects of water supplementation of chelated trace minerals (CTM, which is named Bonzaplex designed with chelate compounds technology) on growth performance, apparent total tract digestibility (ATTD) of minerals, and some blood metabolites, TM, and antioxidant enzyme values in African ostriches were investigated from 8 to 12 months of age. A total of 20 8-month-old ostriches (five birds in five replicate pens) was randomly allocated into one of the following four treatments: (1) control (basal diet + tap water), (2) low CTM (basal diet +100 mg/bird/day CTM powder in tap water), (3) medium CTM (basal diet +1 g/bird/day CTM powder in tap water), and (4) high CTM (basal diet +2 g/bird/day CTM powder in tap water). Compared with control, medium CTM improved (P water can be recommended for improving growth performance, mineral absorption, and antioxidant status of ostriches fed diets containing the recommended levels of inorganic TM.

  7. Membranous lipodystrophy: skeletal findings on CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nwawka, O.K.; Schneider, Robert; Mintz, Douglas N. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Bansal, Manjula [Hospital for Special Surgery, Department of Pathology and Laboratory Medicine, New York, NY (United States); Lane, Joseph [Hospital for Special Surgery, Department of Orthopedic Surgery, New York, NY (United States)

    2014-10-15

    Membranous lipodystrophy, also known as Nasu-Hakola disease, is a rare hereditary condition with manifestations in the nervous and skeletal systems. The radiographic appearance of skeletal lesions has been well described in the literature. However, CT and MRI findings of lesions in the bone have not been documented to date. This report describes the radiographic, CT, MRI, and histopathologic skeletal findings in a case of membranous lipodystrophy. With corroborative pathologic findings, a diagnosis of membranous lipodystrophy on imaging allows for appropriate clinical management of disease manifestations. (orig.)

  8. Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments

    International Nuclear Information System (INIS)

    Bauer, J.E.; Capone, D.G.

    1985-01-01

    The degradation of the polynuclear aromatic hydrocarbons (PAHs) anthracene and naphthalene by the microbiota of intertidal sediments was investigated in laboratory studies. No mineralization of either PAH was observed in the absence of oxygen. Both rates and total amounts of PAH mineralization were strongly controlled by oxygen content and temperature of the incubations. Inorganic nitrogen and glucose amendments had minimal effects on PAH mineralization. The rates and total amounts of PAH mineralized were directly related to compound concentration, pre-exposure time, and concentration. Maximum mineralization was observed at the higher concentrations (5 to 100 μg/g [ppm]) of both PAHs. Optimal acclimation to anthracene and naphthalene (through pre-exposures to the compounds) occurred at the highest acclimation concentration (1,000 ppm). However, acclimation to a single concentration (100 ppm) resulted in initial relative mineralization rates over a range of re-exposure concentrations (1 to 1,000 ppm) being nearly identical. Maximum mineralization of both PAHs occurred after intermediate periods (1 to 2 weeks) of pre-exposure. The fraction of the total heterotrophic population capable of utilizing anthracene or naphthalene as sole carbon source was also greatest after 2 weeks

  9. Skeletal traction and intramedullary nailing cost-effectiveness

    African Journals Online (AJOL)

    In the operative group 24 patients had union with one delayed union while in the traction group 12 patients had union, 9 with mal union and 4 delayed union. Conclusion: Intramedullary nailing is more cost-effective than skeletal traction. It met the dominant strategy, because it was significantly less costly than skeletal ...

  10. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  11. Granite-related hypothermal uranium mineralization in South China

    International Nuclear Information System (INIS)

    Liu, X.; Wu, J.; Pan, J.; Zhu, M.

    2014-01-01

    As one of the important geological types, granite-related uranium deposits account for about 29% of the total discovered natural uranium resources in China. Most of the granite-related uranium deposits located in Taoshan - Zhuguang uranium metallogenic belt, South China. In addition to the typical pitchblende vein-type uranium mineralization of epithermal metallogenic system, a new type of granite-related uranium mineralization with characteristics of hypothermal matallogenic system was discovered in South China by current studies. However, hypothermal is contact thermal to epithermal mineralization, and not the conventional intrusive high temperature mineralization. Hypothermal uranium mineralization is presented by disseminated uraninite or pitchblende stockwork in fissures in granites normally with extensive alkaline alteration. The high temperature mineral assemblage of uraninite associate with scheelite and tourmaline was identified in hypothermal uranium mineralization. Fluid inclusion studies on this type mineralization indicated the middle to high temperature (>250℃) mineralization with the mixing evidence of ore forming solution derived from deep level, and the boiling and mixing of ore forming solution are regarded as the dominant mineralization mechanism for the precipitating of uranium. In contrast to the mineralization ages of 67 Ma to 87 Ma for typical pitchblende vein mineralization of epithermal metallogenic system, the mineralization age is older than 100 Ma for hypothermal uranium mineralization in granite. In the Shituling deposit, Xiazhuang uranium ore field, uraninite and pitchblende micro veins with extensive potassic alteration, chloritization and sericitization are hosted in fissures of Indo-Chinese epoch granites with the uranium mineralization age of 130 Ma to 138 Ma with a mineralization temperature of 290℃ to 330℃ indicated. Other examples sharing the similar characters of hypothermal uranium mineralization have been recognized in

  12. Effect of zoledronic acid on reducing femoral bone mineral density loss following total hip arthroplasty: A meta-analysis from randomized controlled trails.

    Science.gov (United States)

    Gao, Jian; Gao, Chong; Li, Hui; Wang, Guo-Sheng; Xu, Chang; Ran, Jian

    2017-11-01

    This meta-analysis aimed to assess the efficiency of intravenous administration of zoledronic acid on reducing femoral periprosthetic bone mineral density loss in patients undergoing primary total hip arthroplasty (THA). A systematic search was performed in Medline (1966-2017.07.31), PubMed (1966-2017.07.31), Embase (1980-2017.07.31), ScienceDirect (1985-2017.07.31) and the Cochrane Library (1966-2017.07.31). Fixed/random effect model was used according to the heterogeneity tested by I 2 statistic. Sensitivity analysis was conducted and publication bias was assessed. Meta-analysis was performed using Stata 11.0 software. Four studies including 185 patients met the inclusion criteria. The present meta-analysis indicated that there were significant differences between groups in terms of periprosthetic bone mineral density in Gruen zone 1 (SMD = 0.752, 95% CI: 0.454 to 1.051, P = 0.000), 2 (SMD = 0.524, 95% CI: 0.230 to 0.819, P = 0.000), 4 (SMD = 0.400, 95% CI: 0.107 to 0.693, P = 0.008), 6 (SMD = 0.893, 95% CI: 0.588 to 1.198, P = 0.000) and 7 (SMD = 0.988, 95% CI: 0.677 to 1.300, P = 0.000). Intravenous administration of zoledronic acid could significantly reduce periprosthetic bone mineral density loss (Gruen zone 1, 2, 4, 6 and 7) after THA. In addition, no severe adverse events were identified. High-quality RCTs with large sample size were still required. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Taxation and our future mineral resources. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R D

    1976-05-01

    Canada's known reserves of minerals are estimated in general to be adequate to meet domestic requirements and current export demands until the mid-1980's. Beyond that time, an increasing proportion of reserves needed to maintain, let alone increase, present mineral production must come from mineral deposits not yet discovered, delineated or developed. The major question for Canada is whether present tax and regulatory programs will provide sufficient incentives for the industry to spend the large amounts required--perhaps $1.2 billion annually--in the exploration and development of mineral resources. Without such a major capital commitment to the development of new mineral resources, Canada will not be able to maintain the relative importance of its mining sector, or the contribution that the sector has made to our balance of payments, employment, and the opening of new frontiers. However, present levels of exploration and development expenditures are likely to be totally inadequate in maintaining, let alone increasing present production. The article refers to two major new reports that provide new information on Canada's resource industries and their future.

