WorldWideScience

Sample records for total scattering experiments

  1. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  2. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  3. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  4. TOTEM Results on Elastic Scattering and Total Cross-Section

    CERN Document Server

    Kašpar, Jan

    2015-01-01

    TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, two main parts of its physics programme - proton-proton elastic scattering and total cross-section - are discussed. The analysis procedures are outlined and their status is reviewed.

  5. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  6. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  7. Quantum entanglement and neutron scattering experiments

    International Nuclear Information System (INIS)

    Cowley, R A

    2003-01-01

    It is shown that quantum entanglement in condensed matter can be observed with scattering experiments if the energy resolution of the experiments enables a clear separation between the elastic scattering and the scattering from the excitations in the system. These conditions are not satisfied in recent deep inelastic neutron scattering experiments from hydrogen-containing systems that have been interpreted as showing the existence of quantum entanglement for short times in, for example, water at room temperature. It is shown that the theory put forward to explain these experiments is inconsistent with the first-moment sum rule for the Van Hove scattering function and we suggest that the theory is incorrect. The experiments were performed using the unique EVS spectrometer at ISIS and suggestions are made about how the data and their interpretation should be re-examined

  8. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  9. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  10. Elastic scattering of protons at the TOTEM experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2080719; Csanád, Máté; Niewiadomski, Hubert

    The TOTEM experiment at the LHC at CERN is optimized to measure elastic and diffractive scattering at the LHC and measures the total proton-proton cross-section with\tthe luminosity-independent method. The TOTEM experiment uses the special technique of movable beam pipe insertions -- called Roman Pots -- to detect very forward protons. The reconstruction of the forward proton kinematics requires the precise understanding of the LHC beam optics. A new method of LHC optics determination is reported, which exploits kinematical distributions of elastically scattered proton-proton data measured by the Roman Pots of the TOTEM experiment. The method has been successfully applied to data samples recorded since 2010. The interpretation of the proton-proton elastic differential cross-section is a challenging task. The geometrical model of proton-proton elastic scattering of Bialas and Bzdak is fitted to ISR data and to data measured by the TOTEM experiment at LHC energy of $\\sqrt{s}=7$~TeV. The Bialas-Bzdak model is g...

  11. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  12. Measurement of Elastic Scattering and of Total Cross-Section at the CERN $\\bar{p}p$ Collider

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure elastic scattering and the total cross-section at the $\\bar{p}p$ collider. \\\\ \\\\ Up to 1983 the experimental apparatus was composed of two parts : \\item 1) Telescopes of high accuracy drift and proportional chambers and counters inserted into vertically moveable sections of the vacuum chamber ('Roman pots'), detect elastic scattering in the angular region from .5 mrad up to about 3 mrad. \\item 2) The total inelastic rate is measured with a forward/backward system of drift chambers and counter hodoscopes and the UA2 central detector covering together @= 4@p solid angle. \\end{enumerate}\\\\ \\\\ With these two set-ups, the measured value of the total cross-section confirms extrapolation with (ln s)|2 behaviour. Elastic scattering and diffraction dissociation were measured in the range .03~$<$~-t~$<$~1.6~GeV|2. \\\\ \\\\ From 1984 on, six horizontally moveable ``Roman Pots'' have been installed farther away from the intersection region (up to 100~m). Using an especially desi...

  13. Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    OpenAIRE

    Collaboration, T. Csörgő for the TOTEM; :; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F. S.

    2012-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $\\sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cros...

  14. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  15. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  16. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    Science.gov (United States)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  17. Total cross sections for electron scattering with halocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Naghma, Rahla; Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    2014-03-01

    Highlights: • A quantum mechanical model to find elastic, inelastic and total CS by e{sup −} impact. • Spherical complex optical potential formalism is used to find total CS. • Result shows consistency and good agreement with previous data wherever available. • Maiden attempt to find CS for CH{sub 2}Br{sub 2}, CHBr{sub 3}, CBr{sub 4} and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules. • Interesting correlation observed between total CS and polarizability of the molecule. - Abstract: A theoretical study on electron collision with chlorinated methanes: CH{sub 2}Cl{sub 2} and CHCl{sub 3}, brominated methanes: CH{sub 2}Br{sub 2}, CHBr{sub 3} and CBr{sub 4} and some mono chloroalkanes: C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules in gaseous ground state is undertaken to report elastic, inelastic and total cross sections in the 20–5000 eV energy range. The target molecule is represented as a sum of various scattering centres, which are assumed to scatter electrons independently. The spherical complex optical potential (SCOP) is formulated to represent the interaction dynamics between the electron and the constituent scattering centres. Using SCOP, the quantum mechanical scattering problem is solved through partial wave analysis. The results obtained for CH{sub 2}Cl{sub 2} and CHCl{sub 3} are compared with the available experimental and theoretical values. The elastic cross section for CBr{sub 4} shows satisfactory agreement with the previous available data. The cross sections for CH{sub 2}Br{sub 2}, CHBr{sub 3}, and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules presented in this work are reported for the first time.

  18. Fast-neutron total and scattering cross sections of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.

  19. Fast-neutron total and scattering cross sections of niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  20. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  1. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  2. Medium modified two-body scattering amplitude from proton-nucleus total cross-sections

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.

  3. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Science.gov (United States)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  4. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad (India)

    2016-07-21

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  5. Total cross sections for positron and electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Zecca, A; Chiari, L; Trainotti, E; GarcIa, G; Blanco, F; Brunger, M J

    2010-01-01

    In this paper we report original measurements of total cross sections for positron scattering from the important biomolecule pyrimidine. The energy range of these measurements was 0.3-45 eV, while the energy resolution was ∼260 meV. In addition, we report theoretical results, calculated within the independent atom-screened additivity rule (IAM-SCAR) formalism, for the corresponding electron impact total cross sections. In that case the energy range is 1-10 000 eV. Total cross sections are very important input data for codes that seek to simulate charged-particle tracks in matter, as they define the mean-free path between collisions. As the present data and computations are to the best of our knowledge the first total cross sections to be reported for either positron or electron scattering from pyrimidine, they fill an important void in our available knowledge in the literature.

  6. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  7. Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Dawidowski, J; Blostein, J J; Granada, J R

    2006-01-01

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined

  8. Fast-neutron total and scattering cross sections of 103Rh

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Fast-neutron total cross sections of 103 Rh are measured with 30 to 50 keV resolutions from 0.7 to 4.5 MeV. Differential elastic- and inelastic-scattering cross sections are measured from 1.45 to 3.85 MeV. Scattered-neutron groups corresponding to excited levels at 334 +- 13, 536 +- 7, 648 +- 25, 796 +- 20, 864 +- 22, 1120 +- 22, 1279 +- 50, 1481 +- 27, 1683 +- 39, 1840 +- 79, 1991 +- 71 and 2050 (tentative) keV are observed. An optical-statistical model is derived from the elastic-scattering results. The experimental values are compared with comparable quantities given in the ENDF/B-V evaluation

  9. Mikheyev-Smirnov-Wolfenstein effect in electron-neutrino scattering experiments

    International Nuclear Information System (INIS)

    Bahcall, J.N.; Gelb, J.M.; Rosen, S.P.

    1987-01-01

    We calculate the influence of resonant neutrino scattering [the Mikheyev-Smirnov-Wolfenstein (MSW) effect] in the Sun and in the Earth on measurable quantities in solar-neutrino--electron scattering experiments. The MSW effect reduces the expected rate for 8 B-neutrino--electron scattering by a factor that ranges from --0.8 to --0.2 if resonant scattering is the correct explanation for the discrepancy between observation and calculation in the /sup 37/Cl experiment. The Earth can produce a significant diurnal effect for certain values of the neutrino mixing angle and mass difference

  10. Elastic Scattering and Total Cross-Section in p+p reactions as measured by the LHC Experiment TOTEM at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Csörgö, Tamás; Aspell, P; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bozzo, M; Brogi, P; Brücken, E; Buzzo, A; Cafagna, F S; Calicchio, M; Catanesi, M G; Covault, C; Csanád, M; Deile, M; Dimovasili, E; Doubek, M; Eggert, K; Eremin, V; Ferretti, R; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Intonti, M R; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Magaletti, L; Magazzù, G; Mercadante, A; Meucci, M; Minutoli, S; Nemes, F; Niewiadomski, H; Noschis, E; Novák, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Perrot, A-L; Pedreschi, E; Petäjäjärvi, J; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Vítek, M; Welti, J; Whitmore, J

    2012-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $\\sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV$^2$. Extending the range of data to low t values from 0.02 to 0.33 GeV$^2$,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at $\\sqrt{s}$ = 7 TeV is measured to be $(98.3 \\pm 0.2^{stat} \\pm 2.8^{syst})$ mb.

  11. Total cross section of furfural by electron impact: Experiment and theory

    Science.gov (United States)

    Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.

    2017-08-01

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  12. Total cross section of furfural by electron impact: Experiment and theory.

    Science.gov (United States)

    Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G

    2017-08-07

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  13. Inversion of the total cross sections for electron-molecule and electron-atom scattering

    International Nuclear Information System (INIS)

    Lun, D.R.; Amos, K.; Allen, L.J.

    1994-01-01

    Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs

  14. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  15. Elastic scattering with the MINERνA experiment

    International Nuclear Information System (INIS)

    Ziemer, Benjamin P

    2013-01-01

    The Main Injector Experiment ν-A (MINERνA) located at Fermi National Laboratory will measure neutrino cross sections, nuclear effects from a broad range of nuclear targets and a variety of other neutrino interactions. Neutrino elastic scattering will be one of the first focuses of the MINERA collaboration; these measurements will be an important input to current and future neutrino oscillation experiments. Results of the charged current quasi-elastic channel exposure in anti-neutrino NuMI running are presented. Future elastic scattering results, both charged current and neutral current, in anti-neutrino and neutrino exposures are also discussed.

  16. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  17. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  18. Total cross sections for slow-electron (1--20 eV) scattering in solid H2O

    International Nuclear Information System (INIS)

    Michaud, M.; Sanche, L.

    1987-01-01

    An analytical method is proposed to determine absolute total cross sections per scatterer and related mean free paths for low-energy electron scattering in disordered molecular solid films. The procedure is based on a two-stream multiple-scattering model of the thickness dependence of the film reflectivity for elastic electrons. The expected analytical behavior and accuracy are tested on a model sample whose scattering properties are generated by a Monte Carlo simulation from initially known parameters. The effects of multiple scattering inside the film and at its interfaces are taken into account and discussed. The thickness dependence of the elastic electron reflectivity of H 2 O film condensed at 14 K is reported between 1 and 20 eV incident energy with a spectrometer resolution of 10 MeV. The proposed method is applied to extract from these measurements the energy dependence of the total effective and total inelastic cross sections for electron scattering in amorphous ice

  19. Fast-neutron total and elastic-scattering cross sections of elemental indium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Broad-resolution neutron total cross sections of elemental indium were measured from 0.8 to 4.5 MeV. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 3.8 MeV at intervals of approx. = 50 to 200 keV and at scattering angles in the range 20 to 160 degrees. The experimental results are interpreted in terms of the optical-statistical model and are compared with respective values given in ENDF/B-V

  20. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  1. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  2. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  3. Fast-neutron total and scattering cross sections of elemental palladium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 0 . The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values

  4. Fast-neutron total and scattering cross sections of elemental palladium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160/sup 0/. The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values.

  5. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  6. Introduction of sample environment equipment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Shimojo, Yutaka; Ihata, Yoshiaki; Kaneko, Koji; Takeda, Masayasu

    2013-02-01

    Neutron scattering experiments have been frequently performed under variety of sample conditions, such as various temperatures, pressures, magnetic fields and stresses, and those complex conditions to fully utilize superior properties of neutron. To this aim, a number of sample environment equipment, refrigerators, furnaces, pressure cells, superconducting magnets are equipped in JRR-3 to be used for experiments. In this document, all available sample environment equipment in both JRR-3 reactor and guide halls are summarized. We hope this document would help neutron scattering users to perform effective and excellent experiments. (author)

  7. Inexpensive Mie scattering experiment for the classroom manufactured by 3D printing

    International Nuclear Information System (INIS)

    Scholz, Christian; Sack, Achim; Heckel, Michael; Pöschel, Thorsten

    2016-01-01

    Scattering experiments are fundamental for structure analysis of matter on molecular, atomic and sub-atomic length scales. In contrast, it is not standard to demonstrate optical scattering experiments on the undergraduate level beyond simple diffraction gratings. We present an inexpensive Mie scattering setup manufactured with 3D printing and open hardware. The experiment can be used to determine the particle size in dilute monodisperse colloidal suspensions with surprisingly high accuracy and is, thus, suitable to demonstrate relations between scattering measurements and microscopic properties of particles within undergraduate lab course projects. (paper)

  8. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  9. Validation of large-angle scattering data via shadow-bar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, S., E-mail: ohnishi@nmri.go.jp [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan); Tamaki, S.; Murata, I. [Osaka University, 1-14-16-1, Yamadaoka, Suita-si, Osaka 565-0871 (Japan)

    2016-11-15

    Highlights: • An experiment to validate large-angle scattering cross section is conducted. • Pieces of Nb foil are set behind a shadow bar to obtain the {sup 92m}Nb production rates. • The results calculated using ENDF/B-VI library data exhibit a 57% overestimation. • The adjustment of cross section in large-angle region makes the C/E close to 1. - Abstract: An experiment emphasizing the influence of large-angle scattering on nuclear data was conducted, in which a Fe shadow bar and a Fe slab target were placed before a deuterium–tritium fusion (DT) neutron source. Two Nb foils were set on both sides of the shadow bar in order to monitor the neutron source intensity and to measure the neutrons scattered from the slab target. The {sup 93}Nb(n,2n){sup 92m}Nb reaction rate of the foil was measured following the DT neutron irradiation and calculated using the MCNP5 Monte Carlo radiation transportation code. The {sup 92m}Nb production rates calculated using data from the JEFF-3.1 and JENDL-4.0 libraries agreed with that measured in the experiment, while the result calculated using data from the ENDF/B-VI library exhibited a 57% overestimation. Because the sensitivity of the {sup 92m}Nb production rate to the scattering angular distribution was large in the angular region between scattering direction cosines of −0.9 and −0.4, the scattering angular distribution was adjusted in that region. This adjustment resulted in a calculation-to-experiment ratio close to 1, but had little influence on the existing integral benchmark experiment.

