WorldWideScience

Sample records for total shell mass

  1. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  2. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  3. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  4. Thin-shell wormholes supported by total normal matter

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The Zipoy-Voorhees-Weyl (ZVW) spacetime characterized by mass (M) and oblateness (δ) is proposed in the construction of viable thin-shell wormholes (TSWs). A departure from spherical/cylindrical symmetry yields a positive total energy in spite of the fact that the local energy density may take negative values. We show that oblateness of the bumpy sources/black holes can be incorporated as a new degree of freedom that may play a role in the resolution of the exotic matter problem in TSWs. A small velocity perturbation reveals, however, that the resulting TSW is unstable. (orig.)

  5. Mass-shell properties of the dynamical quark mass

    International Nuclear Information System (INIS)

    Reinders, L.J.; Stam, K.

    1986-07-01

    We discuss the running dynamical quark mass in the framework of the operator product expansion. It is shown that for vertical strokep 2 vertical stroke>m 2 the quark-condensate part of the quark self energy has no contributions of order m 2 or higher, and is frozen to its mass-shell value for smaller vertical strokep 2 vertical stroke. (orig.)

  6. Yang-Mills theory on the mass shell

    International Nuclear Information System (INIS)

    Cvitanovic, P.

    1976-01-01

    Gauge-invariant mass-shell amplitudes for quantum electrodynamics (QED) and Yang-Mills theory are defined by dimensional regularization. Gauge invariance of the mass-shell renormalization constants is maintained through interplay of ultraviolet and infrared divergences. Quark renormalizations obey the same simple Ward identity as do the electron renormalizations in QED, while the gluon contributions to gluon renormalizations are identically zero. The simplest amplitude finite in QED, the magnetic moment, is gauge-invariant but divergent in Yang-Mills theory for both external gluon and external photon

  7. Investigation of dynamic characteristics of shells with holes and added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  8. Deformation and shell effects in nuclear mass formulas

    International Nuclear Information System (INIS)

    Barbero, César; Hirsch, Jorge G.; Mariano, Alejandro E.

    2012-01-01

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo–Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  9. Deformation and shell effects in nuclear mass formulas

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Cesar [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Hirsch, Jorge G., E-mail: hirsch@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mariano, Alejandro E. [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina)

    2012-01-15

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo-Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  10. Nuclear mass formula with the shell energies obtained by a new method

    International Nuclear Information System (INIS)

    Koura, H.; Tachibana, T.; Yamada, M.; Uno, M.

    1998-01-01

    Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulas can give nuclear shapes and predict on super-heavy elements

  11. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  12. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  13. Nucleon mass difference and off-shell form factors

    International Nuclear Information System (INIS)

    Kimel, I.

    1981-08-01

    The use of off-shell form factors in calculating the proton-neutron mass difference is advocated. These form factors appear in a Cottingham rotated Born-like expression for the mass difference and could lead to a good value for Δ = M sub(p) - M sub(n). (Author) [pt

  14. Lead reduces shell mass in juvenile garden snails (Helix aspersa)

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry; Herpe, Florian

    2002-01-01

    A high Pb diet causes differential depression of juvenile shell mass in populations of Helix. - In an earlier paper examining inherited tolerance to Pb, the shell growth of laboratory-bred offspring of Helix aspersa from contaminated sites was compared with that of juveniles from naieve populations on dosed and undosed diets. Eight-week-old snails were fed either 500 μg g -1 Pb or a control food in competitive trials between two populations. In the first series of trials, a parental history of exposure to Pb did not confer any advantage to either of two populations (BI and MI) competing with a naieve population (LE), whether Pb was present in the diet or not. However, in the analysis of their metal concentrations reported here, LE are found to retain higher levels of Pb in the soft tissues than either BI or MI. Compared to their siblings on the unleaded diet, dosed LE and BI juveniles had lower soft tissue concentrations of Ca and Mg. Although the growth in shell height is unaffected by diet, LE and BI juveniles build lighter shells on the Pb-dosed diet, achieving around 75% of the shell mass of their controls. In contrast, the shell weights of dosed MI juveniles are depressed by only 15% and show no change in the essential metal concentrations of their soft tissues. A second experiment using five populations fed only the dosed food show that the shell weight/soft tissue weight ratios are comparable to the dosed snails of the previous experiment. Building a lighter shell thus appears to be the common response of all Helix populations to a high Pb diet, at least amongst juveniles. The reduction in its mass means that less Ca and Mg is added to the shell and, along with the lowered soft tissue concentrations observed in some populations, may be a consequence of an increased effort to excrete Pb. The possibility that the MI population shows a genotypic adaptation, perhaps as some form of modification of its Ca metabolism, is briefly discussed

  15. Measurement of critical mass for an assembly of bare uranium shells

    International Nuclear Information System (INIS)

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  16. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  17. Structure function of off-mass-shell pions and the calculation of the Sullivan process

    International Nuclear Information System (INIS)

    Shakin, C.M.; Sun, W.

    1994-01-01

    We construct a model for the pion (valence) structure function that fits the experimental data obtained in the study of the Drell-Yan process. The model may also be used to calculate the structure function of off-mass-shell pions. We apply our model in the study of deep-inelastic scattering from off-mass-shell pions found in the nucleon and are thus able to resolve a problem encountered in the standard analysis of such processes. The usual analysis is made using the structure function of on-mass-shell pions and requires the use of a soft πNN form factor that is inconsistent with standard nuclear physics phenomenology. The use of our off-mass-shell structure functions allows for a fit to the data for nonperturbative aspects of the nucleon ''sea'' with a pion-nucleon form factor of the standard form

  18. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    International Nuclear Information System (INIS)

    Guenaut, C; Audi, G; Beck, D

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57 Cr for which an accuracy of 4 x 10 -8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94 Sr

  19. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    Science.gov (United States)

    Guénaut, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Delahaye, P.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.; Schweikhard, L.; Yazidjian, C.

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57Cr for which an accuracy of 4 × 10-8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94Sr.

  20. Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at $N = 32$

    CERN Document Server

    Guenaut, Celine; Beck, D; Blaum, Klaus; Bollen, Georg; Delahaye, P; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Schwarz, S; Schweikhard, L; Yazidjian, C

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of $4 \\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new $N = 32$ shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.

  1. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  2. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    International Nuclear Information System (INIS)

    Das, Ashok K.; Frenkel, J.; Schubert, C.

    2013-01-01

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop

  3. Mass measurements of {sup 56-57}Cr and the question of shell reincarnation at N = 32

    Energy Technology Data Exchange (ETDEWEB)

    Guenaut, C [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Audi, G [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Beck, D [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] [and others

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for {sup 56-57}Cr for which an accuracy of 4 x 10{sup -8} was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as {sup 94}Sr.

  4. Four-loop relation between the MS and on-shell quark mass

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-01-01

    In this contribution we discuss the four-loop relation between the on-shell and MS definition of heavy quark masses which is applied to the top, bottom and charm case. We also present relations between the MS quark mass and various threshold mass definitions and discuss the uncertainty at next-to-next-to-next-to-leading order.

  5. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    International Nuclear Information System (INIS)

    Guenaut, C.; Audi, G.; Beck, D.

    2007-01-01

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for 57,60,64-69 Ni, 65-74,76 Cu (Z=29), and 63-65,68-78 Ga (Z=31), have a relative uncertainty of the order of 10 -8 . In particular, the masses of 72-74,76 Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  6. The circumstellar shells and mass loss rates of four M supergiants

    International Nuclear Information System (INIS)

    Bernat, A.P.

    1977-01-01

    A reanalysis of the physical structure of the circumstellar gas shells of four bright M supergiants, Betelgeuse, Antares, α Herculis, and μ Cephei, has been undertaken. The observational data include old Hale Observatories plates, recent McDonald Struve telescope plates, and McDonald 2.7 m photoelectric scans. These data are analyzed in the full expanding spherical geometry formulation of the radiative transfer equation.The results of the present analysis indicate that column densities in the gas shells must be revised downward compared with the previous plane-parallel results. However, the physical extents of the shells are considerably larger than previously assumed. These extents are inferred through ionization modeling, Weymann's Ca II technique, and direct observation. Also inferred are schematic wavelength-dependent chromospheric color temperatures. These results lead to much larger mass loss rates (in the range 6.7 x 10 -7 to 4.2 x 10 -4 M/sub sun/ yr -2 ) than previously inferred. The influence of these large rates of mass loss on the evolution of both stars and the Galaxy is briefly discussed

  7. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  8. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    Science.gov (United States)

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  9. On calculating double logarithmical asymptotics of vertex functions defined on the mass shell

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Usyukina, N.I.

    1981-01-01

    The essence of the calculation method of double logarithmical asymptotics of vertex functions defined on the mass shell is presented. Using the method the asymptotics of the form-factor of electron is calculated. The ladder and cross-ladder diagrams are asymptotically considerable in every order of the perturbation theory. The way in which the asymptotics of the 4-order diagrams is calculated has been shown. The diagrams of this order and reduction procedures for them are given in a graphic form. The photon mass μ 2 not equal to 0 plays the role of a regulator, removing infrared divergencies. The double logarithmical asymptotics of the form-factor of electron on the mass shell is calculated rigorously in an arbitrary order of the perturbation theory [ru

  10. Listening to Shells: Galaxy Masses from Disrupted Satellites

    Science.gov (United States)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS

  11. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  12. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J. R.; Dickey, John M. [School of Mathematics and Physics, University of Tasmania, Sandy Bay Campus, Churchill Avenue, Sandy Bay, TAS 7005 (Australia); McClure-Griffiths, N. M. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Wong, T. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany); Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Kawamura, A., E-mail: joanne.dawson@utas.edu.au [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan)

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  13. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Precision mass measurements with ISOLTRAP to study the evolution of the $\\textit{N}$=82 shell gap far from stability

    CERN Multimedia

    Shell effects and their evolution across the nuclear chart impose important constraints on the modelling of the nucleon-nucleon interaction. The strength of shell closures in neutron-rich nuclei also influences the path of the $\\textit{r}$-process of nucleo-synthesis and the predicted elemental abundances. We propose to measure the masses of the isotopes $^{132,133}$In, $^{129-132}$Cd, $^{125-129}$Ag with the Penning-trap mass spectrometer ISOLTRAP. The recently developed multi-reflection time-of-flight mass separator of ISOLTRAP will allow, as a beam purifier, to handle higher contamination ratios than before and, for the more exotic cases, to directly determine the mass of the nuclides of interest. The masses of the proposed isotopes will allow the investigation of a possible weakening of the $\\textit{N}$ = 82 shell gap for $\\textit{Z}$ < 50 and corresponding $\\textit{r}$-process waiting point. This in turn enables an exploration of the impact on the $\\textit{A}$ = 130 $\\textit{r}$-process abundances.

  15. Beta decay and structure of exotic nuclei in the mass regions N=Z, A {approx} 70 and near the N=20 closed shell

    Energy Technology Data Exchange (ETDEWEB)

    Courtin, S.; Baumann, P.; Dessagne, Ph.; Marechal, F.; Miehe, Ch.; Perrot, F.; Poirier, E.; Ramdhane, M. [Institut de Recherches Subatomiques, Strasbourg Cedex 2 (France); ISOLDE collaboration

    2004-09-15

    This paper describes two beta decay experiments performed at the CERN/ISOLDE mass separator. The structure of {sup 74}Kr has been studied using a total absorption {gamma} spectrometer (TAgS). The measured Gamow-Teller strength is presented and compared to HFBCS+QRPA calculations. The {sup 33}Na decay is also presented. The structure of the {sup 33}Mg daughter nucleus is compared to shell-model calculations, showing for the first time an inversion of states in the A{sub {approx}}35 mass region. (author)

  16. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes

    International Nuclear Information System (INIS)

    Panebianco, Stefano; Sida, Jean-Luc; Goutte, Heloise; Lemaitre, Jean-Francois; Dubray, Noel; Hilaire, Stephane

    2012-01-01

    Until now, the mass asymmetry in the nuclear fission process has been understood in terms of the strong influence of the nuclear structure of the nascent fragments. Recently, a surprising asymmetric fission has been discovered in the light mercury region and has been interpreted as the result of the influence of the nuclear structure of the parent nucleus, totally discarding the influence of the fragments' structure. To assess the role of the fragment shell effects in the mass asymmetry in this particular region, a scission-point model, based on a full energy balance between the two nascent fragments, has been developed using one of the best theoretical descriptions of microscopic nuclear structure. As for actinides, this approach shows that the asymmetric splitting of the Hg-180 nucleus and the symmetric one of Hg-198 can be understood on the basis of only the microscopic nuclear structure of the fragments at scission. (authors)

  17. On mass-shell parametric space renormalization of PHI3 theory in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1977-05-01

    An on mass shell, parametric space renormalization procedure for phi 3 theory in six dimensions is defined and its formal equivalence to the usual Lagrangian counter procedure demonstrated. Two loop contributions to the self-energy are used as an illustration of the method. (author)

  18. On the dynamics of relativistic multi-layer spherical shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)

    2011-04-21

    The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.

  19. Spatial Variation of Hydrodynamic Mass Coefficients for Tube Bundle in a Cylindrical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Keum Hee; Ryu, Ki Wahn [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chi Yong [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Wear of the steam generator (SG) tubes affects the performance of nuclear power plants. Generally, the problem is caused by excessive flow-induced vibration (FIV). In analyzing the FIV, many researchers have used a uniform added mass coefficient for all of the SG tubes. However, the outermost SG tubes have more structural problems than inside tubes. The purpose of this study is to find out the added mass coefficients of each tube in a cylindrical shell

  20. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  1. The pion pole term in electroproduction of off-mass-shell pions

    International Nuclear Information System (INIS)

    McKellar, B.H.; Ellis, R.G.

    1983-01-01

    The dependence of the invariant amplitudes for electroproduction of off-mass-shell pions on the pion Born term is investigated when current algebra Ward identities and PCAC are used to determine pion electroproduction invariant amplitudes. The authors show that an amplitude satisfying the Ward identities can be constructed starting from the usual Born terms which do not satisfy them and that this same amplitude will be obtained for a large class of input Born terms

  2. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Energy Technology Data Exchange (ETDEWEB)

    Dai, De-Chang, E-mail: diedachung@gmail.com [Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, and Center for Astrophysics and Astronomy, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-07-10

    Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  3. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Directory of Open Access Journals (Sweden)

    De-Chang Dai

    2016-07-01

    Full Text Available Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  4. Masses of T/sub z/ = +5/2 nuclei in the s--d shell from β--decay measurements

    International Nuclear Information System (INIS)

    Alburger, D.E.; Goosman, D.R.; Davids, C.N.; Hardy, J.C.

    1975-01-01

    In this work the existence of five new T/sub z/ = + 5 / 2 nuclides, 23 F, 29 Mg, 31 Al, 33 Si, and 35 P, was established; their properties, including mass values, were determined, along with those of 25 Ne and 27 Na. Two experimental techniques were used, the ''rabbit'' transfer of a solid target and the gas transfer system; some novel features of these are described. A β spectrum of 33 Si observed in coincidence with 1848-keV γ rays is shown; a mass excess of -20569 +- 50 keV was derived for 33 Si. Attempts to produce 21 O were unsuccessful. Comparisons of the measured masses of the T/sub z/ = + 5 / 2 nuclides in the 2s--1d shell with predictions of the Garvey--Kelson mass formulation and with shell-model calculations are shown. The latter produce considerably better agreement with experiment. (3 figures, 1 table) (U.S.)

  5. Interference in the gg→h→γγ On-Shell Rate and the Higgs Boson Total Width.

    Science.gov (United States)

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-11-03

    We consider interference between the Higgs signal and QCD background in gg→h→γγ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the standard model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss possible width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly constrain widths of order tens of MeV.

  6. Higgs-boson masses and mixing matrices in the NMSSM. Analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, Peter; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Groeber, Ramona [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; INFN, Sezione di Roma Tre (Italy); Heinemeyer, Sven [Univ. Autonoma de Madrid (UAM/CSIC) (Spain). Inst. de Fisica Teorica; Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); UAM + CSIC Campus of International Excellence, Madrid (Spain); Muehlleitner, Milada [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Rzehak, H. [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins

    2016-12-22

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM.

  7. Higgs-boson masses and mixing matrices in the NMSSM: analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, P.; Weiglein, G. [DESY, Hamburg (Germany); Groeber, R. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); INFN, Sezione di Roma Tre, Rome (Italy); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, (UAM/CSIC), Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Muehlleitner, M. [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Rzehak, H. [University of Southern Denmark, CP3-Origins, Odense M (Denmark)

    2017-06-15

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM. (orig.)

  8. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. On-shell constrained M 2 variables with applications to mass measurements and topology disambiguation

    Science.gov (United States)

    Cho, Won Sang; Gainer, James S.; Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc; Park, Myeonghun

    2014-08-01

    We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge M T2 variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual M T2 distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.

  10. Effect of five year storage on total phenolic content and antioxidant capacity of almond (Amygdalus communisL.) hull and shell from different genotypes.

    Science.gov (United States)

    Moosavi Dolatabadi, Khadijeh Sadat; Dehghan, Gholamreza; Hosseini, Siavash; Jahanban Esfahlan, Ali

    2015-01-01

    Almond (Prunus amygdalus) hull and shell are agricultural by-products that are a source of phenolic compounds.The processing of almond produce shell and hull, accounts for more than 50% by dry weight of the almond fruits. Recently, more studies have focused on the influence of storage conditions and postharvest handling on the nutritional quality of fruits, especially the antioxidant phenolics. In this study, influence of long-term storage (five years) on the total phenolic and antioxidant capacity of almond hull and shell from different genotypes was evaluated. The fruits of subjected genotypes were collected and their hull and shell were separated. They were dried and reduced to fine powder. This powder stored at room temperature for five years. The total phenolic content (TPC) and bioactivities (antioxidant potential: DPPH and ABTS radical scavenging and reducing power) of extracts were evaluated using spectrophotometric methods. It was found that TPC content and bioactivity levels in the stored almond hull and shell were different, compared to the hulls and shells which were evaluated in 2007. S1-4 genotype had the highest TPC and reducing power in its hull and shell.Low correlation coefficient was observed between phenolic content and the DPPH radical scavenging percentage in hull and shell extract. For the first time, results of this investigation showed that storage can influence the antioxidant and antiradical potential of almond hull and shell.

  11. Differential and total M-shell X-ray production cross-sections of some selected elements between Au and U at 5.96 keV

    International Nuclear Information System (INIS)

    Ozdemir, Yueksel

    2007-01-01

    Differential M-shell X-ray production (MXRP) cross-sections for selected heavy elements between Au and U have been measured at 5.59 keV incident photon energy, respectively at seven angles varying from 120 o to 150 o a Si(Li) detector. The differential M-shell X-ray production cross-sections have been derived, using M-shell fluorescence yields, experimental total M X-ray production cross-sections and theoretical M-shell photoionization cross-sections. The differential M-shell X-ray production cross-sections have been compared with the semi-empirical fits. The measured differential M X-ray production cross-sections have been found within experimental error. Differential M X-ray production cross-section can be fitted to the Σ n a n Z n (n = 2) as a function of cos θ. Total M X-ray production cross-sections have been derived using the fitted values

  12. Penning-trap mass spectrometry of neutron-rich copper isotopes for probing the Z = 28 and N = 50 shell closures

    CERN Multimedia

    Manea, V

    We propose to perform a Penning-trap mass measurement of $^{79}$Cu. This exotic N = 50 isotone is the last frontier before the doubly-magic $^{78}$Ni and will greatly improve our knowledge of shell evolution. In the same run, we propose $^{77-78}$Cu mass measurements, as well as the search for a possible isomer in $^{76m}$Cu. The data will help to clarify the structure of the odd proton in the Cu isotopes, the influence on the Z = 28 proton core of the νg$_{9/2}$ orbital filling and the impact of the proton-neutron residual interaction on the strength of the N = 50 shell closure.

  13. Exploring the Relationship between Skeletal Mass and Total Body Mass in Birds.

    Science.gov (United States)

    Martin-Silverstone, Elizabeth; Vincze, Orsolya; McCann, Ria; Jonsson, Carl H W; Palmer, Colin; Kaiser, Gary; Dyke, Gareth

    2015-01-01

    Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.

  14. Effect of five year storage on total phenolic content and antioxidant capacity of almond (Amygdalus communisL. hull and shell from different genotypes

    Directory of Open Access Journals (Sweden)

    Khadijeh Sadat Moosavi Dolatabadi

    2014-12-01

    Full Text Available Objectives: Almond (Prunus amygdalus hull and shell are agricultural by-products that are a source of phenolic compounds.The processing of almond produce shell and hull, accounts for more than 50% by dry weight of the almond fruits. Recently, more studies have focused on the influence of storage conditions and postharvest handling on the nutritional quality of fruits, especially the antioxidant phenolics. In this study, influence of long-term storage (five years on the total phenolic and antioxidant capacity of almond hull and shell from different genotypes was evaluated. Materials and Methods: The fruits of subjected genotypes were collected and their hull and shell were separated. They were dried and reduced to fine powder. This powder stored at room temperature for five years. The total phenolic content (TPC and bioactivities (antioxidant potential: DPPH and ABTS radical scavenging and reducing power of extracts were evaluated using spectrophotometric methods. Results: It was found that TPC content and bioactivity levels in the stored almond hull and shell were different, compared to the hulls and shells which were evaluated in 2007. S1-4 genotype had the highest TPC and reducing power in its hull and shell.Low correlation coefficient was observed between phenolic content and the DPPH radical scavenging percentage in hull and shell extract. Conclusions: For the first time, results of this investigation showed that storage can influence the antioxidant and antiradical potential of almond hull and shell.

  15. MS-on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias; Wellmann, David

    2016-06-01

    In this paper we compute the relation between heavy quark masses defined in the modified minimal subtraction and on-shell scheme. Detailed results are presented for all coefficients of the SU(N_c) colour factors. The reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Some of the about 380 master integrals are computed analytically, others with high numerical precision based on Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quark. We discuss the dependence on the renormalization and factorization scale.

  16. Discrimination of the hard keratins animal horn and chelonian shell using attenuated total reflection-infrared spectroscopy.

    Science.gov (United States)

    Biscardi, Brianna; Welsh, Wendy; Kennedy, Anthony

    2012-05-01

    The ability to discriminate between objects manufactured from animal horn and chelonian (turtle, tortoise, or terrapin) shell is important from a cultural and archeological perspective such that it may allow conservators to determine the appropriate treatment and long-term care solution. It would also aid curators in identifying and cataloging items manufactured from these materials. Discrimination and classification is also a valuable tool for those involved in tracking the illegal trade in restricted materials of this nature. Attenuated total reflection infrared (ATR-IR) spectroscopy, using a single reflection diamond internal reflection element (IRE), coupled with discrimination analysis was used to analyze a total of thirty-nine samples (29 calibration samples, 10 validation samples). A discrimination analysis model was constructed using Mahalanobis distances to classify spectra into one of two classes. The model was then subsequently used to successfully classify all validation samples and correctly identify them as animal horn or chelonian shell based on second-derivative spectra of the amide I and II regions. This technique requires minimal to no sample preparation and may be used to nondestructively identify very small samples successfully without performing detailed secondary structural curve-fitting routines. This model should be a valuable resource to museums, conservators, and wildlife management programs for rapidly and reliably discriminating between animal horn and chelonian shell.

  17. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    Science.gov (United States)

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  18. Do climate variables and human density affect Achatina fulica (Bowditch (Gastropoda: Pulmonata shell length, total weight and condition factor?