  14. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia

    Science.gov (United States)

    Kim, Kyoung Min; Jang, Hak Chul; Lim, Soo

    2016-01-01

    Aging processes are inevitably accompanied by structural and functional changes in vital organs. Skeletal muscle, which accounts for 40% of total body weight, deteriorates quantitatively and qualitatively with aging. Skeletal muscle is known to play diverse crucial physical and metabolic roles in humans. Sarcopenia is a condition characterized by significant loss of muscle mass and strength. It is related to subsequent frailty and instability in the elderly population. Because muscle tissue is involved in multiple functions, sarcopenia is closely related to various adverse health outcomes. Along with increasing recognition of the clinical importance of sarcopenia, several international study groups have recently released their consensus on the definition and diagnosis of sarcopenia. In practical terms, various skeletal muscle mass indices have been suggested for assessing sarcopenia: appendicular skeletal muscle mass adjusted for height squared, weight, or body mass index. A different prevalence and different clinical implications of sarcopenia are highlighted by each definition. The discordances among these indices have emerged as an issue in defining sarcopenia, and a unifying definition for sarcopenia has not yet been attained. This review aims to compare these three operational definitions and to introduce an optimal skeletal muscle mass index that reflects the clinical implications of sarcopenia from a metabolic perspective. PMID:27334763

  15. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  16. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    Science.gov (United States)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  17. Skeletal maturity assessment using mandibular canine calcification stages

    Directory of Open Access Journals (Sweden)

    Vildana Džemidžić

    2016-11-01

    Full Text Available Objective. The aims of this study were: to investigate the relationship between mandibular canine calcification stages and skeletal maturity; and to evaluate whether the mandibular canine calcification stages may be used as a reliable diagnostic tool for skeletal maturity assessment. Materials and methods. This study included 151 subjects: 81 females and 70 males, with ages ranging from 9 to 16 years (mean age: 12.29±1.86 years. The inclusion criteria for subjects were as follows: age between 9 and 16 years; good general health without any hormonal, nutritional, growth or dental development problems. Subjects who were undergoing or had previously received orthodontic treatment were not included in this study. The calcification stages of the left permanent mandibular canine were assessed according to the method of Demirjian, on panoramic radiographs. Assessment of skeletal maturity was carried out using the cervical vertebral maturation index (CVMI, as proposed by the Hassel-Farman method, on lateral cephalograms. The correlation between the calcification stages of mandibular canine and skeletal maturity was estimated separately for male and female subjects. Results. Correlation coefficients between calcification stages of mandibular canine and skeletal maturity were 0.895 for male and 0.701 for female subjects. Conclusions. A significant correlation was found between the calcification stages of the mandibular canine and skeletal maturity. The calcification stages of the mandibular canine show a satisfactory diagnostic performance only for assessment of pre-pubertal growth phase.

  18. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  19. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  20. Extra-osseous uterine pathophysiology demonstrated on skeletal scintigraphy

    International Nuclear Information System (INIS)

    Mansberg, R.; Lewis, G.

    1999-01-01

    Full text: Skeletal scintigraphy is a sensitive procedure for evaluating disease and trauma involving the skeleton. Extra-skeletal pathophysiology is also often demonstrated. This may include uptake by tumours, soft tissue calcification and infection as well as renal pathology. Skeletal scintigraphy is often performed to evaluate hip and back pain and extra-osseous uterine pathophysiology can be demonstrated in both the early and late phases of the study as in the following cases. Three women underwent skeletal scintigraphy for the investigation of low back pain in two patients and post-partum hip pain in one. A large vascular uterus with deviation of the bladder was demonstrated in the post-partum patient. Increased pelvic vascularity and bladder deviation in the second patient was shown by ultrasound to correspond to a left-sided fibroid with associated adenomyosis. In the third case, right-sided pelvic vascularity and left bladder deviation were shown on ultrasound to be due to an anteverted, anteflexed uterus tilted to the right. These cases illustrate the importance of documenting extra-osseous findings on skeletal scintigraphy and the benefits of correlation with anatomical imaging

  1. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

    Directory of Open Access Journals (Sweden)

    Laura Toxqui

    2016-06-01

    Full Text Available Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW or control mineral water low in mineral content (CW, on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01, oxidised LDL tended to decrease (p = 0.073, and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006 and reduced calcium/creatinine excretion (p = 0.011. Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

  2. Influence of education, marital status, occupation, and the place of living on skeletal status, fracture prevalence, and the course and effectiveness of osteoporotic therapy in women in the RAC-OST-POL Study.

    Science.gov (United States)

    Pluskiewicz, Wojciech; Adamczyk, Piotr; Czekajło, Aleksandra; Grzeszczak, Władysław; Drozdzowska, Bogna

    2014-01-01

    The RAC-OST-POL population-based, epidemiological study provided data concerning the influence of education, marital status, occupation, and the place of living (residence) on skeletal status, fracture prevalence, and the course and effectiveness of osteoporotic therapy in 625 women older than 55 years, all of them recruited from the District of Raciborz in Poland. Their mean age was 66.4 ± 7.8 years. All the women completed a specially designed questionnaire. The skeletal status was assessed by femoral neck (FN) and total hip (TH) densitometry, using a Lunar DPX system (USA). In univariate analyses, taking into consideration the age differences, bone mineralization was dependent on marital status (Z score for FN and TH was significantly higher in widows than in divorcees; p education was associated with a more frequent use of vitamin D (χ(2) = 8.49, df = 3, p women (30%) and least commonly by divorcees (11.8%) (χ(2) = 11.7, df = 3, p = 0.01). Vitamin D was more often used among women from the urban area of Raciborz than by those from surrounding rural areas (χ(2) = 9.2, df = 1, p Women with sedentary jobs demonstrated the highest frequency of intake for vitamin D (χ(2) = 9.92, df = 3, p education, marital status, place of living, and type of occupation may have impacts on implementation of osteoporosis-preventing health programs.

  3. PGC-1α-mediated adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    multiple pathways and functions underline the potential importance of PGC-1alpha in skeletal muscle adaptations in humans. The absence of exercise-induced PGC-1alpha-mediated gene regulation during a physical inactive lifestyle is suggested to lead to reduced oxidative capacity of skeletal muscle...... involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1alpha transcription and potentially PGC-1alpha activity through post-translational modifications, and concomitant PGC-1alpha-mediated gene regulation is suggested...... to be an underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...

  4. Management of osteonecrosis of the femoral head in children with sickle cell disease: results of conservative and operative treatments at skeletal maturity.

    Science.gov (United States)

    Mallet, C; Abitan, A; Vidal, C; Holvoet, L; Mazda, K; Simon, A-L; Ilharreborde, B

    2018-02-01

    Sickle cell disease (SCD) is the most common cause of femoral head osteonecrosis (ONFH) during childhood with an overall prevalence of 10%. In children, spontaneous revascularization can occur, as in Legg-Calve-Perthes disease. Consequently, the aim of treatment is to restore proper hip containment to prevent joint arthritis. This is the first study reporting long-term results at skeletal maturity of non-operative and surgical treatments for ONFH in SCD children. All children with ONFH due to SCD were retrospectively reviewed. At initial evaluation, extension of osteonecrosis was radiographically defined using Catterall, lateral pillar Herring and Ficat classifications. Subluxation of the femoral head with Reimers migration index > 30% required surgical treatment including femoral varus osteotomy and/or pelvic osteotomies. Conservative treatment including non-weight bearing and physiotherapy was performed in the remaining cases. Outcomes were assessed at skeletal maturity using the Harris Hip Score (HHS) and the Stulberg classification. Total hip arthroplasty and Stulberg 5 were defined as failures. A total of 25 hips in 17 patients were included (mean follow-up 7.5 years SD 3.4). Mean age at diagnosis was 11.4 years SD 2.9. In all, 15 hips (60%) were classified Catterall 3 and 4 and Herring B and C. A total of 13 patients (52%) underwent surgical treatment. At skeletal maturity, mean HHS was good (81 SD 17), 12 hips (48%) were classified Stulberg 1 and 2, seven hips (28%) were classified Stulberg 3 and 4. Both treatments led to good functional results with 75% of congruent hips at skeletal maturity. IV.

  5. Proteomic analysis of skeletal muscle in insulin-resistant mice: response to 6-week aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Hairui Yuan

    Full Text Available Aerobic exercise has beneficial effects on both weight control and skeletal muscle insulin sensitivity through a number of specific signaling proteins. To investigate the targets by which exercise exerts its effects on insulin resistance, an approach of proteomic screen was applied to detect the potential different protein expressions from skeletal muscle of insulin-resistant mice after prolonged aerobic exercise training and their sedentary controls. Eighteen C57BL/6 mice were divided into two groups: 6 mice were fed normal chow (NC and 12 mice were fed high-fat diet (HFD for 10 weeks to produce an IR model. The model group was then subdivided into HFD sedentary control (HC, n = 6 and HFD exercise groups (HE, n = 6. Mice in HE group underwent 6 weeks of treadmill running. After 6 weeks, mice were sacrificed and skeletal muscle was dissected. Total protein (n = 6, each group was extracted and followed by citrate synthase, 2D proteome profile analysis and immunoblot. Fifteen protein spots were altered between the NC and HC groups and 23 protein spots were changed between the HC and HE groups significantly. The results provided an array of changes in protein abundance in exercise-trained skeletal muscle and also provided the basis for a new hypothesis regarding the mechanism of exercise ameliorating insulin resistance.

  6. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  7. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Evaluation of the mineral content of peripheral bones (radius) by photon-absorption technique in normals as well as in patients with various types of bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Runge, H.; Fengler, F.; Franke, J.; Koall, W.

    1980-10-01

    The evaluation of the mineral content of peripheral bones by measuring the photon absorption of the radius has proven to be a valuable method for routine clinical work: for diagnosis, follow-up and control of therapy. While there was a significant difference in the findings of normal persons compared with those of patients suffering from osteoporosis, renal osteodystrophy, osteogenesis imperfecta and skeletal fluorosis, there was no difference between normals and these patients suffering from Bechterew, Scheuermann, coxarthrosis, spondylosis, skoliosis and rheumatoid arthritis. Normal values for the mineral content and the width of the radius at the junction of the middle and lower third - based on 8000 examinations - are mentioned.