  10. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  11. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  12. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  13. The basic physics of neutron scattering experiments

    International Nuclear Information System (INIS)

    Mezei, F.

    1999-01-01

    The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)

  14. The justification for the use of table of equivalent squares with respect to reference depth total scatter factor, and phantom scatter factor, for cobalt-60 teletherapy

    International Nuclear Information System (INIS)

    Afari, F.

    2011-01-01

    The use of equivalent squares is of great value and importance when determining output and depth dose data for rectangular fields. The variation with field shape of collimator scatter factors (S c ), phantom scatter factors (S c,p ) were studied using measurements on GWGP 80 cobalt - 60 teletherapy machine at the National Centre of Radiotherapy and Nuclear Medicine in the Korle-Bu Teaching Hospital. Measurements of the collimator scatter factors (S c ), phantom scatter factors (S p ) and total scatter factors (S c, p) were made at the depth of 5 cm, 10 cm, 15 cm and 20 cm in full scatter water phantom for square field side and rectangular fields of varying dimensions. The measurements were done using the source - axis distance (Sad) technique. The values of total scatter factor (S c,p ), phantom scatter factor and collimator scatter factor (S c ) obtained were used to estimate equivalent squares for the rectangular fields at the various depths. The equivalent squares were computed using the method of interpolation which is based on the scatter analysis of these scatter factors and these estimated equivalent squares were then compared with equivalent squares were then compared with equivalent square fields from BJR (supplement 21) tables of equivalent squares. The research revealed that there were average deviation of 1.5% for smaller rectangular field sizes and 8.8% for elongated rectangular field sizes between the estimated square field sizes and the equivalent square field from BJR (supplement 21) Table of equivalent square fields. The 8.8% for the elongated rectangular fields is not accepted, though such fields are rarely used in our Hospitals. It was found that the values of the equivalent square at the various depth were very consistent and do not vary with reference depth. These findings confirm that the clinical use of the BJR (supplement 21) Table of equivalent squares for total scatter factors and phantom scatter related quantities of rectangular fields is

  15. A semi-empirical formula for total cross sections of electron scattering from diatomic molecules

    International Nuclear Information System (INIS)

    Liu Yufang; Sun Jinfeng; Henan Normal Univ., Xinxiang

    1996-01-01

    A fitting formula based on the Born approximation is used to fit the total cross sections for electron scattering by diatomic molecules (CO, N 2 , NO, O 2 and HCl) in the intermediate- and high-energy range. By analyzing the fitted parameters and the total cross sections, we found that the internuclear distance of the constituent atoms plays an important role in the e-diatomic molecule collision process. Thus a new semi-empirical formula has been obtained. There is no free parameter in the formula, and the dependence of the total cross sections on the internuclear distance has been reflected clearly. The total cross sections for electron scattering by CO, N 2 , NO, O 2 and HCl have been calculated over an incident energy range of 10-4000 eV. The results agree well with other available experimental and calculation data. (orig.)

  16. Total cross sections and elastic scattering at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Foley, K.J.

    1985-12-05

    The need is discussed of a special purpose detector for the measurement of elastic scattering at the SSC. The detector would cover as small a solid angle as is practical. Two techniques are described briefly to measure total cross sections at hadron storage rings. The direct method is to measure the interaction rate in an IR of known luminosity - a method that gets more difficult increasing energy. A second method is to use the optical theorem. 6 refs., 1 fig. (LEW)

  17. Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Brugger, R.M.

    1975-12-01

    Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment

  18. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  19. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in [sup 12]C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  20. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    International Nuclear Information System (INIS)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in 12 C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  1. A novel technique for determining luminosity in electron-scattering/positron-scattering experiments from multi-interaction events

    Science.gov (United States)

    Schmidt, A.; O'Connor, C.; Bernauer, J. C.; Milner, R.

    2018-01-01

    The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric Møller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single Møller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a Møller/Bhabha interaction and a concurrent elastic ep interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.

  2. Recent single ARM electron scattering experiments at Saclay

    International Nuclear Information System (INIS)

    Frois, B.

    1981-07-01

    Some recent electron scattering experiments at intermediate energies performed at the Saclay linear accelerator (ALS) are presented. First the definitive results of the measurements of the size of valence orbits by magnetic elastic electron scattering are discussed and followed by an overview of the study of charge distributions in closed shell nuclei. These results are among the most stringent experimental tests of nuclear theory because they probe without ambiguity the shape of nuclei. Then, it is shown how the details of the transition densities of the first excited states of 152 Sm have been brought out by very high momentum transfer experiments. Finally, the results of the investigation of mesonic degrees of freedom in deuterium and helium-3 are presented

  3. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  4. Experiment on direct nn scattering - The radiation-induced outgassing complication

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S.L., E-mail: sstephen@gettysburg.edu [Gettysburg College, Gettysburg, PA 17325 (United States); Crawford, B.E. [Gettysburg College, Gettysburg, PA 17325 (United States); Furman, W.I.; Lychagin, E.V.; Muzichka, A.Yu.; Nekhaev, G.V.; Sharapov, E.I.; Shvetsov, V.N.; Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G.; Lyzhin, A.E.; Chernukhin, Yu.I. [Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics, P.O. Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Showalter-Bucher, R.A. [Northeastern University, Boston, MA 02115 (United States)

    2012-12-01

    The first direct neutron-neutron scattering experiment using the YAGUAR pulsed reactor has yielded initial results. They show a unforeseen significant thermal neutron background as a result of radiation-induced desorption within the scattering chamber. Thermal neutrons are mostly scattering not from other neutrons but instead from the desorbed gas molecules. Analysis of the obtained neutron time-of-flight spectra suggests neutron scattering from H{sub 2} molecules. The presented desorption model agrees with our experimental value of the desorption yield {eta}{sub {gamma}}=0.02 molecules/gamma. Possible techniques to reduce the effect of the desorption background are presented.

  5. Electron-nucleon scattering experiments in the GeV range

    International Nuclear Information System (INIS)

    Glawe, U.B.

    1980-01-01

    In the framework of this thesis a computer code systems was developed which describes the inclusive electron scattering on bound nucleons in the impact approximation. It could be shown that the structure functions for the quasi-free scattering can be represented as an incoherent superposition of the structure functions of the free processes. The structure functions of the free processes were determined from experimental cross sections. From the comparison of the calculations with electron scattering experiments on the nuclei 6 Li, 9 Be, 12 C, 27 Al, and 28 Si in the kinematic range 0.0 2 2 and W [de

  6. Simulation of a complete inelastic neutron scattering experiment

    DEFF Research Database (Denmark)

    Edwards, H.; Lefmann, K.; Lake, B.

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...... with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial....

  7. The complete experiment for backward elastic dp scattering

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Piskunov, N.M.; Sitnik, I.M.

    1996-01-01

    The problem of the complete experiment in backward elastic dp scattering is analyzed. All effects due to polarization of one or two initial and one of secondary particles are considered. It is shown that the minimal set of measurements allowing to reconstruct each of four amplitudes describing this process does not comprise too complicated experiments and is quite realistic nowadays. The geography of realization of the complete experiment is briefly reviewed. 21 refs

  8. Thomson scattering diagnostic for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson scattering diagnostic system (TSS) on the microwave tokamak experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900±70 eV and 1--2x10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed be able to detect these electrons, which can have energies up to 10 keV, according to computer simulation

  9. Status and neutron scattering experiments at KENS

    International Nuclear Information System (INIS)

    Watanabe, N.; Sasaki, H.; Ishikawa, Y.; Endoh, Y.; Inoue, K.

    1983-01-01

    This paper reports present status of the KENS facility, progress in neutron scattering experiments and instrumental developments, and status of the KENS-I' program. A design study of a high intensity rapid-cycle 800 MeV proton synchrotron for proposed new pulsed neutron (KENS-II) and meson source is also descirbed

  10. PELINSCA, Elastic Scattering and Total Cross-Sections and Polarization by Hauser-Feshbach

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Fiedeldey, H.; Tepel, J.W.

    1979-01-01

    1 - Nature of the physical problem solved: Calculates differential and total Cross sections as well as polarization for nuclear elastic scattering of spin 0 or spin 1/2 particles. Calculates Cross sections (differential and total) and decay gamma ray angular correlation for inelastic processes by means of standard Hauser-Feshbach (HF) theory or with modified HF theory including width fluctuation corrections. In elastic scattering optical model parameters may be optimized in a least squares procedure involving experimental measurements. 2 - Method of solution: Schroedinger equation for complex potentials is solved according to Fox-Goodwin method of numerical integration. Coulomb wave functions are calculated by using recurrence relations depending on range of Coulomb and energy parameters. Least squares fits are made using parameter grid and direction of steepest descent. Statistical model calculations are made using closed mathematical expressions. 3 - Restrictions on the complexity of the problem: Elastic scattering calculations limited to spin 0 or spin 1/2 particles. Number of partial waves limited to 51. Statistical model calculations on targets with spin less or equal to 5 and with partial waves up to l=6. Not suitable for heavy-ion Hauser- Feshbach calculations without first removing dimensional limitations. Program handles up to 3 reaction types simultaneously, e.g. (p,p), (p,n) and (p,alpha), each reaction channel having up to 33 final nuclear states

  11. Experimenting from a Distance in the Case of Rutherford Scattering

    Science.gov (United States)

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.

    2010-01-01

    The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…

  12. Detector system for e-d scattering experiments on the VEPP-3 storage ring

    International Nuclear Information System (INIS)

    Isaeva, L.G.; Lazarenko, B.A.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Ukraintsev, Yu.G.; Tsentalovich, E.P.; Wojtsekhowski, B.B.; Nelubin, V.V.

    1993-01-01

    Experiments on electron scattering from polarized deuterons were carried out on the VEPP-3 storage ring at the Novosibirsk Institute for Nuclear Physics. The e-D coincidences were detected for elastic scattering experiments, and the p-n coincidences for photo disintegration studies. The tensor analyzing power of the elastic scattering was measured in the range of momentum transfer up to 3 f -1 , and of photo disintegration in the range of photon energy up to 500 MeV. The detector system created for these experiments and the data analysis procedures are described in this paper. (orig.)

  13. The measurement of antiproton-proton total cross sections and small-angle elastic scattering at low momentum

    International Nuclear Information System (INIS)

    Linssen, L.H.A.J.

    1986-01-01

    In this thesis two low-momentum antiproton-proton (anti pp) experiments are described. The first one is a set of 24 high statistics anti pp total cross section measurements as a function of the incoming antiproton momentum between p=388 MeV/c and p=599 MeV/c. These measurements simultaneously yield the charge exchange cross section (anti pp → anti nn). The second one comprises two high statistics anti pp small-angle elastic scattering measurements at p=233 MeV/c and p=272 MeV/c. The measurements were carried out using the high quality antiproton beam extracted from the Low Energy Antiproton Ring (LEAR) at CERN. The physics motivation for these experiments is a search for anti pp resonances or bound states on one hand, and a detailed study of the anti pp interaction on the other hand. (orig.)

  14. Neutron-Proton Scattering Experiments at ANKE-COSY

    Science.gov (United States)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  15. Thomson scattering diagnostic for the Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson-scattering diagnostic system (TSS) on the Microwave Tokamak Experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900 ± 70 eV and 1 to 2 x 10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed by able to detect these electrons, which can have energies up to 10 keV, according to computer simulation. 7 refs., 4 figs

  16. Watching Nanoparticles Form: An In Situ (Small-/Wide-Angle X-ray Scattering/Total Scattering) Study of the Growth of Yttria-Stabilised Zirconia in Supercritical Fluids

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Pauw, Brian; Jensen, Kirsten Marie Ørnsbjerg

    2012-01-01

    Understanding nanoparticle formation reactions requires multitechnique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nano...... of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25%....

  17. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    International Nuclear Information System (INIS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T.J.; Cesar, J.; Cushman, P.; Dent, J.B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H.R.; Hays, C.C.; Iyer, V.

    2017-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  18. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  19. Absolute total electronically elastic differential e--H2 scattering cross-section measurements from 1 to 19 eV

    International Nuclear Information System (INIS)

    Furst, J.; Mahgerefteh, M.; Golden, D.E.

    1984-01-01

    Absolute e - -H 2 total electronically elastic differential scattering cross sections have been determined from relative scattered-electron angular distribution measurements in the energy range from 1 to 19 eV by comparison to absolute e - -He elastic differential scattering cross sections measured in the same apparatus. Integrated total cross sections have been determined as well. Absolute differences as large as 50% between the present results and some previous results have been found, although the agreement as to shape is quite good in many cases. The present results are generally in excellent agreement with recent full rovibrational laboratory-frame close-coupling calculations

  20. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  1. Neutron–Proton Scattering Experiments at ANKE–COSY

    Directory of Open Access Journals (Sweden)

    Rathmann F.

    2010-04-01

    Full Text Available The nucleon–nucleon interaction (NN is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN–scattering experiments. While the EDDA experiment has dramatically improved the proton–proton date base, information on spin observables in neutron–proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi–free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → {pp}n deuteron charge–exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin– dependent parts of the neutron–proton charge–exchange amplitudes. Our measurement of the deuteron–proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  2. π-Helium-4 scattering experiment at 5GeV/c. Data processing

    International Nuclear Information System (INIS)

    Cotte, Philippe.