    Directory of Open Access Journals (Sweden)

    FS. Albuquerque

    Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  19. THE KINEMATICS OF THE NEBULAR SHELLS AROUND LOW MASS PROGENITORS OF PNe WITH LOW METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, Margarita; López, José Alberto; Richer, Michael G., E-mail: mally@astrosen.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: richer@astrosen.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, C.P. 22800 Ensenada, BC, México (Mexico)

    2016-03-15

    We analyze the internal kinematics of 26 planetary nebulae (PNe) with low metallicity that appear to derive from progenitor stars of the lowest masses, including the halo PN population. Based upon spatially resolved, long-slit, echelle spectroscopy drawn from the San Pedro Mártir Kinematic Catalog of PNe, we characterize the kinematics of these PNe measuring their global expansion velocities based upon the largest sample used to date for this purpose. We find kinematics that follow the trends observed and predicted in other studies, but also find that most of the PNe studied here tend to have expansion velocities less than 20 km s{sup −1} in all of the emission lines considered. The low expansion velocities that we observe in this sample of low metallicity PNe with low mass progenitors are most likely a consequence of a weak central star (CS) wind driving the kinematics of the nebular shell. This study complements previous results that link the expansion velocities of the PN shells with the characteristics of the CS.

  20. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  1. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    International Nuclear Information System (INIS)

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  2. Pion-nucleon vertex function with an off-shell nucleon

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    A model calculation for the π-N vertex function is presented in the case in which there is a single off-mass-shell nucleon and a (nearly) on-mass-shell pion. Very strong effects due to the P 11 resonance at 1470 MeV are found. A simple parametrization of the vertex function is prvided in the case that at least one nucleon is on its mass shell. (Auth.)

  3. High-precision mass measurements in the realm of the deformed shell closure N=152

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin Andreas

    2013-12-04

    The nuclear masses reflect the sum of all interactions inside a nucleus. Their precise knowledge can be used to benchmark nuclear mass models and to gain nuclear structure information. Penning-trap mass spectrometers have proven their potential to obtain lowest uncertainties. Uniquely located at a nuclear reactor, the double Penning-trap mass spectrometer TRIGA-TRAP is dedicated to measurements in the neutron-rich region. For a gain in sensitivity a non-destructive detection system for single ion mass measurements was adopted. This includes the implementation of a narrow band-pass filter tuned to the heavy ion cyclotron frequency as well as a cryogenic low-noise amplifier. For on-line mass measurements, the laser ablation ion source was equipped with a newly developed miniature radiofrequency quadrupole trap in order to improve the extraction efficiency. A more economic use of the radioactive material enabled mass measurements using only 10{sup 15} atoms of target material. New mass measurements were performed within this work in the realm of the deformed shell closure N=152. Their implementation into the atomic-mass evaluation improved the uncertainty of more than 80 nuclides in the heavy mass region and simultaneously shifted the absolute mass of two α decay chains.

  4. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  5. Theory of hydrogen shell flashes on accreting white dwarfs. II. The stable shell burning and the recurrence period of shell flashes

    International Nuclear Information System (INIS)

    Fujimoto, M.Y.

    1982-01-01

    By means of analytical solutions of the envelope, thermal properties of hydrogen shell burning on accreting white dwarfs are studied and a general picture for their progress is presented which is described by two parameters, the accretion rate and the mass of the white dwarf. On a white dwarf, the thermal behavior of gas in the burning shell depends on the configuration of the envelope, which gives birth to two distinct types of stable configurations in thermal equilibrium, a high and a low state. In the high state, the nuclear shell burning makes up for the energy loss from the surface. There exists the lower limit to the envelope mass for this state. The nuclear burning rate lies in a narrow range of about a factor of 2.5, irrespective of the mass of the white dwarf, while the range itself varies greatly with the latter. In the low state, the nuclear burning is extinct, and yet the compressional heating by accreted gas balances with the cooling through the diffusion of heat. Therefore, the structure depends on the accretion rate. Thermal instability of nuclear burning sets the upper limit to the envelope mass of this state

  6. Systematic study of shell effect near drip-lines

    International Nuclear Information System (INIS)

    Adhikari, S.; Samanta, C.

    2004-01-01

    The variation of nuclear shell effects with nucleon numbers is evaluated using the modified Bethe–Weizsaecker mass formula (BWM) and the measured atomic masses. The shell effects at magic neutron numbers N=8, 20, 28, 50, 82 and 126 and magic proton numbers Z=8, 20, 28, 50 and 82 are found to vary rapidly approaching the drip-lines. The shell effect due to one magic number increases on approaching another magic number. Thus, shell effects are not always negligible near the drip-lines. (author)

  7. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    Science.gov (United States)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  8. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  9. Study of thiophene inner shell photofragmentation

    International Nuclear Information System (INIS)

    Mundim, M.S.P.; Mocellin, A.; Makiuchi, N.; Naves de Brito, A.; Attie, M.; Correia, N.

    2007-01-01

    We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations

  10. Study of thiophene inner shell photofragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Mundim, M.S.P. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil)], E-mail: spedrosa@fis.unb.br; Mocellin, A.; Makiuchi, N. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Naves de Brito, A. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Laboratorio Nacional de Luz Sincrotron-LNLS, P.O. Box 6192, CEP 13084-971 Campinas, SP (Brazil); Attie, M. [Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, UESC Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Correia, N. [Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Departament of Quantum Chemistry, University of Uppsala, P.O. Box 518, 751 21 Uppsala (Sweden)

    2007-03-15

    We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations.

  11. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  12. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  13. Transition in x-ray yield, mass scaling observed in the high-wire-number, plasma-shell regime

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.; Apruzese, J.P.; Thornhill, J.W.; Davis, J.; Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1999-01-01

    Initial calculations, based on classical transport coefficients and carried out to predict the efficiency with which the implosion kinetic energy of aluminum Z pinches could be thermalized and converted into kilovolt x-rays, predicted a sharp transition between m 2 and m yield scaling, where m is the aluminum array mass. Later, when ad hoc increases in the heat conductivity and artificial viscosity were introduced into these calculations and the densities that were achieved on axis were sharply reduced, the transition from m 2 to m scaling was found to have shifted, but was otherwise still fairly sharp and well-defined. The location of these breakpoint curves defined the locus of implosion velocities at which the yields would obtain their maximum for different mass arrays. The first such mass breakpoint curve that was calculated is termed hard, while the second is termed soft. Early 24, 30, and 42 aluminum wire experiments on the Saturn accelerator at the Sandia National laboratories confirmed the predictions of the soft breakpoint curve calculations. In this talk, the authors present results from a more recent set of aluminum experiments on Saturn, in which the array mass was varied at a fixed array radius and in which the radius was varied for a fixed mass. In both sets of experiments, the wire numbers were large: in excess of 92 and generally 136 or 192. In this high-wire-number regime, the wire plasmas are calculated to merge to form a plasma shell prior to significant radial implosion. Large wire number has been found to improve the pinch compressibility, and the analysis of these experiments in the shell regime shows that they come very close to the original predictions of the hard breakpoint curve calculations. A discussion of these detailed comparisons will be presented

  14. Determination of the off-shell Higgs boson signal strength in the high-mass $ZZ$ and $WW$ final states with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-07-17

    Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\

  15. Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Ni Guang-Jiong; Xu Jian-Jun; Lou Sen-Yue

    2011-01-01

    Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity. (general)

  16. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  17. Total L-shell X-ray production cross sections by 400-700 keV proton impact for elements with 34≤Z≤53

    International Nuclear Information System (INIS)

    Miranda, J.; Ledesma, R.; Lucio, O.G. de

    2001-01-01

    Total L-shell X-ray production cross sections induced by protons with energies between 400 and 700 keV were measured for elements with atomic number Z between 34 and 53. The ECPSSR theory describes appropriately the results. This model modifies the plane wave born approximation by considering projectile energy loss (E), Coulomb deflection of the incoming ion (C), polarization and change in electron binding energies through a perturbed stationary states method (PSS) and relativistic values of target electron mass (R). A comparison is given with previously published data for proton energies below 1 MeV and 26 ≤ Z ≤ 53, based on a scaling obtained from a reduced velocity parameter ξ L R . The results show that the scaling for these atomic numbers and energy ranges is adequate and a semi-empirical expression to calculate those cross sections is proposed

  18. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  19. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  20. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  1. Vibrations of composite circular shell structures due to transient loads

    International Nuclear Information System (INIS)

    Schrader, K.-H.; Krutzik, N.; Winkel, G.

    1975-01-01

    Referring to a container consisting of different shell structures - such as spherical, cylindrical and conical shells - the dynamic behavior of coupled spatial shell structures due to transient loads will be investigated. The spatial structure including the filling of water will be idealized as a three-dimensional model consisting of ring elements. The influence of the water filling on the vibrations will be considered by virtual masses added to the shell structures. In circular direction as well as in meridional direction a consistent mass model has been used. By variation of the virtual masses it will be clarified, how these additional masses influence the vibrational behavior of the composed system. Another aspect which will be investigated is the influence of different stiffnesses of substructures or parts of substructures on the natural frequencies, and on their affiliated eigensystems. Furthermore, the maximum and minimum stresses in the structures caused by transient loads acting on the inner surface of the shells will be explored. Here it seems to be possible to locate an area of maximum strain. Rotational loads as well as nonrotational loads will be considered

  2. Hydrogen and helium shell burning during white dwarf accretion

    Science.gov (United States)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  3. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Piqueras, D Álvarez; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, R; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Eckardt, C; Ecker, K M; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Martinez, P Fernandez; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hann, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, J; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Saez, S M Romano; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    Measurements of the ZZ and WW final states in the mass range above the [Formula: see text] and [Formula: see text] thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the [Formula: see text], [Formula: see text] and [Formula: see text] final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb[Formula: see text] at a collision energy of [Formula: see text] TeV. Using the [Formula: see text] method, the observed 95 [Formula: see text] confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1-8.6, with an expected range of 6.7-11.0. In each case the range is determined by varying the unknown [Formula: see text] and [Formula: see text] background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 [Formula: see text] CL upper limit on [Formula: see text] in the range 4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that the unknown [Formula: see text] background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 [Formula: see text] CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV.

  4. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.

    2015-01-01

    Measurements of the ZZ and WW final states in the mass range above the 2m Z and 2m W thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the ZZ → 4l, ZZ → 2l2ν and WW → eνμν final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb -1 at a collision energy of √(s) = 8 TeV. Using the CLs method, the observed 95 % confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1.8.6, with an expected range of 6.7-11.0. In each case the range is determined by varying the unknown gg → ZZ and gg → WW background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 %CL upper limit on Γ H / Γ H S M in the range 4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that the unknown gg → VV background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 % CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV. (orig.)

  5. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  6. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  7. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  8. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  9. Characterization of Physic nut (Jatropha curcas L.) shells

    International Nuclear Information System (INIS)

    Wever, Diego-Armando Z.; Heeres, H.J.; Broekhuis, Antonius A.

    2012-01-01

    The characterization of Physic nut shells was done using the wet chemical analysis of wood components. The obtained fractions were analyzed using IR, NMR, GPC, ICP and MALDI-TOF mass spectroscopy. TGA was used to determine the fixed carbon (+ash) and water content of the shells. The results of wet chemical analysis of wood components offered a clear procedure to isolate the main components in Physic nut shells (a). The fractions obtained were: polar extract (b), non-polar extract (c), Acid Insoluble Lignin (d), Holocellulose (e), α-Cellulose (f). The total Lignin content present in the shells equaled 48.84%. IR and NMR spectroscopy demonstrated that the non-polar extract is Lignin, which corresponds to the extractable Lignin (1.24%) in the Physic nut shells and the Acid Insoluble Lignin was 47.60%. Elemental analysis showed no Sulfur present in the investigated materials. Furthermore both 1 H and 13 C NMR of the non-polar extract showed the presence of aliphatic hydrocarbon chains. The α-Cellulose content (22.29%) and the Hemicelluloses content (23.84%) were in line with that of agricultural residues. The water content and the fixed carbon content (+ash [2.8%]) equal 5–6% and 35.6%, respectively. GPC showed that the polydispersity of the non-polar extract (3.6) lies between Alcell Lignin and Kraft Lignin. The polar extract contains a variety of metals, with especially a high amount of the alkali metals K and Na. The extraction with water is proposed to generate a fertilizer fraction and may be applied to reduce potential sintering issues during eventual combustion or gasification of the shells. -- Highlights: ► Physic nut shell is a potential source of value added chemicals due to its high lignin content (48.8 wt%). ► Lignin extracted from Jatropha curcas L. shells is rich in aliphatic linkages. ► Water extraction of the shells yields a potential fertilizer fraction rich in alkali metals and phosphorous. ► Pre-extraction is recommended to eliminate

  10. STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1

    International Nuclear Information System (INIS)

    Giodini, S.; Pierini, D.; Finoguenov, A.; Pratt, G. W.; Boehringer, H.; Leauthaud, A.; Guzzo, L.; Aussel, H.; Bolzonella, M.; Capak, P.; Elvis, M.; Hasinger, G.; Ilbert, O.; Kartaltepe, J. S.; Koekemoer, A. M.; Lilly, S. J.; Massey, R.; Rhodes, J.; Salvato, M.; McCracken, H. J.

    2009-01-01

    We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg 2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R 500 . The total sample of 118 groups and clusters with z ≤ 1 spans a range in M 500 of ∼10 13 -10 15 M sun . We find that the stellar mass fraction associated with galaxies at R 500 decreases with increasing total mass as M -0.37±0.04 500 , independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f stars+gas 500 = f stars 500 + f gas 500 ) is found to increase by ∼25%, when M 500 increases from (M) = 5 x 10 13 M sun to (M) = 7 x 10 14 M sun . After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of (M) = 5 x 10 13 M sun . The discrepancy decreases toward higher total masses, such that it is 1σ at (M) = 7 x 10 14 M sun . We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.

  11. The character and behaviour of circumstellar shells at T Tauri stars

    International Nuclear Information System (INIS)

    Goetz, W.

    1988-01-01

    T Tauri stars are extremely young low-mass stars in the pre-main sequence stage. A brief review of investigations made at the Sonneberg observatory concerning the character and the behaviour of circumstellar shells at T Tauri stars is given. They lead to the construction of a shell model on the basis of observational facts. The idea rests upon the causal connection between the gas and dust shell phenomenon and the cosmogonic mass loss of the stars, which is the connecting link between the stars and their shells and which appears in the early phase of the pre-main sequence stage and decreases, like the accompanying shell phenomena, during the evolution of the stars. (author)

  12. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    Science.gov (United States)

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  13. Associations of Infant Subcutaneous Fat Mass with Total and Abdominal Fat Mass at School-Age: The Generation R Study.

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent W V

    2016-09-01

    Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal, and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height(3) ), central-to-total fat ratio (trunk fat/total fat), and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures. A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (odds ratio 1.70, 95% confidence interval 1.36, 2.12). These associations were weaker than those for body mass index and stronger among girls than boys. Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared with body mass index. © 2016 John Wiley & Sons Ltd.

  14. Differential distributions for top-quark hadro-production with a running mass

    International Nuclear Information System (INIS)

    Dowling, M.; Moch, S.; Hamburg Univ.

    2013-05-01

    We take a look at how the differential distributions for top-quark production are affected by changing to the running mass scheme. Specifically we consider the transverse momentum, rapidity and pair-invariant mass distributions at NLO for the top-quark mass in the MS scheme. It is found that, similar to the total cross section, the perturbative expansion converges faster and the scale dependence improves using the mass in the MS scheme as opposed to the on-shell scheme. We also update the analysis for the total cross section using the now available full NNLO contribution.

  15. Differential distributions for top-quark hadro-production with a running mass

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2013-05-15

    We take a look at how the differential distributions for top-quark production are affected by changing to the running mass scheme. Specifically we consider the transverse momentum, rapidity and pair-invariant mass distributions at NLO for the top-quark mass in the MS scheme. It is found that, similar to the total cross section, the perturbative expansion converges faster and the scale dependence improves using the mass in the MS scheme as opposed to the on-shell scheme. We also update the analysis for the total cross section using the now available full NNLO contribution.

  16. Associations of infant subcutaneous fat mass with total and abdominal fat mass at school-age. The Generation R Study

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent WV

    2017-01-01

    Background Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. Methods In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height3), central-to-total fat ratio (trunk fat/total fat) and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Results Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures (pfat at 24 months was associated with an increased risk of childhood overweight (Odds Ratio 1.70 [95% Confidence Interval 1.36, 2.12]). These associations were weaker than those for body mass index and stronger among girls than boys. Conclusions Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared to body mass index. PMID:27225335

  17. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    Science.gov (United States)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  18. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  19. Shell Effect and Temperature Influence on Nuclear Level Density Parameter: the role of the effective mass interaction

    International Nuclear Information System (INIS)

    Queipo-Ruiz, J.; Guzman-Martinez, F.; Rodriguez-Hoyos, O.

    2011-01-01

    The level density parameter is a very important ingredient in statistic study of nuclear reaction, it has been studied to low energies excitation E < 2MeV where it values is approximately constant, experimental results to energies of excitation more than 2 MeV has been obtained of evaporation spectrum, to nuclei with A=160. In this work we present a calculation of densities level parameter, for a wide range of mass and temperature, taking in accounts the shell effects and the mass effective interaction. The result has been carried out within the semi classical approximation, for the single particle level densities. We results have a reasonable agreement with the experimental data available. (Author)

  20. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    Science.gov (United States)

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  1. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  2. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  3. Off-Shell Higgs Probe of Naturalness

    Science.gov (United States)

    Gonçalves, Dorival; Han, Tao; Mukhopadhyay, Satyanarayan

    2018-03-01

    Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs boson mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field (S ) coupled to the standard model Higgs doublet (H ) in a form |S |2|H |2. In the process p p →h*→Z Z , the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at 2 mS, leads to a measurable deviation in the differential distribution of the Z -pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the 5 σ level at the high-luminosity LHC, improving further with the upgraded 27 TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.

  4. Beta-decay of 103In studied by using a total absorption spectrometer

    International Nuclear Information System (INIS)

    Karny, M.; Batist, L.; Moroz, F.; Wittmann, V.; Brown, B. A.; Cano-Ott, D.; Gadea, A.; Rubio, B.; Tain, J. L.; Collatz, R.; Guglielmetti, A.; Hellstroem, M.; Hu, Z.; Kirchner, R.; Roeckl, E.; Shibata, M.; Grzywacz, R.; Janas, Z.; Plochocki, A.; Szerypo, J.

    1998-01-01

    The β decay of the neutron-deficient isotope 103 In was investigated by using total absorption γ-ray spectrometry on mass-separated sources. The measurement reveals a high-lying resonance of the β-decay strength in striking disagreement with high-resolution γ-ray data. The result is discussed in comparison with shell-model predictions

  5. Formulas for determination of fundamental periods of cylindrical shells in contact with liquid

    International Nuclear Information System (INIS)

    Mikami, Takashi; Yoshimura, Jin

    1990-01-01

    The fundamental period of a cylindrical shell in contact with liquid is probably the first item of interest in the dynamic analysis. This paper presents simple practical formulas for estimating the fundamental periods of the cantilever shells in beam-type (n=1) motion. The formulas are obtained by using Dunkerley's approximation in combination with the collocation method developed in the authors' past work and by considering both the shell mass and the liquid mass. The formulas are applicable to the following types of shells: (1) the liquid is contained within the shell; (2) the shell is submerged in the liquid; and (3) both sides of the shell are in contact with the liquid. A comparison with other solutions suggests that the proposed formulas provide satisfactory accuracy for a wide range of shells. In addition, the formulas presented are useful not only for a better understanding of the vibration characteristics of the shell but also available for a check on the numerical methods. (author)

  6. Experiment on vibration in water of a cylindrical shell fixed in water; Suichu ni koteisareta ento shell no sessui shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, K; Yasuzawa, Y; Kagawa, K; Nanatsuya, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    In order to utilize more effectively wide oceanic spaces, a feasibility study is performed on submerged large shell structures from the aspect of structural engineerings. As part of the study, for the purpose of deriving dynamic response characteristics of a structure, development was made on a numerical analysis code, `DASOR`, required to analyze natural frequency of a rotating shell fixed in water. The `DASOR` is a dynamic analysis code to derive added water mass effect, and effects of water depth on the dynamic response characteristics based on the shell theory by Donnell-Mushtari-Vlasov. This paper describes an experiment using a cylindrical shell to elucidate effects of the cylindrical shell on vibration characteristics due to contact with water. Comparisons and discussions were given on the result of numerical calculation using the `DASOR`, solution of a simplified theory analysis, and the result of the experiment to make clear the reasonability of the `DASOR`. The cylindrical shell in water has its natural frequency decreased due to the added water mass effect in association with increase in the water level. The `DASOR` showed good agreement with the experimental values as a result of giving considerations on the boundary conditions, by which its reasonability was verified. 3 refs., 9 figs., 2 tabs.

  7. Shell effects at the touching point of nuclear fragments

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Gherghescu, R.A.; Greiner, W.

    1999-01-01

    Shell correction energy of the fission fragments remains practically unchanged when the separation distance increases from the sum of their radii up to infinity. The variation with mass asymmetry of the total deformation energy at the touching point configuration shows the valleys corresponding to different decay modes, which are produced when the two proton and/or the two neutron numbers are magic or almost magic. We present a potential energy surface of the proton-rich α-emitter 106 Te, showing the α-decay valley, obtained with a phenomenological shell correction. We discuss the difficulties to produce such a valley on a potential energy surface of 236 Pu, calculated with the macroscopic-microscopic method, in which the nuclear level scheme is found within the two center shell model. The valleys mainly due to the double magic nuclei 100,132 Sn, 208 Pb, and other magic numbers, are illustrated by plotting the deformation energy at the touching point versus the proton number of the fragment, for the following parent nuclei: 106 Te, 116 Ce, 212 Po, 238 Th, 258 Fm and 264 Fm. For ternary fission the gain in energy of compact configurations as compared to aligned ones is analysed. (authors)

  8. Twenty-five new mass values from measurements performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang R.; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Patyk, Zygmunt [National Centre for Nuclear Research, NCBJ Swierk, Warszawa (Poland); Weick, Helmut [GSI, Darmstadt (Germany); Collaboration: FRS-ESR-Collaboration

    2016-07-01

    Masses of uranium fission fragments have been measured with the FRS-ESR facility at GSI. In order to increase the mass resolving power and particle identification for non-isochronous particles, Bρ-tagging was applied in one out of two experiments. A new method of data analysis, using a correlation matrix for the combined data set from the two experiments, has provided reliable experimental mass values for 25 different neutron-rich isotopes for the first time. The new masses were obtained for nuclides in the element range from Ge to Ce. The results have been compared with theoretical predictions. At the neutron shell N=82 the comparison of experimental data for tin and cadmium isotopes show both strong shell effects in agreement with spectroscopy experiments and modern shell-model calculations.

  9. Characterization of Physic nut (Jatropha curcas L.) shells

    NARCIS (Netherlands)

    Wever, Diego; Heeres, H. J.; Broekhuis, Antonius A.

    The characterization of Physic nut shells was done using the wet chemical analysis of wood components. The obtained fractions were analyzed using IR, NMR, GPC, ICP and MALDI-TOF mass spectroscopy. TGA was used to determine the fixed carbon (+ash) and water content of the shells. The results of wet

  10. Magnetic monopole interactions: shell structure of meson and baryon states

    International Nuclear Information System (INIS)

    Akers, D.

    1986-01-01

    It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M 0 = 2397 MeV of the monopole is in contrast to the 10 16 -GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M 0 + 1/4nM 0 ... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0 + (0 -+ ) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0 -+ . The presence of shell structure for baryon states is shown

  11. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  12. Determination of K shell absorption jump factors and jump ratios in the elements between Tm(Z = 69) and Os(Z = 76) by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaya, N.; Tirasoglu, E.; Apaydin, G.