  9. Evaluation of the mineral content of peripheral bones (radius) by photon-absorption technique in normals as well as in patients with various types of bone diseases

    International Nuclear Information System (INIS)

    Runge, H.; Fengler, F.; Franke, J.; Koall, W.

    1980-01-01

    The evaluation of the mineral content of peripheral bones by measuring the photon absorption of the radius has proven to be a valuable method for routine clinical work: for diagnosis, follow-up and control of therapy. While there was a significant difference in the findings of normal persons compared with those of patients suffering from osteoporosis, renal osteodystrophy, osteogenesis imperfecta and skeletal fluorosis, there was no difference between normals and these patients suffering from Bechterew, Scheuermann, coxarthrosis, spondylosis, skoliosis and rheumatoid arthritis. Normal values for the mineral content and the width of the radius at the junction of the middle and lower third - based on 8000 examinations - are mentioned. (orig.) [de

  10. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  11. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  12. Environmental conditioning of skeletal anomalies typology and frequency in gilthead seabream (Sparus aurata L., 1758 juveniles.

    Directory of Open Access Journals (Sweden)

    Loredana Prestinicola

    Full Text Available In this paper, 981 reared juveniles of gilthead seabream (Sparus aurata were analysed, 721 of which were from a commercial hatchery located in Northern Italy (Venice, Italy and 260 from the Hellenic Center for Marine Research (Crete, Greece. These individuals were from 4 different egg batches, for a total of 10 different lots. Each egg batch was split into two lots after hatching, and reared with two different methodologies: intensive and semi-intensive. All fish were subjected to processing for skeletal anomaly and meristic count analysis. The aims involved: (1 quantitatively and qualitatively analyzing whether differences in skeletal elements arise between siblings and, if so, what they are; (2 investigating if any skeletal bone tissue/ossification is specifically affected by changing environmental rearing conditions; and (3 contributing to the identification of the best practices for gilthead seabream larval rearing in order to lower the deformity rates, without selections. The results obtained in this study highlighted that: i in all the semi-intensive lots, the bones having intramembranous ossification showed a consistently lower incidence of anomalies; ii the same clear pattern was not observed in the skeletal elements whose ossification process requires a cartilaginous precursor. It is thus possible to ameliorate the morphological quality (by reducing the incidence of severe skeletal anomalies and the variability in meristic counts of dermal bones of reared seabream juveniles by lowering the stocking densities (maximum 16 larvae/L and increasing the volume of the hatchery rearing tanks (minimum 40 m(3. Feeding larvae with a wide variety of live (wild preys seems further to improve juvenile skeletal quality. Additionally, analysis of the morphological quality of juveniles reared under two different semi-intensive conditions, Mesocosm and Large Volumes, highlighted a somewhat greater capacity of Large Volumes to significantly augment the

  13. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers.

    Directory of Open Access Journals (Sweden)

    David Gonzalez

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα, Tcf4 and α-smooth muscle actin (α-SMA levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs, which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.

  14. Orthodontics-surgical combination therapy for Class III skeletal malocclusion

    Directory of Open Access Journals (Sweden)

    M S Ravi

    2012-01-01

    Full Text Available The correction of skeletal Class III malocclusion with severe mandibular prognathism in an adult individual requires surgical and Othodontic combination therapy. The inter disciplinary approach is the treatment of choice in most of the skeletal malocclusions. A case report of an adult individual with Class III malocclusion, having mandibular excess in sagittal and vertical plane and treated with orthodontics,, bilateral sagittal split osteotomy and Le - Forte I osteotomy for the correction of skeletal, dental and soft tissue discrepancies is herewith presented. The surgical-orthodontic combination therapy has resulted in near-normal skeletal, dental and soft tissue relationship, with marked improvement in the facial esthetics in turn, has helped the patient to improve the self-confidence level.

  15. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  16. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  17. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  18. TAK1 regulates skeletal muscle mass and mitochondrial function

    Science.gov (United States)

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  19. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  20. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  1. Skeletal improvement in patients with Gaucher disease type 1: a phase 2 trial of oral eliglustat

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Ravi S. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Fairfax Radiological Consultants, Fairfax, VA (United States); Lukina, Elena [Russian Academy of Medical Sciences, Moscow (Russian Federation); Watman, Nora [Hospital Ramos Mejia, Buenos Aires (Argentina); Dragosky, Marta [Instituto Mexicano del Seguro Social Hospital de Especialidades, Col. La Raza (Mexico); Pastores, Gregory M. [New York University, New York (United States); Yale University School of Medicine, New Haven, CT (United States); Arreguin, Elsa Avila [Instituto Argentino de Diagnostico y Tratamiento, Buenos Aires (Argentina); Rosenbaum, Hanna [Rambam Medical Center, Haifa (Israel); Zimran, Ari [Sha' are Zedek Hebrew University and Hadassah Medical School, Jerusalem (Israel); Aguzzi, Rasha [Genzyme, a Sanofi company, Cambridge, MA (United States); Alexion Pharmaceuticals, Cambridge, MA (United States); Puga, Ana Cristina; Norfleet, Andrea M.; Peterschmitt, M.J. [Genzyme, a Sanofi company, Cambridge, MA (United States); Rosenthal, Daniel I. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2014-10-15

    Eliglustat is an investigational oral substrate reduction therapy for Gaucher disease type 1 (GD1). Its skeletal effects were evaluated by prospective monitoring of bone mineral density (BMD), fractures, marrow infiltration by Gaucher cells, focal bone lesions, and infarcts during an open-label, multi-site, single-arm phase 2 trial (NCT00358150). Institutional review board approval and patient informed consent were obtained. Eliglustat (50 or 100 mg) was self-administered by mouth twice daily; 19 patients completed 4 years of treatment. All were skeletally mature (age range, 18-55 years). DXA and MRI assessments were conducted at baseline and annually thereafter. X-rays were obtained annually until month 24, and then every other year. Lumbar spine BMD increased significantly (p = 0.02; n = 15) by a mean (SD) of 9.9 % (14.2 %) from baseline to year 4; corresponding T-scores increased significantly (p = 0.01) from a mean (SD) of -1.6 (1.1) to -0.9 (1.3). Mean femur T-score remained normal through 4 years. Femur MRI showed that 10/18 (56 %) patients had decreased Gaucher cell infiltration compared to baseline; one patient with early improvement had transient worsening at year 4. There were no lumbar spine or femoral fractures and no reported bone crises during the study. At baseline, 8/19 (42 %) patients had focal bone lesions, which remained stable, and 7/19 (37 %) patients had bone infarctions, which improved in one patient by year 2. At year 4, one new asymptomatic, indeterminate bone lesion was discovered that subsequently resolved. Eliglustat may be a therapeutic option for treating the skeletal manifestations of GD1. (orig.)

  2. Skeletal improvement in patients with Gaucher disease type 1: a phase 2 trial of oral eliglustat

    International Nuclear Information System (INIS)

    Kamath, Ravi S.; Lukina, Elena; Watman, Nora; Dragosky, Marta; Pastores, Gregory M.; Arreguin, Elsa Avila; Rosenbaum, Hanna; Zimran, Ari; Aguzzi, Rasha; Puga, Ana Cristina; Norfleet, Andrea M.; Peterschmitt, M.J.; Rosenthal, Daniel I.

    2014-01-01

    Eliglustat is an investigational oral substrate reduction therapy for Gaucher disease type 1 (GD1). Its skeletal effects were evaluated by prospective monitoring of bone mineral density (BMD), fractures, marrow infiltration by Gaucher cells, focal bone lesions, and infarcts during an open-label, multi-site, single-arm phase 2 trial (NCT00358150). Institutional review board approval and patient informed consent were obtained. Eliglustat (50 or 100 mg) was self-administered by mouth twice daily; 19 patients completed 4 years of treatment. All were skeletally mature (age range, 18-55 years). DXA and MRI assessments were conducted at baseline and annually thereafter. X-rays were obtained annually until month 24, and then every other year. Lumbar spine BMD increased significantly (p = 0.02; n = 15) by a mean (SD) of 9.9 % (14.2 %) from baseline to year 4; corresponding T-scores increased significantly (p = 0.01) from a mean (SD) of -1.6 (1.1) to -0.9 (1.3). Mean femur T-score remained normal through 4 years. Femur MRI showed that 10/18 (56 %) patients had decreased Gaucher cell infiltration compared to baseline; one patient with early improvement had transient worsening at year 4. There were no lumbar spine or femoral fractures and no reported bone crises during the study. At baseline, 8/19 (42 %) patients had focal bone lesions, which remained stable, and 7/19 (37 %) patients had bone infarctions, which improved in one patient by year 2. At year 4, one new asymptomatic, indeterminate bone lesion was discovered that subsequently resolved. Eliglustat may be a therapeutic option for treating the skeletal manifestations of GD1. (orig.)