    1978-01-01

    The context of this work is an experiment realised at CERN, with the object to search pre-existing isobaric states in helium nucleus, by means of the study of scattering reactions of π - with simultaneous observation of recoil nucleus ( 3 He or 3 H) and forward pion. In this work, only the study of recoil detectors is done. This one, described with many details consists of a set of four wire chamber planes, two planes of semiconductors and two scintillators planes. The performances of this set of detectors are presented in regard to identification of recoil particle, energy and recoil angle measurements. A 'missing mass' analysis of the events of the experiment is done. Preliminary results of elastic and inelastic scattering are given. For elastic scattering a qualitative comparison is done with the multiple scattering Glauber formalism [fr

  3. Precise measurement in elastic electron scattering: HAPPEX and E-158 experiments

    International Nuclear Information System (INIS)

    Vacheret, A.

    2004-12-01

    Parity Violation asymmetry measurements in elastic electron scattering are in one hand an interesting way of retrieving new informations about the sea quarks of the nucleon and in the other hand a powerful test of the Standard Model electroweak sector at low energy. This thesis describes the HAPPEX experiment at JLab and the E-158 experiment at SLAC (USA) which measure de parity violation asymmetries in elastic scattering of polarized electron on nuclei like Hydrogen or Helium and on atomic electrons. With the measurements on hadronic targets one can extract the strange quarks contribution to the charge and current density of the nucleon. With the electron-electron scattering one can test the standard model at the loop level and far from the Z pole by extracting sin 2 θ W . In this thesis we describe the formalism associated with the electroweak probe. We present in detail the experimental methods used to make such precise measurements of parity violation asymmetry. Then, we describe the experimental set-up of each experiment and in particular the electron detector and the feedback loop on the beam current for the HAPPEX experiment and the analysis of E-158 run III with a dedicated systematic study on the beam sub-pulse fluctuations. We present the preliminary results for each experiment with a comparison with the other existing results and the future experiments. (author)

  4. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  5. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  6. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  7. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  8. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  9. On the analysis of Deep Inelastic Neutron Scattering Experiments

    International Nuclear Information System (INIS)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R.

    2001-01-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  10. On the analysis of Deep Inelastic Neutron Scattering Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    2001-03-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  11. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  12. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  13. Forward and backward scattering experiments in ultra-cold Rubidium atoms

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo

    project, we have studied coherent forward scattering in the form of a memory experiment. In such an experiment we convert the input light pulse to an atomic excitation, and at a later time convert back the atomic excitation into the retrieved light pulse. In the first project, we investigate the source...

  14. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Schlossberg, D J; Bongard, M W; Fonck, R J; Schoenbeck, N L; Winz, G R

    2013-01-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 10 19 m −3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development

  15. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  16. Enhanced Thomson scattering theory applied to eight experiments

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.

    1985-01-01

    The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks

  17. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  18. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  19. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  20. Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR

    Energy Technology Data Exchange (ETDEWEB)

    Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2007-06-01

    The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.

  1. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  2. Scattering of electrons by alkali-halide molecules: LiBr and CsCl

    International Nuclear Information System (INIS)

    Vukovic, L.; Zuo, M.; Shen, G.F.; Stumpf, B.; Bederson, B.

    1989-01-01

    We have investigated small-angle electron scattering by highly polar molecules. Recoil experiments are performed at 5 and 20 eV for electrons scattered by LiBr and CsCl, within the shadow of the unscattered molecular beam. Low-angular-range scattering described by the Born approximation for rotating dipoles, combined with different theories for intermediate- and high-angle scattering, are compared with our results. Evaluated total scattering cross sections as well as momentum-transfer and viscosity cross sections are given. A general two-dimensional analysis of the recoil experiment is presented

  3. Fast-neutron total and scattering cross sections of 58Ni

    International Nuclear Information System (INIS)

    Jorgensen, C.B.; Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-09-01

    Neutron total cross sections of 58 Ni were measured at 25 keV intervals from 0.9 to 4.5 MeV with 50 to 100 keV resolutions. Attention was given to self-shielding corrections to the observed total cross sections. Differential elastic- and inelastic-scattering cross sections were measured at 50 keV intervals from 1.35 to 4.0 MeV with 50 to 100 keV resolutions. Inelastic excitation of levels at 1.458 +- 0.009, 2.462 +- 0.010, 2.791 +- 0.015, 2.927 +- 0.012 and 3.059 +- 0.025 MeV was observed. The experimental results were interpreted in terms of optical-statistical and coupled-channels models. A spherical optical-statistical model was found generally descriptive of an energy-average of the experimental results. However, detailed considerations suggested significant contributions from direct-vibrational interactions, particularly associated with the excitation of the first 2+ level

  4. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  5. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  6. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  7. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  8. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  9. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  10. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  11. Total internal reflection and dynamic light scattering microscopy of gels

    Science.gov (United States)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  12. Calculation of electron-helium scattering

    International Nuclear Information System (INIS)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3 3 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  13. Realizing total reciprocity violation in the phase for photon scattering.

    Science.gov (United States)

    Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian

    2017-02-22

    Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.

  14. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  15. A data reduction program for the linac total-scattering amorphous materials spectrometer (LINDA)

    International Nuclear Information System (INIS)

    Clarke, J.H.

    1976-01-01

    A computer program has been written to reduce the data collected on the A.E.R.E., Harwell linac total-scattering spectrometer (TSS) to the differential scattering cross-section. This instrument, used for studying the structure of amorphous materials such as liquids and glasses, has been described in detail. Time-of-flight spectra are recorded by several arrays of detectors at different angles using a pulsed incident neutron beam with a continuous distribution of wavelengths. The program performs all necessary background and container subtractions and also absorption corrections using the method of Paalman and Pings. The incident neutron energy distribution is obtained from the intensity recorded from a standard vanadium sample, enabling the observed differential scattering cross-section dsigma/dΩ (theta, lambda) and the structure factor S(Q) to be obtained. Various sample and vanadium geometries can be analysed by the program and facilities exist for the summation of data sets, smoothing of data, application of Placzek corrections and the output of processed data onto magnetic tape or punched cards. A set of example data is provided and some structure factors are shown with absorption corrections. (author)

  16. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  17. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  18. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  20. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  1. Simple smoothing technique to reduce data scattering in physics experiments

    International Nuclear Information System (INIS)

    Levesque, L

    2008-01-01

    This paper describes an experiment involving motorized motion and a method to reduce data scattering from data acquisition. Jitter or minute instrumental vibrations add noise to a detected signal, which often renders small modulations of a graph very difficult to interpret. Here we describe a method to reduce scattering amongst data points from the signal measured by a photodetector that is motorized and scanned in a direction parallel to the plane of a rectangular slit during a computer-controlled diffraction experiment. The smoothing technique is investigated using subsets of many data points from the data acquisition. A limit for the number of data points in a subset is determined from the results based on the trend of the small measured signal to avoid severe changes in the shape of the signal from the averaging procedure. This simple smoothing method can be achieved using any type of spreadsheet software

  2. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  3. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  4. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  5. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. (Argonne National Lab., IL (United States)); Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  6. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    Science.gov (United States)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns

  7. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  8. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  9. Detection of inverse Compton scattering in plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Simon

    2016-12-15

    Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.

  10. Slow neutron scattering experiments

    International Nuclear Information System (INIS)

    Moon, R.M.

    1985-01-01

    Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables

  11. Neutron scattering on molten transition metals and on Fe-C melts

    International Nuclear Information System (INIS)

    Weber, M.

    1978-01-01

    In order to find out whether short-range order phenomena can be detected in iron-carbon melts, neutron scattering experiments were carried out in molten iron-carbon alloys. The method of isotope substitution, where the natural alloying iron was substituted by a 57 Fe-enriched isotope mixture, helped to increase the ratio between the scattering length of the carbon atoms and that of the iron atoms. The mean coherent scattering length for the isotope mixture which is required for further evaluation of the measurements, was determined in an experiment by measuring the limiting angle for total reflection of neutrons on evaporated films. From this determination of the scattering length, a value for the so far unknown scattering length of the 58 Fe isotope was obtained. The small angle scattering in corrected intensity curves of molten Fe-C alloys was investigated in detail. Scattering experiments in unalloyed Fe, Co, and Ni in the range of small scattering vectors proved that this small-angle scattering effect, which was observed here for the first time, is of magnetic origin. It is caused by short-range spin correlations fluctuating with space and time. [de

  12. Observation of fluxes of electrons scattered by the atmosphere in the second Araks experiment

    International Nuclear Information System (INIS)

    Lyachov, S.B.; Managadze, G.G.

    1980-01-01

    This paper describes the results of the USHBA spectrometer measurements of the fluxes of atmospheric scattered electrons in the second Araks experiment. The experimental data are presented for heights from 100 to 140 km. The spectral distributions of the scattered electron fluxes are given and the altitude variation of their intensity is compared with the atmosphere models. The conclusion is made about the possible effect of rocket gassing on the electron scattering processes for definite angles of injection

  13. Universal dependence of the total number albedo of photons on the mean number of photon scatterings

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2011-01-01

    Full Text Available This paper presents the results of research on photon reflection from plane targets based on Monte Carlo simulations performed by the MCNP code. Five materials (water, concrete, aluminum, iron, and copper are examined in the area of initial photon energies of up to 200 keV. The values of the total number albedo for photons dependent on the initial photon energy or the mean number of photon scatterings are calculated and graphically presented. We have shown that the values of the total number albedo for different target materials, expressed as a function of the mean number of photon scatterings, are in good agreement with each other and can be approximated by simple, universal analytic functions obtained by the least squares method. The accuracy of these analytic appoximations is confirmed by their comparison with the results of PENELOPE and FOTELP Monte Carlo codes.

  14. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  15. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  16. Update on the direct n-n scattering experiment at the reactor YAGUAR

    Science.gov (United States)

    Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.

    2013-10-01

    The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.

  17. Basic experiment on scattering type level gauge using neutron source

    International Nuclear Information System (INIS)

    Kumazaki, Hiroshi; Fukuchi, Ryoichi; Horiguchi, Yasuhiro

    1984-01-01

    The level gauges using sealed radiation sources have been utilized for pulp and chemical industries, however, for those gauges, transmission type gamma sources are used, which require considerably large radioactivity, and it hinders the spread to medium and small enterprises. Recently, Cf-252 has become easily available, and various He-3 counters are on the market, consequently, the scattering type level gauges combining them have been examined. With the level gauges of this type, the judgement of level can be made sufficiently with the Cf-252 below 3.7 x 10 6 Bq, therefore, if the practical instruments are made, they seem to spread into medium and small enterprises because of the safety and the chief handling radiation being unnecessary. For the purpose of developing and manufacturing for trial this scattering type level gauge, the basic experiment was carried out to examine the effects of the change of salt content and the thickness of vessels and the effect of scattering materials. The possibility of the on-off operation as level gauges was also examined. The experimental method and the results are reported. The count considerably decreased with increasing salt content. Scattering materials worked effectively to increase the count. (Kako, I.)

  18. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  19. Small-angle neutron-scattering experiments

    International Nuclear Information System (INIS)

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  20. The measurement of the real part of the proton-antiproton elastic scattering amplitude at a C.M.S. energy of 546 GEV and the rise of the total cross section

    International Nuclear Information System (INIS)

    Kluit, P.M.

    1988-01-01

    The subject of this thesis is the experimental study of the elastic scattering of protons and anti-protons at a centre of mass energy of 546 GeV at the SPS (Super Proton Synchrotron) at CERN. The measurement of ρ, i.e. the ratio of the real to the imaginary part of the nuclear part of elastic scattering amplitude for proton-antiproton at zero momentum transfer squared (-t = 0 GeV 2 ), at a centre of mass energy of √s = 546 GeV is described. The implications of the result of this measurement for the behaviour of the total cross section in the TeV domain are derived. The hypothesis is investigated whether there is a relation between the rise of the total cross section and the rise of the total jet cross section, as calculated in perturbative QCD and observed by the UA1 experiment. 104 refs.; 40 figs.; 16 tabs

  1. Simulation of complete neutron scattering experiments: from model systems to liquid germanium; Simulation complete d'une experience de diffusion de neutrons: des systemes modeles au germanium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hugouvieux, V

    2004-11-15

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  2. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Lohmann, Bernd; Grum-Grzhimailo, Alexei N.; Kleinpoppen, Hans

    2013-01-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  3. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  4. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  5. Effect of finite sample dimensions and total scatter acceptance angle on the gamma ray buildup factor

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Charanjeet; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The simultaneous variation of gamma ray buildup factors with absorber thickness (up to 6.5 mfp) and total scatter acceptance angle (which is the sum of incidence and exit beam divergence) in the media of high volume flyash concrete and water was studied experimentally using a point isotropic 137 Cs source

  6. Elastic Scattering and Total Cross-Section in p+p Reactions --As Measured by the LHC Experiment TOTEM at √{s} = 7 TeV--

    Science.gov (United States)

    Csörgő, T.; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, M. R.; Janda, M.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Magaletti, L.; Magazzù, G.; Mercadante, A.; Meucci, M.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novák, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Perrot, A.-L.; Pedreschi, E.; PetäJäjärvi, J.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.; Totem Collaboration

    Proton-proton elastic scattering has been measured by the TOTEMexperiment at the CERN Large Hadron Collider at √{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^{2}. Extending the range of data to low t values from 0.02 to 0.33 GeV^2, and utilizing the luminosity measurements of CMS, the total proton-proton cross section at √{s} = 7 TeV is measured to be (98.3 ± 0.2^{stat} ± 2.8^{syst}) mb.