    2008-01-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm (Z = 69) and Os(Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57 Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number

  13. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Science.gov (United States)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  14. Complex-mass shell renormalization of the higher-derivative electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Rodrigo [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil); Neves, Mario Junior [Universidade Federal Rural do Rio de Janeiro, Departamento de Fisica, Rio de Janeiro (Brazil)

    2016-08-15

    We consider a higher-derivative extension of QED modified by the addition of a gauge-invariant dimension-6 kinetic operator in the U(1) gauge sector. The Feynman diagrams at one-loop level are then computed. The modification in the spin-1 sector leads the electron self-energy and vertex corrections diagrams finite in the ultraviolet regime. Indeed, no regularization prescription is used to calculate these diagrams because the modified propagator always occurs coupled to conserved currents. Moreover, besides the usual massless pole in the spin-1 sector, there is the emergence of a massive one, which becomes complex when computing the radiative corrections at one-loop order. This imaginary part defines the finite decay width of the massive mode. To check consistency, we also derive the decay length using the electron-positron elastic scattering and show that both results are equivalent. Because the presence of this unstable mode, the standard renormalization procedures cannot be used and is necessary adopt an appropriate framework to perform the perturbative renormalization. For this purpose, we apply the complex-mass shell scheme (CMS) to renormalize the aforementioned model. As an application of the formalism developed, we estimate a quantum bound on the massive parameter using the measurement of the electron anomalous magnetic moment and compute the Uehling potential. At the end, the renormalization group is analyzed. (orig.)

  15. Metabolic Energy Demand Is Not Increased during Initial Shell Formation of Bivalves Exposed to Aragonite Undersaturation

    Science.gov (United States)

    Pan, F.; Frieder, C.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    The Pacific oyster, Crassostrea gigas, is a major commercial species in global aquaculture. Ocean acidification is having a negative effect on larval production of this species, so the mechanisms of this impact are of considerable interest. Formation of new shell in C. gigas during the first 2-days post-fertilization results in a rapid six-fold increase in total mass. This period of early development has high sensitivity to changes in carbonate chemistry, in particular aragonite saturation state (Ω). An elevated energy cost for calcification at low Ω is often invoked as a mechanism. In this study, we characterized the developmental progression of first shell formation, total metabolic expenditure, and underlying biochemical processes of energy allocation during early development of C. gigas, under control (Ω >> 1) and undersaturated conditions (Ω pump activity (Na+, K+-ATPase) between the two treatments. We conclude that early development to the shelled-veliger larval stage does not require more energy at undersaturation. This finding helps constrain potential mechanisms of larval sensitivity to ocean acidification and narrows the focus for possible mitigation strategies for oyster aquaculture production.

  16. Isospin invariant boson models for fp-shell nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  17. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  18. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  19. Allometric relationship between changes of visceral fat and total fat mass

    DEFF Research Database (Denmark)

    Hallgreen, C. E.; Hall, K. D.

    2008-01-01

    Objective: To elucidate the mathematical relationship between changes of visceral adipose tissue (VAT) and total body fat mass (FM) during weight loss. Design: We hypothesized that changes of VAT mass are allometrically related to changes of FM, regardless of the type of weight-loss intervention...

  20. First Direct Mass Measurements of Nuclides around Z =100 with a Multireflection Time-of-Flight Mass Spectrograph

    Science.gov (United States)

    Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.

    2018-04-01

    The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.

  1. Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2015-01-01

    Full Text Available This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations. The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop. A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%. The percentage errors for the pressure drop in the shell and in the concentric tubes were (17.2% and (- 39% respectively. For cold water outlet temperature, the percentage error was (- 3.3%, while it was (18% considering the pressure drop in the annulus formed. The percentage error for the total power consumed was (-10.8% A theoretical comparison was made between the new design and the conventional heat exchanger from the point of view of, length, mass, pressure drop and total power consumed.

  2. Ocean Acidification Causes Increased Calcium Carbonate Turnover during Larval Shell Formation

    Science.gov (United States)

    Frieder, C.; Pan, F.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    Mollusca is a major taxon for studies of the evolution and mechanisms of calcification. Under current and future ocean change scenarios, decreases in shell size have been observed in many molluscan species during early development. The mechanistic basis for these decreases are of significant interest. In this study, Pacific oyster larvae (Crassostrea gigas) reared at aragonite undersaturation (Ω > 1). Coupling radioisotope tracer assays with mineral mass measurements allowed calculation of calcification budgets for first shell formation in veliger stage larvae. Three primary mechanisms (in order of increasing effect) contributed to the change in shell mass at undersaturation: delayed onset of calcification, increased dissolution rates, and decreased net calcification rates. The observation of dissolution indicates turnover of the newly formed shell, and physicochemical constraints of undersaturation provide a mechanistic basis for decreased calcification.

  3. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    International Nuclear Information System (INIS)

    Clayton, Geoffrey C.; Andrews, J. E.; Sugerman, Ben E. K.; Adam Stanford, S.; Whitney, B. A.; Honor, J.; Babler, B.; Barlow, M. J.; Gordon, K. D.; Bond, Howard E.; Matsuura, M.; Geballe, T. R.; De Marco, O.; Lawson, W. A.; Sibthorpe, B.; Olofsson, G.; Polehampton, E.; Gomez, H. L.; Hargrave, P. C.; Ivison, R. J.

    2011-01-01

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 μm with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 μm. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10 –4 and 2 M ☉ , respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  4. Study on irradiation preservation of frozen shelled shrimps

    International Nuclear Information System (INIS)

    Liu Chunquan; Zhu Jiating; Zhao Yongfu; Yu Gang; Zhang Weidong; Jin Yudong; Ji Ping

    2004-01-01

    The effect of irradiaiton preservation of frozen shelled shrimps for export was studied. The microbial indexd, nutritional ingredient, physico-chemical index for irradiation frozen shelled shrimps were detected. The results showed that 3-5 kGy irradiation dose could kill more than 99% of all kinds of microorganisms in frozen shelled shrimps, the content of most amino acids in shelled shrimps increased, after being irradiated by 1-9 kGy dose, the total amino acids had been obvisouly higher than CK, the increased range was 0.33%-24.6%, the content of the total volatile basic nitrogen (TVBN) decreased. Compared with the CK, the content of the heavy metal elements etc had no obvious change, the presrvation duration of irradiated shelled shrimp was twelve months longer than that of CK when storage temperature was under -7 degree C soft frozen, Compared with -18 degree C the effect of irradiation preservation had no obvious change. (authors)

  5. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  6. Probing the stability of gravastars by dropping dust shells onto them

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.h, E-mail: iracz@rmki.kfki.h [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2010-09-21

    As a preparation for the dynamical investigations, this paper begins with a short review of the three-layer gravastar model with distinguished attention to the structure of the pertinent parameter space of gravastars in equilibrium. Then the radial stability of these types of gravastars is studied by determining their response for the totally inelastic collision of their surface layer with a dust shell. It is assumed that the dominant energy condition holds and the speed of sound does not exceed that of the light in the matter of the surface layer. While in the analytic setup the equation of state is kept to be generic, in the numerical investigations three functionally distinct classes of equations of states are applied. In the corresponding particular cases the maximal mass of the dust shell that may fall onto a gravastar without converting it into a black hole is determined. For those configurations which remain stable the excursion of their radius is assigned. It is found that even the most compact gravastars cannot get beyond the lower limit of the size of conventional stars, provided that the dominant energy condition holds in both cases. It is also shown-independent of any assumption concerning the matter interbridging the internal de Sitter and the external Schwarzschild regions-that the better a gravastar in mimicking a black hole the easier is to get the system formed by a dust shell and the gravastar beyond the event horizon of the composite system. In addition, a generic description of the totally inelastic collision of spherical shells in spherically symmetric spacetimes is also provided in the appendix.

  7. Numerical analysis on the condensation heat transfer and pressure drop characteristics of the horizontal tubes of modular shell and tube-bundle heat exchanger

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Park, Hyung Gyu; Kim, Charn Jung; Park, Byung Kyu

    2001-01-01

    A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite concept method based on FVM and κ-ε turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate 4∼8% higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer

  8. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  9. Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes

    CSIR Research Space (South Africa)

    Shatalov, M

    2009-05-01

    Full Text Available stream_source_info Shatalov2_2009.pdf.txt stream_content_type text/plain stream_size 22572 Content-Encoding UTF-8 stream_name Shatalov2_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 DYNAMICS OF ROTATING... AND VIBRATING THIN HEMISPHERICAL SHELL WITH MASS AND DAMPING IMPERFECTIONS AND PARAMETRICALLY DRIVEN BY DISCRETE ELECTRODES Michael Shatalov1,2 and Charlotta Coetzee2 1Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing (MSM...

  10. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu [Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India); Kalpana, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu-624302 (India); Reuben, A. Merwyn Jasper D., E-mail: merwyn@gmail.com [Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India)

    2015-06-24

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  11. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Science.gov (United States)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2015-06-01

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  12. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    Science.gov (United States)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  13. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1978-01-01

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a 1 / 12 scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved

  14. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, G.E.

    1978-04-18

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.

  15. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  16. Band crossing and signature splitting in odd mass fp shell nuclei

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  17. Kinetic investigation of narrow-bore columns packed with prototype sub-2 μm superficially porous particles with various shell thickness.

    Science.gov (United States)

    Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges

    2011-10-07

    The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Masses of noble gases

    CERN Document Server

    Marx, G H; Herfurth, F; Stora, T; Blaum, K; Beck, D; Audi, G; Rosenbusch, M

    The so-called magic numbers, cornerstones of the quantum nuclear ensemble, are now known to lose their supernatural powers far from the protected valley of stability. To complement the well-established (but not yet well-understood) case of N = 20, we propose to examine the erstwhile N = 28 shell closure via a measurement of the important (but unknown) mass of the nuclide $^{48}$Ar. The quenching of a shell closure, a mechanism as mysterious as the reason for magic numbers themselves, also has important consequences in nucleosynthesis. While $^{48}$Ar is not part of the region concerned by the canonical rapid neutro-capture r-process, the question of shell strength is of great importance for heavier nuclides. The location of the r-process path would benefit from extending the succesful ISOTRAP krypton mass measurements beyond the N = 58 sub-shell to $^{96-98}$Kr. Modeling the complementary rapid proton-capture rp- process, putative source of some proton-rich species, requires the mass of $^{70}$Kr, near the e...

  19. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Kim, Tae Jeong; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Vuosalo, Carl; Woods, Nathaniel

    2014-09-07

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma_H, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse-femtobarns at a centre-of-mass energy $\\sqrt{s}$ = 7 TeV and 19.7 inverse-femtobarns at $\\sqrt{s}$ = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of $\\Gamma_H$ less than 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  20. Inner-shell excitation and ionic fragmentation of molecules

    International Nuclear Information System (INIS)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-01-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF 6 and CO 2 . Their work is illustrated using results from the carborane and PF 3 studies

  1. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  2. Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1994-11-01

    A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, 137 Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ''hot spot'' is critically dependent on the temperature dependence for the solubility of Cs 2 NiFe(CN) 6 or CsNaNiFe(CN) 6 . For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the 137 Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs 2 NiFe(CN) 6 (c) does not exhibit retrograde solubility over the temperature range 25 degree C to 90 degree C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks

  3. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  4. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C.; Andrews, J. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204 (United States); Adam Stanford, S. [IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Whitney, B. A. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Honor, J.; Babler, B. [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gordon, K. D.; Bond, Howard E.; Matsuura, M. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Geballe, T. R. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); De Marco, O. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Lawson, W. A. [School of PEMS, University of New South Wales, ADFA, P.O. Box 7916, Canberra, ACT 2610 (Australia); Sibthorpe, B. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olofsson, G. [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Polehampton, E. [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Gomez, H. L.; Hargrave, P. C. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB (United Kingdom); Ivison, R. J., E-mail: gclayton@phys.lsu.edu, E-mail: jandrews@phys.lsu.edu, E-mail: ben.sugerman@goucher.edu, E-mail: stanford@physics.ucdavis.edu, E-mail: bwhitney@spacescience.org, E-mail: jhonor@astro.wisc.edu, E-mail: brian@astro.wisc.edu, E-mail: mjb@star.ucl.ac.uk [UK Astronomy Technology Centre, ROE, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  5. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  6. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  7. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    Baptista Filho, B.D.; Konuk, A.A.

    1981-01-01

    A new method to calculate pressure drop (Δp) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, Δp and h sub(c). The values of Δp and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author) [pt

  8. Mass fragmentographic analysis of total cholesterol in serum using a heptadeuterated internal standard

    International Nuclear Information System (INIS)

    Wolthers, B.G.; Hindriks, F.R.; Muskiet, F.A.J.; Groen, A.

    1980-01-01

    A mass fragmentographic method for the determination of total cholesterol in serum using heptadeuterated [25,26,26,26,27,27,27- 2 H] cholesterol as internal standard is presented. The results obtained are compared with a colorimetric and gas chromatographic method which were previously proposed as reference methods. Criteria for the development of absolute measurement by means of mass fragmentography and stable isotopically labelled internal standards are given. The conclusion is drawn that, at present, mass fragmentographic methods for the determination of total cholesterol in serum do not fulfil the criteria required for absolute methods. (Auth.)

  9. Scission-point model of nuclear fission based on deformed-shell effects

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  10. Shell energy scenarios to 2050

    International Nuclear Information System (INIS)

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  11. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  12. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  13. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  14. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  15. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  16. Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants.

    Science.gov (United States)

    de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P

    2016-12-15

    Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Properties of the Higgs boson in the 4 leptons final state with the ATLAS experiment at the LHC: mass, limit on the high mass contribution and on the Higgs width

    International Nuclear Information System (INIS)

    Calandri, Alessandro

    2015-01-01

    The theme of the analyses presented in this Thesis is the measurement of the Higgs boson properties in the H→ZZ→4l decay channel with the ATLAS experiment at the LHC. A detailed overview on the electron calibration process is first presented. In this regard, the track-cluster combination algorithm is found to improve the energy resolution of low ET electrons by exploiting both track and cluster information into a maximum likelihood fit. The improvement in resolution is approximately 18-20% for J/ψ dielectron decays, and of the order of 3% for Z→ee events. In addition, the E-p combination algorithm has also been applied to the H→ZZ→4l channel with electrons in the final state resulting in a non-negligible gain on the invariant mass distribution (4-5%). Secondly, the Higgs mass and its total width are evaluated in the H→ZZ→4l channel. The Higgs mass is measured in the 4l decay channel with particular interest on the beneficial effects brought by the improved electron calibration and the track-cluster combination. The mass on the full 2011 and 2012 datasets is worked out with a 2-dimensional fit on the invariant mass of the 4 lepton final state, m4l, and on a boosted decision tree (BDT)-based output conceived against the main ZZ irreducible background and constructed on variables that are sensitive to the Higgs boson spin-parity state. Regarding the Higgs width, results are based on a relatively recent approach aimed at indirectly constraining the Higgs boson width by exploiting the m4l high-mass region where the Higgs boson acts as a propagator. The Higgs production cross section in the on-shell m4l region, where the Higgs boson is a resonance, depends on the total Higgs width, whereas this is not the case for the high mass m4l (off-shell). Limits on the Higgs width can be therefore set when merging the off-shell results with the on-shell ones. A limit of 6.7 times ΓSMH is obtained in the four lepton channel. Secondly, by combining with the on-shell

  18. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  19. Pair of null gravitating shells: III. Algebra of Dirac's observables

    International Nuclear Information System (INIS)

    Kouletsis, I; Hajicek, P

    2002-01-01

    The study of the two-shell system started in 'pair of null gravitating shells I and II' is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and outgoing shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is given

  20. Elemental and Isotopic Incorporation into the Aragonitic Shells of Arctica Islandica: Insights from Temperature Controlled Experiments

    Science.gov (United States)

    Wanamaker, A. D.; Gillikin, D. P.

    2014-12-01

    The long-lived ocean quahog, Arctica islandica, is a fairly well developed and tested marine proxy archive, however, the utility of elemental ratios in A. islandica shell material as environmental proxies remains questionable. To further evaluate the influence of seawater temperature on elemental and isotopic incorporation during biomineralization, A. islandica shells were grown at constant temperatures under two regimes during a 16-week period from March 27 to July 21, 2011. Seawater from the Darling Marine Center in Walpole, Maine was pumped into temperature and flow controlled tanks that were exposed to ambient food and salinity conditions. A total of 20 individual juvenile clams with an average shell height of 36 mm were stained with calcein (a commonly used biomarker) and cultured at 10.3 ± 0.3 °C for six weeks. After this, shell heights were measured and the clams were again stained with calcein and cultured at 15.0 ± 0.4 °C for an additional 9.5 weeks. The average shell growth during the first phase of the experiment was 2.4 mm with a linear extension rate of 0.40 mm/week. The average shell growth during the second phase of the experiment was 3.2 mm with an extension rate of 0.34 mm/week. Average salinity values were 30.2 ± 0.7 and 30.7 ±0.7 in the first and second phases of the experiment, respectively. Oxygen isotopes from the cultured seawater were collected throughout the experiment and provide the basis for establishing if shells grew in oxygen isotopic equilibrium. Elemental ratios (primarily Ba/Ca, Mg/Ca, Sr/Ca) in the aragonitic shells were determined via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), while stable oxygen and carbon isotope ratios were measured using continuous flow isotope ratio mass spectrometry. Continuous sampling within and across the temperature conditions (from 10 °C to 15 °C) coupled with the calcein markings provides the ability to place each sample into a precise temporal framework. The

  1. Quark mass relations to four-loop order

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2015-02-01

    We present results for the relation between a heavy quark mass defined in the on-shell and MS scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS heavy quark masses.

  2. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  3. Intruder states at the N=20 shell closure

    International Nuclear Information System (INIS)

    Heyde, K.

    1991-01-01

    It is indicated that mp-mh (multiple) excitations across closed shells can occur at low energy throughout the nuclear mass region. Besides the 4p-4h, 8p-8h configurations, that are deformed, coexisting low-lying excitations are mainly observed for light N=Z nuclei. A new class of 2p-2h intruder O + state is shown to exist in nuclei where a neutron excess is present. In the latter cases, the proton-neutron interaction energy between the excited 2p-2h configuration and the open shell accounts for a very specific mass dependence in the intruder excitation energy. The experimental evidence that corroborates the idea of intruder states will be given. (G.P.) 28 refs.; 13 figs

  4. Vibration experiment of the semi-spherical shell fixed in water; Suichu ni koteisareta hankyu shell no sessui shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, K; Yasuzawa, Y; Kagawa, K; Sugimoto, S [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    Vibration characteristics of the semi-spherical shell fixed in water with bidirectional curvatures were studied experimentally. Various marine structures have been devised as relay station for life spaces or submarine resource excavation. As compared with land structures, marine structures are constantly under a severe condition subjected to hydrostatic pressure, and requires advanced technologies. The experimental result, numerical computation result by analytical code DASOR (Dynamic Analysis of Shell of Revolution) and theoretical analysis result were compared with each other. FEM and BEM were used in DASOR computation for the axisymmetric thin semi-spherical shell and circumferential liquid, respectively. Due to an added mass effect, the natural frequency decreased with an increase in water level regardless of mode orders. However, the water level over the top of the semi-spherical shell caused the nearly constant natural frequencies of 30-40% of that in the air. The computation result by DASOR well agreed with the experimental result demonstrating its validity. 4 refs., 13 figs., 1 tab.

  5. Off-shell effects in Higgs decays to heavy gauge bosons and signal-background interference in Higgs decays to photons at a linear collider

    International Nuclear Information System (INIS)

    Liebler, Stefan

    2015-03-01

    We discuss off-shell contributions in Higgs decays to heavy gauge bosons H→VV (*) with V element of {Z,W} for a standard model (SM) Higgs boson for both dominant production processes e + e - →ZH→ZVV (*) and e + e - ν anti νH→ν anti νVV (*) at a (linear) e + e - collider. Dependent on the centre-of-mass energy off-shell effects are sizable and important for the understanding of the electroweak symmetry breaking mechanism. Moreover we shortly investigate the effects of the signal-background interference in H→γγ decays for the Higgsstrahlung initiated process e + e - →Zγγ, where we report a similar shift in the invariant mass peak of the two photons as found for the LHC. For both effects we discuss the sensitivity to the total Higgs width.

  6. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  7. CO2 sequestration using principles of shell formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Woo; Jang, Young-Nam [CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources (Korea, Republic of); Lee, Si-Hyun; Lim, Kyoung-Soo; Jeong, Soon-Kwan [Energy Conservation Research Department of Clean Energy System Research Center, Korea Institute of Energy Research (Korea, Republic of)

    2011-06-15

    The biomimetic sequestration of carbon dioxide to reduce the CO2 emitted into the atmosphere is introduced in this paper. Bivalve shells are used as a good model of CO2 sequestration in this paper, because the shell is derived from the calcium ions and CO2 in seawater. Carbonic anhydrase, hemocyte from diseased shell (HDS) and extrapallial fluid (EFP) are involved in shell formation. This paper compares the soluble protein extracted from Crassostrea gigas with bovine carbonic anhydrase II in terms of their ability to promote CO2 hydration and the production of calcium precipitates. The result demonstrates that HDS has more functional groups to bind calcium ions in aqueous systems, and a different process of calcium precipitation, than does bovine carbonic anhydrase II. To understand molecular weight and secondary protein structure, mass-spectroscopic analysis (MALDI-TOF) and circular dichroism (CD) analysis were used. With regard to EPF, EPF related to shell formation is composed of several fractions and plays a role in sequestration of CO2.

  8. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  9. Shell Inspection History and Current CMM Inspection Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-26

    The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.

  10. Preparation and Characterization of SiO2/SiCN Core-shell Ceramic Microspheres

    Directory of Open Access Journals (Sweden)

    ZHANG Hai-yuan

    2017-05-01

    Full Text Available The SiO2/PSN core-shell microspheres were prepared via an emulsion reaction combined with the polymer-derived ceramics (PDCs method using polysilazane (PSN in situ polymerization on the surface of SiO2 modified by silane coupling agents MPS, followed by pyrolysis process to obtain SiO2/SiCN core-shell ceramic microspheres. The effects of raw mass ratio, curing time and pyrolysis temperature on the formation and the morphology of core-shell microspheres were studied. The morphology, chemical composition and phase transformation were characterized by SEM, EDS, TEM, FT-IR and XRD. The results show that after reaction for 4h at 200℃, SiO2 completely coated PSN forms a core-shell microsphere with rough surface when the mass ratio of SiO2 and PSN is 1:4; when pyrolysis temperature is at 800-1200℃, amorphous SiO2/SiCN core-shell ceramic microspheres are prepared; at 1400℃, the amorphous phase partially crystallizes to produce SiO2, SiC and Si3N4 phase.

  11. Axisymmetrical impulsive responses of an infinite circular cylindrical shell filled with liquid

    International Nuclear Information System (INIS)

    Ujihashi, Sadayuki; Matsumoto, Hiroyuki; Nakahara, Ichiro; Shigeta, Masayuki.

    1986-01-01

    In this paper, dynamic interaction phenomena on solid and liquid interfaces are discussed. Axisymmetrical responses of an infinite circular cylindrical shell perfectly filled with liquid are analyzed, based on Fluegge's theory for a circular cylindrical shell and the potential theory for the ideal fluid under conditions of the impulsive external band pressure given on the outer surface of the shell. The deflection and the moment of the shell and the pressure in the fluid are evaluated by using the numerical inversion of the Laplace transformation method. The approximate solution for the shell with an equivalent mass on it is analyzed and is evaluated, based on the solution for the solid and liquid interaction. (author)

  12. On-shell gauge-parameter independence of contributions to electroweak quark self-energies

    International Nuclear Information System (INIS)

    Ahmady, M.R.; Elias, V.; Mendel, R.R.; Scadron, M.D.; Steele, T.