  3. Application of skeletal age based on x-ray in selecting sports talents

    Science.gov (United States)

    Mao, Zongzhen; Xu, Guodong; Song, Tao

    2012-01-01

    Skeletal age has been studied and proved that for most elite athletes, it was coincident with the chronological ages when they were young. In order to explore the application of skeletal age in selecting sports talent, 32 athletes (female, chronological age 5-12 y) were chosen from the Gymnastics Training Base in this study. Their left hand-wrists were photographed with X-rays, and then the skeletal ages were estimated by Chinese version of the Tanner-Whitehouse Skeletal Maturity Assessment System. At the same time, their body shapes, functions, and sports ability were also measured. Results showed that 71.88% of the skeletal age was proportional to their chronological age (+/- 1 y); while 18.75% of the skeletal maturity was retarded by 1- 2 year, 9.37% of those was advanced more than 1 year. On the other hand, the body shape, functions and sports ability of the athletes were positively related with their skeletal maturity. This study proved that the determination of skeletal maturity is a reliable evaluation for selecting sports talent. A further study on the influence of gymnastics on the skeletal age is of great significance.

  4. Kinematic analysis of mandibular motion before and after orthognathic surgery for skeletal Class III malocclusion: A pilot study.

    Science.gov (United States)

    Ugolini, Alessandro; Mapelli, Andrea; Segù, Marzia; Galante, Domenico; Sidequersky, Fernanda V; Sforza, Chiarella

    2017-03-01

    The aim of the study was to detect the changes in 3D mandibular motion after orthognathic surgery for skeletal Class III malocclusion. Using a 3D motion analyzer, free mandibular border movements were recorded in nine patients successfully treated for skeletal Class III malocclusion and in nine patients scheduled for orthognathic surgery. Data were compared using Mann-Whitney non-parametric U-test. The results showed no differences between the groups in the total amount of mouth opening, protrusion, and in lateral excursions, but the percentage of mandibular movement explained by condylar translation was significantly increased after surgery (20% vs. 23.6%). During opening, the post-surgery patients showed a more symmetrical mandibular interincisal point and condylar path than pre-surgery patients (p < 0.01). Patients treated with orthognathic surgery for skeletal Class III malocclusion recover a good and symmetric temporomandibular joint function.

  5. Australian minerals industry 1985-6

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The performance of the Australian mineral industry in 1985-86 was again adversely affected by low commodity prices and tight market conditions. This is shown in a survey conducted by chartered accountants Coopers and Lybrand and published by the Australian Mining Industry Council (AMIC). In a preface to the report, the president of AMIC (Sir Bruce Watson) said: In just 10 years the minerals industry has emerged as Australia's major exporter, accounting for over 40% of total Australian exports of goods. This preeminent ranking has depended on a significant investment effort, and in the creation of a very large asset base. Financing this investment, and achieving the cash flow necessary to service it, are enormous tasks.

  6. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-01-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals (Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment

  7. Skeletal age assessment in children using an open compact MRI system.

    Science.gov (United States)

    Terada, Yasuhiko; Kono, Saki; Tamada, Daiki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Yoshioka, Hiroshi

    2013-06-01

    MRI may be a noninvasive and alternative tool for skeletal age assessment in children, although few studies have reported on this topic. In this article, skeletal age was assessed over a wide range of ages using an open, compact MRI optimized for the imaging of a child's hand and wrist, and its validity was evaluated. MR images and their three-dimensional segmentation visualized detailed skeletal features of each bone in the hand and wrist. Skeletal age was then independently scored from the MR images by two raters, according to the Tanner-Whitehouse Japan system. The skeletal age assessed by MR rating demonstrated a strong positive correlation with chronological age. The intrarater and inter-rater reproducibilities were significantly high. These results demonstrate the validity and reliability of skeletal age assessment using MRI. Copyright © 2012 Wiley Periodicals, Inc.

  8. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  9. Skeletal class III camouflage by mandibular incisor extraction: A case report

    OpenAIRE

    Janardhanan Kumaresan; Tamizharasi Senthil Kumar; Senthil Kumar

    2014-01-01

    Treatment planning in orthodontics plays a key role in determining the successful treatment of any kind of malocclusion. Skeletal class III malocclusions are generally difficult to treat because of the complex nature of the skeletal and dental manifestations they produce. Mild to moderate skeletal class III malocclusions sometimes have an acceptable facial profile where orthodontic camouflage is possible. In this case report, camouflage of a mild skeletal class III is done by the extraction o...

  10. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  11. Biochemical background of the VO2 on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2006-02-01

    This review discusses the present knowledge on the oxygen uptake kinetics at the onset of exercise in skeletal muscle and the contribution of a previously developed computer model of oxidative phosphorylation in intact skeletal muscle to the understanding of the factors determining this kinetics on the biochemical level. It has been demonstrated recently that an increase in the total creatine pool [PCr + Cr] and in glycolytic ATP supply lengthen the half-transition time of the VO2 on-kinetics, while an increase in mitochondria content, in parallel activation of ATP supply and ATP usage, in muscle oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH, and in initial alkalization diminish this parameter. It has also been shown that the half-transition time is near-linearly proportional to the absolute difference between the phosphocreatine concentration during work and at rest (deltaPCr). The present review discusses whether the V/O2 on-kinetics on the muscle level is strictly or only approximately exponential. Finally, it is postulated that a short transition time of the VO2 on-kinetics in itself does not need be profitable for the skeletal muscle functioning during exercise, but usually a short transition time is correlated with factors that improve exercise capacity. The transition time is a phenomenological parameter resulting from the biochemical properties of the system and not a physical factor that can cause anything in the system.

  12. US of the hips in skeletal dysplasias and chromosomal aberrations

    International Nuclear Information System (INIS)

    Langer, R.; Langer, M.F.J.; Zwicker, C.

    1987-01-01

    Since January 1984 all newborns and infants with skeletal dysplasias and chromosomal aberrations were investigated by hip US, in addition to plain x-ray surveys. The authors observed one chondroectodermal dysplasia, one congenital spondyloepiphysial dysplasia, one cleidocranial dysplasia, one fibrochondrogenesis, two diastrophic dysplasias, and eight trisomies. The abnormalities of the hip joints could be demonstrated, and were compared with the findings on plain films. Especially skeletal dysplasias with abundant presence of cartilage were well visible. The newborn with trisomies showed normal hip joints. In the authors' opinion, all newborns with skeletal dysplasias should be investigated by hip sonography, in addition to skeletal radiography

  13. Effect of parity on bone mineral density: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Seung Yeon; Kim, Yejee; Park, Hyunmin; Kim, Yun Joo; Kang, Wonku; Kim, Eun Young

    2017-08-01

    Parity has been suggested as a possible factor affecting bone health in women. However, study results on its association with bone mineral density are conflicting. PubMed, EMBASE, the Cochrane Library, and Korean online databases were searched using the terms "parity" and "bone mineral density", in May 2016. Two independent reviewers extracted the mean and standard deviation of bone mineral density measurements of the femoral neck, spine, and total hip in nulliparous and parous healthy women. Among the initial 10,146 studies, 10 articles comprising 24,771 women met the inclusion criteria. The overall effect of parity on bone mineral density was positive (mean difference=5.97mg/cm 2 ; 95% CI 2.37 to 9.57; P=0.001). The effect appears site-specific as parity was not significantly associated with the bone mineral density of the femoral neck (P=0.09) and lumbar spine (P=0.17), but parous women had significantly higher bone mineral density of the total hip compared to nulliparous women (mean difference=5.98mg/cm 2 ; 95% CI 1.72 to 10.24; P=0.006). No obvious heterogeneity existed among the included studies (femoral neck I 2 =0%; spine I 2 =31%; total hip I 2 =0%). Parity has a positive effect on bone in healthy, community-dwelling women and its effect appears site-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Skeletal Muscle Metastasis as an Initial Presentation of Follicular Thyroid Carcinoma: A Case Report and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mutahir A. Tunio

    2013-01-01

    Full Text Available Introduction. Follicular thyroid carcinoma (FTC frequently metastasizes to the lungs and bones. However, metastasis to the skeletal muscles is an extremely rare manifestation of FTC. To date, only seven cases of FTC have been reported in the literature. Skeletal muscle metastases from FTC usually remain asymptomatic or manifest as swelling and are associated with dismal prognosis. Case Presentation. A 45-year-old Saudi woman presented with right buttock swelling since 8 months. Physical examination revealed right gluteal mass of size  cm and right thyroid lobe nodule. The rest of examination was unremarkable. Magnetic resonance imaging (MRI showed  cm lobulated mass arising from the gluteus medius muscle, and tru-cut biopsy confirmed the metastatic papillary carcinoma of thyroid origin. The patient subsequently underwent palliative radiotherapy followed by total thyroidectomy and radioactive iodine ablation. At the time of publication, the patient was alive with partial response in gluteal mass. Conclusion. Skeletal muscles metastases are a rare manifestation of FTC, and searching for the primary focus in a patient with skeletal muscle metastasis, thyroid cancer should be considered as differential diagnosis.

  15. Mineralization of Nitrogen in Hydromorphic Soils Amended with ...

    African Journals Online (AJOL)

    ... to 320.00 mg kg-1 for Mangrove soil (mangal acid sulphate soils). The order of cumulative nitrogen released in the waste amended soil followed the order: sewage sludge>kitchen waste> poultry manure> oil palm waste> cow manure. Total mineralized N indicated negative correlation with total organic N and C:N ratio ...