  7. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  8. Probing Amorphous Components in High Temperature TE Materials by in situ Total Scattering and the Pair Distribution Function (PDF) Method

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    -I clathrate Ba8Ga16Ge30. This suggests that local structure reorientations in the cage are likely to be the root cause of the degradation of the structure. This deepens our understanding of disordered clathrates, and provides evidence that the PDF technique is an effective method for probing local structure.......e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...... to heating cycles, then we are closer to distinguishing how we may generate materials that do not undergo specific structure reorientation processes, and/or how we may mitigate them before they occur. Here, we will present a total scattering and PDF study that probes the local structure of the Type...

  9. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  10. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  11. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    International Nuclear Information System (INIS)

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-01-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors

  12. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  13. Cobalt Coordination and Clustering in α-Co(OH)2 Revealed by Synchrotron X-ray Total Scattering

    International Nuclear Information System (INIS)

    Neilson, James R.; Kurzman, Joshua A.; Seshadri, Ram; Morse, Daniel E.

    2010-01-01

    Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite (Mg(OH) 2 ) are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods - analyzing both the Bragg and diffuse components - to resolve the intralayer structure of three different α-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed

  14. Cobalt coordination and clustering in alpha-Co(OH)(2) revealed by synchrotron X-ray total scattering.

    Science.gov (United States)

    Neilson, James R; Kurzman, Joshua A; Seshadri, Ram; Morse, Daniel E

    2010-09-03

    Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)(2)] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods-analyzing both the Bragg and diffuse components-to resolve the intralayer structure of three different alpha-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed

  15. Neutron inelastic scattering experiments on the mixed-valent compound YbCuAl

    International Nuclear Information System (INIS)

    Mattens, W.C.M.; de Boer, F.R.; Murani, A.P.; Lander, G.H.

    1979-01-01

    The dynamical susceptibility of YbCuAl has been established by means of time of flight neutron scattering experiments. Non-Korringa behavior of the quasi-elastic line-width has been found and comparison with NMR data will be given

  16. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  17. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  18. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  19. Refractive index sensor based on total scattering of plasmonic nanotube

    Science.gov (United States)

    Yao, Kaiqiang; Zeng, Qingbing; Hu, Zengrong; Zhan, Yaohui

    2018-03-01

    Plasmonic nanostructures can couple free space light into anultrafine space; therefore,they are employed extensively in the refractive index sensors to minimize the device size or further improve the detection sensitivity. In this work, the optical response of the plasmonic nanotube are investigated comprehensively by using full wave finite element method. With a subwavelength scale, the silver nanotube have prominent scattering peaks in the visible range, which is very suitable for observing through the dark field microscope. The geometric dependence of the scattering spectra and the sensing performance are evaluated carefully. Results show that the scattering peaks are in linear relationship to the circumstance refractive index and a sensitivity of 337 nm/RIUcan be achieved easily by such a plasmonicnanotube with an optimized size.

  20. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    Science.gov (United States)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  1. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  2. Very large solid angle spectrometer for single arm electron scattering experiments

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of

  3. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  4. How do we know what is ‘inside the atom’?—Simulating scattering experiments in the classroom

    Science.gov (United States)

    Cunningham, E. S.

    2017-07-01

    The idea of the indivisible atom, held since the time of the ancient Greeks, was smashed just over 100 years ago. Ernest Rutherford and his team of scientists in the UK used scattering experiments to discover that atoms have a very dense and extremely small central nucleus that contains more than 99.9% of the mass of an atom and is ten thousand times smaller than an atom. Then just over 50 years ago three physicists in America: Jerome Friedman, Henry Kendall and Richard Taylor carried out scattering experiments in California, that revealed the internal structure of nucleons—later called quarks. This workshop, developed by the Public Engagement team at the Science and Technology Facilities Council, takes secondary school students through these historic discoveries and the present day scattering experiments still changing the world of science.

  5. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Farrer, R.; Longshore, A. [comps.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  6. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    International Nuclear Information System (INIS)

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation

  7. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  8. ‘Rutherford’s experiment’ on alpha particles scattering: the experiment that never was

    Science.gov (United States)

    Leone, M.; Robotti, N.; Verna, G.

    2018-05-01

    The so-called Rutherford’s experiment, as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial synthesis of a series of different particle scattering experiments, starting with that carried out by Rutherford in 1906 and ending with Geiger and Marsden’s 1913 experiments.

  9. Eikonal phase shift analyses of carbon-carbon scattering

    International Nuclear Information System (INIS)

    Townsend, L.W.; Bidasaria, H.B.; Wilson, J.W.

    1983-01-01

    A high-energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series is used to determine eikonal phase shifts for carbon-carbon scattering at 204.2, 242.7, and 288.6 MeV. The double-folding potentials are obtained by folding the energy-dependent free nucleon-nucleon interaction with densities for the projectile and target obtained by unfolding the finite nucleon charge density from harmonic-well carbon charge distributions. The charge parameters for the latter are taken from the results of electron scattering experiments. Predictions for total, reaction, and elastic differential cross sections, using standard partial wave analysis for the scattering of identical particles, are made and compared with recent experimental results. Excellent agreement is obtained although there are no arbitrarily adjusted parameters in the theory

  10. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  11. Neutron scattering facilities at China Institute of Atomic Energy. Present and future situations

    International Nuclear Information System (INIS)

    Ye, C.T.; Gou, C.; Yang, T.H.

    2001-01-01

    The 15 MW Heavy Water Research Reactor (HWRR) at CIAE in Beijing is the only neutron source available for neutron scattering experiments in China at present. So far totally 5 neutron scattering spectrometers are installed at 4 beam tubes. A 60 MW new research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. A brief description of HWRR, the presently existing neutron scattering equipments at HWRP, CARR, and the neutron scattering facilities to be installed at CARR are presented. (J.P.N.)

  12. Transition from hydrodynamic to fast sound in a He-Ne mixture a neutron Brillouin scattering experiment

    CERN Document Server

    Bafile, U; Barocchi, F; Sampoli, M

    2002-01-01

    The presence of a fast-sound mode in the microscopic dynamics of the rare-gas mixture He-Ne, predicted by theoretical studies and molecular-dynamics simulations, was demonstrated by an inelastic neutron scattering experiment. In order to study the transition between the fast and the normal acoustic modes in the hydrodynamic regime, k values lower by about one order of magnitude than in the usual experiments have to be probed. We describe here the results of the first neutron Brillouin scattering experiment performed with this purpose on the same system already investigated at larger k. The results of both experiments, together with those of a new molecular-dynamics simulation, provide a complete and consistent description, still missing so far, of the onset of fast-sound propagation in a binary mixture. (orig.)

  13. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  14. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  16. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  17. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  18. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  19. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher, Gustavo; Vandervoort, E.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (Sc,p)fclindet, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied...

  20. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  1. Electron scattering from tetrahydrofuran

    International Nuclear Information System (INIS)

    Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P

    2012-01-01

    Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.

  2. Data reduction for neutron scattering from plutonium samples. Final report

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1997-01-01

    An experiment performed in August, 1993, on the Low-Q Diffractometer (LQD) at the Manual Lujan Jr. Neutron Scattering Center (MLNSC) was designed to study the formation and annealing of He bubbles in aged 239 Pu metal. Significant complications arise in the reduction of the data because of the very high total neutron cross section of 239 Pu, and also because the sample are difficult to make uniform and to characterize. This report gives the details of the data and the data reduction procedures, presents the resulting scattering patterns in terms of macroscopic cross section as a function of momentum transfer, and suggests improvements for future experiments

  3. The Current Status of High Energy Elastic Scattering

    Science.gov (United States)

    Block, Martin M.; Kang, Kyungsik; White, Alan R.

    The recent total cross section, σtot, and ρ-value results from the Fermilab Tevatron Collider experiments,1,2 presented at the 4th “Blois” Workshop on Elastic and Diffractive Scattering, held at Elba in May 1991, provide a natural springboard from which to launch a focused review of the field.

  4. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  5. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  6. Parity nonconservation in proton scattering at higher energies

    International Nuclear Information System (INIS)

    Mischke, R.E.

    1993-01-01

    A parity-nonconservation experiment in the scattering of longitudinally-polarized protons at an incident proton momentum of 6 GeV/c is examined. This experiment indicates a sharp rise with energy of the total cross section correlated with proton helicity that was unexpected. This energy dependence is due to the strong part of the interaction and may indicate the role of a diquark component in the nucleon. New experiments at higher energies are needed to confirm such a model. Future experiment can benefit from an analysis of sources of systematic error that have been encountered in the experiment discussed here

  7. Resonant neutrino scattering: An impossible experiment?

    International Nuclear Information System (INIS)

    Suzuki, D.; Sumikama, T.; Ogura, M.; Mittig, W.; Shiraki, A.; Ichikawa, Y.; Kimura, H.; Otsu, H.; Sakurai, H.; Nakai, Y.; Hussein, M.S.

    2010-01-01

    The experimental feasibility was investigated for the resonant scattering of monoenergetic neutrinos emitted in the two-body β decay. A simple general formula shows that the resonance cross section can be as large as of the order of 10 -17 cm 2 . The Moessbauer setup using a solid crystal was examined with a focus on the electronic structure of the emitter and the absorber. Based on realistic calculations, we show that interactions of valence electrons in the solid lead to a level broadening of the atomic ground state, which considerably suppresses the resonant scattering of neutrinos.

  8. Complete experiment for dp and 3He,d backward elastic scattering

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Piskunov, N.M.; Sitnik, I.M.

    1997-01-01

    The problem of the complete experiment in backward elastic scattering of particles with spins of 1 and 1/2 is considered. For the first time all possible effects caused by polarization of one or two initial and one final particles are touched upon. The minimal set of measurements allowing to reconstruct each of four amplitudes describing this process is suggested. Some observables are expected to be sensitive to such deuteron peculiarities as possible P-wave components. The developed technique is a good tool to calculate easily the expectations in the Impulse Approximation for any observables. The geography of the complete experiment is briefly discussed

  9. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  10. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  11. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization

    DEFF Research Database (Denmark)

    Keller, Sune H; Svarer, Claus; Sibomana, Merence

    2013-01-01

    scatter correction in the μ-map reconstruction and total variation filtering to the transmission processing. Results: Comparing MAP-TR and the new TXTV with gold standard CT-based attenuation correction, we found that TXTV has less bias as compared to MAP-TR. We also compared images acquired at the HRRT......In the standard software for the Siemens high-resolution research tomograph (HRRT) positron emission tomography (PET) scanner the most commonly used segmentation in the μ -map reconstruction for human brain scans is maximum a posteriori for transmission (MAP-TR). Bias in the lower cerebellum...

  12. A small-angle camera for resonant scattering experiments at the storage ring DORIS

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Gabriel, A.

    1983-01-01

    Resonant small-angle scattering is measured routinely in the wavelength range of 0.6 to 3.25 A with the instrument X15 at the storage ring DORIS. The monochromatic beam with a vertical offset of 1.22 m is achieved by a double monochromator system with a constant exit slit. The small-angle instrument allows for sample-detector distances between 0.37 and 7.33 m. A multiwire proportional counter with a sensitive area of 200 X 200 mm detects the scattered intensity with a spatial resolution of 2 X 2 mm. Its sensitivity can be adapted to the requirements of the experiment by activating a drift chamber of 8 cm depth at the back end of the detector. The performance of the instrument as a function of the wavelength is described. The energy resolution is about 1 eV at the L 3 absorption edge of caesium, as shown by the resonant scattering of ferritin in 30% CsCl solution. (Auth.)

  13. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  14. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  15. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, D.K.; DiStravolo, M.A. (comps.)

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  16. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    International Nuclear Information System (INIS)

    Hyer, D.K.; DiStravolo, M.A.

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer

  17. Elastic scattering of. pi. /sup -/ mesons on protons in the Coulomb-nuclear interference region at 33-60 GeV/c. [Total and differential cross sections,scattering amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Apokin, V D; Vasiliev, A N; Derevshchikov, A A; Matulenko, Yu A; Meschanin, A P; Mysnik, A I; Nurushev, S B; Saraykin, A I; Siksin, V V; Smirnov, E V [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1976-04-19

    Differential cross sections for the elastic scattering of negative pions on protons, as well as total cross sections have been measured for the incident momentum range from 33 up to 60 GeV/c. The values for four-momentum transfer were within the limits of -(10/sup -3/-8x10/sup -2/) (GeV/c)/sup 2/. The energy dependence of the ratio rho(0) of the real part of the forward elastic scattering amplitude to the imaginary part has been determined from the experimental data. The magnitude rho(0) smoothly increases from (-10.9+-1.2)% at momenta 33.52 GeV/c up to (-1.8+-1.8)% at 59.4 GeV/c. The results obtained are compared with the predictions of theoretical models.

  18. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  19. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    International Nuclear Information System (INIS)

    Kreuzpaintner, Wolfgang

    2010-01-01

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  20. A fully computerized multi-pass Fabry-Perot interferometer for Rayleigh-Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.

    1987-01-01

    The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments

  1. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  2. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  3. Experimental plan of Σp scatterings at J-PARC

    Directory of Open Access Journals (Sweden)

    Tamura H.

    2012-02-01

    beams of 2×107/spill at 1.32 GeV/c and 1.42 GeV/c for the Σ− and Σ+ productions, respectively, are used to produce as many hyperon beam as possible.With 16×106 Σ− beam and 55×106 Σ+ beam around 500 MeV/c which are tagged by the spectrometers, we will detect ~10,000 Σ− p and Σ+ p scattering events and ~6,000 Σ− p → Λn inelastic reaction events in 60 days beam time in total. In this proceedings, we will present the experimental plan of the scattering experiment and results of the detailed simulation studies.

  4. Parity nonconservation in proton scattering at higher energies

    International Nuclear Information System (INIS)

    Mischke, R.E.