    1989-01-01

    We allow an external condensate to enter standard SU(2) x U(1) electroweak theory via the vacuum expectation value , as in QCD sum-rule applications. For a given flavor, we then find that any gauge-parameter dependence of quark self-energies on the ''mass shell'' is eliminated provided that the mass shell is made to coincide with both the expansion-parameter mass occurring in the operator-product expansion of and the standard electroweak mass acquired via the Yukawa coupling to the usual scalar vacuum expectation value of spontaneous symmetry breaking. This result indicates that if the QCD-generated order parameter and associated dynamical mass(es) m/sub q//sup dyn/ are utilized as external input parameters in electroweak calculations involving hadrons, then new corrections must be introduced into the q-barqW and q-barqZ vertices in order to preserve SU(2) x U(1) Ward identities

  13. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    Science.gov (United States)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Testing the predictive power of nuclear mass models

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  15. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study.

    Science.gov (United States)

    Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen

    2017-12-01

    Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  17. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    International Nuclear Information System (INIS)

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of 31 Cl, 27 P and 28 P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas ΔE-gas ΔE-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in 31 Cl and 27 P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of 31 Cl were shown to be from the decay of 25 Si. In 27 P, two proton groups at 459 ± 14 keV and 610 ± 11 keV, with intensities of 7 ± 3% and 92 ± 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the β-decay of 28 P, at 1,444 ± 12 keV with a 1.7 ± 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, 17 Ne and 33 Ar, were studied. A new proton group with energy 729 ± 15 keV was observed following the beta-decay of 17 Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from 17 Ne and 33 Ar were resolved

  18. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  19. Scanning the parameter space of collapsing rotating thin shells

    Science.gov (United States)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  20. Stability analysis of whirling composite shells partially filled with two liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Sahebnasagh, Mohammad [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nikkhah-Bahrami, Mansour; Firouz-Abadi, Roohollah [Department of Aerospace Engineering, Sharif University, Tehran (Iran, Islamic Republic of)

    2017-05-15

    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main variables on the stability of the shell are studied and the results are investigated.

  1. Simple proteomics data analysis in the object-oriented PowerShell.

    Science.gov (United States)

    Mohammed, Yassene; Palmblad, Magnus

    2013-01-01

    Scripting languages such as Perl and Python are appreciated for solving simple, everyday tasks in bioinformatics. A more recent, object-oriented command shell and scripting language, Windows PowerShell, has many attractive features: an object-oriented interactive command line, fluent navigation and manipulation of XML files, ability to consume Web services from the command line, consistent syntax and grammar, rich regular expressions, and advanced output formatting. The key difference between classical command shells and scripting languages, such as bash, and object-oriented ones, such as PowerShell, is that in the latter the result of a command is a structured object with inherited properties and methods rather than a simple stream of characters. Conveniently, PowerShell is included in all new releases of Microsoft Windows and therefore already installed on most computers in classrooms and teaching labs. In this chapter we demonstrate how PowerShell in particular allows easy interaction with mass spectrometry data in XML formats, connection to Web services for tools such as BLAST, and presentation of results as formatted text or graphics. These features make PowerShell much more than "yet another scripting language."

  2. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  3. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  4. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  5. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  6. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    Lam, Y.W.

    2011-12-01

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  7. High mass-asymmetry distributions of fissioning nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Lusting, H.J.; Hahn, J.; Greiner, W.

    1978-07-01

    It is shown that new mass-asymmetry valleys are appearing in the fragmentation potential V(l,eta) as function of the length l and mass-asymmetry coordinate eta = (A 1 - A 2 )to a correct treatment of the shell effects such that for separated fragments the shell effects equal the sum of the shell effects of the individual fragments and correspond to the double magic fragments 48 Ca, 78 Ni, 132 Sn and 208 Pb or may be 56 Ni. Also is shown that the fission mass-distributions have additional peaks corresponding to the bottom of these new valleys. The calculations are illustrated for 252 No and 238 U. The preliminary results show for 238 U relatively high percent yields in agreement with present available experimental data. (author)

  8. Higgs boson width from off-shell production and decay to ZZ

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Constraints on the total Higgs boson width, Gamma_H, are presented using off-shell production and decay to ZZ in the 4l and 2l2nu final states. The analysis is based on data collected in 2012 by the CMS experiment at the LHC, corresponding to an integrated luminosity of L = 19.7/fb at a centre-of-mass energy of 8 TeV. The combined analysis of the 4l and 2l2nu events at high mass with the 4l measurement of the Higgs boson peak at 125.6 GeV leads to an upper limit on the Higgs boson width of Gamma_H < 4.2 x Gamma_H(SM) at the 95% confidence level, assuming Gamma_H(SM) = 4.15 MeV. This result considerably improves over previous experimental constraints from direct measurements at the Higgs resonance peak.

  9. Improvements of mass formula and β-decay gross theory

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1987-01-01

    The nuclear mass greatly decreases when the number of protons Z and neutrons N is simultaneously equal to a magic number (mutual support of magicities). The mass also tends to decrease due to deformation as both N and Z are away from the magic numbers (mutual support of deformations). These two effects are introduced to a nuclear mass formula containing a constant-type shell term to derive a new formula. The mass excess is expressed by a sum of three parts, i.e. gross part, even-odd part and shell part. The gross part, which represents the general nature, consists of two rest mass terms and a coulomb term. The even-odd part is of a typical form with a correction term. The shell part consists of a proton shell term, neutron shell term, third term expressing the two mutual support effects, and fourth term representing a decrease in coulomb energy due to deformation of the nucleus. The improvements made in the β-decay gross theory are associated with the single particle intensity function D 0 GT (E,ε). They are intended for: (1) reproducing the peak that accounts for about a half of the Gamow-Teller intensity, which has recently been found in (p,n) reactions at energies above the isobaric analogue state and (2) explaining the other half by an exponential-type D 0 GT (E,ε). (Nogami, K.)

  10. Gas puff radiation performance as a function of radial mass distribution

    International Nuclear Information System (INIS)

    Coleman, Philip L.; Krishnan, Mahadevan; Prasad, Rahul; Qi, Niansheng; Waisman, Eduardo; Failor, B.H.; Levine, J.S.; Sze, H.

    2002-01-01

    The basic concept of a z-pinch, that JxB forces implode a shell of mass, creating a hot dense plasma on-axis, is coming under closer scrutiny. Wire arrays may start with an initial cold mass in a near 'ideal' shell, but in fact they appear to develop complex radial mass distributions well before the final x-ray output. We consider here the situation for gas puff z-pinches. While the ideal of a gas 'shell' has been the nominal objective for many years, detailed measurements of gas flow show that nozzles used for plasma radiation sources (PRS) also have complex radial distributions. In particular, there are significant data showing that the best x-ray yield comes from the least shell-like distributions. Recent experiments on the Double Eagle generator with argon have further enhanced this view. For those tests with a double 'shell' nozzle, there was a factor of almost 4 increase in yield when the relative mass (outer:inner) in the two shells was changed from 2:1 to less than 1:1. We suggest the following explanation. A configuration with most of its mass at large radii is subject to severe disruption by instabilities during the implosion. A more continuous radial mass distribution with dρ/dr < 0 may mitigate instability development (via the 'snowplow stabilization' mechanism) and thus enhance the thermalization of the kinetic energy of the imploding mass. In addition, the appropriate balance of outer to inner mass maximizes the formation of a strong shock in the core of the pinch that heats the plasma and leads to x-ray emission

  11. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  12. Maternal obesity influences the relationship between location of neonate fat mass and total fat mass.

    Science.gov (United States)

    Hull, H R; Thornton, J; Paley, C; Navder, K; Gallagher, D

    2015-08-01

    It is suggested that maternal obesity perpetuates offspring obesity to future generations. To determine whether location of neonate fat mass (FM: central vs. peripheral) is related to total neonate FM and whether maternal obesity influences this relationship. Neonate body composition and skin-fold thicknesses were assessed in healthy neonates (n = 371; 1-3 days old). Linear regression models examined the relationship between total FM and location of FM (central vs. peripheral). Location of FM was calculated by skin-folds: peripheral was the sum of (biceps and triceps)/2 and central was represented by the subscapular skin-fold. A significant interaction was found for location of FM and maternal obesity. Holding all predictors constant, in offspring born to non-obese mothers, a 0.5 mm increase in central FM predicted a 15 g greater total FM, whereas a 0.5 mm increase in peripheral FM predicted a 66 g greater total FM. However, in offspring born to obese mothers, a 0.5 mm increase in central FM predicted a 56 g total FM, whereas a 0.5 mm increase in peripheral FM predicted a 14 g greater total FM. The relationship between total FM and location of FM is influenced by maternal obesity. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  13. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  14. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  15. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    Science.gov (United States)

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  16. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis.

    Science.gov (United States)

    Maillard, Florie; Pereira, Bruno; Boisseau, Nathalie

    2018-02-01

    High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition. The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults. Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined RESULTS: A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions. HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.

  17. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  18. Determination of the N=16 Shell Closure at the Oxygen Drip Line

    International Nuclear Information System (INIS)

    Hoffman, C. R.; Tabor, S. L.; Baumann, T.; Bazin, D.; Schiller, A.; Brown, J.; Williams, T.; Christian, G.; Frank, N.; Peters, W. A.; Thoennessen, M.; DeYoung, P. A.; Mears, P.; Reith, J.; Peaslee, G.; Finck, J. E.; Scott, M. J.; Voss, P. J.; Hinnefeld, J.; Howes, R.

    2008-01-01

    The neutron unbound ground state of 25 O (Z=8, N=17) was observed for the first time in a proton knockout reaction from a 26 F beam. A single resonance was found in the invariant mass spectrum corresponding to a neutron decay energy of 770 -10 +20 keV with a total width of 172(30) keV. The N=16 shell gap was established to be 4.86(13) MeV by the energy difference between the ν1s 1/2 and ν0d 3/2 orbitals. The neutron separation energies for 25 O agree with the calculations of the universal sd shell model interaction. This interaction incorrectly predicts an 26 O ground state that is bound to two-neutron decay by 1 MeV, leading to a discrepancy between the theoretical calculations and experiment as to the particle stability of 26 O. The observed decay width was found to be on the order of a factor of 2 larger than the calculated single-particle width using a Woods-Saxon potential

  19. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  20. Ab Initio Symmetry-Adapted No-Core Shell Model

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D

    2011-01-01

    A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.

  1. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    Disks of optically thin debris dust surround ≥ 20% of main sequence stars and mark the final stage of planetary system evolution. The features of debris disks encode dynamical interactions between the dust and any unseen planets embedded in the disk. The vertical distribution of the dust is particularly sensitive to the total mass of planetesimal bodies in the disk, and is therefore well suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Inferences of mass from debris disk vertical structure have previously been applied to infrared and optical observations of several systems, but the smaller particles traced by short-wavelength observations are ‘puffed up’ by radiation pressure, yielding only upper limits on the total embedded mass. The large grains that dominate the emission at millimeter wavelengths are essentially impervious to the effects of stellar radiation, and therefore trace the underlying mass distribution more directly. Here we present 1.3mm dust continuum observations of the debris disk around the nearby M star AU Mic with the Atacama Large Millimeter/submillimeter Array (ALMA). The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical structure of a debris disk at millimeter wavelengths for the first time. We analyze the data using a ray-tracing code that translates a 2-D density and temperature structure into a model sky image of the disk. This model image is then compared directly to the interferometric data in the visibility domain, and the model parameters are explored using a Markov Chain Monte Carlo routine. We measure a scale height-to-radius ratio of 0.03, which we then compare to a theoretical model of steady-state, size-dependent velocity distributions in the collisional cascade to infer a total mass within the disk of ∼ 1.7 Earth masses. These measurements rule out the presence of a gas giant or Neptune

  2. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    International Nuclear Information System (INIS)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David; Wehinger, Peter; Martin, Christopher D.; Neill, James D.; Forster, Karl; Seibert, Mark

    2012-01-01

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of ∼5 × 10 –5 M ☉ , typical of classical novae.

  3. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Wehinger, Peter [Steward Observatory, the University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Martin, Christopher D.; Neill, James D.; Forster, Karl [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.

  4. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  5. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1995-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)

  6. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1996-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society

  7. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.

    Science.gov (United States)

    Tendler, Avichai; Mayo, Avraham; Alon, Uri

    2015-03-07

    Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.

  8. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2O production of the shell biofilm. This animal-induced stimulation...

  9. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  10. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  11. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  12. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  13. EXTENDED NEUTRAL HYDROGEN IN THE ALIGNED SHELL GALAXIES Arp 230 AND MCG -5-7-1: FORMATION OF DISKS IN MERGING GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Schiminovich, David; Van Gorkom, J. H. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Van der Hulst, J. M. [Kapteyn Astronomical Institute, 9700-AV Groningen (Netherlands)

    2013-02-01

    As part of an ongoing study of the neutral hydrogen (H I) morphology and kinematics of 'shell' elliptical galaxies, we present Very Large Array observations of two shell galaxies with aligned shells, Arp 230 and MCG -5-7-1. Our data provide the first H I images of Arp 230 and deeper images of MCG -5-7-1 than previously reported. Optical images of Arp 230 reveal a bright, aligned, interleaved shell system, making it an ideal candidate for 'phase-wrapped' shell formation following a radial encounter with a smaller companion. The fainter, non-interleaved shells of MCG -5-7-1 do not clearly favor a particular formation scenario. The H I we detect in both galaxies extends to nearly the same projected distance as the optical shells. In Arp 230 this gas appears to be anti-correlated with the aligned shells, consistent with our expectations for phase-wrapped shells produced in a radial encounter. In MCG -5-7-1, we observe gas associated with the shells making a 'spatial wrapping' or looping scenario more plausible. Although the extended gas component in both galaxies is unevenly distributed, the gas kinematics are surprisingly regular, looking almost like complete disks in rotation. We use the H I kinematics and optical data to determine mass-to-light ratios M/L{sub B} of 2.4{sup +3.0}{sub -0.5} (at 13.5 kpc, 4.5 R{sub e} ) for Arp 230 and M/L{sub B} of 30 {+-} 7 (at 40 kpc, 7 R{sub e} ) in MCG -5-7-1. In both systems we find that this ratio changes as a function of radius, indicating the presence of a dark halo. By comparing orbital and precession timescales, we conclude that the potentials are slightly flattened. We infer a 5%-10% flattening for Arp 230 and less flattening in the case of MCG -5-7-1. Finally, we present images of the H I associated with the inner disk or (polar) ring of each galaxy and discuss possible explanations for their different present-day star formation rates. We detect total H I masses of 1.1 Multiplication-Sign 10

  14. Masses of exotic calcium isotopes pin down nuclear forces

    CERN Document Server

    Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K

    2013-01-01

    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...

  15. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  16. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  17. Acoustic resonances in two-dimensional radial sonic crystal shells

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)

    2010-07-15

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  18. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  19. Elimination of threshold singularities in the relation between on-shell and pole widths

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Palisoc, Caesar P.; Sirlin, Alberto

    2002-01-01

    In a previous communication by two of us [B. A. Kniehl and A. Sirlin, Phys. Rev. Lett. 81, 1373 (1998)], the gauge-dependent deviations of the on-shell mass and total decay width from their gauge-independent pole counterparts were investigated at leading order for the Higgs boson of the standard model. In the case of the widths, the deviation was found to diverge at unphysical thresholds, m H =2√(ξ V )m V (V=W,Z), in the R ξ gauge. In this Brief Report, we demonstrate that these unphysical threshold singularities are properly eliminated if a recently proposed definition of wave-function renormalization for unstable particles is invoked

  20. Elimination of threshold singularities in the relation between on-shell and pole widths

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Palisoc, C.P.; Sirlin, A.

    2002-05-01

    In a previous communication by two of us, Phys. Rev. Lett. 81, 1373 (1998), the gauge-dependent deviations of the on-shell mass and total decay width from their gauge-independent pole counterparts were investigated at leading order for the Higgs boson of the Standard Model. In the case of the widths, the deviation was found to diverge at unphysical thresholds, m H =2√(ξ V )m V (V=W,Z), in the R ξ gauge. In this Brief Report, we demonstrate that these unphysical threshold singularities are properly eliminated if a recently proposed definition of wave-function renormalization for unstable particles is invoked. (orig.)

  1. Elimination of Threshold Singularities in the Relation Between On-Shell and Pole Widths

    CERN Document Server

    Kniehl, Bernd A; Sirlin, A; Kniehl, Bernd A.; Palisoc, Caesar P.; Sirlin, Alberto

    2002-01-01

    In a previous communication by two of us, Phys. Rev. Lett. 81, 1373 (1998), the gauge-dependent deviations of the on-shell mass and total decay width from their gauge-independent pole counterparts were investigated at leading order for the Higgs boson of the Standard Model. In the case of the widths, the deviation was found to diverge at unphysical thresholds, m_H = 2 root{xi_V} m_V (V = W,Z), in the R_xi gauge. In this Brief Report, we demonstrate that these unphysical threshold singularities are properly eliminated if a recently proposed definition of wave-function renormalization for unstable particles is invoked.

  2. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  3. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    Science.gov (United States)

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  4. Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, 63 4600 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-01-10

    The magnetic properties of ferromagnetic Ni/Au core/shell have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes the exchange interactions between Ni–Ni, Au–Au and Ni–Au and the external magnetic field. The thermal total magnetizations and total magnetic susceptibilities of core/shell Ni/Au are computed. The critical temperature is deduced. The exchange interaction between Ni and Au atoms is obtained. In addition, the total magnetizations versus the external magnetic field and crystal filed for different temperature are also established.

  5. Dynamic treatment of the fission mass asymmetry with the help of the two-centre-shell model

    International Nuclear Information System (INIS)

    Maruhn, J.A.

    1973-01-01

    In this work, a description of the distribution of the total mass of a fissioning nucleus on the fragments is proposed by means of a collective coordinate, and the applicability of the method is examined by various examples compared to the experiment. A quantitative agreement with the experiment cannot be expected in view of the necessary approximations and the relatively less accurate determination especially of the mass parameters. The experiments, however, exhibit good qualitative and semi-quantitative agreement with the experimental mass yields. (orig./LH) [de

  6. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  7. Galileon radiation from a spherical collapsing shell

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2017-01-17

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  8. Recent ACE 4 Z-pinch experiments: Long implosion time argon loads, uniform fill versus annular shell distributions and the Rayleigh-Taylor instability problem

    International Nuclear Information System (INIS)

    Coleman, P.; Rauch, J.; Rix, W.; Thompson, J.; Wilson, R.

    1997-01-01

    Hammer (1996) and Velikovich (1996) have discussed ways to mitigate the growth of the magneto-Rayleigh-Taylor (MRT) instability in z-pinch (PRS) implosions. They predict that initial mass distributions more complex than a simple annular shell will reduce instability development. Sanford (1996) reported experimental data showing a benefit for a uniform mass distribution compared to a shell; those tests used ''conventional'' load radii of 2.25 and 1.25 cm respectively, and implosion times under 100 ns. However, the instability problem is expected to grow exponentially as the implosion time, or alternatively the initial radius, increases. Thus we made a comparison of a uniform fill load with a shell but at larger radii, 3.6 and 2.5 cm respectively, and at implosion times well above 100 ns. We see nearly a factor of 10X improvement in peak K-shell power and 2X increase in K-shell yield for the uniform mass load. Hence it appears that suitable tailoring of the imploding mass distribution can significantly limit the instability growth

  9. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  11. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    International Nuclear Information System (INIS)

    Spadaro, M.C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A.M.; Capetti, E.; Ponti, A.; D’Addato, S.

    2017-01-01

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p_O_2 ≈ 10"−"7 mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO_x and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L_2_,_3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  12. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  13. Quark mass relations to four-loop order in perturbative QCD.

    Science.gov (United States)

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  14. [Rapid screening the alkaloids of poppy shell in hot pot condiment, beef noodle soup and seasoning by direct analysis in real time-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Baile; Gao, Lihong; Xie, Yingshuang; Zhou, Wei; Chen, Xiaofeng; Lei, Chunni; Zhang, Huan

    2017-07-08

    A direct analysis in real time tandem mass spectrometry (DART-MS/MS) method was established for quickly screening five illegally added alkaloids of poppy shell from the hot pot condiment, beef noodle soup and seasoning. The samples were extracted and purified by acetonitrile, and then injected under the conditions of ionization temperature of 300℃, grid electrode voltage of 150 V and sampling rate of 0.8 mm/s using DART in the positive ion mode. The determination was conducted by tandem mass spectrometry in positive ESI mode under multiple reaction monitoring (MRM) mode. The method is simple and rapid, and can meet the requirement of rapid screening and analysis of large quantities of samples.

  15. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  16. Strain-Mediated Interfacial Dynamics during Au–PbS Core–Shell Nanostructure Formation

    KAUST Repository

    Niu, Kai-Yang; Liu, Miao; Persson, Kristin A.; Han, Yu; Zheng, Haimei

    2016-01-01

    An understanding of the hierarchical nanostructure formation is of significant importance for the design of advanced functional materials. Here, we report the in situ study of lead sulfide (PbS) growth on gold (Au) nanorod seeds using liquid cell transmission electron microscopy (TEM). By tracking the formation dynamics of Au-PbS core-shell nanoparticles, we found the preferential heterogeneous nucleation of PbS on the ends of a Au nanorod prior to the development of a complete PdS shell. During PbS shell growth, drastic sulfidation of Au nanorod was observed, leading to large volume shrinkage (up to 50%) of the initial Au nanorod seed. We also captured intriguing wavy interfacial behavior, which can be explained by our DFT calculation results that the local strain gradient at the core-shell interface facilitates the mass transport and mediates reversible phase transitions of Au ↔ Au2S during the PbS shell growth. © 2016 American Chemical Society.

  17. Strain-Mediated Interfacial Dynamics during Au–PbS Core–Shell Nanostructure Formation

    KAUST Repository

    Niu, Kai-Yang

    2016-05-23

    An understanding of the hierarchical nanostructure formation is of significant importance for the design of advanced functional materials. Here, we report the in situ study of lead sulfide (PbS) growth on gold (Au) nanorod seeds using liquid cell transmission electron microscopy (TEM). By tracking the formation dynamics of Au-PbS core-shell nanoparticles, we found the preferential heterogeneous nucleation of PbS on the ends of a Au nanorod prior to the development of a complete PdS shell. During PbS shell growth, drastic sulfidation of Au nanorod was observed, leading to large volume shrinkage (up to 50%) of the initial Au nanorod seed. We also captured intriguing wavy interfacial behavior, which can be explained by our DFT calculation results that the local strain gradient at the core-shell interface facilitates the mass transport and mediates reversible phase transitions of Au ↔ Au2S during the PbS shell growth. © 2016 American Chemical Society.

  18. The Stellar Populations Inside Expanding HI Shells in the Spiral Galaxy M33

    Science.gov (United States)

    Walterbos, Rene

    1997-07-01

    Because of its vigorous star formation activity, favorable inclination, and relative proximity, M33 is an ideal laboratory for the study of expanding HI shells in spiral galaxies. Theoretical models show that the energy deposited into the ISM by high mass stars in OB associations is capable of creating HI superbubbles. However, sparse observational evidence exists to test these models in detail. One essential ingredient of such a test is an improved census of stellar populations inside expanding HI shells. Using multi-color archival HST images of M33, we will {1} verify that association ages are consistent with dynamical ages of related shells and with ages from model predictions for bubbles of matching size and kinematics; {2} Constrain the IMF for each association by combining integrated ground-based HAlpha fluxes with the population age, present day mass function, and luminosity function derived from WFPC2 data; {3} Use this information to infer which fraction of the integrated stellar mechanical luminosity is transferred to a shell over its lifetime. Ground-based observations of associations inside expanding shells lack the UV-sensitivity and spatial resolution to adequately address these issues. Our sample of expanding neutral shells in M33 was selected using a new automated method for analysis of HI datacubes. From this robust catalog we have identified more than 30 HI supershells in M33 already imaged with WFPC2 in suitable broadband filters {F160BW, F170W, F336W, F439W, F555W, and F814W}.