  16. The skeletal system

    NARCIS (Netherlands)

    Nikkels, PGJ

    2015-01-01

    Skeletal dysplasias are a group of disorders with a disturbance in development and/or growth of cartilage and/or bone. Epiphysis, metaphysis, and diaphysis of long bones are affected in a generalized manner with or without involvement of membranous bone of the skull. A dysostosis affects one or some

  17. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism

    Science.gov (United States)

    Feng, Jian Q; Ward, Leanne M; Liu, Shiguang; Lu, Yongbo; Xie, Yixia; Yuan, Baozhi; Yu, Xijie; Rauch, Frank; Davis, Siobhan I; Zhang, Shubin; Rios, Hector; Drezner, Marc K; Quarles, L Darryl; Bonewald, Lynda F; White, Kenneth E

    2007-01-01

    The osteocyte, a terminally differentiated cell comprising 90%–95% of all bone cells1,2, may have multiple functions, including acting as a mechanosensor in bone (re)modeling3. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes4 and, when deleted in mice, results in a hypomineralized bone phenotype5. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (Pi) homeostasis. Both Dmp1- null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism. PMID:17033621

  18. Skeletal injuries in small mammals: a multispecies assessment of prevalence and location

    Science.gov (United States)

    Stephens, Ryan B.; Burke, Christopher B.; Woodman, Neal; Poland, Lily B.; Rowe, Rebecca J.

    2018-01-01

    Wild mammals are known to survive injuries that result in skeletal abnormalities. Quantifying and comparing skeletal injuries among species can provide insight into the factors that cause skeletal injuries and enable survival following an injury. We documented the prevalence and location of structural bone abnormalities in a community of 7 small mammal species inhabiting the White Mountains of New Hampshire. These species differ in locomotion type and levels of intraspecific aggression. Overall, the majority of injuries were to the ribs or caudal vertebrae. Incidence of skeletal injuries was highest in older animals, indicating that injuries accumulate over a lifetime. Compared to species with ambulatory locomotion, those with more specialized (semi-fossorial, saltatorial, and scansorial) locomotion exhibited fewer skeletal abnormalities in the arms and legs, which we hypothesize is a result of a lesser ability to survive limb injuries. Patterns of skeletal injuries in shrews (Soricidae) were consistent with intraspecific aggression, particularly in males, whereas skeletal injuries in rodents (Rodentia) were more likely accidental or resulting from interactions with predators. Our results demonstrate that both the incidence and pattern of skeletal injuries vary by species and suggest that the ability of an individual to survive a specific skeletal injury depends on its severity and location as well as the locomotor mode of the species involved.

  19. State of Skeletal Muscle Tissue in Women in the Ukrainian Population

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2015-10-01

    Full Text Available Today among geriatric syndromes, world scientists pay much attention to the study of sarcopenia. It was found that the evaluation of skeletal muscle strength has a significant correlation with the risk of falls, disability, deterioration in the quality of life, duration of hospitalization. It is proved that measurements of skeletal muscle strength, but not the determination of skeletal muscles mass, are strong and independent predictors of mortality in the elderly. Further researches are needed to study the characteristics of weight loss, strength and function of skeletal muscle with age in individuals of different sex and age. The objective of this study was to explore the features of strength and functionality of skeletal muscle tissue in women of all ages. The study involved 248 women, who were divided into groups by decades depending on age: 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89 years. Skeletal muscle strength was evaluated using spring carpal dynamometer. Functions of skeletal muscles and the risk of falls were assessed using special tests. Fat-free mass of the whole body, upper and lower extremities was evaluated by means of dual-energy X-ray absorptiometry (Prodigy, GEHC Lunar, Madison, WI, USA. The study found that maximal values of strength and functional capacity of skeletal muscles were observed in women in the age group of 20–29 years. The significant loss of skeletal muscle strength is being detected in individuals from the age group of 60–69 years and older. When determining the functional capacity of skeletal muscles and risk of falls, significantly worse performance was established in women older than 50 years compared to those in women in the age group of 20–29 years.

  20. Skeletal survey quality in non-accidental injury – A single site evaluation of the effects of imaging checklists

    International Nuclear Information System (INIS)

    Weldon, J.; Price, R.

    2016-01-01

    Aims: Evidence suggests ongoing practice variability in the quality of skeletal survey examinations for non-accidental injury. The purpose of the study was to investigate the effects on examination quality following the implementation of imaging checklists. Method: A retrospective evaluation of skeletal survey examinations was carried out on studies performed between January 2007 and November 2014 at a large District General Hospital Trust. Longitudinal assessment was undertaken over three periods, before and following the introduction of two versions of imaging checklists, following modifications. Examinations were assessed and scored using three measures for completeness and quality employing a modified established scoring system against a professional body national standards document. Results: A total of 121 examinations met the inclusion criteria, all quality assessment measures showed improvements between each period. Examination completeness increased from median of 13 projections, to 20 throughout the three periods. Mann Whitney u Tests showed significant differences between each period. The mean combined anatomy score reduced from 3.11 to 1.10 throughout the three periods. Independent t Tests and Mann Whitney u Tests showed a significant decrease throughout the study period. Total percentage examination quality increased from median 44–83% throughout the three periods. Independent t Tests also showed significant differences between each period. Conclusion: The use of imaging checklists to improve quality and to support the optimal acquisition of the non-accidental injury skeletal survey shows encouraging results. However, further work is needed to optimise content and the use of checklists in practice. - Highlights: • Skeletal survey examinations for non-accidental practices have been shown to vary in content and in quality. • Checklists have demonstrated improvements in compliance to guidelines across health disciplines and in various settings.

  1. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    International Nuclear Information System (INIS)

    Mortier, Geert R.

    2001-01-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling

  2. Skeletal blood flow: implications for bone-scan interpretation

    International Nuclear Information System (INIS)

    Charkes, N.D.

    1980-01-01

    The dispersion of the skeleton throughout the body and its complex vascular anatomy require indirect methods for the measurement of skeletal blood flow. The results of one such method, compartmental analysis of skeletal tracer kinetics, are presented. The assumptions underlying the models were tested in animals and found to be in agreement with experimental observations. Based upon the models and the experimental results, inferences concerning bone-scan interpretation can be drawn: decreased cardiac output produces low-contrast (technically poor) scans; decreased skeletal flow produces photon-deficient lesions; increase of cardiac output or of generalized systemic blood flow is undetectable 1 to 2 h after dose; increased local skeletal blood flow results from disturbance of the bone microvasculature and can occur from neurologic (sympatholytic) disorders or in association with focal abnormalities that also incite the formation of reactive bone (e.g., metastasis, fracture, etc.). Mathematical solutions of tracer kinetic data thus become relevant to bone-scan interpretation

  3. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    Energy Technology Data Exchange (ETDEWEB)

    Mortier, Geert R. E-mail: geert.mortier@rug.ac.be

    2001-12-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling.

  4. Measurement of total body calcium in osteoporotic patients treated with salmon calcitonin

    International Nuclear Information System (INIS)

    Zanzi, I.; Thompson, K.; Cohn, S.H.

    1981-01-01

    In the past, the evaluation of therapies for osteoporosis has been limited by the lack of a suitable quantitative end point. The introduction of the technique of in vivo total body neutron activation analysis (TBNAA) has made possible the precise and accurate measurement of total body calcium (TBCa). Since almost 99 percent of TBCa is in the skeleton, TBNAA gives a direct measurement of skeletal mass. Thus, changes in skeletal mass serve as an objective criterion in the evaluation of the efficacy of the therapy in osteoporosis. Studies performed at Brookhaven National Laboratory and elsewhere have reported the use of calcitonin (CT) in the treatment of primary osteoporosis and related conditions in a limited number of patients. The physiological effects of CT as an inhibitor of bone resorption has been the rationale of its use. The results of a randomized, controlled, 2 year therapeutical trial of CT in a group of postmenopausal osteoporotic women are presented in this report

  5. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  6. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    Science.gov (United States)

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  7. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  8. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  9. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.