    1987-01-01

    Parity-nonconservation experiments in the scattering of longitudinally-polarized protons at incident proton momenta of 1.5 GeV/c and 6 GeV/c are examined. These experiments indicate a change with energy of the total cross section correlated with proton helicity that was unexpected. This energy dependence is due to the strong part of the interaction and may indicate the role of a diquark component in the nucleon. New experiments at higher energies are needed to confirm such a model. Future experiments can benefit from an analysis of sources of systematic error that have been encountered in the experiments discussed here. 43 refs., 3 figs

  5. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  6. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  7. Incoherent Thomson scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1996-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  8. Coherent photon scattering cross sections for helium near the delta resonance

    International Nuclear Information System (INIS)

    Delli Carpini, D.; Booth, E.C.; Miller, J.P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M.A.; Nathan, A.M.; Wells, D.P.

    1991-01-01

    The angular distributions for coherent photon scattering from 4 He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV

  9. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  10. Analysis of pp scattering at the CERN ISR energies in the multiple Regge pole model

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Kobylinsky, N.A.

    1976-01-01

    The simple Regge model is suggested for describing data on proton-proton elastic scattering at high energies. The simplest variant of the Regge model can be formulated as a sum of two pomerons, the first being a moving double pole and the second - a fixed simple pole. Comparison with known data is given. The model gives an infinite rise of the total cross section of pp-scattering. The differential cross section changes slowly with energy. The models of two pomerons reproduce many features of the geometric scaling, in particular, the shift of the dip and rise of scattering total cross section at the second maximum. The considered model is rather simple and is well consistent with experiment

  11. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    International Nuclear Information System (INIS)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z.; Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J.; Avati, V.; Berardi, V.; Quinto, M.; Berretti, M.; Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N.; Bozzo, M.; Lo Vetere, M.; Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E.; Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E.; Campanella, C.E.; De Leonardis, F.; D'Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F.; Csanad, M.; Nemes, F.; Sziklai, J.; Csoergo, T.; Deile, M.; Doubek, M.; Vacek, V.; Eggert, K.; Niewiadomski, H.; Taylor, C.; Garcia, F.; Heino, J.; Lauhakangas, R.; Grzanka, L.; Wyszkowski, P.; Zielinski, K.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J.; Lami, S.; Scribano, A.; Lippmaa, E.; Lippmaa, J.; Minafra, N.; Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J.

    2016-01-01

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10"-"4 to 0.2 GeV"2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ_t_o_t = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  12. Elastic scattering and total reaction cross section for the 6He +58Ni system

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.

    2014-11-01

    Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  13. Proceedings of the workshop on scattering experiments under extreme conditions

    International Nuclear Information System (INIS)

    Sakai, N.; Ikeda, H.; Ando, M.

    1991-10-01

    In the National Laboratory for High Energy Physics (KEK), as the research facilities, there are Photon Factory, the facility for utilizing the booster and University of Tokyo Meson Science Research Center. For the research on physical properties, it is very important to do structural analysis in a broad sense and to observe the behavior of quasiparticles in solids. The X-ray and pulsed neutrons required for these researches can be obtained in a single laboratory in KEK, and it is rare in the world. At this opportunity of the workshop on scattering experiments under extreme conditions, it is hoped that the positive interchange between both PF and booster groups will be carried out. The research on magnetic substances using X-ray is a most noteworthy utilization of synchrotron radiation. The discovery of X-ray resonance magnetic scattering by K. Namikawa is one of the remarkable researches using synchrotron radiation in the world. When the extreme conditions around samples are prepared, the quality of signals for the research on physical properties is to be heightened. In this report, the researches on physical properties under ultrahigh pressure and ultralow temperature are reported. (K.I.)

  14. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R.; Rothe, J.; Angloher, G.; Hauff, D.; Mancuso, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Guetlein, A.; Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Vienna University of Technology, Atominstitut, Vienna (Austria); Oberauer, L.; Schoenert, S. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany)

    2017-08-15

    We discuss a small-scale experiment, called ν-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO{sub 4} and Al{sub 2}O{sub 3} calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ, neutron and surface backgrounds. A first prototype Al{sub 2}O{sub 3} device, operated above ground in a setup without shielding, has achieved an energy threshold of ∝20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5 σ) within a measuring time of

  15. NIF total neutron yield diagnostic

    International Nuclear Information System (INIS)

    Cooper, Gary W.; Ruiz, Carlos L.

    2001-01-01

    We have designed a total neutron yield diagnostic for the National Ignition Facility (NIF) which is based on the activation of In and Cu samples. The particular approach that we have chosen is one in which we calibrate the entire counting system and which we call the ''F factor'' method. In this method, In and/or Cu samples are exposed to known sources of DD and DT neutrons. The activated samples are then counted with an appropriate system: a high purity Ge detector for In and a NaI coincidence system for Cu. We can then calculate a calibration factor, which relates measured activity to total neutron yield. The advantage of this approach is that specific knowledge of such quantities as cross sections and detector efficiencies is not needed. Unless the actual scattering environment of the NIF can be mocked up in the calibration experiment, the F factor will have to be modified using the results of a numerical simulation of the NIF scattering environment. In this article, the calibration factor methodology will be discussed and experimental results for the calibration factors will be presented. Total NIF neutron yields of 10 9 --10 19 can be measured with this method assuming a 50 cm stand-off distance can be employed for the lower yields

  16. Studies on laser beam propagation and stimulated scattering in multiple beam experiments

    International Nuclear Information System (INIS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Lewis, K.; Depierreux, S.; Huller, S.; Masson-Laborde, P.E.; Pesme, D.; Riazuelo, G.

    2006-01-01

    The propagation and stimulated scattering of intense laser beams interacting with underdense plasmas are two important issues for inertial confinement fusion (ICF). The purpose of this work was to perform experiments under well-controlled interaction conditions and confront them with numerical simulations to test the physics included in the codes. Experimental diagnostics include time and space resolved images of incident and SBS light and of SBS-ion acoustic activity. New numerical diagnostics, including similar constraints as the experimental ones and the treatment of the propagation of the light between the emitting area and the detectors, have been developed. Particular care was put to include realistic plasma density and velocity profiles, as well as laser pulse shape in the simulations. In the experiments presented in this paper, the interaction beam was used with a random phase plate (RPP) to produce a statistical distribution of speckles in the focal volume. Stimulated Brillouin Scattering (SBS) was described using a decomposition of the spatial scales which provides a predictive modeling of SBS in an expanding mm-scale plasma. Spatial and temporal behavior of the SBS-ion acoustic waves was found to be in good agreement with the experimental ones for two laser intensities. (authors)

  17. Ambiguities of the phase analysis of the proton-proton scattering amplitude

    International Nuclear Information System (INIS)

    Grebenyuk, O.G.; Shklyarevskij, G.M.

    1980-01-01

    Ambiguities of the phase analysis of the proton-proton scattering amplitude are analysed. It is shown that for five measurements of polarization parameters sets there are ambiguities similar to the Gersten ambiguities in the phase analysis of πN scattering. A problem on additional experiments needed to eliminate these ambiguities is investigated. It is shown that for this purpose it suffices to measure three total cross sections with polarized and nonpolarized protons, thus determining the imaginary parts of amplitudes at THETA=0 and polarization parameters

  18. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    Science.gov (United States)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic

  19. The Structure of Nuclei Joint Analysis of Elastic, Inelastic Scattering and Total Reactions Cross-Sections for ^{90,94}Zr-Particles Data

    CERN Document Server

    Duysebaev, A D; Kuchtina, I N; Sadykov, B M; Slusarenko, L I; Tokarevsky, V V; Fayans, S A

    2001-01-01

    A complex analysis of experimental data of elastic, inelastic scattering and total reactions cross-sections of alpha-particles on ^{90,94}Zr nuclei is performed. Values of the deformation lengths and neutron-proton multipole matrix elements relations for 2_{1}^{+}- and 3_{1}^{+}-states of ^{90,92,94,96}Zr nuclei for different types of particles are obtained. A comparative analysis is made. Experimental data for inelastic scattering of 35.4, 40.0, 50.1 and 65.0 MeV alpha-particles on ^{90,94}Zr nuclei are analysed for understanding the phase shifts in frames of the unified approach.

  20. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  1. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  2. The SAMPLE experiment: Parity-violating electron scattering from the proton and deuteron

    International Nuclear Information System (INIS)

    Pitt, M.; Arrington, J.; Beck, D.; Beise, E.; Candell, E.; Cardman, L.; Carr, R.; Dodson, G.; Dow, K.; Duncan, F.; Farkhondeh, M.; Filippone, B.; Forest, T.; Gao, H.; Korsch, W.; Kowalski, S.; Lung, A.; McKeown, R.; Mohring, R.; Mueller, B.; Napolitano, J.; Simicevic, N.; Terburg, B.; Witkowski, M.

    1995-01-01

    Recent experimental evidence on nucleon structure has provided indications that some strange quark matrix elements can be comparable to those involving up and down quarks. The SAMPLE experiment will determine the strange magnetic form factor G s M at Q 2 =0.1 (GeV/c) 2 from a measurement of the asymmetry in the scattering of polarized electrons from the proton. The error on the extraction of G s M is ultimately limited by a theoretical uncertainty---the uncertain electroweak hadronic radiative correction to the axial form factor, R T=1 A . To address this issue, the collaboration is also approved to measure the asymmetry in parity-violating quasielastic electron scattering from the deuteron. The combination of the proton and deuteron measurements will yield a value of G s M that is almost completely free of the uncertainty in R T=1 A

  3. Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment

    Directory of Open Access Journals (Sweden)

    Holmes Jesse

    2017-01-01

    Full Text Available The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.

  4. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  5. Applications of Total Scattering & Pair Distribution Function Analysis in Metal-Organic Framework Materials

    DEFF Research Database (Denmark)

    Xu, Hui; Birgisson, Steinar; Sommer, Sanna

    structure. At the same time, there is an ongoing debate on whether the SBU is present prior, or during MOF crystallization in MOF chemistry. However, little is known about MOFs formation mechanism. Currently techniques to study the in situ MOF formation process mainly focused on after......-crystallization process, for example in situ XRD and SAXS/WAXS study on MOF formation. However, the pre-crystallization process in the early stage of MOF formation is still unexplored. In this project, total scattering and PDF study will be carried out to explore the MOF formation process in early stage. This includes......Metal-Organic Frameworks (MOFs) is constructed by metal-oxide nodes and organic ligands. The formation of different structures of metal-oxide nodes (also called secondary building units, SBU) is crucial for MOF final structures, because the connectivity of SBU greatly influence the final MOF...

  6. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  7. Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks

    International Nuclear Information System (INIS)

    Wu Qing-Dong; Zeng Ji; Hu Yuan-Yuan; Li Quan-Bo; Xiang Wen-Chang; Zhou Dai-Cui

    2016-01-01

    An analytic massive total cross section of photon-proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F_2 measured in lepton–hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F_2 and longitudinal structure function F_L are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton–hadron cross section, which plays a significant role in the description of the photoproduction region. (paper)

  8. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  9. Quasi-elastic scattering of electrons from 40Ca at high momentum transfer

    International Nuclear Information System (INIS)

    Yates, T.C.

    1992-01-01

    Previous quasi-elastic electron scattering experiments have yielded seemingly inconsistent results when the integrated longitudinal strength is compared to calculations using the relativistic fermi gas model. Measurements made at Saclay on 12 C, 40 Ca, 48 Ca, 56 Fe, and 208 Pb indicated a smaller integrated longitudinal strength than expected on the basis of the relativistic fermi gas model. However, 238 U data taken at Bates showed nearly the full expected longitudinal strength at a momentum transfer of 550 MeV/c. This is one of the outstanding discrepancies in nuclear physics. Earlier experiments were hampered in that high momentum transfer could not be obtained at forward angles where the longtudinal strength is a large fraction of the total strength. The present experiment was designed to take advantage of the higher energy capability (greater than 800 MeV) at Bates recirculated linac in order to obtain momentum transfers greater than 600 MeV/c at a scattering angle of 45.5 degrees. Under these conditions the longitudinal strength is 40-75% of the total quasi-elastic strength

  10. Low-energy scattering data for oxygen

    International Nuclear Information System (INIS)

    Kopecky, S.; Plompen, A.J.M.

    2014-01-01

    A survey of literature data of the scattering lengths of oxygen is performed, and these values are compared to low-energy precise total cross-section data. To check the quality of the data and the correctness of the relation between coherent scattering lengths and low-energy total cross-sections the situation is examined first for carbon. A value and uncertainty for the coherent scattering length of oxygen is recommended for use in future evaluations of 16 O. This coherent scattering length is fully consistent with the high-precision, low-energy total cross-section data. The consistency requires the use of a larger uncertainty than claimed in the most accurate cross-section papers. This larger uncertainty is nevertheless very small and well within the requirements of applications of this cross-section. The recommended value is b c ( 16 O) = 5.816±0.015 fm and the associated total cross-section for the neutron-energy range 0.5 to 2 000 eV is 3.765±0.025 b. The stated uncertainties are one standard deviation total uncertainty. (authors)

  11. Terrestrial effects on dark matter-electron scattering experiments

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.

    2017-01-01

    A well-studied possibility is that dark matter may reside in a sector secluded from the Standard Model, except for the so-called photon portal: kinetic mixing between the ordinary and dark photons. Such interactions can be probed in dark matter direct detection experiments, and new experimental...... techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...... stopping on dark photon models of dark matter, and find that they significantly reduce the sensitivity of XENON10 and DAMIC. In particular we find that XENON10 only excludes masses in the range (5-3000) MeV while DAMIC only probes (20-50) MeV. Their corresponding cross section sensitivity is reduced...

  12. Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory

    Science.gov (United States)

    Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.

    2018-04-01

    The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.

  13. One-phonon scattering of ultra cold neutrons in copper

    International Nuclear Information System (INIS)

    Holas, A.