  19. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  20. The Mass-Dimension Relationships in the Mussels Mytilus Galloprovincialis (Mollusca, Bivalvia from Different Phenotypical Groups in Periphyton Populations near Odessa Coast, the North-Western Part of Black Sea

    Directory of Open Access Journals (Sweden)

    Govorin I. A.

    2016-06-01

    Full Text Available The data of the size-mass indices in the mussels Mytilus galloprovincialis (Lamarck, 1819 from three phenotypic groups - brown, dark violet (black and “zebra” (brown with radial black stripes shells in the periphyton settlements on the concrete traverses near Odessa coast, the North-western part of Black Sea (Ukraine, in March-November 2014-2015 are presented. A comparative evaluation has been made on the relationships of total mass of the mollusks, wet and dry mass of their soft body and mass of the shells on the one hand, and the size of animals (length of its shells on the other hand, in the each of phenotypical groups from the five marine beach areas. It is shown, that in the marine areas with different degrees of isolation from the open sea by coast-protection engineering constructions, the mussels from different phenotypes have almost the same size-mass characteristics. Only the dry weight of soft animal body, which indicated to fatness of mollusk and therefore demonstrated his biological prosperity in specific hydrological conditions, can serve as a reliable criterion which can mark the shellfish habitats with different gradients of environmental factors.

  1. Antioxidant Properties of Pecan Nut [Carya illinoinensis (Wangenh.) C. Koch] Shell Infusion

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro do Prado, A. C.; Monalise Aragao, A.; Fett, R.; Block, J. M.

    2009-07-01

    The nutritional composition of Pecan nut [Ca rya illinoinensis (Wangenh.) C. Koch] shells and the total phenolic and condensed tannin contents of Pecan nut shell infusion were determined and the antioxidant activity of the infusion was evaluated through ABTS, DPPH and {beta}-carotene/linoleic acid systems. The shell presented high fiber content (48% {+-} 0.06), the total phenolic content ranged from 116 to 167 mg GAE/g and the condensed tannin content was between 35 and 48 mg CE/g. The antioxidant activity varied from 1112 and 1763 {mu}mol TEAC/g in the ABTS system. In the DPPH method, the antioxidant activity was from 305 to 488 mg TEAC/g (30 minutes reaction) and from 482 to 683 mg TEAC/g (24 h reaction). The oxidation inhibition percentage obtained in the {beta}-carotene/linoleic acid system varied from 70 to 96%. The results indicated the high phenolic content and antioxidant activity of Pecan nut shell infusion. (Author) 28 refs.

  2. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  3. Searching for nova shells around cataclysmic variables

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  4. Free vibration of finite cylindrical shells by the variational method

    International Nuclear Information System (INIS)

    Campen, D.H. van; Huetink, J.

    1975-01-01

    The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)

  5. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  6. Local functional derivative of the total energy and the shell structure in atoms and molecules

    NARCIS (Netherlands)

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    The full and local Thomas–Fermi–Dirac energy functional derivatives are evaluated at Hartree–Fock densities for several atoms and molecules. These functions are interpreted as local chemical potentials and related mainly to kinetic energy functional derivatives. They are able to reveal the shell

  7. Exact solutions for shells collapsing towards a pre-existing black hole

    International Nuclear Information System (INIS)

    Liu Yuan; Zhang Shuangnan

    2009-01-01

    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known 'frozen star' paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no 'frozen star' is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon

  8. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  9. Interference in the $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ On-Shell Rate and the Higgs Boson Total Width

    OpenAIRE

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-01-01

    We consider interference between the Higgs signal and QCD background in $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on th...

  10. The termination of the asymptotic giant branch phase imposed by helium shell flashes - description and conclusions

    International Nuclear Information System (INIS)

    Tuchman, Y.

    1984-01-01

    The increase in the surface luminosity associated with the well-known helium shell flashes might be a trigger for an early mass ejection process. This phenomenon has a significant influence on the global statistical features of the Mira variables as well as on the mass distribution of white dwarfs. The above situation is analysed by adopting the luminosity behaviour during helium shell flashes presented by previous authors to a dynamical picture for the asymptotic giant branch stars. The main observational implications are described and discussed. (author)

  11. Deformed shell model studies of spectroscopic properties of Zn and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...

  12. Collisions of massive particles, timelike thin shells and formation of black holes in three dimensions

    International Nuclear Information System (INIS)

    Lindgren, Jonathan

    2016-01-01

    We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.

  13. Collisions of massive particles, timelike thin shells and formation of black holes in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Jonathan [Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium)

    2016-12-13

    We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.

  14. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  15. Alpha particle cluster states in (fp)-shell nuclei

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  16. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  17. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  18. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Impact parameter dependence of inner-shell ionization probabilities

    International Nuclear Information System (INIS)

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  20. Leptonic signals from off-shell Z boson pairs at hadron colliders

    International Nuclear Information System (INIS)

    Zecher, C.; Matsuura, T.; Bij, J.J. van der

    1994-04-01

    We study the gluon fusion into pairs of off-shell Z bosons and their subsequent decay into charged lepton pairs at hadron colliders : g→ZZ→4l ± (l ± :charged lepton). Throughout this paper we do not restrict the intermediate state Z bosons to the narrow width approximation but allow for arbitrary invariant masses. We compare the strength of this process with the known leading order results for q anti q→ZZ→4l ± and for gg→H→ZZ→4l ± . At LHC energies (√s=14 TeV) the contribution from the gluon fusion background is around 20% of the contribution from quark-antiquark annihilation. These two processes do not form a severe irreducible background to the Higgs signal. At Higgs masses below 120 GeV the final state interference for the decay channel H→ZZ→4μ ± is increasingly constructive. This has no effect on the Higgs search as in this mass region the signal remains too small. One can extend the intermediate mass Higgs search via off-shell Z boson pairs at the LHC down to about 130 GeV Higgs mass. However careful study of the reducible background is needed for definite conclusions. (orig.)

  1. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  2. No-Core Shell Model for A = 47 and A = 49

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  3. N=28 shell closure : shape coexistence and spin-orbit contribution

    International Nuclear Information System (INIS)

    Sarazin, Frederic

    1999-01-01

    One of the fundamental questions, which emerge from the study of nuclei far from stability, concerns the persistence of the magic character of certain configurations of protons and neutrons. From previous measurements around the N=28 magic number, it appears that this shell closure is especially weakening. In this context, a mass measurement experiment by a time of flight method around N=28 (Z 43 S in the same experiment and its interpretation by a shell model calculation confirm the analysis of the masses and constitutes the first evidence of shape coexistence around N=28. At the same time, an estimation of the evolution of the contribution of the spin-orbit coupling far from stability, partially responsible of the magic numbers sequence, showed that, although non-negligible, it is not sufficient to explain the vanishing of the shell closure. Through this study, it appeared extremely difficult to separate the contribution of the deformation from the one of the spin-orbit coupling in spectroscopic experiments. A feasibility study has thus been undertaken concerning a polarised proton and deuteron target to measure directly the evolution of the spin-orbit potential as a function of the isospin through elastic scattering experiments. (author) [fr

  4. Thickness, Doping Accuracy, and Roughness Control in Graded Germanium Doped Ch{sub x} Micro-shells for Lmj

    Energy Technology Data Exchange (ETDEWEB)

    Legay, G.; Theobald, M.; Barnouin, J.; Peche, E.; Bednarczyk, S.; Hermerel, C. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    In the Commissariat a l'Energie Atomique Laser Megajoule (LMJ) facility, amorphous hydrogenated carbon (a-C: H or CH{sub x}) is the nominal ablator used to achieve inertial confinement fusion experiments. These targets are filled with of fusible mixture of deuterium-tritium in order to perform ignition. The a-C: H shell is deposited on a poly-alpha-methylstyrene (PAMS) mandrel by glow discharge polymerization with trans-2-butene, hydrogen, and helium. Graded germanium doped CH{sub x} micro-shells are supposed to be more stable regarding hydrodynamic instabilities. The shells are composed of four layers for a total thickness of 180 {mu}m. The germanium gradient is obtained by doping the different a-C: H layers with the addition of tetra-methylgermanium in the gas mixture. As the achievement of ignition greatly depends on the physical properties of the shell, the thicknesses, doping concentration, and roughness must be precisely controlled. Quartz microbalances were used to perform an in situ and real-time measurement of the thickness in order to reduce the variations and so our fabrication tolerances on each layer thickness. Ex situ control of the thickness of each layer was carried out, with both optical coherent tomography and interferometry, (wall-mapper). High-quality, PAMS and a rolling system have been used to lower the low-mode roughness [root-mean-square (rms) (mode 2) {<=} 70 nm]. High modes were clearly, reduced by, coating the pan containing the shells with polyvinyl alcohol + CH{sub x} instead of polystyrene + CH{sub x} resulting in an rms ({>=}mode 10) {<=} 20 nm, which can be {<=}15 nm for the best micro-shells. The germanium concentration (0. 4 and 0. 75 at. %) in the a-CH layer is obtained by regulating the tetramethyl-germanium flow. Low range mass flow controllers have been used to improve the doping accuracy. (authors)

  5. The theory of spherically symmetric thin shells in conformal gravity

    Science.gov (United States)

    Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury

    The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

  6. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis.

    Science.gov (United States)

    Uzun, B B; Yaman, E

    2014-10-01

    The degradation kinetics of Juglans regia shell, scrap tyre and their blends were investigated using a thermogravimetric analysis method. Experiments were performed under dynamic conditions and a nitrogen atmosphere in the range 293 to 973 K at different heating rates. During pyrolysis of J. regia shell three mass loss zones were specified as removal of water, decomposition of hemicelluloses and cellulose, and decomposition of lignin. The degradation curves of scrap tyre showed merely one stage which was due to decomposition of styrene butadiene rubber. The kinetic parameters were calculated using both Arrhenius and Coats-Redfern methods. By adopting the Arrhenius method, the average value of activation energies of J. regia shell, scrap tyre and their 1 : 1 blends were found to be 69.22, 71.48 and 47.03 kJ mol(-1), respectively. Additionally, by using the Coats-Redfern method, the average value of activation energies of J. regia shell, scrap tyre and their 1 : 1 blend were determined as 99.85, 78.72 and 63.81 kJ mol(-1), respectively. The addition of J. regia shell to scrap tyre caused a reduction in the activation energies. The difference of weight loss was measured to examine interactions between raw materials. The maximum difference between experimental and theoretical mass loss was 5% at about 648 K with a heating rate of 20 K min(-1). These results indicated a significant synergistic effect was available during co-pyrolysis of J. regia shell and scrap tyre in the high temperature region. © The Author(s) 2014.

  7. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  8. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  9. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  10. Shell closure at the touching point of nuclear fragments

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Greiner, W.; Gherghescu, R.A.

    1998-01-01

    Shell correction energy of the fission fragments remains practically unchanged when the separation distance increases from the sum of their radii up to infinity. The variation with mass asymmetry of the total deformation energy at the touching point configuration shows the valleys corresponding to different decay modes, which are produced when the two proton and/or the two neutron numbers are magic or almost magic. We present a contour plot of the deformation energy of the proton-rich α-emitter 106 Te, showing for the first time the α-decay valley. Different valleys mainly due to the doubly magic nuclei 100,132 Sn, 208 Pb, and other magic numbers, are illustrated by plotting the deformation energy at the touching point versus the proton number of the fragment, for the following parent nuclei: 106 Te; 116 Ce; 212 Po; 228 Th; 258 Fm, and 264 Fm. (author). Letter-to-the-editor

  11. The problems concerning the integration of very thin mirror shells

    Science.gov (United States)

    Basso, S.; Citterio, O.; Mazzoleni, F.; Pareschi, G.; Tagliaferri, G.; Valtolina, R.; Conconi, P.; Parodi, G.

    2009-08-01

    The necessity to reduce the mass and to increase the collecting area requires that the thickness of the optics becomes more and more thinner. Simbol-X was a typical example of this trend. Such thickness makes the shells floppy and therefore unable to maintain the correct shape. During the integration of the shells into the mechanical structure, only negligible deformation must be introduced. The low thickness means also that the shells must be glued on both sides to reach a good stiffness of the whole mirror module and this fact introduces a set of mounting problems. In INAF - Osservatorio Astronomico di Brera an integration process has been developed. The use of stiffening rings and of a temporary structure is the key to maintain the right shape of the shell. In this article the results of the integration of the first three prototypes of the Simbol-X optics are presented. The description of the process and the analysis of the degradation of the performances during the integration are shown in detail.

  12. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    Science.gov (United States)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  13. IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Thernisien, A.

    2011-01-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  14. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, M.C., E-mail: mariachiara.spadaro@unimore.it [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Luches, P. [Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Benedetti, F.; Valeri, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Turchini, S. [CNR-ISM, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Bertoni, G. [CNR-IMEM, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via G. Fantoli 16/15, 20138 Milano (Italy); D’Addato, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy)

    2017-02-28

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p{sub O2} ≈ 10{sup −7} mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO{sub x} and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L{sub 2,3} absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  15. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  16. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  17. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  18. Use of almond endocarp shell in sorption of radioactive 152+154Europium from waste solutions

    International Nuclear Information System (INIS)

    Dakroury, G.A.; Khalil, T.; Abou El-Nour, F.H.

    2007-01-01

    In an attempt to remove radioactive ( 152 + 154 )Eu from waste solutions, the present study was tried to explore the possibility of using a natural by-product. Almond endocarp (AEC) shell produced from Sinai (El-Arish area) was selected as agricultural by-product in treatment of waste solutions containing ( 152 + 154 )Eu through a batch technique. The different physico-chemical characteristics of AEC such as specific surface area, total pore volume, average pore diameter, apparent density, porosity and pore size distribution were calculated. The adsorption process was described by a Freundlich type isotherm. The uptake percent of the metal ion was determined for the sorbent material as a function of contact time, pH-value, mass of the sorbent material, metal ion concentration and the effect of competing ions on the sorption process. The obtained data were analyzed and showed that almond endocarp shell powder can be considered as an efficient natural material to be used for sorption of radioactive ( 152 + 154 )Eu from their radioactive waste solutions

  19. Measurements of fusion neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Giese, H.; Kappler, F.; Tayama, R.; Moellendorff, U. von; Alevra, A.; Klein, H.

    1996-01-01

    New results of spherical-shell transmission measurements with 14-MeV neutrons on pure beryllium shells up to 17 cm thick are reported. The spectral flux above 3 MeV was measured using a liquid scintillation detector. At 17 cm thickness, also the total neutron multiplication was measured using a Bonner sphere system. The results agree well with calculations using beryllium nuclear data from the EFF-1 or the ENDF/B-Vi library. (author). 23 refs, 4 figs, 1 tab

  20. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  1. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Science.gov (United States)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  2. Total β-decay energies and atomic masses in regions far from β-stability

    International Nuclear Information System (INIS)

    Aleklett, K.

    1977-01-01

    This thesis is a summary of experimental investigations on total β-decay energies and deduced atomic masses of nuclei far from the region of β-stability. The Qsub(β) values are given for isotopes of Zn, Ga, Ge, As, Br, Rb, In, Sn, Sb, Te, Cs, Fr, Ra and Ac, with β-unstable nuclei. These unstable nuclei have very short half-lives, often below 10s, and the experimental techniques for the production, separation and collection of these short-lived nuclei are described. Neutron deficient nuclides were produced by spallation, in the ISOLDE facility, and neutron deficient nuclides were produced by thermal neutron induced fission of 235 U in the OSIRIS facility. β-spectra were recorded using an Si(Li)-detector and a coincidence system. Qsub(β) values obtained from mass formulae have been compared with experimental values obtained in different mass regions and a comparison made between results obtained from different droplet mass formulae. (B.D.)

  3. Photon mass experiment

    International Nuclear Information System (INIS)

    Crandall, R.E.

    1983-01-01

    A Coulomb null experiment is described that enables physics students to obtain rigorous upper bounds on photon mass. The experimenter searches for subnanovolt signals that would escape a closed shell were photon mass to be positive. The approach can be adapted for several college levels. At the simplest level, a ''miniature'' low-cost experiment allows a student to verify the exponent ''-2'' in Coulomb's law to eight or more decimal places. An advanced student given a full-size apparatus (at greater cost) can obtain mass bounds very close to the established laboratory limit

  4. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Multimedia

    Schweikhard, L C; Herfurth, F; Boehm, C; Manea, V; Blaum, K; Beck, D; Kowalska, M; Kreim, K D; Stanja, J; Audi, G; Rosenbusch, M; Wienholtz, F; Litvinov, Y

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disappearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measurements of N = 34 isotones $^{58}$Cr (Z = 24), $^{55}$Sc (Z = 21) and $^{54}$Ca (Z = 20), as well as the N = 32 isotones $^{53}$Sc and $^{52}$Ca. We also propose measuring the mass of $^{60}$Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-reflection time-of-flight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  5. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Document Server

    Kreim, S; Blaum, K; Bohm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Herfurth, F; Kowalska, M; Litvinov, Y; Lunney, D; Manea, V; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Stora, Th; Wienholtz, F; Wolf, R N; Zuber, K

    2011-01-01

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  6. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  7. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Habitat heterogeneity in the assemblages and shell use by the most abundant hermit crabs (Anomura: Diogenidae and Paguridae: does the occupied shell species differ according to gender and species?

    Directory of Open Access Journals (Sweden)

    Gilson Stanski

    Full Text Available Abstract The goal of this study was to identify patterns of shell occupation by different species of hermit crabs from the southern Brazilian coast. In total, 644 individuals were collected, represented by six hermit species. Isocheles sawayai Forest & Saint Laurent, 1968 showed the highest abundance, with 575 individuals, followed by Loxopagurus loxochelis (Moreira, 1901 (n = 56. The other species were Petrochirus diogenes (Linnaeus, 1758, Dardanus insignis (Saussure, 1858, Pagurus exilis (Benedict, 1892 and Pagurus leptonyx Forest & Saint Laurent, 1968. Loxopagurus loxochelis was found associated with shells of 12 gastropod species, with 75% of males occupying shells of Olivancilaria urceus (Roding, 1798 and 78% of females inhabiting shells of Semicassis granulata (Born, 1778. Shells of Semicassis granulata were the lightest of all gastropod shells, demonstrating differential resource utilization. Additionally, I. sawayai occupied shells of 10 species, highlighting Stramonita haemastoma (Linnaeus, 1767 with the highest occupation percentage in all demographic classes, confirming a pattern of occupation with a strong relationship to the availability of the resource. The comparison of our results with those of other studies corroborated the influence of region and gastropod diversity on gastropod shell occupation.

  9. Unified model of nuclear mass and level density formulas

    International Nuclear Information System (INIS)

    Nakamura, Hisashi

    2001-01-01

    The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)

  10. The K-shell ionisation of atoms by relativistic protons

    International Nuclear Information System (INIS)

    Davidovic, D.M.; Moiseiwitsch, B.L.; Norrington, P.H.

    1978-01-01

    The K-shell ionisation of atoms by protons travelling with relativistic velocities is investigated using an extension of the first-order time-dependent perturbation-theory treatment of Moeller (Ann. Phys. Lpz.; 14:531 (1932)), taking Dirac plane waves for the description of the incident and scattered protons and the Darwin approximation for the relativistic wavefunctions of the K-shell atomic electrons and the ejected electron. The differential cross sections and total cross sections are calculated. Results are compared with those of earlier workers. (author)

  11. Geochemical gradients within modern and fossil shells of Concholepas concholepas from northern Chile: an insight into U-Th systematics and diagenetic/authigenic isotopic imprints in mollusk shells

    Science.gov (United States)

    Labonne, Maylis; Hillaire-Marcel, Claude

    2000-05-01

    Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the

  12. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues

    International Nuclear Information System (INIS)

    Estevinho, B.N.; Ratola, N.; Alves, A.; Santos, L.

    2006-01-01

    Sorption with activated carbon has been the technique preferred for pentachlorophenol (PCP) removal from contaminated waters, but regeneration needs and high operation costs are supporting a renewed interest in the search for alternative sorbents. Among them, almond shell, an agricultural by-product, provides interesting economical advantages, once shells account for 50% (in mass) of the whole almond. In this work, the capacity of almond shells to remove PCP from waters without previous activation was studied in batch conditions. While PCP analysis was performed solid-phase microextraction (SPME) followed by gas chromatography with electron capture detection (GC-ECD), mercury porosimetry and Fourier transform infrared spectroscopy (FTIR) provided a preliminary physical and chemical characterization of the sorbent. Almond shells were essentially a macroporous material, with an average surface area of 12.9 ± 2.8 m 2 /g. The efficiency of PCP removal was 93 ± 14%, in 24 h, with an initial concentration of 100 μg/l PCP and 5 μg PCP/g shell. Isotherm data adjusted better to Freundlich equation, where K F and 1/n were 0.075 ± 0.081 mg 1-1/n l 1/n and 1.882 ± 0.289, respectively. Average desorption efficiency was 7%, indicating strong adsorption capacity. Results proved that almond shells may be an excellent low-cost alternative for PCP removal from contaminated waters

  13. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  14. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  15. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  16. Comparisons between shell-model calculations, seniority truncation, and quasiparticle approximations: Application to the odd Ni isotopes and odd N = 82 isotones

    International Nuclear Information System (INIS)

    Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.

    1988-01-01

    A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations

  17. The intergalactic Newtonian gravitational field and the shell theorem

    Directory of Open Access Journals (Sweden)

    Zaninetti L.

    2012-01-01

    Full Text Available The release of the 2MASS Redshift Survey (2MRS with its 44599 galaxies allows the deduction of their masses in nearly complete sample. A cubic box with side of 37 Mpc containing 2429 galaxies is extracted and the Newtonian gravitational field is evaluated both at the center of the box as well as in 101 x 101 x 101 grid points of the box. The obtained results are then discussed in the light of the shell theorem which states that inside of a sphere the gravitational field is zero.

  18. The role of total body fat mass and trunk fat mass, combined with other endocrine factors, in menstrual recovery and psychopathology of adolescents with Anorexia Nervosa.

    Science.gov (United States)

    Karountzos, Vasileios; Lambrinoudaki, Irene; Tsitsika, Artemis; Deligeoroglou, Efthimios

    2017-10-01

    To determine the threshold of total body and trunk fat mass required for menstrual recovery and to assess the impact of body composition in psychopathology of adolescents with Anorexia Nervosa (AN). Prospective study of 60 adolescents presented with secondary amenorrhea and diagnosed with AN. Anthropometrics, body composition by dual-energy X-ray absorptiometry, hormonal studies and responses to mental health screens (EAT-26), were obtained at the beginning and at complete weight restoration, in all adolescents, independently of menstrual recovery (Group A) or not (Group B). At weight restoration, Group A total body fat mass, trunk fat mass, and trunk/extremities fat ratio were significantly higher (p psychopathology of adolescents with AN.

  19. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  20. Gamma ray attenuation studies in concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Joseph, Antony

    2017-01-01

    Gamma ray absorption studies on wood in general is an area of interest. In Kerala, though coconut tree is a common plantation, a systematic study of gamma ray attenuation in coconut shell has not been reported. In the present study, we have made an attempt to carry out such measurements on coconut shells collected from Trichur district. Coconut shells in to the size of 4cm × 4cm was used in these studies and 662 KeV gamma ray counts were measured using 8K channel NaI(Tl) detector. Subsequently we extended these studies by reinforcing concrete with crushed coconut shells, arranged in a layer by layer fashion. Concrete is usually a choice for shielding nuclear radiations. The effect of reinforcing them with coconut shell is also an area of interest. We have carried out absorption studies by using two types of sand also in the concrete mixture. Common sand is not amply available and people use M-sand (Manufactured sand) instead. In the concrete blocks we selectively used common sand and m-sand and its effects on gamma absorption were also investigated. We have estimated both linear and mass attenuation coefficients and the half value layer (HVL) parameter was determined from them. We have noticed an increase in µ/ρ with increase in density of concrete, achieved through the reinforcement. (author)

  1. Super-hypernuclei in the quark-shell model, 2

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-07-01

    By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)

  2. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  3. Evolution of a 30 solar mass star: the interplay of nuclear burning and mass loss

    International Nuclear Information System (INIS)

    Falk, H.J.; Mitalas, R.