    Science.gov (United States)

    Finnerty, Celeste C; McKenna, Colleen F; Cambias, Lauren A; Brightwell, Camille R; Prasai, Anesh; Wang, Ye; El Ayadi, Amina; Herndon, David N; Suman, Oscar E; Fry, Christopher S

    2017-11-01

    Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7 CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P satellite cells in the aetiology of lean

  10. Alveolar bone loss and mineralization in the pig with experimental periodontal disease

    Directory of Open Access Journals (Sweden)

    Mandee Yang

    2018-03-01

    Full Text Available Objective: To address how experimental periodontal disease affects alveolar bone mass and mineral apposition in a young pig model. Materials and methods: Seven three-month-old pigs were periodically inoculated with 4 types of periodontal bacteria, along with a ligature around the last maxillary deciduous molar for 8 weeks to induce periodontal disease (PG. Eight same-aged pigs served as the control (CG. Segmentations of 3D cone-beam CT images were performed to quantify volumes of the total alveolar bone, alveolar ridge, and all roots of the target molar. Calcein and alizarin were administered for labeling mineral apposition before euthanasia. The harvested molar blocks were sectioned and examined under epifluorescence. The inter-label distance between the two vital markers at regional bone surfaces were measured and mineral apposition rate (MAR was calculated. Results: A significant reduction of total alveolar bone volume was seen in PG with the major loss at the alveolar ridge. MAR was significantly higher at the root furcation region than those at both buccal and palatal ridges in CG. Compared with CG, PG animals showed more interrupted labeled bands with significantly lower MAR at the furcation region. MARs were positively associated with both the volumes of total alveolar bone and ridge in CG, but only with the total alveolar bone in PG. Conclusions: In young growing pigs, mineral apposition is region specific. The experimental periodontal disease not only leads to alveolar bone loss, but also perturbs mineral apposition for new bone formation, thus impairing the homeostasis of alveolar bone remodeling. Keyword: Dentistry

  11. A descriptive study of accidental skeletal injuries and non-accidental skeletal injuries of child maltreatment.

    Science.gov (United States)

    Ghanem, Maha A H; Moustafa, Tarek A; Megahed, Haidy M; Salama, Naglaa; Ghitani, Sara A

    2018-02-01

    Lack of awareness and recognition of child maltreatment is the major reason behind underreporting. All victims often interact with the health care system for routine or emergency care. In several research works, non-accidental fractures are the second most common injury in maltreated children and it is represented up to one-third of cases. To determine the incidence of different types of accidental and non-accidental skeletal injuries among children, estimate the severity of injuries according to the modified injury severity score and to determine the degree of fractures either closed or opened (Gustiloe-Anderson open fracture classification). Moreover, identifying fractures resulting from child abuse and neglect. This aimed for early recognition of non-accidental nature of fractures in child maltreatment that can prevent further morbidity and mortality. A descriptive study was carried out on all children (109) with skeletal injuries who were admitted to both Main Alexandria and El-Hadara Orthopedic and Traumatology University Hospitals during six months. History, physical examination and investigations were done for the patients. A detailed questionnaire was taken to diagnose child abuse and neglect. Gustiloe-Anderson open fracture classification was used to estimate the degree of open fractures. Out of 109 children, twelve cases (11%) were categorized as child maltreatment. One case was physical abuse, eight cases (7.3%) were child neglect and three cases (2.8%) were labour exploitation. Road traffic accidents (RTA) was the commonest cause of skeletal injuries followed by falling from height. Regarding falls, they included 4 cases of stair falls in neglected children and another four cases of falling from height (balcony/window). The remaining 36 cases of falls were accidental. The skeletal injuries were in the form of fractures in 99 cases, dislocation in two cases, both fracture and/or dislocation in three cases, and bone deformity from brachial plexus injury

  12. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  13. Management of osteonecrosis of the femoral head in children with sickle cell disease: results of conservative and operative treatments at skeletal maturity

    Science.gov (United States)

    Mallet, C.; Abitan, A.; Vidal, C.; Holvoet, L.; Mazda, K.; Simon, A.-L.; Ilharreborde, B.

    2018-01-01

    Abstract Purpose Sickle cell disease (SCD) is the most common cause of femoral head osteonecrosis (ONFH) during childhood with an overall prevalence of 10%. In children, spontaneous revascularization can occur, as in Legg-Calve-Perthes disease. Consequently, the aim of treatment is to restore proper hip containment to prevent joint arthritis. This is the first study reporting long-term results at skeletal maturity of non-operative and surgical treatments for ONFH in SCD children. Methods All children with ONFH due to SCD were retrospectively reviewed. At initial evaluation, extension of osteonecrosis was radiographically defined using Catterall, lateral pillar Herring and Ficat classifications. Subluxation of the femoral head with Reimers migration index > 30% required surgical treatment including femoral varus osteotomy and/or pelvic osteotomies. Conservative treatment including non-weight bearing and physiotherapy was performed in the remaining cases. Outcomes were assessed at skeletal maturity using the Harris Hip Score (HHS) and the Stulberg classification. Total hip arthroplasty and Stulberg 5 were defined as failures. Results A total of 25 hips in 17 patients were included (mean follow-up 7.5 years SD 3.4). Mean age at diagnosis was 11.4 years SD 2.9. In all, 15 hips (60%) were classified Catterall 3 and 4 and Herring B and C. A total of 13 patients (52%) underwent surgical treatment. At skeletal maturity, mean HHS was good (81 SD 17), 12 hips (48%) were classified Stulberg 1 and 2, seven hips (28%) were classified Stulberg 3 and 4. Conclusion Both treatments led to good functional results with 75% of congruent hips at skeletal maturity. Level of Evidence IV PMID:29456754

  14. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  15. Estimation of Correlation between Chronological Age, Skeletal Age and Dental Age in Children- A Cross-sectional Study.

    Science.gov (United States)

    Macha, Madhulika; Lamba, Bharti; Avula, Jogendra Sai Sankar; Muthineni, Sridhar; Margana, Pratap Gowd Jai Shankar; Chitoori, Prasad

    2017-09-01

    In the modern era, identification and determination of age is imperative for diversity of reasons that include disputed birth records, premature delivery, legal issues and for validation of birth certificate for school admissions, adoption, marriage, job and immigration. Several growth assessment parameters like bone age, dental age and the combination of both have been applied for different population with variable outcomes. It has been well documented that the chronological age does not necessarily correlate with the maturational status of a child. Hence, efforts were made to determine a child's developmental age by using dental age (calcification of teeth) and skeletal age (skeletal maturation). The present study was aimed to correlate the chronological age, dental age and skeletal age in children from Southeastern region of Andhra Pradesh, India. Out of the total 900 screened children, only 100 subjects between age groups of 6-14 years with a mean age of 11.3±2.63 for males and 10.77±2.24 for females were selected for the study. Dental age was calculated by Demirjian method and skeletal age by modified Middle Phalanx of left hand third finger (MP3) method. Pearson's and Spearman's correlation tests were done to estimate the correlation between chronological, dental and skeletal ages among study population. There was a significant positive correlation between chronological age, dental age and all stages of MP3 among males. Similar results were observed in females, except for a non-significant moderate correlation between chronological age and dental age in the H stage of the MP3 region. The results of the present study revealed correlation with statistical significance (p<0.05) between chronological, dental and skeletal ages among all the subjects (48 males and 52 females) and females attained maturity earlier than males in the present study population.

  16. Bone mineral density and body composition in adolescents with failure to thrive

    Directory of Open Access Journals (Sweden)

    Thiago Sacchetto de Andrade

    2010-06-01

    Full Text Available Objective: To evaluate bone mineral mass in adolescents with failure to thrive in relation to body composition. Methods: A case-control study involving 126 adolescents (15 to 19 years, in final puberty maturation being 76 eutrophic and 50 with failure to thrive (genetic or constitutional delay of growth, of matching ages, gender and pubertal maturation. The weight, height and calculated Z score for height/age and body mass index; bone mineral content, bone mineral density and adjusted bone mineral density were established for total body, lower back and femur; total fat-free mass and height-adjusted fat-free mass index, total fat mass and height-adjusted. The statistical analyses were performed using the Student’s t-test (weight, height and body composition; Mann-Whitney test (bone mass and multiple linear regression (bone mass determinants. Results: weight, height and height/age Z-score were significantly higher among eutrophic subjects. Both groups did not show statistically significant differences for fat mass, percentage of fat mass, total fat mass height adjusted and fat-free mass index height sadjusted. However, total free fat maass was smaller for the failure to thrive group. Conclusions: There was no statistically significant difference for bone mass measurements among adolescents with failure to thrive; however, the factors that determine bone mass formation should be better studied due to the positive correlation with free fat mass detected in these individuals.

  17. Net mineral requirements of dairy goats during pregnancy.

    Science.gov (United States)

    Härter, C J; Lima, L D; Castagnino, D S; Silva, H O; Figueiredo, F O M; St-Pierre, N R; Resende, K T; Teixeira, I A M A

    2017-09-01

    Mineral requirements of pregnant dairy goats are still not well defined; therefore, we investigated the net Ca, P, Mg, Na and K requirements for pregnancy and for maintenance during pregnancy in two separate experiments. Experiment 1 was performed to estimate the net Ca, P, Mg, Na and K requirements in goats carrying single or twin fetuses from 50 to 140 days of pregnancy (DOP). The net mineral requirements for pregnancy were determined by measuring mineral deposition in gravid uterus and mammary gland after comparative slaughter. In total, 57 dairy goats of two breeds (Oberhasli or Saanen), in their third or fourth parturition, were randomly assigned to groups based on litter size (single or twin) and day of slaughter (50, 80, 110 and 140 DOP) in a fully factorial design. Net mineral accretion for pregnancy did not differ by goat breed. The total daily Ca, P, Mg, Na and K requirements for pregnancy were greatest in goats carrying twins (Pgoat maintenance during pregnancy. In total, 58 dairy goats (Oberhasli and Saanen) carrying twin fetuses were assigned to groups based on slaughter day (80, 110 and 140 DOP) and feed restriction (ad libitum, 20% and 40% feed restriction) in a randomized block design. The net Ca, P and Mg requirements for maintenance did not vary by breed or over the course of pregnancy. The daily net requirements of Ca, P and Mg for maintenance were 60.4, 31.1 and 2.42 mg/kg live BW (LBW), respectively. The daily net Na requirement for maintenance was greater in Saanen goats (11.8 mg/kg LBW) than in Oberhasli goats (8.96 mg/kg LBW; Pgoats throughout their pregnancy.