    1977-01-01

    Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN

  14. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Elastic scattering of low-energy electrons from ammonia

    International Nuclear Information System (INIS)

    Alle, D.T.; Gulley, R.J.; Buckman, S.J.; Brunger, M.J.

    1992-01-01

    We report absolute differential cross section measurements for vibrationally elastic electron scattering from NH 3 at incident energies from 2-30 eV. The present results, from a crossed electron-molecular beam apparatus, represent the first comprehensive experimental attempt to quantify the elastic electron-NH 3 scattering process. At each energy studied we have integrated our differential cross section data to generate total elastic and elastic momentum transfer cross sections and a critical comparison of both our differential and integral cross sections against previous experiment and theory is provided. We also report our observation of a strong Feshbach resonance in the elastic channel at an energy of 5.59 ± 0.05 eV. (Author)

  16. On the importance of fast scattering data for aluminium in the interpretation results from H{sub 2}O moderated lattice experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fayers, F J; Terry, M J [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-07-15

    Aluminium is often used as a structural material or fuel cladding in lattice experiments with light water moderators. In particular most of the experiments with regular rod lattices of plutonium fuel have contained significant quantities of aluminium. This report examines the importance of scattering data for aluminium in leakage calculations for light water systems. It is shown that some discrepancy exists between calculated plane moments and experimentally measured moments, which may be corrected by an 'ad hoc' adjustment of inelastic scattering data for aluminium. WIMS results are presented for some Battelle plutonium fuelled rod lattices, and it is shown that this adjustment of inelastic data leads to a noticeable correction for the predicted reactivities of these experiments. The influence of scattering data for aluminium on results for some other lattices of interest has been shown to be less important. (author)

  17. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  18. Possible role of double scattering in electron-atom scattering in a laser field

    International Nuclear Information System (INIS)

    Rabadan, I.; Mendez, L.; Dickinson, A.S.

    1996-01-01

    By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)

  19. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Adroja, D T; Manuel, P; Bewley, R I; Brown, J; Kouzmenko, G; Wotherspoon, R

    2012-01-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  20. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  1. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    International Nuclear Information System (INIS)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme; Bowler, Matthew W.; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21

  2. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Bowler, Matthew W. [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Ashton, Alun [DLS, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Franke, Daniel; Svergun, Dmitri [European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25A, Notkestrasse 85, 22603 Hamburg (Germany); McSweeney, Sean; Gordon, Elspeth [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Round, Adam, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France)

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  3. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z. [University of West Bohemia, Pilsen (Czech Republic); Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J. [CERN, Geneva (Switzerland); Avati, V. [AGH University of Science and Technology, Krakow (Poland); CERN, Geneva (Switzerland); Berardi, V.; Quinto, M. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M.; Lo Vetere, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E. [INFN Sezione di Bari, Bari (Italy); Campanella, C.E.; De Leonardis, F.; D' Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F. [INFN Sezione di Bari, Bari (Italy); Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Csanad, M.; Nemes, F.; Sziklai, J. [Wigner Research Centre for Physics, Budapest (Hungary); Csoergo, T. [Wigner Research Centre for Physics, Budapest (Hungary); KRF University College, Gyoengyoes (Hungary); Deile, M. [Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Doubek, M.; Vacek, V. [Czech Technical University, Prague (Czech Republic); Eggert, K.; Niewiadomski, H.; Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Garcia, F.; Heino, J.; Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Grzanka, L.; Wyszkowski, P.; Zielinski, K. [AGH University of Science and Technology, Krakow (Poland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S.; Scribano, A. [INFN Sezione di Pisa, Pisa (Italy); Lippmaa, E.; Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (Italy); CERN, Geneva (Switzerland); Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland)

    2016-12-15

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10{sup -4} to 0.2 GeV{sup 2}. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ{sub tot} = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  4. Resonating-group study of p + α scattering from 68 to 125 MeV

    International Nuclear Information System (INIS)

    Thompson, D.R.; Brown, R.E.; LeMere, M.; Tang, Y.C.

    1977-01-01

    The resonating-group method, together with a phenomenological consideration of reaction effects, is used to analyze p + α scattering data at the relatively high c.m. energies of 68, 80, and 124.8 MeV. The nucleon-nucleon potential employed contains a weakly repulsive core and yields a reasonably satisfactory description of not only the two-nucleon scattering data but also the essential properties of the α particle. The result shows that satisfactory agreement with experiment can be obtained. In particular, it is found that, because of the use of a totally antisymmetric wave function, the scattering behavior at large angles is adequately described

  5. Two-argument total scatter factor for small fields simultaneously collimated by MLC and jaws: application to stereotactic radiosurgery and radiotherapy

    Science.gov (United States)

    Han, Zhaohui; Friesen, Scott; Hacker, Fred; Zygmanski, Piotr

    2018-01-01

    Direct use of the total scatter factor (S tot) for independent monitor unit (MU) calculations can be a good alternative approach to the traditional separate treatment of head/collimator scatter (S c) and phantom scatter (S p), especially for stereotactic small fields under the simultaneous collimation of secondary jaws and tertiary multileaf collimators (MLC). We have carried out the measurement of S tot in water for field sizes down to 0.5  ×  0.5 cm2 on a Varian TrueBeam STx medical linear accelerator (linac) equipped with high definition MLCs. Both the jaw field size (c) and MLC field size (s) significantly impact the linac output factors, especially when c \\gg s and s is small (e.g. s  effectively transforms the measured trapezoidal domain in (c,s) plane to a rectangular domain to facilitate easier two-dimensional interpolation to determine S tot for arbitrary (c,s) combinations. Both the empirical fit and interpolation showed good agreement with experimental validation data.

  6. High resolution measurements of the He-He total scattering cross section for reduced collision energies between 0.2 and 200

    International Nuclear Information System (INIS)

    Feltgen, R.; Koehler, K.A.; Pauly, H.; Torello, F.; Vehmeyer, H.

    1974-01-01

    The energy dependence of the total scattering cross section is measured for the isotopic systems He 4 -He 4 and He 3 -He 3 using a velocity selected He primary beam and a He target in a scattering chamber maintained at 1.57 deg K. In the low energy region both systems show a pronounced atomic Ramsauer-Townsend effect. At higher energies 13 backward glory extrema in the case of He 4 -He 4 and 10 extrema for He 3 -He 3 are observed. From these extrema the energy dependence of the s-phase shift can be derived. Applying the semiclassical inversion method proposed by Miller it is possible to compute the repulsive potential in the energy range of the measurement

  7. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  8. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  9. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  10. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  11. Neutron scattering lengths of 3He

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Akopian, G.G.; Wierzbicki, J.; Govorov, A.M.; Pikelner, L.B.; Sharapov, E.I.

    1976-01-01

    The total neutron scattering cross-section of 3 He has been measured in the neutron energy range from 20 meV to 2 eV. Together with the known value of coherent scattering amplitude it leads to the two sts of n 3 He scattering lengths

  12. The TUNL neutron-neutron scattering length experiment

    International Nuclear Information System (INIS)

    Trotter, D.E.G.; Tornow, W.; Howell, C.R.

    1995-01-01

    Since an accurate value for the neutron-neutron (nn) scattering length a nn is of fundamental interest, its determination should not rely on one source of experimental information only. Besides the π d capture reaction, the nd breakup reaction has been the classical reaction used for determining a nn . However, none of the published values for a nn obtained from kinematically complete nd → n+n+p breakup data are based on a rigorous treatment of the three-nucleon continuum. In addition, the scale uncertainty associated with the existing nd breakup cross-section data in the region of the nn final-state interaction peak is too large to allow for a meaningful reanalysis. Therefore, a new kinematically complete nd breakup experiment is underway at TUNL at an incident neutron energy of 13 MeV. State-of-the-art three-nucleon continuum calculations will be used to analyze the data. In order to investigate the possible influence of three-nucleon force effects, a nn will be determined from data taken at four production angles of the nn pair between 20.5 degrees and 43 degrees (lab)

  13. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Gusein-zade, Namik; Ignatov, Alexander [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Medicobiologic Faculty, Pirogov Russian National Research Medical University, Moscow (Russian Federation)

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  14. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  15. Water structure as a function of temperature from X-ray scattering experiments and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon, Teresa; Krack, Matthias; Parrinello, Michele

    2003-01-01

    We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here

  16. Present experimental constraints on the total S-factor of 12C(α,γ)16O and proposals for future experiments

    International Nuclear Information System (INIS)

    Buchmann, L.; Azuma, R.E.; Barnes, C.A.; Humblet, J.; Langanke, K.

    1997-01-01

    Because of the critical importance of the 12 C/ 16 O ratio resulting from helium burning to the later evolution of massive stars, R-matrix fits have been made to the available angular distribution data from radiative α-capture and elastic α-scattering on 12 C to estimate the total 12 C(α,γ) 16 O rate at stellar energies. Largely primary data, i.e. energy-dependent differential cross sections, are used in the analysis with all relevant partial waves being fitted simultaneously (surface fits). It is shown that while the E1 part of the reaction is well constrained by a recent experiment on the β-delayed α-particle decay of 16 N only upper limits can be placed on the E2 ground state transition which we take conservatively as S E2 (300)<140 keV b. Monte-Carlo simulations were subsequently carried out to explore what kind of future data could lead to better restrictions on SE2(300). We find that improved elastic scattering data may be the best candidate for such restrictions while improving S(300) with new radiative capture data seems to be much more difficult. (orig.)

  17. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    International Nuclear Information System (INIS)

    Movsisyan, Aram

    2011-05-01

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5) 2 GeV 2 2 X 2 GeV 2 of the squared missing mass. The dependences of these asymmetries on -t, x N , or Q 2 are investigated. The results include the coherent process ed→edγ and the incoherent process ed→epnγ where in addition a nucleon may be excited to a resonance. For an unpolarized deuterium target, the leading Fourier amplitude of the beam-helicity asymmetry that is sensitive to the interference term is found to be substantial, but no significant t dependence is observed. The leading amplitude of the beam-charge asymmetry is substantial at large -t, but becomes small at small values of -t. The amplitudes of the beam-helicity asymmetry that are sensitive to the squared DVCS term are found to be consistent with zero. The deuteron Compton form factor H 1 appears to have a similar behavior as H of the proton. (orig.)

  18. Certain theories of multiple scattering in random media of discrete scatterers

    International Nuclear Information System (INIS)

    Olsen, R.L.; Kharadly, M.M.Z.; Corr, D.G.

    1976-01-01

    New information is presented on the accuracy of the heuristic approximations in two important theories of multiple scattering in random media of discrete scatterers: Twersky's ''free-space'' and ''two-space scatterer'' formalisms. Two complementary approaches, based primarily on a one-dimensional model and the one-dimensional forms of the theories, are used. For scatterer distributions of low average density, the ''heuristic'' asymptotic forms for the coherent field and the incoherent intensity are compared with asymptotic forms derived from a systematic analysis of the multiple scattering processes. For distributions of higher density, both in the average number of scatterers per wavelength and in the degree of packing of finite-size scatterers, the analysis is carried out ''experimentally'' by means of a Monte Carlo computer simulation. Approximate series expressions based on the systematic approach are numerically evaluated along with the heuristic expressions. The comparison (for both forward- and back-scattered field moments) is made for the worst-case conditions of strong multiple scattering for which the theories have not previously been evaluated. Several significant conclusions are drawn which have certain practical implications: in application of the theories to describe some of the scattering phenomena which occur in the troposphere, and in the further evaluation of the theories using experiments on physical models

  19. The lowest order total electromagnetic correction to the deep inelastic scattering of polarized leptons on polarized nucleons

    International Nuclear Information System (INIS)

    Shumeiko, N.M.; Timoshin, S.I.

    1991-01-01

    Compact formulae for a total 1-loop electromagnetic corrections, including the contribution of electromagnetic hadron effects to the deep inelastic scattering of polarized leptons on polarized nucleons in the quark-parton model have been obtained. The cases of longitudinal and transverse nucleon polarization are considered in detail. A thorough numerical calculation of corrections to cross sections and polarization asymmetries at muon (electron) energies over the range of 200-2000 GeV (10-16 GeV) has been made. It has been established that the contribution of corrections to the hadron current considerably affects the behaviour of longitudinal asymmetry. A satisfactory agreement is found between the model calculations of corrections to the lepton current and the phenomenological calculation results, which makes it possible to find the total 1-loop correction within the framework of a common approach. (Author)

  20. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  1. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  2. Charge exchange during pion-nucleon scattering at low energy: experiment and analysis

    International Nuclear Information System (INIS)

    Vernin, Pascal

    1972-01-01

    This research thesis lies within the frame of a more general study of pion-nucleon scattering according to the following processes: π + p → π + p; π - p → π - p; π - p → π 0 n. It more precisely addresses the last reaction, so-called charge exchange. Pion-nucleon interactions are described by phase shifts of scattering waves. But the measurement of one of these phase shifts (that of the S wave) requires very low energy pions, and could not have been performed until now with a good precision. In order to fill this gap, the author performed charge exchange experiments at 180 deg. and for energies of 22.6, 33.9 and 42.6 MeV. After a recall on involved theoretical data, the author describes the experimental setup, and reports the detailed study of problems raised by neutron detection. He shows that the analysis of experimental data allows (a 3 - a 1 ) to be obtained with a precision which, without being as high as desired, is nevertheless satisfying [fr

  3. Results in pion proton scattering near the higher resonances (1961)

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-01-01

    We present briefly the available Information on the total cross sections for pion proton scattering in the energy region from 400 MeV to 1.5 GeV. We also have collected all results on total cross sections for particular channels like elastic scattering, inelastic scattering and charge exchange. Using new results on the total cross section for neutral events, we have plotted separately the cross section for elastic and for inelastic scattering in the T = 1/2 state. (authors) [fr

  4. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  5. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  6. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Science.gov (United States)

    Hasell, D. K.; OLYMPUS Collaboration

    2018-02-01

    The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.