    1981-01-01

    Evolutionary tracks for a 30 solar mass star with various mass loss rates (MLR) were evolved to core He exhaustion. The 'overluminosity' of mass losing (ML) stars is explained in terms of the well known mass-luminosity (M-L) law. A critical ZAMS MLR above which mass loss leads to evolution to fainter luminosities is derived. Two tracks showed reversals in their direction of evolution across the HR diagram. These have been shown to be a consequence of mass loss dominating over the effects of the shell source. An analytic criterion for this condition has been derived. (Auth.)

  4. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  5. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  6. Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material

    Science.gov (United States)

    Wang, Xiaohua; Liu, Youwen

    2015-02-01

    A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.

  7. Study Added of Waste Chicken Egg Shell in Soils

    Directory of Open Access Journals (Sweden)

    Keng Wong Irwan Lie

    2016-01-01

    Full Text Available Soil is the foundation of structure or construction that will receive the load transfer through to foundation. If the soil has a carrying capacity of small and cannot withstand the load transfer can result in the failure of construction. If the soil has a carrying capacity of small ground it is necessary to stabilize or improve the soil so that an increase in the carrying capacity of the land so that it can be used for construction. One material is commonly used for soil stabilization with the addition of lime. Waste chicken egg shell is waste that is still rarely used, the results of research [1], states that composition egg shell broadly consists of water (1,6% and dry material (98,4%. The total dry ingredients are there, in shell eggs contained mineral elements (95,1% and protein (3,3%. Based on the existing mineral composition, then the egg shells are composed of crystalline CaCO3 (98,43%, MgCO3 (0,84% and Ca3(PO42 (0,75%. This research was done by adding powdered chicken egg shell waste in clay with a composition of 5%, 7,5%, 10% and 14% with physical properties test and soil compaction test.

  8. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    Science.gov (United States)

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  9. Reconstruction of paleoenvironments by analyzing spatial shell orientation

    Science.gov (United States)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.; Exner, Ulrike

    2013-04-01

    Fossils, especially their mass-occurrences, can be exploited as useful source of information about the depositional conditions. Particularly abundant fossils with elongated shape such as belemnites are useful indicators to draw conclusions about influencing factors (e.g. paleocurrents) of paleoenvironments. Orthocone cephalopods, gastropods, bivalves, foraminifers, vertebrate bones and others have been used so far in field-based spatial orientation studies (Flügel 2004). Normal coiled (planispiral) cephalopods can also provide such depositional information. A new method for reconstructing spatial shell orientation in 3D is presented here. A roughly 225 million-year-old (Carnian, Triassic) monospecific mass-occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey (project FWF P22109-B17; Lukeneder et al. 2012), embedded in limestone, is used for this pilot study. The most obvious method for digitization of the ammonoids, μ-computed tomography (CT), was not successful in this case due to the lack of density differences between the ammonoids (i.e. secondary calcite shells) and the embedding source rock (carbonate). Therefore we had to come back to the classic method of grinding, which, despite its invasive character, cannot always be disregarded, particularly if digital recording methods are not applicable and samples are large enough to sacrifice parts. A 150x170x140 mm block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2mm between each slice. By using a semi-automatic region growing algorithm of the 3D visualization software Amira, the ammonoids were segmented, and a 3D model of this mass-occurrence reconstructed. We used landmarks as well as trigonometric and vector-based calculations to compute the diameters and the spatial orientation of each ammonoid. For the diameters, the longest distance (longitudinal axis) of each shell (landmark a & b) and the orthogonal distance from this cord to

  10. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors

  11. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    International Nuclear Information System (INIS)

    Sencan Sahin, Arzu; Kilic, Bayram; Kilic, Ulas

    2011-01-01

    Highlights: → Artificial Bee Colony for shell and tube heat exchanger optimization is used. → The total cost is minimized by varying design variables. → This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  12. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  13. Thin-shell wormholes from the regular Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Halilsoy, M.; Ovgun, A.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Mersin 10 (Turkey)

    2014-03-15

    We revisit the regular black hole found by Hayward in 4-dimensional static, spherically symmetric spacetime. To find a possible source for such a spacetime we resort to the nonlinear electrodynamics in general relativity. It is found that a magnetic field within this context gives rise to the regular Hayward black hole. By employing such a regular black hole we construct a thin-shell wormhole for the case of various equations of state on the shell. We abbreviate a general equation of state by p = ψ(σ) where p is the surface pressure which is a function of the mass density (σ). In particular, linear, logarithmic, Chaplygin, etc. forms of equations of state are considered. In each case we study the stability of the thin shell against linear perturbations.We plot the stability regions by tuning the parameters of the theory. It is observed that the role of the Hayward parameter is to make the TSW more stable. Perturbations of the throat with small velocity condition are also studied. The matter of our TSWs, however, remains exotic. (orig.)

  14. A study of beta decay energies and atomic masses

    International Nuclear Information System (INIS)

    Spanier, L.

    1988-04-01

    The q β energies of 123-131 In have been determined using the end points of β spectra recorded in β-γ coincidence experiments. A HPGe planar detector was used to detect the β-particles and a semi-empirical response function was used when unfolding the electron distribution. The mass excesses were deduced and when they were compared with the predictions of various mass formulae, the cadmium isotopes were found to be heavier than those predicted by most of the mass formulae. The excitation energy of the 1/2 - proton-hole state in the odd indium isotopes was shown to be constant for all the heavy isotopes. The Q EC energies of 148 Dy and 96 Pd were determined using the β + /EC intensity ratio method. The ratio of the intensity of the β+ branch to the total beta decay intensity was determined by means of γ-spectroscopic methods. The mass excesses were deduced. The two-proton binding energy for the N=82 isotones showed only a small step of approximately 0.5 MeV when the doubly-magic nucleus 146 Gd was encountered. A liquid drop type mass formula with deformation and shell energy corrections and with few free parameters is presented. The shell energy correction is a simple analytical expression for the equilibrium deformation of the nucleus. An analytical expression for the equilibrium nuclear deformation is also presented. The mass formula was applied to nuclei with Z and N greater than 50. The RMS deviation is 0.55 milli mass units. The reaction 98 Mo(p,n) 98 Tc was investigated through the counter ratio method, the ratio of the number of slow neutrons to the number of fast neutrons. The Q pn energy value of a low-spin state in 98 Tc was determined. The state at 90.9 keV excitation energy is proposed to be the 14.6 m u s isomer and have spin and parity 1 + . (author)

  15. On-shell neutral Higgs bosons in the NMSSM with complex parameters

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, Florian [Universidad Autonoma de Madrid, Instituto de Fisica Teorica (UAM/CSIC), Cantoblanco, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Drechsel, Peter; Passehr, Sebastian [Deutsches Elektronensynchrotron DESY, Hamburg (Germany)

    2017-08-15

    The Next-to-Minimal Supersymmetric Standard model (NMSSM) appears as an interesting candidate for the interpretation of the Higgs measurement at the LHC and as a rich framework embedding physics beyond the Standard Model. We consider the renormalization of the Higgs sector of this model in its CP-violating version, and propose a renormalization scheme for the calculation of on-shell Higgs masses. Moreover, the connection between the physical states and the tree-level ones is no longer trivial at the radiative level: a proper description of the corresponding transition thus proves necessary in order to calculate Higgs production and decays at a consistent loop order. After discussing these formal aspects, we compare the results of our mass calculation to the output of existing tools. We also study the relevance of the on-shell transition matrix in the example of the h{sub i} → τ{sup +}τ{sup -} width. We find deviations between our full prescription and popular approximations that can exceed 10%. (orig.)

  16. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    International Nuclear Information System (INIS)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-01-01

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  17. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  18. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  19. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  20. The off-shell closed strings as the topological open membranes. Dynamical transmutation of world sheet dimension

    International Nuclear Information System (INIS)

    Kogan, Y.I.

    1989-05-01

    Using the connection between (2+1) Chern-Simons gauge theory and 2d Conformal Field Theory the on-shell string condition is obtained as a condition of full independence of interior of (2+1) world. The new method for off-shell continuation is considered based on the introduction of the Maxwell term in (2+1) theory. This leads to dynamical transmutation of world-sheet dimensions - the off-shell string becomes topological membrane (topological means that (2+1) theory has topological mass term). The dependence of parameters of (2+1) theory under the external fields is discussed. (author). 17 refs

  1. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  2. Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co

    International Nuclear Information System (INIS)

    Shuai, P.; Xu, H.S.; Tu, X.L.; Zhang, Y.H.; Sun, B.H.; Wang, M.

    2014-01-01

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of 51 Co 27+ and 34 Ar 18+ ions are almost identical, and therefore, the ions cannot be resolved in a storage ring, by applying the new method the mass excess of the short-lived 51 Co is determined for the first time to be ME( 51 Co)=−27342(48) keV. Shell-model calculations in the fp-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces

  3. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  4. Shell structure and orbit bifurcations in finite fermion systems

    Science.gov (United States)

    Magner, A. G.; Yatsyshyn, I. S.; Arita, K.; Brack, M.

    2011-10-01

    We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).

  5. Perinatal, sociodemographic and lifestyle correlates of increased total and visceral fat mass levels in schoolchildren in Greece: the Healthy Growth Study.

    Science.gov (United States)

    Moschonis, George; Kaliora, Adriana C; Karatzi, Kalliopi; Michaletos, Aggelos; Lambrinou, Christina-Paulina; Karachaliou, Alexandra K; Chrousos, George P; Lionis, Christos; Manios, Yannis

    2017-03-01

    To identify possibly independent associations of perinatal, sociodemographic and lifestyle factors with childhood total and visceral body fat. A representative sample of 2655 schoolchildren (9-13 years) participated in the Healthy Growth Study, a cross-sectional epidemiological study. Seventy-seven primary schools in four large regions in Greece. A sample of 1228 children having full data on total and visceral fat mass levels, as well as on anthropometric, dietary, physical activity, physical examination, socio-economic and perinatal indices, was examined. Maternal (OR=3·03 and 1·77) and paternal obesity (OR=1·62 and 1·78), maternal smoking during pregnancy (OR=1·72 and 1·93) and rapid infant weight gain (OR=1·42 and 1·96) were significantly and positively associated with children's increased total and visceral fat mass levels, respectively. Children's television watching for >2 h/d (OR=1·40) and maternal pre-pregnancy obesity (OR=2·46) were associated with children's increased total and visceral fat mass level, respectively. Furthermore, increased children's physical activity (OR=0·66 and 0·47) were significantly and negatively associated with children's total and visceral fat mass levels, respectively. Lastly, both father's age >46 years (OR=0·57) and higher maternal educational level (OR=0·45) were associated with children's increased total visceral fat mass level. Parental sociodemographic characteristics, perinatal indices and pre-adolescent lifestyle behaviours were associated with children's abnormal levels of total and visceral fat mass. Any future programme for childhood prevention either from the perinatal age or at late childhood should take these indices into consideration.

  6. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  7. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  8. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  9. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    International Nuclear Information System (INIS)

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  10. Quantum chaos and nuclear mass systematics

    International Nuclear Information System (INIS)

    Hirsch, Jorge G.; Velazquez, Victor; Frank, Alejandro

    2004-01-01

    The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between measured and calculated nuclear masses as a time series described by the power law 1fα. While for the liquid droplet model plus shell corrections a quantum chaotic behavior α∼1 is found, errors in the microscopic mass formula have α∼0.5, closer to white noise. The chaotic behavior seems to arise from many body effects not included in the mass formula

  11. Smoking Guns for On-Shell New Physics at the LHC

    CERN Document Server

    Arnesen, Christian; Zupan, Jure

    2009-01-01

    Using Tevatron bounds we derive upper limits on the LHC Higgs production rate under the assumption that no beyond the Standard Model (BSM) particles are being produced near their mass shell. A violation of these limits would constitute a smoking gun for light BSM particles. Furthermore, we demonstrate how R_T, the ratio of the partially integrated Higgs transverse momentum distribution to the inclusive rate, can also be used as a probe of light BSM particles. This ratio is insensitive to heavy virtual effects and can be well-approximated by its SM value, i.e. it is model independent. The perturbative expansion for R_T has reduced renormalization scale dependence, at the order of 5% at next-to-leading order in QCD, due to a cancellation of Wilson coefficients. A deviation from the SM value implies that light BSM particles are being produced near their mass shell. We discuss a possible loophole to this conclusion, namely the existence of a non-perturbative, CP violating sector that couples to the Higgs. We use ...

  12. The off-shell axial anomaly via the γ*π0→γ transition

    International Nuclear Information System (INIS)

    Roberts, C.D.; Frank, M.R.; Mitchell, K.L.; Tandy, P.C.

    1995-01-01

    The γ*π 0 → γ form factor, F π0γγ (s), including the extension off the pion mass-shell, is calculated in generalized impulse approximation within the Dyson-Schwinger Equation framework used to provide an excellent description of the pion charge form factor, described above. This anomalous process is a fundamentally important characteristic of the quantum field theoretical structure of QCD because it signals the breaking of the U A (1) symmetry by quantization. This form factor was measured by the CELLO collaboration at the PETRA storage ring using the process e + e - → e + e - π 0 . There is a letter-of-intent at CEBAF to remeasure this form factor in virtual Compton scattering from a proton target. In this case a (virtual) pion is supplied by the target and a final real photon selected through the excellent missing mass spectrometry available at CEBAF. An extrapolation to the pion mass shell will be needed to deduce the physical transition form factor. Our calculation shows that the dependence on the virtual-pion momentum is smooth and well described by a simple suppression factor, which is qualitatively independent of the details of the pion interpolating field. The correct mass-shell value of this form factor is naturally generated in our approach and the q 2 dependence is in accord with the available CELLO data. No parameters are adjusted to achieve this; the are fixed at the values derived in the study of F π (q 2 ). A significant result of our study is that for this anomalous process, soft nonperturbative effects remain significant for Q 2 2 . A paper describing this work was submitted for publication

  13. Estimation of atomic masses of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    1997-07-01

    To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)

  14. Mass number dependence of total neutron cross section; a discussion based on the semi-classical optical model

    International Nuclear Information System (INIS)

    Angeli, Istvan

    1990-01-01

    The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)

  15. Pole masses of quarks in dimensional reduction

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Kalmykov, M.Yu.

    1997-01-01

    Pole masses of quarks in quantum chromodynamics are calculated to the two-loop order in the framework of the regularization by dimensional reduction. For the diagram with a light quark loop, the non-Euclidean asymptotic expansion is constructed with the external momentum on the mass shell of a heavy quark

  16. Vibration isolation design for periodically stiffened shells by the wave finite element method

    Science.gov (United States)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  17. Topology optimization of 3D shell structures with porous infill

    DEFF Research Database (Denmark)

    Clausen, Anders; Andreassen, Erik; Sigmund, Ole

    2017-01-01

    This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study...... indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves...

  18. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  19. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies

    Science.gov (United States)

    Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan

    2018-01-01

    Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.

  20. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  1. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun-Jin [Guizhou Normal University, Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guiyang (China)

    2017-10-15

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  2. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    International Nuclear Information System (INIS)

    Peng, Jun-Jin

    2017-01-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  3. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Science.gov (United States)

    Peng, Jun-Jin

    2017-10-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.

  4. Fluid free surface effect on the vibration analysis of cylindrical shells

    International Nuclear Information System (INIS)

    Lakis, A.A.; Brusuc, G.; Toorani, M.

    2007-01-01

    The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)

  5. Systematics of first 2+ state g factors around mass 80

    International Nuclear Information System (INIS)

    Mertzimekis, T.J.; Stuchbery, A.E.; Benczer-Koller, N.; Taylor, M.J.

    2003-01-01

    The systematics of the first 2 + state g factors in the mass 80 region are investigated in terms of an IBM-II analysis, a pairing-corrected geometrical model, and a shell-model approach. Subshell closure effects at N=38 and overall trends were examined using IBM-II. A large-space shell-model calculation was successful in describing the behavior for N=48 and N=50 nuclei, where single-particle features are prominent. A schematic truncated-space calculation was applied to the lighter isotopes. The variations of the effective boson g factors are discussed in connection with the role of F-spin breaking, and comparisons are made between the mass 80 and mass 180 regions

  6. Infinite nuclear matter model and mass formulae for nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    2016-01-01

    The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole

  7. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junhua; Yan, Pengfei; Luo, Langli; Qi, Xingguo; Rong, Xiaohui; Zheng, Jianming; Xiao, Biwei; Feng, Shuo; Wang, Chongmin; Hu, Yong-Sheng; Lin, Yuehe; Sprenkle, Vincent L.; Li, Xiaolin

    2017-10-01

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.

  8. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  9. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  10. Summary compilation of shell element performance versus formulation.

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  11. Distributed microscopic actuation analysis of paraboloidal membrane shells of different geometric parameters

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-03-01

    Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.

  12. The effect of spherical shells of matter on the Schwarzschild black hole

    International Nuclear Information System (INIS)

    Dray, T.; Rijksuniversiteit Utrecht; Hooft, G. 't

    1985-01-01

    Based on previous work we show how to join two Schwarzschild solutions, possibly with different masses along null cylinders each representing a spherical shell of infalling or outgoing massless matter. One of the Schwarzschild masses can be zero, i.e. one region can be flat. The above procedure can be repeated to produce spacetimes with a C 0 metric describing several different (possibly flat) Schwarzschild regions separated by shells of matter. An exhaustive treatment of the ways of combining four such regions is given; the extension to many regions is then straightforward. Cases of special interest are: (1) the scattering of two spherical gravitational ''shock waves'' at the horizon of a Schwarzschild black hole, and (2) a configuration involving only one external universe, which may be relevant to quantization problems in general relativity. In the latter example, only an infinitesimal amount of matter is sufficient to remove the ''Wheeler wormhole'' to another universe. (orig.)

  13. Development and applications of a flat triangular element for thin laminated shells

    Science.gov (United States)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the

  14. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  15. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    Science.gov (United States)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  16. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    CERN Document Server

    Naimi, Sarah

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...

  17. Moments Method for Shell-Model Level Density

    International Nuclear Information System (INIS)

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  18. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea

    Science.gov (United States)

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-01-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386

  19. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    Science.gov (United States)

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subcutaneous fluoxetine treatments increase escape motivation during the swim test while simultaneously lowering extracellular ACh in the NAc shell. Experiment 1: Fluoxetine (1.0 mM) infused unilaterally in the NAc shell for 40 min reduced extracellular ACh while simultaneously increasing swimming time. Experiment 2: Fluoxetine (0.2, 0.5, and 0.75 mM) infused bilaterally in the NAc shell on day 3 dose-dependently decreased immobility and increased the total escape attempts (swimming and climbing) compared with Ringer given on day 2. Experiment 3: Fluoxetine (0.5 mM) infused bilaterally in the NAc for 40 min did not affect activities in an open field. Experiment 4: Chronic systemic fluoxetine treatment decreased immobility scores and increased total escape attempt scores compared with control saline treatment. In all, 14 days after the initial swim test, basal extracellular ACh in the shell was still elevated in the saline-treated group, but not in the fluoxetine-treated group. In summary, these data suggest that one of the potential mechanisms by which fluoxetine alleviates behavioral depression in the forced swim test may be to suppress cholinergic activities in the NAc shell. PMID:21525864

  20. Gravitational entropy of nonstationary black holes and spherical shells

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1989-01-01

    The problem of defining the gravitational entropy of a nonstationary black hole is considered in a simple model consisting of a spherical shell which collapses into a preexisting black hole. The second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the event horizon as the gravitational entropy of the system. It is, however, impossible to accurately locate the position of the global event horizon using only local measurements. In order to maintain a local thermodynamics, it is suggested that the entropy of the black hole be identified with one-quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravitational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a smooth (C 0 ) fashion, even in the presence of δ-functional shells of matter

  1. Probing the N=50 shell gap near $^{78}$Ni

    CERN Multimedia

    Reiter, P; Blazhev, A A; Franchoo, S; Hadinia, B; Raabe, R; Diriken, J V J; Angus, L J

    An experiment is proposed to study the properties of low-lying states close to the N=50 shell gap by single nucleon transfer. The d($^{78}$Zn,p)$\\,^{79}$Zn reaction will be studied using the T-REX silicon-detector array coupled to the MINIBALL $\\gamma$-ray spectrometer. A $^{78}$Zn beam intensity of 5 x 10$^{4}$ pps is expected. The isotope $^{79}$Zn, with Z=30 and N =49, lies two protons above and one neutron below the double-shell closure at $^{78}$Ni. Determination of the single-particle structure of low-lying states in $^{79}$Zn will provide valuable information about the persistence of the N=50 shell gap in this neutron-rich region. In particular the behaviour of the g$_{9/2}$ and d$_{5/2}$ orbitals will be investigated. In total, 27 shifts of beam time are requested. This experiment is envisaged to be the first of a series of measurements on progressively more neutron-rich Zn isotopes.

  2. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    Science.gov (United States)

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  3. Molluskan fauna in two shell mounds in the State of Parana coast, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos de Vasconcellos Gernet

    2011-09-01

    Full Text Available The shell mounds are artificial formations consisting mostly of mollusk shells used in the feeding of the prehistoric peoples which inhabited our coast. These sites are found throughout the Brazilian coast, and hundreds of them were cataloged in the State of Paraná since the 1940s. The fragility of these sites, their importance as evidences of our prehistoric period, and its abrupt disappearance, justify the need for new researches which contribute to contextualize and draw up plans to preserve this heritage. The works related to the molluskan fauna found in the shell mounds are restricted to refer to the most common species and, sometimes, just their popular names. A greater knowledge on these prehistoric inhabitants’ diet allows a better understanding of ancient natural ecosystems. The survey of mollusks was carried out in the shell mounds Guaraguaçu and Boguaçu, in the towns of Pontal do Parana and Guaratuba, respectively, and performed through visual inspection, reading of specialized bibliography and comparison to previous works on the fauna of the shell mounds in the State of Parana coast. Altogether, 29 species were observed in the shell mound Guaraguaçu and 17 species were observed in the shell mound Boguaçu, resulting in a total of 31 species.

  4. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-11-01

    Full Text Available Abstract Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST investigations of the mantle tissue from the tropical abalone (Haliotis asinina provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions.

  5. Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector

    International Nuclear Information System (INIS)

    Chankowski, P.H.; Pokorski, Stefan; Rosiek, Janusz

    1994-01-01

    A systematic on-shell renormalization programme is carried out for the Higgs and gauge boson sectors of the Minimal Supersymmetric Standard Model. Complete one-loop results for the 2- and 3-point Green's functions are explicitly given. The Higgs boson masses and the production cross sections in the e + e - colliders are calculated. ((orig.))

  6. The SLUGGS survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ˜4 effective radii

    Science.gov (United States)

    Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj

    2018-06-01

    We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.

  7. Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants.