  18. Effect of subclinical hypothyroidism on the skeletal system and improvement with short-term thyroxine therapy.

    Science.gov (United States)

    Gao, Cuixia; Wang, Yu; Li, Tingting; Huang, Jing; Tian, Limin

    2017-10-27

    The purpose of the study was to observe changes in the skeletal system of rats with subclinical hypothyroidism (SCH) and to determine whether L-thyroxine (L-T4) administration suppresses those changes. Sixty male Wistar rats were randomly divided into control, SCH, and SCH+T4 groups. SCH was induced in rats by administration of methimazole (MMI), and rats in the SCH+T4 group were treated with L-T4 after 45 days of MMI administration. The SCH group had higher thyroid-stimulating hormone (TSH) level than the control and SCH+T4 groups. There were no differences in serum thyroid hormone (FT4 and FT3) levels among the three groups. Bone mineral density; serum levels of BALP and TRACP-5b, two bone metabolic markers; and the biomechanical properties of the femurs were lower in the SCH group than in the control group. After L-T4 treatment, serum BALP and TRACP-5b levels and the femur biomechanical properties were higher in the SCH+T4 than the SCH group. Histopathological examination revealed damage to the structure of the femur trabecular bone network in rats with SCH, and L-T4 treatment improved this condition to some extent. These findings demonstrate that L-T4 treatment ameliorates the destructive effects of SCH on the skeletal system in rats.

  19. Fibre fortification of wheat bread: impact on mineral composition and bioaccessibility.

    Science.gov (United States)

    Martins, Zita E; Pinto, Edgar; Almeida, Agostinho A; Pinho, Olívia; Ferreira, Isabel M P L V O

    2017-05-24

    In this work, wheat bread was fortified with fibre enriched extracts recovered from agroindustry by-products, namely, elderberry skin, pulp and seeds (EE); orange peel (OE); pomegranate peel and interior membranes (PE); and spent yeast (YE). The impact of this fortification on the total and bioaccessible mineral composition of wheat breads, estimated mineral daily intake, and the relationship between bioaccessibility and dietary fibre was evaluated. Fortification with OE, EE, and PE improved the content of essential minerals in bread when compared to control bread. The exception was bread fortified with YE, which presented a mineral content similar to control bread, but its mineral bioaccessibility was significantly higher than in all the other bread formulations. The opposite was observed for PE bread, which presented a significant reduction of bioaccessible minerals. We concluded that the origin of the fibre rich extract must be carefully selected, to avoid potential negative impact on mineral bioaccessibility.

  20. Observations on total-body calcium in humans with bone disease

    International Nuclear Information System (INIS)

    Spinks, T.J.; Bewley, D.K.; Ranicar, A.S.O.; Joplin, G.F.; Evans, I.M.A.; Vlotides, J.; Paolillo, M.

    1979-01-01

    Total-body calcium was measured in-vivo by neutron activation in a number of patients suffering from metabolic abnormalities which affect the skeleton. In general, less than 2% of total calcium resides in tissue other than bone allowing calcium mass to be directly related to skeletal mass. The conditions studied were (i) Paget's disease, treated with synthetic human calcitonin, (ii) osteoporosis, treated variously with calcium and phosphate supplements and 1,25 hydroxycholecalciferol, and (iii) Cushing's disease treated by pituitary implant of 198 Au or 90 Y seeds. The neutron beam used in these studies was produced by bombarding a beryllium target with deuterons accelerated in a cyclotron. The mean neutron energy was 7.5 MeV and patients received a total dose of 1 rem in about 30 s, a bilateral irradiation being employed. Measurements were made at approximately yearly intervals, the maximum period of study being about four and a half years. The precision of the method was estimated to be +-3% (SE) and a correction was applied for changes in body weight. In most patients, total calcium remained stable. However, in the Paget's patients, there was an indication of a slow upward trend while the osteoporotics (both treated and untreated) showed on average no change. Most of the patients with Cushing's disease showed no recovery of skeletal mass. Absolute calibration indicated that mean total body calcium in the Paget's patients was close to a predicted normal while that for the osteoporotic and Cushing's patients was 20-25% below this. (author)

  1. The skeletal developmental toxicity of chlormequat chloride and its underlying mechanisms

    International Nuclear Information System (INIS)

    Huang, Dan; Wu, Shuang; Hou, Xiaohong; Jia, Lixia; Meng, Qinghe; Chu, Hongqian; Jiang, Jianjun; Shang, Lanqin; Hao, Weidong

    2017-01-01

    Chlormequat Chloride (CCC), a widely used plant growth regulator, could decrease body weight in animals; however, the mechanism has not been well studied. This study was designed to evaluate the skeletal development toxicity of CCC on pubertal male Sprague-Dawley (SD) rats and to investigate whether CCC impacts the development of chondrocyte, osteoblast and osteoclast through growth hormone (GH) and insulin like growth factor 1 (IGF-I). Rats from 23 to 70 on postnatal days were exposed to CCC daily by gavage at doses of 0, 75, 150, and 300 mg/kg bw/d. The results showed that the size of femurs and tibias, bone mineral density and biomechanical parameters were significantly decreased in the 300 mg/kg bw/d group compared with the control group. The concentration of osteocalcin (OCN) and C-terminal telopeptide of type I collagen (CTX-I) in blood in the 150 mg/kg bw/d group was also changed. The mRNA expression ratio of the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in 150 and 300 mg/kg bw/d group was increased. Histological analysis of proximal and distal epiphyseal plates of the right femurs showed that both the proliferative zone and hypertrophic zone narrowed in CCC-treated groups. The concentration of IGF-I in blood was reduced with an increase in exposure doses of CCC. The mRNA expression of growth hormone receptor (GHR) in tibia was decreased in the CCC-treated group. The results indicated that CCC might indirectly impact the formation and activation of chondrocytes, osteoblasts and osteoclasts because of the decline of GHR and IGF-I, leading to skeletal development damage.

  2. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  3. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  4. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  5. Dentoskeletal Overjet Measurements of Iraqi Adult Sample with Different Skeletal Jaw Relationship

    Directory of Open Access Journals (Sweden)

    Shahbaa A Mohammed

    2017-11-01

    Full Text Available Background: Many attempts were done to develop a method that actually reflects the sagittal jaw discrepancies without depending on cranial landmarks or dental occlusion. This study aimed to use one of these methods (dentoskeletal overjet for assessing the sagittal jaw relationships of Iraqi adult sample with different skeletal jaw relationship. Materials and method: The sample consisted of 90 digital true lateral cephalometric radiographs of Iraqi individuals with no previous orthodontic treatment. Cephalometric analysis of skeletal sagittal jaw relationship -ANB angle, beta angle and Wits appraisal- will perform for everyone to divide the sample into three groups (skeletal class I, II, III for which the dentoskeletal overjet will be measured. All cephalometric measurements will be done using AutoCAD. Results: Descriptive statistics of all variables with different skeletal jaw relationship showed that mean values of dentoskeletal overjet were (1.15, 3.91 and –2.01 mm for skeletal class I, class II and class III jaw relationship respectively. Accurate reproducibility of dentoskeletal overjet in assessment of jaw skeletal relationship showed that the lowest value was for assessment of skeletal class III jaw relationship (73% and the value for assessment of both skeletal class I and class II was higher (93%. Conclusions: Dentoskeletal overjet could be utilized in accurate representation of skeletal jaw relationship.

  6. The changes of bone mineralization after parathyroidectomy in primary hyperparathyroidism. Case report

    International Nuclear Information System (INIS)

    Przedlacki, J.; Nawrot, I.; Chudzinski, W.

    1995-01-01

    The aim of the study was to evaluate the changes of bone demineralization in the patient after parathyroidectomy in primary hyperparathyroidism. Bone mineralization was evaluated by Lunar DPX-L equipment in lumbar spine, femoral neck, radius and total skeleton area in 3 months intervals during 18 months period. Because of transient after surgical hypocalcemia she has received active metabolite of vitamin D - Alfacalcidolum during one year. After removal of parathyroid adenoma there was disappearance of clinical and biochemical signs of primary hyperparathyroidism. At the same time there was total normalization of bone mineral density in lumbar spine, femoral neck, ultradistal site of radius and total area. There was partial normalization of bone mineralization in radius shaft. The surgery of adenoma in primary hyperparathyroidism with transient treatment with active metabolite of vitamin D is successful therapy of bone demineralization in this disease. (author). 5 refs, 2 figs

  7. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  8. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  9. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  10. Effects of mineral content on the fracture properties of equine cortical bone in double-notched beams.

    Science.gov (United States)

    McCormack, Jordan; Stover, Susan M; Gibeling, Jeffery C; Fyhrie, David P

    2012-06-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r(2)=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r(2)=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r(2)=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with a hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Insulin signaling in skeletal muscle of HIV‐infected patients in response to endurance and strength training

    DEFF Research Database (Denmark)

    Broholm, Christa; Mathur, Neha; Hvid, Thine

    2013-01-01

    . Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well...... hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients......Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims...