  7. Neutron Scattering from 36Ar and 4He Films

    DEFF Research Database (Denmark)

    Carneiro, K.

    1977-01-01

    Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...

  8. LabVIEW-based X-ray detection system for laser compton scattering experiment

    International Nuclear Information System (INIS)

    Luo Wen; Xu Wang; Pan Qiangyan

    2010-01-01

    A LabVIEW-based X-ray detection system has been developed for laser-Compton scattering (LCS) experiment at the 100 MeV Linac of the Shanghai Institute of Applied Physics (SINAP). It mainly consists of a Si (Li) detector, readout electronics and a LabVIEW-based Data Acquisition (DAQ), and possesses the functions of signal spectrum displaying, acquisition control and simple online data analysis and so on. The performance test shows that energy and time resolutions of the system are 184 eV at 5.9 keV and ≤ 1% respectively and system instability is found to be 0.3‰ within a week. As a result, this X-ray detection system has low-cost and high-performance features and can meet the requirements of LCS experiment. (authors)

  9. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  10. Absolute total cross sections for noble gas systems

    International Nuclear Information System (INIS)

    Kam, P. van der.

    1981-01-01

    This thesis deals with experiments on the elastic scattering of Ar, Kr and Xe, using the molecular beam technique. The aim of this work was the measurement of the absolute value of the total cross section and the behaviour of the total cross section, Q, as function of the relative velocity g of the scattering partners. The author gives an extensive analysis of the glory structure in the total cross section and parametrizes the experimental results using a semiclassical model function. This allows a detailed comparison of the phase and amplitude of the predicted and measured glory undulations. He indicates how the depth and position of the potential well should be changed in order to come to an optimum description of the glory structure. With this model function he has also been able to separate the glory and attractive contribution to Q, and using the results from the extrapolation measurements he has obtained absolute values for Qsub(a). From these absolute values he has calculated the parameter C 6 that determines the strength of the attractive region of the potential. In two of the four investigated gas combinations the obtained values lie outside the theoretical bounds. (Auth.)

  11. Haag-Ruelle scattering theory as a scattering theory in different spaces of states

    International Nuclear Information System (INIS)

    Koshmanenko, V.D.

    1979-01-01

    The aim of the paper is the extraction of the abstract content from the Haag-Ruelle theory, i.e. to find out the total mathematical scheme of the theory without the account of physical axiomatics. It is shown that the Haag-Ruelle scattering theory may be naturally included into the scheme of the abstract theory of scattering with the pair of spaces, the wave operators being determined by the method of bilinear functionals. A number of trivial features of the scattering operator is found in the abstract theory. The concrete prospects of the application of the data obtained are outlined in the problem of the scattering of the field quantum theory

  12. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    International Nuclear Information System (INIS)

    Wang Dong; Chen Yinhua; Wang Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  13. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  14. Neutron scattering studies on the high Tc superconductor YBa2Cu306+x

    International Nuclear Information System (INIS)

    Jurgens, M.J.G.M.

    1990-01-01

    The aim of the work described in this thesis is to clarify some of the magnetic aspects of high T c superconductors across the phase diagram as a function of doping and temperature, for which YBa 2 Cu 3 o 6+x has been chosen. Mainly the neutron scattering technique has been employed, which supplies a very powerful tool for this kind of research, for it directly shows the microscopic phenomena of the magnetism involved. First an introduction to the neutron scattering technique is given and a description of the spectrometers employed (ch. 2). The determination of the crystal structure of YBa 2 Cu 3 o 6+x is described, and the single crystals which were used during all the experiments on the magnetic properties as described in this thesis, are characterized (ch. 3). Ch. 4 deals with the phase diagram of the insulating antiferromagnetic phase in YBa 2 Cu 3 o 6+x , as obtained with neutron scattering. The inelastic scattering experiments on the magnetic excitations in this system are presented in ch. 5. In ch. 6 the total susceptibility, measure with a AQUID, is discussed. The local magnetizations, as determined with a polarized neutron scattering technique are the subject of ch. 7. (author). 254 refs.; 77 figs.; 25 tabs

  15. Electron scattering on molecular hydrogen

    International Nuclear Information System (INIS)

    Wingerden, B. van.

    1980-01-01

    The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)

  16. Measurement of the Antiproton-Proton Total Cross-Section at the CERN ISR

    CERN Multimedia

    2002-01-01

    This experiment is a measurement of small angle scattering of antiprotons on protons and of protons on protons at 15/15, 22/22, 26/26 and 31/31 GeV, with the aim of obtaining data on the total cross-section for the scattering of protons on protons, and of determining the ratio of the real to the imaginary scattering amplitude at zero momentum transfer for antiprotons on protons. The measurement is divided into two parts: \\item 1) The measurement of @s^t^o^t(@*p) and @s^t^o^t(pp), using hodoscopes placed at small angles, outside the vacuum pipe, at approximately 9 metres from the intersection point. \\item 2) The measurement of the region in !t!, the momentum transfer squared, around the value !t^c!, where Coulomb and nuclear scattering are equal, in order to deduce the quantity @r = Re f(t=0)/Im f(t=0). This latter measurement is done by employi in earlier @s^t(pp) and @r experiments at the ISR. \\end{enumerate} In both set-ups the measurements are made by recording coincidences between collinear counters in th...

  17. Neutrino proton scattering and the isosinglet term

    International Nuclear Information System (INIS)

    White, D.H.

    1990-01-01

    Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described

  18. Summary of Thomson-scattering data from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Goodman, R.K.

    1982-01-01

    We provide a synthesis of our Thomson-scattering measurements of electron temperature (T/sub e/) and density (n/sub e/) for the Tandem Mirror Experiment (TMX). TMX operated in two modes - high and low T/sub e/. When performing in the high T/sub e/ mode (in general > 100 eV), heating the central-cell ions with neutral beams raised T/sub e/ in the end plug. We achieved a maximum T/sub e/ of 260 eV in the east end plug. Specifically, our experiments demonstrated that in the end plug, the radial T/sub e/ profiles were flat to r = 5 cm; the ratio of potential (phi/sub p/) to T/sub e/ ranged between four and six. In addition, we found that although T/sub e/ in the central cell was generally comparable to that in the plug, it was often not constant along a magnetic field line. Under some conditions a non-Maxwellian electron distribution may have been present

  19. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  20. Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2012-06-01

    We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.

  1. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  2. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Movsisyan, Aram

    2011-05-15

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5){sup 2} GeV{sup 2}

  3. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2–6.0 keV

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, Meera Devi; Ariyasinghe, W.M., E-mail: wickram_ariyasinghe@baylor.edu

    2017-03-15

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2–6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF{sub 3}, C{sub 2}F{sub 4}, C{sub 2}F{sub 2}H{sub 2}, C{sub 4}F{sub 6}, and c-C{sub 4}F{sub 8} have been obtained for 0.2–4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  4. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4  Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that

  5. On the neutron charge radius and the new experiments proposed for the precise (n,e) - scattering length measurement

    International Nuclear Information System (INIS)

    Enik, T.L.; Mitsyna, L.V.; Nikolenko, V.G.; Oprea, I.A.; Parzhitsky, S.S.; Popov, A.B.; Samosvat, G.S.; Vtiuryn, V.A.

    1999-01-01

    Relationship between the n,e scattering length, b ne , the neutron mean square charge radius n 2 > and anomalous magnetic moment μ n , the quantities which characterize the internal structure of the neutron, was investigated. The performed analysis showed that in the framework of the modern cloudy bag model (CBM) of the nucleon the values of b ne is determined by the value of n 2 > without the so-called Foldy term being taken into account, while in the framework of the phenomenological Foldy approach the experimental values of ne > obtained up to date can be described only by this Foldy term within an accuracy of about 10%, i.e. by the anomalous magnetic moment of the neutron, μ n . Then a necessity is obvious to obtain b ne with higher accuracy than in previous experiments. To remove the contradictions in the experimental b ne estimates, new experiments to measure the energy dependence of the slow neutron scattering cross section by 86 Kr and scattering anisotropy on Xe isotopes, have been proposed. The investigation has been performed at Frank Laboratory of Neutron Physics, JINR. (authors)

  6. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization.

    Science.gov (United States)

    Keller, Sune H; Svarer, Claus; Sibomana, Merence

    2013-09-01

    In the standard software for the Siemens high-resolution research tomograph (HRRT) positron emission tomography (PET) scanner the most commonly used segmentation in the μ -map reconstruction for human brain scans is maximum a posteriori for transmission (MAP-TR). Bias in the lower cerebellum and pons in HRRT brain images have been reported. The two main sources of the problem with MAP-TR are poor bone/soft tissue segmentation below the brain and overestimation of bone mass in the skull. We developed the new transmission processing with total variation (TXTV) method that introduces scatter correction in the μ-map reconstruction and total variation filtering to the transmission processing. Comparing MAP-TR and the new TXTV with gold standard CT-based attenuation correction, we found that TXTV has less bias as compared to MAP-TR. We also compared images acquired at the HRRT scanner using TXTV to the GE Advance scanner images and found high quantitative correspondence. TXTV has been used to reconstruct more than 4000 HRRT scans at seven different sites with no reports of biases. TXTV-based reconstruction is recommended for human brain scans on the HRRT.

  7. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  8. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  9. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    Science.gov (United States)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  10. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  11. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    Science.gov (United States)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  12. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  13. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Science.gov (United States)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  14. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  15. Low-energy positron and electron scattering from nitrogen dioxide

    International Nuclear Information System (INIS)

    Chiari, Luca; Brunger, M J; Zecca, Antonio; García, Gustavo; Blanco, Francisco

    2013-01-01

    Total cross section (TCS) measurements for positron scattering from nitrogen dioxide (NO 2 ) are presented in the energy range 0.2–40 eV. The TCS, the elastic integral and differential cross sections, and the integral cross section accounting of all the inelastic processes (including positronium formation) have also been computed using the independent atom model with screening corrected additivity rule (IAM-SCAR) for incident energies from 1 to 1000 eV. A qualitative level of agreement is found between the present TCS experiment and theory at the common energies. As no previous measurements or calculations for positron–NO 2  scattering exist in the literature, we also computed the TCS for electron collisions with NO 2  employing the IAM-SCAR method. A comparison of those results to the present positron cross sections and the earlier electron-impact data and calculations is provided. To investigate the role that chemical substitution plays in positron scattering phenomena, we also compare the present positron–NO 2  data with the TCSs measured at the University of Trento for positron scattering from N 2 O and CO 2 . (paper)

  16. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.

    1987-01-01

    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  17. Total scattering and pair distribution function analysis in modelling disorder in PZN (PbZn1/3Nb2/3O3

    Directory of Open Access Journals (Sweden)

    Ross E. Whitfield

    2016-01-01

    Full Text Available The ability of the pair distribution function (PDF analysis of total scattering (TS from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3 has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS. While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½, whereas it was not apparent in the PDF.

  18. Total scattering and pair distribution function analysis in modelling disorder in PZN (PbZn1/3Nb2/3O3)

    Science.gov (United States)

    Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard

    2016-01-01

    The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378

  19. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Morcelle, V. [Instituto de Física - Universidade Federal Fluminense, 24210-346, Rio de Janeiro, Brazil and Universidade Federal de Itajubá, 35900-030, Itabira (Brazil); Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E. [Depto de Física Nuclear, Universidade de São Paulo, C.P. 66318, 05389-970, São Paulo (Brazil); Mendes Jr, D. R.; Faria, P. N. de [Instituto de Física - Universidade Federal Fluminense, 24210-346, Rio de Janeiro (Brazil); Pires, K. C. C. [Universidade Tecnológica Federal do Paraná, 86300-000, Cornélio Procópio (Brazil); Barioni, A. [Instituto de Física, Universidade Federal da Bahia, 40210-340, Bahia (Brazil); Morais, M. C. [Centro Brasileiro de Pesquisas Físicas, 22290-180, Rio de Janeiro (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energéticas e Nucleares- IPEN, 05508-000, São Paulo (Brazil); Zamora, J. C. [Departament of Physics, Technische Universität Darmstadt (Germany)

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  20. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  1. Polarization transfer in inelastic scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1980-01-01

    Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table

  2. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    Science.gov (United States)

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  3. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    Science.gov (United States)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  4. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  5. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R.; Hasell, D.K. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton Univ., Hampton, VA (United States); Collaboration: The OLYMPUS Collaboration; and others

    2013-12-15

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, {mu}{sub p}G{sup p}{sub E}/G{sup p}{sub M}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup -1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  6. The OLYMPUS experiment

    International Nuclear Information System (INIS)

    Milner, R.; Hasell, D.K.; Kohl, M.

    2013-12-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ p G p E /G p M , made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb -1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  7. The OLYMPUS experiment

    Science.gov (United States)

    Milner, R.; Hasell, D. K.; Kohl, M.; Schneekloth, U.; Akopov, N.; Alarcon, R.; Andreev, V. A.; Ates, O.; Avetisyan, A.; Bayadilov, D.; Beck, R.; Belostotski, S.; Bernauer, J. C.; Bessuille, J.; Brinker, F.; Buck, B.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; D'Ascenzo, N.; De Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hauschildt, J.; Henderson, B. S.; Hoffmeister, Ph.; Holler, Y.; Ice, L. D.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Khaneft, D.; Klassen, P.; Kiselev, A.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; O'Connor, C.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Russell, R. L.; Schmidt, A.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.

    2014-03-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μpGEp/GMp, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°-75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb-1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  8. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    Science.gov (United States)

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  9. Small-angle x-ray scattering in amorphous silicon: A computational study

    Science.gov (United States)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  10. Parity violation in deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Taylor, R.E.