    Science.gov (United States)

    Wang, San-Lang; Li, Jeng-Yu; Liang, Tzu-Wen; Hsieh, Jia-Lin; Tseng, Wan-Nine

    2010-01-01

    A chitinase (CHT), and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU017 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of CHT and PRO determined by SDS-PAGE were approximately 65 kDa and 53 kDa, respectively. CHT was inhibited by Mn2+, Cu2+ and PRO was inhibited by most tested divalent metals, EDTA. The optimum pH, optimum temperature, pH stability, and thermal stability of CHT and PRO were (pH 5, 50 degrees , pH 5 degrees ) and (pH 9, 40 degrees , pH 5 degrees ), respectively. PRO retained 95% of its protease activity in the presence of 0.5 mM SDS. The result demonstrates that PRO is SDS-resistant protease and probably has a rigid structure. The 4th day supernatant showed the strongest antioxidant activity (70%, DPPH scavenging ability) and the highest total phenolic content (196+/-6.2 microng of gallic acid equival/mL). Significant associations between the antioxidant potency and the total phenolic content, as well as between the antioxidant potency and free amino groups, were found for the supernatant. With this method, we have shown that shrimp shell wastes can be utilized and it's effective in the production of enzymes and antioxidants, facilitating its potential use in industrial applications and functional foods.

  8. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)

  9. Systematic features of mass yield curves in low-energy fission of actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    1999-01-01

    Characteristics of mass yield curves in fission of wide range of nuclides from pre-actinides through transactinides are reviewed and the following points are discussed. (1) Systematic trends of the mass yield distributions in low-energy proton-induced fission of actinides and in spontaneous fission of actinides are discussed in terms of weighted mean mass numbers of the light and heavy asymmetric mass yield peaks and widths of the heavy asymmetric mass yields. (2) Gross features of the two kinds of mass yield curves, symmetric and asymmetric ones, as a function of a fissioning nucleus. (3) Competition between the symmetric and asymmetric fission as a function of not only Z (proton number) but also N (neutron number) of a fissioning nucleus. (4) Experimental verification of the existence of two kinds of deformation paths in low energy fission of actinides; the first path is initiated at higher threshold energy and ends with elongated scission configuration, giving a final mass yield distribution centered around the symmetric mass division, 'symmetric fission path'. In the second path, a fissioning nucleus experiences lower threshold energy and results in more compact scission configuration, which gives a double humped mass distribution always centered around A=140 for the heavier fragment, 'asymmetric fission path'. (5) Interpretation of the 'bimodal fission' observed in the spontaneous fission of heavy actinides as the presence of the two fission paths of the ordinary asymmetric one and a strongly shell-affected symmetric path from the systematic analysis of scission configurations. (6) A dynamical fission process deduced from the analysis of the experimental mass yield curves and the correlation data of neutron multiplicity and fragment mass and total kinetic energy. (7) Prediction of the characteristics of gross properties of fission in superheavy nuclei around 280 114. (8) Characteristics of highly asymmetric fission: formation cross section as a function of

  10. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  11. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  12. Higgs couplings: disentangling new physics with off-shell measurements.

    Science.gov (United States)

    Cacciapaglia, Giacomo; Deandrea, Aldo; La Rochelle, Guillaume Drieu; Flament, Jean-Baptiste

    2014-11-14

    After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, the possibility of using off-shell measurements has been suggested: in particular, the CMS Collaboration has published results based on the high-invariant mass cross section of the process gg→ZZ, which contains a contribution from the Higgs boson. While this measurement has been interpreted as a constraint on the Higgs width after very specific assumptions are taken on the Higgs couplings, in this Letter, we show that a much more model-independent interpretation is possible.

  13. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wear behavior of Al-7%Si-0.3%Mg/melon shell ash particulate composites.

    Science.gov (United States)

    Abdulwahab, M; Dodo, R M; Suleiman, I Y; Gebi, A I; Umar, I

    2017-08-01

    The present study examined wear characteristics of A356/melon shell ash particulate composites. Dry-sliding the stainless steel ball against specimen disc revealed the abrasive wear behavior of the composites under loads of 2 and 5N. The composite showed lower wear rate of 2.182 × 10 -4 mm 3 /Nm at 20 wt% reinforced material under load of 5N. Results showed that wear rate decreased significantly with increasing weight percentage of melon shell ash particles. Microstructural analyses of worn surfaces of the composites reveal evidence of plastic deformation of matrix phase. The wear resistance of A356 increased considerably with percentage reinforcement. In other words, the abrasive mass loss decreased with increasing percentage of reinforcement addition at the both applied loads. The control sample suffered a highest mass loss at 5 N applied load.

  15. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance.

    Science.gov (United States)

    Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-07-01

    Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell. © 2012 John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. K-shell ionization probability in energetic nearly symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Tserruya, I.; Schmidt-Boecking, H.; Schuch, R.

    1977-01-01

    Impact parameter dependent K-x-ray emission probabilities for the projectile and target atoms have been measured in 35 MeV Cl on Cl, Cl on Ti and Cl on Ni collisions. The sum of projectile plus target K-shell ionization probability is taken as a measure of the total 2psigma ionization probability. The 2pπ-2psigma totational coupling model is in clear disagreement with the present results. On the other hand the sum of probabilities is reproduced both in shape and absolute magnitude by the statistical model for inner-shell ionization. The K-shell ionization probability of the higher -Z collision partner is well described by this model including the 2psigma-1ssigma vacancy sharing probability calculated as a function of the impact parameter. (author)

  17. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  18. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell

    International Nuclear Information System (INIS)

    Ma, Yanjie; Zong, Jiwen; Li, Wei; Chen, Long; Tang, Xiaofen; Han, Na; Wang, Jianping; Zhang, Xingxiang

    2015-01-01

    Two kinds of (microencapsulated phase change materials) MicroPCMs with acrylic-based copolymer as shell and n-dodecanol as core were successfully fabricated via suspension-like polymerization and photo-induced microencapsulation, respectively. Morphology and core–shell structure were observed by (field emission scanning electron microscope) FE-SEM. Thermal properties of the microencapsulated n-dodecanol were investigated by (differential scanning calorimeter) DSC and (thermogravimetric analysis) TGA. The results indicate that the mass ratio of core to shell has great influence on the morphology, inner structure, microencapsulated efficiency and durability of the microcapsules. Besides, the effects of various solvents and UV irridiation time on the microcapsule surface were discussed as well. In the experiment carried out, metal-ion complexation was conducted by the reaction between Mn ion and carboxyl groups on copolymer shell to enhance the performance of the microcapsules with n-dodecanol encapsulated. As the results indicate, the physicochemical properties and thermal conductivity of the shell were improved after Mn ion complexation reaction. Supercooling phenomenon of n-dodecanol was depressed to some extent. In the end, the thermo-regulated fiber containing acrylic-based copolymer microcapsules was fabricated, and thermo-regulated performance test of the fiber was also conducted. - Graphical abstract: (a)∼(d) schematic diagram of microencapsulation and (e) microcapsule with core–shell structure. - Highlights: • Microencapsulated n-dodecanol with acrylic polymer shell. • Microencapsulated n-dodecanol was fabricated by photo-induced microencapsulation. • Acrylic-based copolymer microcapsules with manganese-ion complexation

  19. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  20. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  1. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  2. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  3. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  4. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  5. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  6. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  7. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  8. Microscopic studies of electric dipole resonances in 1p shell nuclei

    International Nuclear Information System (INIS)

    Kissener, H.R.; Rotter, I.; Goncharova, N.G.

    1986-05-01

    Recent data on total and partial photonuclear cross sections in the GDR region of the nuclei 6 Li to 16 O are compared with theoretical predictions, mostly from shell model and continuum shell model studies. The influence of the size of the configuration space, of the adopted residual interaction and of the continuous spectrum on the isovector E1 response is discussed to some detail. The observed trends of the localization, the shape and width, the isospin and the configurational structure of the GDR with increasing 1p shell occupation are related to the microscopic structure of the nuclear ground state. Particular attention is given to the partial (γ, N/sub i/) disintegration channels. Complex-particle emission and isospin mixing in the nuclear states are discussed for a few cases. An attempt is made to bring some systematics also in the evidence on excited-state giant resonances through the 1p shell region. The photonuclear GDR is compared with other giant multipole excitations, mostly for the example of the 14 C nucleus. (author)

  9. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  10. Alphaspectroscopic amplitudes for nuclei in the lower half of the sd-shell

    International Nuclear Information System (INIS)

    Conze, M.

    1976-01-01

    Alpha-spectroscopic amplitudes and factors were calculated with the aid of the shell model for nuclei with mass numbers between A = 16 and A = 24. For transitions to levels belonging to the ground state band of the residual nucleus, the findings confirm the predictions based on the SU(3) model. (orig.) [de

  11. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  12. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  13. Shell and pairing effects in spherical nuclei close to the nucleon drip lines

    International Nuclear Information System (INIS)

    Beiner, M.; Lombard, R.J.

    1975-01-01

    The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr

  14. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    Science.gov (United States)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  15. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  16. Fasting gall bladder volume and lithogenicity in relation to glucose tolerance, total and intra-abdominal fat masses in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Hendel, H W; Højgaard, L; Andersen, T

    1998-01-01

    OBJECTIVE: To investigate whether total body fat mass or fat distribution and associated metabolic disturbances in glucose and lipid metabolism influence the well known gallstone pathogenetic factors in obese subjects in order to explain why some obese subjects develop gallstones and some do not...... with a specific radioimmunoassay. Insulin sensitivity was measured by the Minimal Model and glucose tolerance by an oral glucose tolerance test (OGTT). Serum lipid concentrations were measured by standard methods. RESULTS: The gallbladder volume in the fasting state increased with increasing intra-abdominal fat...... mass (P=0.006) and was increased in subjects with impaired glucose tolerance (41 vs 27 ml, P=0.001). The lithogenic index was > 1 in all subjects and correlated with total fat mass (P=0.04). CONCLUSION: Gallstone pathogenesis in obesity seems to be influenced by the total body fat mass and its regional...

  17. Study the Effect of the Flow on the Performance of a shell and Tube Type Heat Exchanger using Experimental Design Technique

    Directory of Open Access Journals (Sweden)

    Zuher Hassan Abdullah

    2016-10-01

    Full Text Available In the current research an experimental study was done to show the effect of pulse flow on the effectiveness of shell and tube type heat exchanger. the study was in the case of steady and pulse flows with a changing mass flow rate of hot water flowing inside the pipes of the heat exchanger for the range between (0.0273-0.0819 kg / s  at fix mass flow rate of cold water that flows through the shell and on the outer surface of the pipes when (0.0416 kg / s, to obtain pulsing a used was solenoid valve. The research aims to measure the percentage effect of independent factors which were presenting the mass flow rate of hot water, flow type and the surrounding environment conditions of the experimental side upon shell and tube type heat exchanger performance using experimental design technique at the significant level (0.05.The results derived from the experimental tests showed that pulse flow leads to increase internal heat transfer coefficient (hi comparing with its value in the steady flow and the highest increase was by (9.75% at a mass flow rate of hot water (0.0416 kg / s and increases the overall heat transfer coefficient (U, where the highest percentage was by 4.68% at a mass flow rate of hot water (0.0416kg/s. The results also showed increasing both the number of transmitted units (NTU and the effectiveness of the shell and tube type heat exchanger ( in the case of pulse flow of its value in the steady flow and the highest percentage of increase occurring was (4.75% and (1.85%, respectively, and at the mass flow rate of hot water (0.0416 kg / s. Percentage effect of mass flow rate of hot water was (97%, 97.42%, 95.5%, 99.48% and the percentage effect of each flow type and the errors were (2.8%, 2.25%, 2.44%, 0.4% and (0. 2, 0.33%, 2.06%, 0.12 respectively

  18. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  19. Measurements of 14 MeV neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Alevra, A.V.; Giese, H.; Kappler, F.; Klein, H.; Klein, H.; Tayama, R.

    1995-01-01

    New results of spherical-shell transmission measurements with 14MeV neutrons on pure beryllium shells up to 17cm thick are reported. The total leakage neutron multiplications were measured using a Bonner sphere system. Independently, the leakage neutron spectra were measured over the entire energy range, 15MeV to thermal energies, by proton-recoil and time-of-flight methods. The total leakage multiplications are in excellent agreement with three-dimensional Monte Carlo calculations using beryllium nuclear data based on the Young and Stewart evaluation. The leakage in the evaporation energy window confirms the Be(n,2n) cross-section of the Young and Stewart evaluation rather than that used in the ENDF/B-VI library. At energies below 1keV, a surplus of leakage neutrons over the calculation is found for smaller beryllium thicknesses. (orig.)

  20. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  1. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  2. Quality control for total evaporation technique by surface/thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Kato, Seikou; Inoue, Sinichi; Yamaguchi, Katsuyuki; Tsutaki, Yasuhiro

    2007-01-01

    For the measurement of uranium and plutonium isotopic composition, the surface/thermal ionization mass spectrometry is widely used at the both nuclear facilities and safeguards verification laboratories. The progress of instrument specification makes higher sensitivity. The total evaporation technique is one of the latest measurement techniques by using this progress, in which all of uranium or plutonium on the filament would be evaporated by increasing the filament current. The accuracy and precision of this technique is normally checked by using the certified isotope reference materials measurement. But the fluctuation of ion beam is very different by each filament, depending on the chemical form of evaporation. So, it should be considered how to check the measurement quality of unknown samples which has no certified values. This presentation is focused on the monitoring of ion yields and pattern of isotope ratio fluctuation to attain the traceability between reference material and unknown sample as quality control approach of total evaporation technique. (author)

  3. Compression Characteristics and Energy Requirement of Briquettes Made from a Mixture of Corn Stover and Peanut Shells

    Directory of Open Access Journals (Sweden)

    Chunxiao Gong

    2015-07-01

    Full Text Available Corn stover and peanut shells are both abundantly available biomass feedstocks in China. To determine the compression characteristics and energy requirement of briquettes, mixtures of the corn stover and peanut shells were compressed under three different pressures (30, 60, and 90 MPa with three moisture contents (9%, 14%, and 19%, wet basis and five corn stover-peanut shell mixtures (0%-100%, 25%-75%, 50%-50%, 75%-25%, and 100%-0% by mass. The results showed that applied pressure, moisture content, and the corn stover-peanut shell mixture all significantly affected briquette density and specific energy consumption. The density of the briquette ranged from 646 to 1052 kg/m3 and the specific energy consumption varied from 6.6 to 25.1 MJ/t. A moisture content of 9% was found to be better for the compression of the corn stover and peanut shells mixture. Adding peanut shells to the corn stover improved briquette density and reduced the specific energy consumption. Linear models were developed to describe the briquette density and the specific energy consumption. The briquette durability ranged from 57% to 94% and durable briquettes can be obtained when corn stover and peanut shells are compressed with the mixing ratio of 1:1 (50%-50% at moisture content of 9%.

  4. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  5. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    International Nuclear Information System (INIS)

    Tian Chungui; Wang Enbo; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-01-01

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO 3 /PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted

  6. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  7. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  8. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  9. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    International Nuclear Information System (INIS)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M.; Bally, John

    2015-01-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that the Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years

  10. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA (Netherlands); Bally, John, E-mail: ochsendorf@strw.leidenuniv.nl [CASA, APS, UCB389, University of Colorado, Boulder, CO 80389 (United States)

    2015-08-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that the Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.

  11. Inner-shell photoionization of group-IIB atoms

    International Nuclear Information System (INIS)

    Kutzner, M.; Tidwell, C.; Vance, S.E.; Radojevic, V.

    1994-01-01

    Total and partial photoionization cross sections, branching ratios, and angular-distribution asymmetry parameters for inner subshells (nl,l≥2) of the group-IIB elements zinc, cadmium, and mercury have been calculated in both the relativistic random-phase approximation and the relativistic random-phase approximation modified to include relaxation. Comparisons are made between the results of the two theoretical methods and with experiment where available. The present theoretical results for the 3d inner-shell photoionization of zinc are not in accord with experiment. We confirm previous work [S. L. Carter and H. P. Kelly, J. Phys. B 11, 2467 (1978)] which demonstrated that relaxation is an important effect in photoionization of the 4d subshell of atomic cadmium. It is also found that the inclusion of relaxation effects resolves a discrepancy between theory and experiment for the 4f inner-shell photoionization of atomic mercury

  12. Total β-decay energies and masses of tin, antimony and tellurium isotopes in the vicinity of 50132Sn82

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Rudstam, G.

    1977-01-01

    Experimental β-decay energies for short-lived isotopes of tin, antimony and tellurium are presented. Mass-separated sources were produced at the on-line isotope separator OSIRIS. By applying β-γ coincidence methods, total β-decay energies have been determined for the following nuclides: 127-131 Sn, 128 130 131 134 Sb and 134 135 Te. The atomic mass excess has been derived for these nuclei, and comparisons are made with mass formula predictions. (Auth.)

  13. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory

    International Nuclear Information System (INIS)

    Yang, Jie; Fan, Aiwu; Liu, Wei; Jacobi, Anthony M.

    2014-01-01

    Highlights: • A design method of heat exchangers motivated by constructal theory is proposed. • A genetic algorithm is applied and the TEMA standards are rigorously followed. • Three cases are studied to illustrate the advantage of the proposed design method. • The design method will reduce the total cost compared to two other methods. - Abstract: A modified optimization design approach motivated by constructal theory is proposed for shell-and-tube heat exchangers in the present paper. In this method, a shell-and-tube heat exchanger is divided into several in-series heat exchangers. The Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters. The total cost of the whole shell-and-tube heat exchanger is set as the objective function, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the cost function by adjusting parameters such as the tube and shell diameters, tube length and tube arrangement. Three cases are studied which indicate that the modified design approach can significantly reduce the total cost compared to the original design method and traditional genetic algorithm design method

  14. Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.

    Science.gov (United States)

    Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning

    2017-10-01

    A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed. Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3. Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  16. Listening to Shells: Galaxy Masses from Disrupted Satellites

    NARCIS (Netherlands)

    Westfall, Kyle; Sanderson, R.

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has

  17. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  18. Thin-shell wormholes with charge in F(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)

    2016-03-15

    In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)

  19. Thin-shell wormholes with charge in F(R) gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda

    2016-01-01

    In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)

  20. Pion-nucleon vertex function with one nucleon off shell

    International Nuclear Information System (INIS)

    Mizutani, T.; Rochus, P.

    1979-01-01

    The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region

  1. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  2. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  3. Pearl millet utilization in ccommercial laying hen diets formulated on a total or digestible amino acid basis

    Directory of Open Access Journals (Sweden)

    RS Filardi

    2005-06-01

    Full Text Available An experiment was carried out to evaluate the effect of replacing corn with pearl millet in commercial layer diets, formulated according to the minimal requirements for total and digestible amino acids. Two hundred and forty Lohmann LSL laying hens with 25 weeks of age were distributed in a completely randomized experimental design according to a 2 x 5 factorial arrangement with 3 replicates of 8 birds. Feed was formulated on two amino acid basis (total or digestible according to Rostagno et al. (2000 and there were five pearl millet inclusion levels (0%, 25%, 50%, 75%, and 100%. Performance and egg quality were evaluated during five periods of 21 days.At the end of each period, feed intake, egg production, egg weight and feed conversion were evaluated. In the last three days of each period, the following egg quality parameters were evaluated: Haugh Unit, yolk pigmentation index, egg specific weight, shell percentage and shell thickness. Digestible amino acid requirements resulted in decreased feed intake (p<0.01 and increased production costs per mass of eggs (kg or per dozen eggs (p<0.01 compared to total amino acid requirements. There was a linear reduction in feed intake, egg production, egg weight and yolk pigmentation index with increasing inclusion levels of pearl millet. Therefore, increasing levels of replacement of corn by pearl millet affected bird performance negatively. Besides, production costs were higher with increasing pearl millet levels.

  4. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  5. The art of predicting nuclear masses

    International Nuclear Information System (INIS)

    Hirsch, J.G.; Morales, I.; Mendoza-Temis, J.; Frank, A.; Lopez-Vieyra, J.C.; Barea, J.; Pittel, S.; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A review of recent advances in the theoretical analysis of nuclear mass models and their predictive power is presented. After introducing two tests which probe the ability of nuclear mass models to extrapolate, three models are analyzed in detail: the liquid drop model (LDM), the liquid drop model plus empirical shell corrections (LDMM) and the Duflo–Zuker mass formula (DZ). The DZ model is exhibited as the most predictive model. The Garvey–Kelson mass relations are also discussed. It is shown that their fulfillment probes the consistency of the most commonly used mass formulae, and that they can be used in an iterative process to predict nuclear masses in the neighborhood of nuclei with measured masses, offering a simple and reproducible procedure for short range mass predictions. (author)

  6. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  7. Determining total hemoglobin mass by means of {sup 13}CO breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marcus; Hering, Peter [Institut fuer Lasermedizin, Universitaetsklinikum Duesseldorf (Germany)

    2010-07-01

    The aim of our investigations is the development of a non-invasive method for the determination of the total hemoglobin mass in the human body by means of Cavity Leak-Out Spectroscopy (CALOS). The mentioned CALOS system utilizes a CO gas laser in the mid infrared region around 5{mu}m. This system allows isotopologue selective online measurements of {sup 13}CO with a sensitivity of 7 ppb.Hz{sup -1/2}. {sup 13}CO is a non radioactive isotopologue occurring in a ratio of about 1.1 % of the natural CO composition. CO is commonly known as a highly toxic gas but it is also endogenously produced during heme degradation. About 80 % of this CO is exhaled yielding to CO concentrations between 1 ppm to 4 ppm in healthy humans. Transportation of CO through the body is established by hemoglobin which has a high affinity towards CO. Because of this fact inhaled CO is taken up by the blood until equilibrium between the alveolar air and the blood is reached. By determining the exhaled CO concentrations before and after the inhalation of a certain amount of CO a measure for the t-Hb mass can be calculated. The enormous advantage of the isotopologue measurement is the very small amount of {sup 13}CO which can be used for harmless CO inhalation. All data necessary for calculating the t-Hb mass are obtained from breath measurements making this method non invasive.

  8. Search for substructure in anti pp total cross section in the 2200 MeV mass region

    International Nuclear Information System (INIS)

    Peaslee, D.C.; DeMarzo, C.; Guerriero, L.

    1975-01-01

    The anti pp total cross section is measured in an apparatus with a small target and high resolution beam in order to supplement previous work by looking for narrow structure that might be hidden in broad-mass bins. One could set limits on the partial widths of bosons coupling to the anti pp system. The product of an unknown production cross section and a partial width was determined. From the data the existence of resolution-sized structure above the smooth fit with the product of cross section and width greater than 7 MeV mb. It can be shown that a Breit--Wigner resonance of spin J coupled to the anti pp system in this region must have partial width GAMMA/sub anti pp/ less than 1.8/(2J + 1) MeV. Also it is found that the broad enhancement observed in the anti pp total cross section persists without modification in an observation with mass resolution six times that of previous work

  9. Can the shell of the green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn?

    Science.gov (United States)

    Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.

    2003-07-01

    The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( Pwork showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.

  10. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core......–shell Au–Pd promoters containing one ML equivalent Pd provide the optimum reactivity....

  11. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Cai, Mei [General Motors Research and Development Center, Warren, MI 48090-9055 (United States); Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2015-03-30

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C{sub 2}H{sub 4}) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g{sup −1}.

  12. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-01-01

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C 2 H 4 ) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g −1

  13. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  14. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  15. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  16. Solution strategies for linear and nonlinear instability phenomena for arbitrarily thin shell structures

    International Nuclear Information System (INIS)

    Eckstein, U.; Harte, R.; Kraetzig, W.B.; Wittek, U.