  12. Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization

    DEFF Research Database (Denmark)

    Händel, Mina N; Moon, Rebecca J.; Titcombe, Philip

    2016-01-01

    were assessed prepregnancy and at 11 and 34 wk of gestation. In late pregnancy, maternal serum retinol and β-carotene concentrations were measured. Offspring total body bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were measured within 2 wk after birth. RESULTS: In total......BACKGROUND: Studies in older adults and animals have suggested contrasting relations between bone health and different vitamin A compounds. To our knowledge, the associations between maternal vitamin A status and offspring bone development have not previously been elucidated. OBJECTIVE: We examined...... the associations between maternal serum retinol and β-carotene concentrations during late pregnancy and offspring bone mineralization assessed at birth with the use of dual-energy X-ray absorptiometry. DESIGN: In the Southampton Women's Survey mother-offspring birth cohort, maternal health, lifestyle, and diet...

  13. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  14. [Pre- and post-surgical orthodontic treatment for skeletal open bite].

    Science.gov (United States)

    Zhou, Y; Hu, W; Sun, Y

    2001-05-01

    To Study the principles and rules of pre- and post-surgical orthodontic treatment for skeletal open bite patients. Thirty-two surgically treated open bite cases were analyzed, of which 9 were males, and 23 were females, aged from 16 to 38. Open bite was from 1 to 8.5 mm, average was 4 mm. 31 patients were Class III malocclusion, while 1 patient was Class II malocclusion. 1. Totally 21 patients were treated with orthodontics before and after orthognathic surgery, while 8 patients had pre-surgical orthodontics only, and other 3 had post-surgical orthodontics only. The duration for pre-surgical orthodontics was from 4 to 33 months, average was 12 months. The duration for post-surgical orthodontics was from 3 to 17 months, average was 8.5 months. 2. Presurgical orthodontic treatment included: Alignment of arches, decompensation of incisors, avoiding extrusion of incisors, and slight expansion of arches for coordination of arches. 3. Post-surgical orthodontic treatment included: Closure of residual spaces in the arches, realignment of arches, vertical elastics and Class II or III intermaxillary elastics. Skeletal open bites require combined orthodontic-orthognathic surgery for optimal and esthetical pleasing results.

  15. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  16. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An; Olivera, Gustavo; Somlo, George

    2007-01-01

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribs and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk

  17. Impact of low skeletal muscle mass and density on short and long-term outcome after resection of stage I-III colorectal cancer.

    Science.gov (United States)

    van Vugt, Jeroen L A; Coebergh van den Braak, Robert R J; Lalmahomed, Zarina S; Vrijland, Wietske W; Dekker, Jan W T; Zimmerman, David D E; Vles, Wouter J; Coene, Peter-Paul L O; IJzermans, Jan N M

    2018-06-06

    Preoperative low skeletal muscle mass and density are associated with increased postoperative morbidity in patients undergoing curative colorectal cancer (CRC) surgery. However, the long-term effects of low skeletal muscle mass and density remain uncertain. Patients with stage I-III CRC undergoing surgery, enrolled in a prospective observational cohort study, were included. Skeletal muscle mass and density were measured on CT. Patients with high and low skeletal muscle mass and density were compared regarding postoperative complications, disease-free survival (DFS), overall survival (OS), and cancer-specific survival (CSS). In total, 816 patients (53.9% males, median age 70) were included; 50.4% had low skeletal muscle mass and 64.1% low density. The severe postoperative complication rate was significantly higher in patients with low versus high skeletal muscle and density (20.9% versus 13.6%, p = 0.006; 20.0% versus 11.8%, p = 0.003). Low skeletal muscle mass (OR 1.91, p = 0.018) and density (OR 1.87, p = 0.045) were independently associated with severe postoperative complications. Ninety-day mortality was higher in patients with low skeletal muscle mass and density compared with patients with high skeletal muscle mass and density (3.6% versus 1.7%, p = 0.091; 3.4% versus 1.0%, p = 0.038). No differences in DFS were observed. After adjustment for covariates such as age and comorbidity, univariate differences in OS and CSS diminished. Low skeletal muscle mass and density are associated with short-term, but not long-term, outcome in patients undergoing CRC surgery. These findings recommend putting more emphasis on preoperative management of patients at risk for surgical complications, but do not support benefit for long-term outcome. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  18. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  19. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  20. Osteopoikilosis: A Sign Mimicking Skeletal Metastases in a Cancer Patient

    Directory of Open Access Journals (Sweden)

    Hamid Nasrolahi

    2011-01-01

    Full Text Available Osteopoikilosis is a rare benign osteosclerotic bone disorder that may be misdiagnosed as skeletal metastases. Here we describe a case of coincidental breast cancer and osteopoikilosis mimicking skeletal metastases. A 41-year-old woman underwent right modified radical mastectomy in April 2007. Twenty-eight months after initial treatment,the patient complained of bilateral knee and foot pain. Plain X-rays of the feet and knees showed multiple well-defined osteosclerotic lesions. According to the radiographic appearance, the most likely differential diagnoses included skeletal metastases from breast cancer and osteopoikilosis. A whole-body bone scintigraphy showed no increase in uptake by the sclerotic lesions, and serum lactic dehydrogenase, carcinoembryonic antigen, alkaline phosphatase and cancer antigen 15-3 were not elevated. We therefore diagnosed the patient’s skeletal lesions as osteopoikilosis. This case and ourliterature review suggest that the radiographic appearance of osteopoikilosis may mimic or mask skeletal metastases, potentially leading to misdiagnosis in patients with cancer.

  1. Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia.

    Science.gov (United States)

    Coin, A; Perissinotto, E; Enzi, G; Zamboni, M; Inelmen, E M; Frigo, A C; Manzato, E; Busetto, L; Buja, A; Sergi, G

    2008-06-01

    The aims of this study were to investigate the relationship between sarcopenia, dietary intake, nutritional indices and hip bone mineral density (BMD) in the elderly, and to estimate the risk of low BMD due to specific independent predictor thresholds. Body mass index (BMI), serum albumin, energy and protein intake were studied in 352 elderly outpatients (216 women aged 73.5+/-5.3 years and 136 men aged 73.9+/-5.6 years). BMD at different hip sites and appendicular skeletal muscle mass (ASMM) were assessed by dual-energy X-ray absorptiometry. The prevalence of osteoporosis was 13% in men and 45% in women, while the prevalence of sarcopenia (50%) and hypoalbuminemia (5%) were similar in both genders. BMI, albumin and ASMM were significantly associated with BMD in both genders: so was protein intake, but only in men. By multiple regression analysis, the variables that retained their independent explanatory role on total hip BMD, were BMI and protein intake in men, and BMI and albumin in women. By logistic regression analysis, men risked having a low BMD with a BMI elderly, particularly in women. Age-related sarcopenia does not seem to be involved in bone mass loss.

  2. Occipital projections in the skeletal dysplasias

    International Nuclear Information System (INIS)

    Takamine, Yuji; Field, Fiona M.; Lachman, Ralph S.; Rimoin, David L.

    2004-01-01

    Occipital projections of the cranium have been reported in a number of skeletal dysplasias and syndromes. We observed two cases of atelosteogenesis type I with a bony occipital projection. This finding has neither been noted nor reported in any form of atelosteogenesis. This led us to search the International Skeletal Dysplasia Registry for occipital projections, and we found them in four other syndromes in which they had not been reported. Thus occipital spurs are a non-diagnostic feature that can be found in at least ten distinct disorders as well as a normal variant. (orig.)

  3. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  4. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  5. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis

    DEFF Research Database (Denmark)

    Klefter, O.; Feldt-Rasmussen, U.

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  6. Mineral raw materials for power production in legislation of the Republic of Croatia

    International Nuclear Information System (INIS)

    Matisa, Z.

    1999-01-01

    According to the Constitution of the Republic of Croatia, mineral wealth is a public good of legal interest to the Republic of Croatia and enjoys its special protection. The Mining Law establishes that mineral wealth (including mineral resources that are used for power production) is the property of the Republic of Croatia. Among other mineral raw materials, this refers to mineral raw materials that are used for power production: coal, oil, natural gas, radioactive mineral raw materials and geothermal waters. These mineral resources are as almost all other mineral raw materials with the exception of geothermal waters, an unrecoverable natural resource. The right to use that natural resource may be granted only by a concession. The mining legislation provides for exploration and exploitation of mineral raw materials. Exploration of oil and gas is considered to comprise operations and testing with the aim to establish the existence, position and form of oil and natural gas deposits, their quality and quantity, as well as exploitation conditions. Exploitation of oil and natural gas is considered to comprise extraction from deposits, refining and transport, as well as disposal in geological structures. Mineral raw materials used in power production amount to 63% of national total primary energy production, and they cover 33% of total power consumption in the country. Legislation in the Republic of Croatia, which refers to exploration and exploitation of oil and natural gas, allows economic utilization of that unrecoverable natural wealth to run smoothly and in compliance with practices in our European environment. (author)

  7. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  8. Influence of number of deliveries a