    1983-01-01

    In order to describe nonlinear response and instability behaviour the paper starts with the total potential energy considering the basic kinematic equations of a consistent nonlinear shell theory for large displacements and moderate rotations. The material behaviour is assumed to be hyperelastic and isotropic. The incrementation and discretization of the total potential energy leads to the tangent stiffness relation, which is the central equation of computational algorithms based on combined incremental and iterative techniques. Here a symmetrized form of the RIKS/WEMPNER-algorithm for positive and negative load incrementation represents the basis of the nonlinear solution technique. To detect secondary equilibrium branches at points of neutral equilibrium within nonlinear primary paths a quadratic eigenvalue-problem has to be solved. In order to follow those complicated nonlinear response phenomena the RIKS/WEMPNER incrementation/iteration process is combined with a simultaneous solution of the linearized quadratic eigenvalue-problem. Additionally the essentials of a recently derived family of arbitrarily curved shell elements for linear (LACS) and geometrically nonlinear (NACS) shell problems are presented. The main advantage of these elements is the exact description of all geometric properties as well as the energy-equivalent representation of the applied loads in combination with an efficient algorithm to form the stiffness submatrices. Especially the NACS-elements are designed to improve the accuracy of the solution in the deep postbuckling range including moderate rotations. The derived finite elements and solution strategies are applied to a certain number of typical shell problems to prove the precision of the shell elements and to demonstrate the possibilities of tracing linear and nonlinear bifurcation problems as well as snap-through phenomena with and without secondary bifurcation branches. (orig.)

  17. Asymptotic strength of thermal pulses in the helium shell burning

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D

    1979-03-01

    Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.

  18. Application of the UV laser printing technique to soft gelatin capsules containing titanium dioxide in the shells.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2012-03-01

    The purpose of this study was to examine application of ultraviolet (UV) laser irradiation to printing soft gelatin capsules containing titanium dioxide (TiO(2)) in the shells and to study effect of UV laser power on the color strength of printing on the soft gelatin capsules. Size 6 Oval type soft gelatin capsules of which shells contained 0.685% TiO(2) and 0.005% ferric dioxide were used in this study. The capsules were irradiated pulsed UV laser at a wavelength 355 nm. The color strength of the printed capsules was determined by a spectrophotometer as total color difference (dE). The soft gelatin capsules which contained TiO(2) in the shells could be printed gray by the laser. Many black particles, which were associated with the printing, were formed at the colored parts of the shells. It was found that there were two inflection points in relationship between output laser energy of a pulse and dE. Below the lower point, the capsules were not printed. From the lower point to the upper point, the capsules were printed gray and total color difference of the printing increased linearly in proportion with the output laser energy. Beyond the upper point, total color difference showed saturation because of micro-bubbles formation at the laser irradiated spot. Soft gelatin capsules containing TiO(2) in the shells could be performed stable printing using the UV laser printing technique. Color strength of the printing could be controlled by regulating the laser energy between the two inflection points.

  19. Combinatorial and off-shell effects in new physics cascades

    Energy Technology Data Exchange (ETDEWEB)

    Wiesler, Daniel

    2012-12-15

    Up to now, the Standard Model of elementary particle physics is in very good agreement with most data. However, it has various shortcomings which motivate the presence of new physics at the TeV scale. The first major step following a potential discovery of new particles at the Large Hadron Collider (LHC) is the determination of their intrinsic properties, foremost masses and spins. Event topologies of new physics signals with a conserved parity motivated by precision data and the dark matter paradigm require for sophisticated measurement procedures, which have been developed in recent years. These techniques often rely on simplifying assumptions, albeit they need not necessarily be fulfilled. In this thesis we investigate the impact of combinatorial and off-shell effects on new physics cascades in three different contexts. A detailed understanding of these effects is essential for the topic of model parameter determination of new physics signatures at the LHC. First, we study the non-resonant contributions of a broad gluino on mass and spin measurements as a prime example for the importance of off-shell effects. A phenomenological scan over the gluino's width-to-mass ratio yields a severe smearing of invariant mass distributions and as a consequence thereof drastically shifted endpoint positions. Spin determinations, on the other hand, are barely affected and a model discrimination of the two prime candidates SUSY and UED is not at risk. In the second part, we assess the feasibility of the gluino dijet endpoint measurement in three fully inclusive scenarios at the LHC to investigate the impact of combinatorial and SUSY backgrounds on its precise determination. We develop a method to disentangle two major signal contributions and extract their associated edges with good accuracy. For this we use existent kinematic variables and propose new ones to overcome the former's deficiencies. The last part governs the issue of so-called 'fake combinatorics

  20. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  1. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  2. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  3. Wear debris. An environmental issue in total joint replacement.

    Science.gov (United States)

    Manley, M T; Serekian, P

    1994-01-01

    There is a growing concern that osteolytic lesions, often adjacent to otherwise stable implants, are a recent phenomenon caused by some recent change in polyethylene, metal, or other aspect of the total hip construction. This study investigates the possibility that bearings and modular connections used in modern hip replacements are an unappreciated source of particulate debris. Measurements taken from contemporary femoral bearings show a significant mismatch in both surface finish and sphericity of mating metal and polyethylene components, with sphericity of inserts being much worse then sphericity of femoral heads. The tolerances for sphericity of polyethylene inserts were further changed by the placement of an insert into its metal shell. Hip simulator tests of assembled inserts and shells showed greater polyethylene weight loss for metal-backed shells than for inserts alone. Bending and torsional tests of metal/metal modular connections showed that dynamic loads can release large numbers of debris particles from taper junctions. Because osteolytic lesions clearly are associated with overload of tissue by debris particles, the design, manufacture, and tolerances of modular connections in total hip replacement all seem to require reevaluation.

  4. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Zouitine, Asmae [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Feddi, El Mustapha [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); and others

    2014-09-15

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.

  6. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmae; Assaid, El Mahdi; Feddi, El Mustapha

    2014-01-01

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure

  7. Recent progress in atomic mass formulas and β-decay gross theory

    International Nuclear Information System (INIS)

    Yamada, Masami

    1988-01-01

    The first half of the report focuses on atomic mass formulas which have been developed by the author and his coworkers for accurate representation of the mass of various nuclides at their ground state. The one most frequently used by them is the Uno-Yamada Formula, which consists of two parts representing the gross behavior and the fluctuations due to each nuclide, or so called shell effect. The latter part is the sum of a proton shell term and a neutron shell term, and may be constant or linear depending on the form of the shell terms. Two new formulas have been derived by incorporating the effect of proton-neutron interaction into the above-mentioned constant-type formula. One of them is different from the constant-type Uno-Yamada Formula in that the shell effect part contains a proton-neutron interaction term. Modification is also made to take into account the coulombic energy. The second half of the report addresses the β-decay gross theory. A modified β-decay gross theory is presented, in which improvements are made to reflect the effect of the UV factor and to meet the sum rules related with the Fermi transition. The monoparticle intensity function is also improved by taking into account solutions of many-body problems related with the sum rules. (N.K.)

  8. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E; Hartley, Stacey A; Enderlin, Carl W

    2001-01-01

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102

  9. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  10. Effect of mass loss on the driving of g-modes in B supergiant stars

    Energy Technology Data Exchange (ETDEWEB)

    Godart, Melanie; Noels, Arlette [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Helanie.Godart@ulg.ac.be, E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr

    2008-10-15

    MOST has detected p and g-modes in the B supergiant star HD163899. Saio et al. (2006) have explained the driving of g-modes in a post main sequence star by the presence of a convective shell which prevents some modes from entering the damping radiative core. We show that this scenario depends on the evolution of the star, with or without mass loss. If the mass loss rate is high enough, the convective shell disappears and all the g-modes are stable.

  11. Effect of mass loss on the driving of g-modes in B supergiant stars

    International Nuclear Information System (INIS)

    Godart, Melanie; Noels, Arlette; Dupret, Marc-Antoine

    2008-01-01

    MOST has detected p and g-modes in the B supergiant star HD163899. Saio et al. (2006) have explained the driving of g-modes in a post main sequence star by the presence of a convective shell which prevents some modes from entering the damping radiative core. We show that this scenario depends on the evolution of the star, with or without mass loss. If the mass loss rate is high enough, the convective shell disappears and all the g-modes are stable.

  12. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  13. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    International Nuclear Information System (INIS)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plaß, W. R.; Scheidenberger, C.; Heßberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.

    2013-01-01

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  14. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  15. On the gauge (in)dependence of the dynamical quark mass

    International Nuclear Information System (INIS)

    Reinders, L.J.; Stam, K.

    1987-04-01

    We compute the contribution of the mixed quark-gluon condensate to the quark self-energy to all orders in the dynamical quark mass. We investigate the consistency of different expansion schemes. It is found that nonabelian interactions form an obstruction to defining a true dynamical gauge independent mass shell. (orig.)

  16. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  17. Covarying Shell Growth Parameters and the Regulation of Shell Shape in Marine Bivalves: A Case Study on Tellinoidea

    Directory of Open Access Journals (Sweden)

    Jean Béguinot

    2014-01-01

    Full Text Available Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, such functionally relevant shape parameters (shell outline elongation, dissymmetry, and ventral convexity are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative, growth-based description of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects the growth-based shell-shape parameters to the functionally relevant shell-shape parameters. Thus, a preliminary object of this note is to derive this set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.

  18. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  19. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  20. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  1. Fission fragment mass distributions via prompt γ-ray spectroscopy

    Indian Academy of Sciences (India)

    The distribution of fragment masses formed in nuclear fission is one of the most strik- ing features .... 80. 100. 120. 140. 160. 10. 3. 10. 4. Fragment Mass. Relative yield. Sn. Cd. Te. Pd ... the secondary fragment at Z = 50 and N = 82 shells, where the yields are depleted. Both ... More systematic experimental data are required.

  2. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  3. The use of waste mussel shells for the adsorption of dyes and heavy metals

    Science.gov (United States)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  4. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  5. The Study of Kinetic Properties and Analytical Pyrolysis of Coconut Shells

    Directory of Open Access Journals (Sweden)

    Mahir Said

    2015-01-01

    Full Text Available The kinetic properties of coconut shells during pyrolysis were studied to determine its reactivity in ground form. The kinetic parameters were determined by using thermogravimetric analyser. The activation energy was 122.780 kJ/mol. The pyrolysis products were analyzed using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effects of pyrolysis temperature on the distribution of the pyrolytic products were assessed in a temperature range between 673 K and 1073 K. The set time for pyrolysis was 2 s. Several compounds were observed; they were grouped into alkanes, acids, ethers and alcohols, esters, aldehydes and ketones, furans and pyrans, aromatic compounds, and nitrogen containing compounds. The product compositions varied with temperature in that range. The highest gas proportion was observed at high temperature while the acid proportion was observed to be highest in coconut shells, thus lowering the quality of bio-oil. It has been concluded that higher pyrolysis temperature increases the amount of pyrolysis products to a maximum value. It has been recommended to use coconut shell for production of gas, instead of production of bio-oil due to its high proportion of acetic acid.

  6. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  7. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  8. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  9. Synchrotron radiation total reflection for rainwater analysis

    International Nuclear Information System (INIS)

    Simabuco, Silvana M.; Matsumoto, Edson

    1999-01-01

    Total reflection X-ray fluorescence analysis excited with synchrotron radiation (SR-TXRF) has been used for rainwater trace element analysis. The samples were collected in four different sites at Campinas City, SP. Standard solutions with gallium as internal standard were prepared for the calibration system. Rainwater samples of 10 μl were putted onto Perspex reflector disk, dried on vacuum and analyzed for 100 s measuring time. The detection limits obtained for K-shell varied from 29 ng.ml -1 for sulfur to 1.3 ng.ml -1 for zinc and copper, while for L-shell the values were 4.5 ng.ml -1 for mercury and 7.0 ng.ml -1 for lead. (author)

  10. Radiocarbon dating of planktonic foraminifer shells: A cautionary tale

    Science.gov (United States)

    Mekik, Figen

    2014-01-01

    rate, bioturbation, winnowing, and calcite dissolution produce significant radiocarbon age offsets among multiple species of coexisting planktonic foraminifers and pteropod fragments. We compare the radiocarbon age of foraminifer species and pteropod fragments with estimates of percent calcite dissolved made with a sedimentary proxy (Globorotalia menardii fragmentation index—MFI) to delineate the effect of dissolution on radiocarbon age of foraminifers. Data from two core top transects on the Rio Grande Rise (RIO) and Ontong Java Plateau (OJP) and from down core sediments of varying sedimentation rates in the tropical Pacific (ME-27, MD98 2177, and MW91-9 56GGC) reveal that sediments with the greatest accumulation rates produce the least age offsets among coexisting species. Age offsets among coexisting foraminifers are about 3500 years on RIO, and 1000 years on OJP. Two core tops from RIO yield an age of the Last Glacial Maximum possibly due to mass displacement of younger sediments downslope. Foraminifer age increases with increasing dissolution and there is a consistent pattern of older foraminifer fragments coexisting with younger whole shells of the same species. The only exception is sediments which have experienced high dissolution where fragments are younger than whole shells. The age offset between fragments of G. menardii and its coexisting whole shells does not exceed the age offset among other coexisting foraminifer species in the same core tops.

  11. Four-loop on-shell integrals. MS-on-shell relation and g-2

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, P.

    2013-12-15

    We present first results towards a full four-loop calculation for both the anomalous magnetic moment of the muon and the MS-on-shell relation. The calculation requires the detailed study of an up to now not considered class of diagrams, so-called on-shell diagrams, at four-loop order.

  12. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  13. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  14. Blood Cockle Shells Waste as Renewable Source for the Production of Biogenic CaCO3 and Its Characterisation

    Science.gov (United States)

    Asmi, D.; Zulfia, A.

    2017-11-01

    The prowess to reuse and recycle of blood cockle shells for raw material in bio-ceramics applications is an attractive component of integrated waste management program. In this paper an attempt is made to introduce a simple process to manufacture biogenic CaCO3 powder from blood cockle shells waste. The biogenic CaCO3 powder was produced from rinsing of blood cockle shells waste using deionised water and oxalic acid for cleaning the dirt and stain on the shells, then drying and grinding followed by heat treatment at 500 and 800 °C for 5 h. The powder obtained was characterised by XRF, DTA/TG, SEM, FTIR, and XRD analysis. The amount of 97.1 % CaO was obtained from XRF result. The thermal decomposition of CaCO3 become CaO due to mass loss was observed in the TG curve. The SEM result shows the needle-like aragonite morphology of blood cockle shells powder transformed to cubic-like calcite after heat treated at 500 °C. These results were consistent with FTIR and XRD results.

  15. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  16. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster

    Directory of Open Access Journals (Sweden)

    M. Lamrani

    2017-12-01

    Full Text Available The aim of the present work was to investigate the thermal properties of a new building material consisting of a mixture of plaster and peanut shells for use as insulating materials in building. The properties are commonly measured by using the steady state asymmetric hot plate method, the asymmetrical transient hot plate method and the flash method. The experimental study that we have conducted, enabled us to determine the conductivity, the effusivity and the thermal diffusivity of our material. The influence of the size and the mass fraction of the peanut shell shards on thermophysical properties of tested material, was investigated. Our experimental data show a good efficiency and a significant decrease in the thermal conductivity of material with peanut shell shards compared to simple plaster material. The purpose is to obtain ecological composite materials with better thermal performance, which can contribute to improve the thermal comfort in constructions in Morocco. The results show that the density of the new material was not substantially influenced by the size of the peanut shell shards. However, the thermal conductivity and diffusivity decrease from 0.3 Wm−1 K−1 and 3.75 × 10−7 m2 s−1 to 0.14 Wm−1 K−1 and 2.11 × 10−7m2 s−1, respectively, according to the variation of the mass fraction of peanut from 0 to20%.

  17. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  18. Evolution of the shell structure in medium-mass nuclei: search for the 2d5/2 neutron orbital in 69Ni

    International Nuclear Information System (INIS)

    Moukaddam, M.

    2012-01-01

    The harmonic oscillator shell closure at N=40 in 68 Ni is weak and loses its strength when removing (or adding) pair of protons. Calculations performed in this mass region predict a new island of inversion at N=40 similar to the one at N=20. Using a large valence space, the neutron orbital 2d(5/2) is shown to be a crucial ingredient for the interpretation of the nuclear structure at N ∼40. The neutron 1g(9/2) -2d(5/2) energy difference has been determined in 69 Ni beam at 25.14 MeV/u separated by the LISE3 spectrometer was impinging a CD 2 target of 2.6 mg/cm 2 thickness. The experimental setup consisted of CATS/MUST2-S1/EXOGAM detectors coupled to an ionization chamber and a plastic scintillator. The angular moment and spectroscopic factors of the ground state (J π =9/2 + ) and a doublet of states (J π =5/2 + ) around 2.48 MeV corresponding to the population of the 1g(9/2) and the 2d(5/2) orbitals, were obtained from the comparison between the experimental cross-sections as a function of the proton detection angle and ADWA calculations. The spins of the observed states were assigned by comparison to large scale Shell-Model calculations. The position of the 2d(5/2) orbital in 69 Ni has been established for the first time. Our measurements support the hypothesis of a low-lying 2d(5/2) orbital (∼2.5 MeV) with respect to the 1g(9/2) neutron orbital and thus its major role in the structure of the nuclei around N=40. (author)

  19. Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells

    Directory of Open Access Journals (Sweden)

    Humberto Breves Coda

    2009-01-01

    Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

  20. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  1. Comparison of core-shell and totally porous ultra high performance liquid chromatographic stationary phases based on their selectivity towards alfuzosin compounds.

    Science.gov (United States)

    Szulfer, Jarosław; Plenis, Alina; Bączek, Tomasz

    2014-06-13

    This paper focuses on the application of a column classification system based on the Katholieke Universiteit Leuven for the characterization of physicochemical properties of core-shell and ultra-high performance liquid chromatographic stationary phases, followed by the verification of the reliability of the obtained column classification in pharmaceutical practice. In the study, 7 stationary phases produced in core-shell technology and 18 ultra-high performance liquid chromatographic columns were chromatographically tested, and ranking lists were built on the FKUL-values calculated against two selected reference columns. In the column performance test, an analysis of alfuzosin in the presence of related substances was carried out using the brands of the stationary phases with the highest ranking positions. Next, a system suitability test as described by the European Pharmacopoeia monograph was performed. Moreover, a study was also performed to achieve a purposeful shortening of the analysis time of the compounds of interest using the selected stationary phases. Finally, it was checked whether methods using core-shell and ultra-high performance liquid chromatographic columns can be an interesting alternative to the high-performance liquid chromatographic method for the analysis of alfuzosin in pharmaceutical practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    International Nuclear Information System (INIS)

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  3. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  4. Effects of pollution on land snail abundance, size and diversity as resources for pied flycatcher, Ficedula hypoleuca.

    Science.gov (United States)

    Eeva, Tapio; Rainio, Kalle; Suominen, Otso

    2010-09-01

    Passerine birds need extra calcium during their breeding for developing egg shells and proper growth of nestling skeleton. Land snails are an important calcium source for many passerines and human-induced changes in snail populations may pose a severe problem for breeding birds. We studied from the bird's viewpoint how air pollution affects the shell mass, abundance and diversity of land snail communities along a pollution gradient of a copper smelter. We sampled remnant snail shells from the nests of an insectivorous passerine, the pied flycatcher, Ficedula hypoleuca, to find out how the availability of land snails varies along the pollution gradient. The total snail shell mass increased towards the pollution source but declined abruptly in the vicinity of the smelter. This spatial variation in shell mass was evident also within a single snail species and could not be wholly explained by spatially varying snail numbers or species composition. Instead, the total shell mass was related to their shell size, individuals being largest at the moderately polluted areas. Smaller shell size suggests inferior growth of snails in the most heavily polluted area. Our study shows that pollution affects the diversity, abundance (available shell mass) and individual quality of land snails, posing reproductive problems for birds that rely on snails as calcium sources during breeding. There are probably both direct pollution-related (heavy metal and calcium levels) and indirect (habitat change) effects behind the observed changes in snail populations. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Comparison of nodal staging with lean body mass based and with total body weight based in lung cancer

    International Nuclear Information System (INIS)

    Lee, H. Y.; Chung, J. K.; Kang, W. J.; So, Y.; Lee, D. S.; Lee, M. C.

    2004-01-01

    The standardized uptake (SUV) is semiquantitative evaluation parameter in positron emission tomography (PET). But there is no consensus about the application or process of SUV measurement. In this study, we used measured lean body mass (LBM) and total weight for application in SUV measurement. Also we compared the each nodal staging with SUV between measured LBM, and total weight, in non small cell lung cancer (NSCLC). Total 21 patients with lung cancer were enrolled (M:F=17:4, age 45[+-]8 years). PET-CT was done before operation with Gemini (Philips, Milpitas, U.S.). Each image was reconstructed twice with measured weight and lean body mass. Maximum SUVs of 103 dissected lymph nodes were measured and compared with histological result. For the deciding on the cut off value, receiver operating characteristic (ROC) analysis was done. 14 lymph nodes in the 103 dissected lymph nodes were metastatic lesions. From the ROC analysis, the cut off value of SUV was 1.7 with measured LBM and 2.3 with total weight. With measured LBM, Sensitivity and specificity were 92.5%. 78.2% and area under curve was 0.881. With total weight, sensitivity and specificity was 92.5% and 77%, Area under curve was 0.859. The normalization of SUV could be done with measured LBM. With the normalization of SUV with LBM, the nodal staging of NSCLC using SUV could be more accurate than using total weight in the reconstruction and measurement of SUV for lymph node lesions

  6. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  7. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  8. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    Science.gov (United States)

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  9. 7 CFR 983.29 - Shelled pistachios.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  10. Vibrations of Thin Piezoelectric Shallow Shells

    Indian Academy of Sciences (India)

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  11. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  13. Increased body mass index is a predisposition for treatment by total hip replacement

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig

    2005-01-01

    We investigated the radiological and epidemiological data of 4,151 subjects followed up from 1976 to 2003 to determine individual risk factors for hip osteoarthritis (OA), hip pain and/or treatment by total hip replacement (THR). Pelvic radiographs recorded in 1992 were assessed for evidence of hip......-joint degeneration and dysplasia. Sequential body mass index (BMI) measurements from 1976 to 1992, age, exposure to daily lifting and hip dysplasia were entered into logistic regression analyses. The prevalence of hip dysplasia ranged from 5.4% to 12.8% depending on the radiographical index used. Radiological hip OA...

  14. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  15. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  16. Feedback stabilization of the resistive shell mode in a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1997-01-01

    Stabilization of the 'resistive shell mode' is vital to the success of the 'advanced tokamak' concept. The most promising reactor relevant approach is to apply external feedback using, for instance, the previously proposed 'fake rotating shell' scheme [R. Fitzpatrick and T. H. Jensen, Phys. Plasmas 3, 2641 (1996)]. This scheme, like other simple feedback schemes, only works if the feedback controlled conductors are located inside the 'critical radius' at which a perfectly conducting shell is just able to stabilize the ideal external kink mode. In general, this is not possible in a reactor, since engineering constraints demand that any feedback controlled conductors be placed outside the neutron shielding blanket (i.e., relatively far from the edge of the plasma). It is demonstrated that the fake rotating shell feedback scheme can be modified so that it works even when the feedback controlled conductors are located well beyond the critical radius. The gain, bandwidth, current, and total power requirements of such a feedback system for a reactor sized plasma are estimated to be less than 100, a few Hz, a fews tens of kA, and a few MW, respectively. These requirements could easily be met using existing technology. It is concluded that feedback stabilization of the resistive shell mode is possible in a tokamak fusion reactor. copyright 1997 American Institute of Physics

  17. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Directory of Open Access Journals (Sweden)

    Zhu Chang-Qing

    2008-01-01

    Full Text Available AbstractA new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs.

  18. Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    Directory of Open Access Journals (Sweden)

    Chen Dong

    2009-01-01

    Full Text Available Abstract This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD, energy-dispersive X-ray spectra (EDS, transmission electron microscopy (TEM, and high-resolution transmission electron microscopy (HRTEM. Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2.

  19. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    Science.gov (United States)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  20. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)