    1979-11-01

    Neutral currents in electron scattering and the Weinberg-Salam model are reviewed. This generally accepted model is consistent with experimental results from neutrino interactions; an appropriate deep inelastic electron scattering experiment would measure couplings that don't involve neutrinos to see if they are also correctly described by the theory. The SLAC-Yale experiment measures a difference in the e-d inelastic cross section for right- and left-handed electrons. The polarized source, beam monitors, scattering experiment, checks of helicity dependence, and results are described. It is concluded that the data obtained are in agreement with the Weinberg-Salam model, and that the best value of sin 2 theta/sub W/ for these data is in excellent agreement with the average values of that parameter deduced from neutrino experiments. Future experiments with polarized electrons are discussed. 12 figures, 2 tables

  11. Electron scattering from gas phase cis-diamminedichloroplatinum(II): Quantum analysis of resonance dynamics

    Science.gov (United States)

    Carey, Ralph; Lucchese, Robert R.; Gianturco, F. A.

    2013-05-01

    We present scattering calculations of electron collisions with the platinum-containing compound cis-diamminedichloroplatinum (CDDP), commonly known as cisplatin, between 0.5 eV and 6 eV, and the corresponding isolated Pt atom from 0.1 eV to 10 eV. We find evidence of resonances in e--CDDP scattering, using an ab initio description of the target. We computed scattering matrix elements from equations incorporating exchange and polarization effects through the use of the static-exchange plus density functional correlation potential. Additionally, we made use of a purely local adiabatic model potential that allows Siegert eigenstates to be calculated, thereby allowing inspection of the possible resonant scattering wave functions. The total cross section for electron scattering from (5d10) 1S Pt displays a large magnitude, monotonic decay from the initial collision energies, with no apparent resonance scattering features in any scattering symmetry. By contrast, the e--CDDP scattering cross section shows a small feature near 3.8 eV, which results from a narrow, well localized resonance of b2 symmetry. These findings are then related to the possible electron-mediated mechanism of the action of CDDP on DNA replication as suggested by recent experiments.

  12. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    International Nuclear Information System (INIS)

    Ye, Zhenyu

    2007-02-01

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  13. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu

    2007-02-15

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  14. Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit

    Directory of Open Access Journals (Sweden)

    Kozlinskiy Alexandr

    2017-01-01

    Full Text Available The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e−. The aim of the experiment is to reach a branching ratio sensitivity of 10−16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10−15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.

  15. Meeting the future of coherent neutrino scattering. A feasibility study for upcoming reactor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco; Rink, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Due to ongoing progress in detector development and background suppression techniques first evidence of neutrino coherent scattering seems reachable in future experiments. In recent years efforts have been enhanced to detect this effect with germanium detectors. This work aims at summarizing and improving past studies on the potential of an experiment at a reactor site to a new level of accuracy by using the most recent neutrino spectra, knowledge gained in recent detector developments and in contrast to prior studies an energy-dependent quenching factor. The influence of the main parameters (background suppression, detector resolution and threshold, reactor spectra, different isotopes) of a germanium detector experiment is presented and the sensitivities regarding the main reaction channels are calculated. The results were obtained through two independent methods; an algebraic computation and a numerical simulation. Both methods reveal the most important experimental parameters and clarify the state of the art challenges that research has to meet in such an experiment.

  16. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  17. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  18. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  19. Resonance proton scattering use for the beam parameters control of the electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    V. I. Soroka

    2013-12-01

    Full Text Available The paper discusses peculiarities of the resonance proton scattering use for the beam parameters control of the electrostatic accelerators. The expediency of the use has been confirmed by experiment. Peculiarities are caused because elastic resonance scattering through the stage of compound nucleus is always accompanied by potential and Coulomb scattering. These three components interfere and for that reason the resonance form de-pends on a scattering angle and total angular moment of a compound nucleus level. However, possessing neces-sary information in the given field of nuclear spectroscopy enables the selection of resonance with the character-istics suitable for the calibration purpose. Considerable increase of the scattering cross section in the resonance region saves the time and simplifies the experiment technical maintenance. The experiments were performed at the 10 MeV tandem accelerator of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, after its modernization. Silicon and oxygen were used as the targets. Silicon targets were of two types of thickness: 1 the target of complete absorption, 2 the target with the thickness in which the loss of protons ener-gy exceeded the width of the selected resonance. The elastic and non elastic scattering from silicon were used in region of the 3,100 MeV proton energy resonance. Oxygen target, as component of the surface oxidizing layer on beryllium had the thickness which in terms of the loss of proton energy was less than the width of the selected elastic narrow resonance at 3,470 MeV proton energy. As result of the measurement the corrections concerning the energy scale of the accelerator and protons energy spread in the beam were proposed.

  20. Stimulated Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Slater, D.C.; Berger, R.L.; Busch, G.; Kinzer, C.M.; Mayer, F.J.; Powers, L.V.; Tanner, D.J.

    1981-01-01

    This report describes two experiments in which SBS would be expected to play an important role. In the first experiment, we find a clear signature of the Brillouin backscatter of a short (100 psec) pulse from a long (approx. 50 μm) gradient length gas target plasma. The second experiment used much longer (approx. 1 nsec) pulses on spherical glass shell targets. These experiments were done with both narrow ( 30A) bandwidth laser light. Using one-dimensional, spherically symmetric fluid simulations, we have attempted to model many of the laser-plasma interaction processes which combine to determine the amount of absorbed energy in the long-pulse experiments. These simulations indicate that modest laser bandwidths are successful in reducing the level of SBS at the irradiances ( 15 W/cm 2 ) used in these experiments

  1. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    Science.gov (United States)

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both Pdry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, Pdry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  2. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, Vladimir

    2009-01-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (v μ n→μ - p and v-bar μ p→μ + n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total v μ (v-bar μ ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are qel >v μ = (0.92±0.02(stat)±0.06(syst))x10 -38 cm 2 and qel >v-bar μ = (0.81±0.05(stat)±0.09(syst))x10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is M A = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q 2 shape analysis of the high purity sample of v μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  3. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  4. Ultrastrong Coupling Few-Photon Scattering Theory

    Science.gov (United States)

    Shi, Tao; Chang, Yue; García-Ripoll, Juan José

    2018-04-01

    We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.

  5. Total scattering cross sections and interatomic potentials for neutral hydrogen and helium on some noble gases

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Cohen, S.A.

    1985-04-01

    Measurements of energy-dependent scattering cross sections for 30 to 1800 eV D incident on He, Ne, Ar, and Kr, and for 40 to 850 eV He incident on He, Ar, and Kr are presented. They are determined by using the charge-exchange efflux from the Princeton Large Torus tokamak as a source of D or He. These neutrals are passed through a gas-filled scattering cell and detected by a time-of-flight spectrometer. The cross section for scattering greater than the effective angle of the apparatus (approx. =20 mrad) is found by measuring the energy-dependent attenuation of D or He as a function of pressure in the scattering cell. The interatomic potential is extracted from the data

  6. Deep inelastic muon scattering from nuclei at Fermilab

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1992-01-01

    Electron scattering experiments by Friedman, Kendall, and Taylor at SLAC first showed in 1968 that the proton was composed of point-like constituents (quarks). More recently the European Muon Collaboration (EMC) found in muon scattering experiments that the structure functions of a free nucleon are different from a heavy nucleus (open-quotes EMC effectclose quotes). Fermilab experiment E665 is now studying deep inelastic scattering of 490 GeV muons from targets ranging from hydrogen to lead, including measurements of the final state hadrons in order to learn more about these effects. The author describes this experiment and presents some initial results on the effects of the nuclear environment on the quark structure of nucleons

  7. XRD total scattering of the CZTS nanoparticle absorber layer for the thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ø.; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells are cheap, non-toxic and present an efficiency up to 9,2% [1]. They can be easily manufactured by the deposition of the nanoparticle ink as a thin film followed by a thermal treatment to obtain large grains [2]. Therefore, CZTS has the potential...... to revolutionize the solar energy market. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. In order to do so, it is vital to understand in detail their nanoscale atomic structure. CZTS crystallize in the kesterite structure, where Cu and Zn is distributed between......-ray Diffraction data with X-ray total scattering with Pair Distribution Function analysis. Powder neutron diffraction will furthermore allow characterization of the cation disorder on the metal sites in the kesterite structure. The nanoparticle ink is also characterized by XRD, EDS, and Raman spectroscopy...

  8. Analytic amplitudes for hadronic forward scattering and the Heisenberg ln{sup 2} s behaviour of total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2004-07-01

    We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.

  9. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  10. Electron-helium scattering in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-01-01

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a 0 ). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  11. Development of a system for simultaneously generating triple extreme conditions for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Shigeju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We have developed new system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of : (1) a liquid-helium cryostat which enables the sample temperature range of 1.7 K to 200 K, (2) a superconducting magnet providing a vertical field up to 5 Tesla with antisymmetric split-coil geometry for polarized-beam experiments, and (3) a non-magnetic clamping high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 Gpa. In the workshop, we will report the outline of the system and some results of performance tests using the system at JRR-3M of JAERI. (author)

  12. Fingerprinting analysis of non-crystalline pharmaceutical compounds using high energy X-rays and the total scattering pair distribution function

    Science.gov (United States)

    Davis, Timur D.

    2011-12-01

    In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure

  13. Study of the M23C6 precipitation in AISI 304 stainless steel by small angle neutron scattering

    International Nuclear Information System (INIS)

    Boeuf, A.; Caciuffo, R.G.M.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Melone, S.; Puliti, P.; Rustichelli, F.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Coppola, R.

    1985-01-01

    The results of some small-angle neutron scattering (SANS) experiments on M 23 C 6 (M=Fe, Cr) carbide precipitation in AISI 304 stainless steel, aged at different temperatures during different times, are presented. The total volume fraction, the total surface of precipitates per unit sample volume and the size distribution functions of the M 23 C 6 carbides were determined. (orig.)

  14. Charge dependence of the ratio of double to total ionization of a helium-like ion by Compton scattering of a high energy photon

    International Nuclear Information System (INIS)

    Suric, T.; Pisk, K.; Pratt, R.H.

    1996-01-01

    We examine the charge (Z) dependence of the nonrelativistic high energy limit for the double to total ionization ratio by Compton scattering of a photon, as well as by the photoeffect, utilizing our approach based on the impulse approximation or on the generalized shake-off theory. For all Z our high energy Compton ratio is about half the corresponding photoeffect ratio, calculated using the same assumptions or, alternatively, the ratio of double ionization by Compton scattering to double ionization by the photoeffect is about half the ratio for single ionization. We conclude that all current Compton calculations are consistent with this result, and we show that the recent calculation of Amusia and Mikhailov [Phys. Lett. A 199 (1995) 209] corresponds to our high Z results. (orig.)

  15. A new treatment of nonlocality in scattering process

    Science.gov (United States)

    Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.

    2018-01-01

    Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.

  16. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-01-01

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  17. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  18. Spin observables in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1982-01-01

    The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them

  19. Collision induced light-scattering from gaseous sulphurhexafluoride

    International Nuclear Information System (INIS)

    Pleich, R.

    1983-10-01

    Modern laser technology permits the measurement of collision induced light-scattering spectra from molecular gases at low densities. Measurements of this type provide a test for the separation dependent pair polarizabilities and pair potentials. For this work the octahedral molecule sulphurhexafluoride (SF 6 , point group symmetry 0sub(h)) has been chosen for which the permanent polarizability anisotropy vanishes. For the experiment an argon ion laser in combination with a double grating monochromator and standard photon counting techniques were used. Both the polarized and depolarized scattering cross sections were obtained. The point dipole-induced-dipole (DID) effect is shown to account for the most of the total scattered intensity. At low frequency shifts the line shape of the SF 6 spectrum is dominated by bound dimers, whereas the intermediate frequency range up to 50 cm -1 is well described by a DID free trajectory binary collision model. The high frequency wings are discussed in terms of the collision induced rotational Raman (CIRR) effect and estimates for the dipole-octopole polarizability E are obtained both from the spectral distribution and from the depolarization ratio. It is demonstrated that the hierarchy of effects constituting the CIRR-model converges slowly for large frequency shifts. (Author)

  20. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  1. Electron scattering on metal clusters and fullerenes

    International Nuclear Information System (INIS)

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  2. High energy diffraction processes - TOTEM experiment

    CERN Document Server

    Kaspar, Jan

    2005-01-01

    We study two problems in this thesis. First, we analyse a model for pp and anti-pp elastic scattering. The model was developed by M.M.Islam and coworkers in the past 25 years. Our aim was to make a prediction for differential cross section of pp scattering at energy of 14 TeV which will be measured by the TOTEM experiment at the LHC at CERN. Since protons carry electromagnetic charge, we had to take into account an electromagnetic interaction and effects of the interference between electromagnetic and hadronic forces. We also analysed the model in the impact parameter representation. It enabled us to gain information about range of hadronic forces responsible for elastic, inelastic and total pp and anti-pp scattering. In the second part we present our alignment method for detectors inside the Roman pots of the TOTEM experiment. The method was used during Roman Pot tests on the SPS beam last year.

  3. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  4. Incoherent Thomson scattering as a diagnostic tool

    NARCIS (Netherlands)

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  5. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  6. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  7. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  8. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Hasell, D.K., E-mail: hasell@mit.edu [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton University, Hampton, VA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Akopov, N. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Alarcon, R. [Arizona State University, Tempe, AZ (United States); Andreev, V.A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ates, O. [Hampton University, Hampton, VA (United States); Avetisyan, A. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Bayadilov, D.; Beck, R. [Friedrich Wilhelms Universität, Bonn (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bernauer, J.C.; Bessuille, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Brinker, F. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Buck, B. [Massachusetts Institute of Technology, Cambridge, MA (United States); Calarco, J.R. [University of New Hampshire, Durham, NH (United States); Carassiti, V. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); Cisbani, E. [Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ciullo, G. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); and others

    2014-03-21

    The OLYMPUS experiment was designed to measure the ratio between the positron–proton and electron–proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°–75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup −1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  9. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  10. Investigation into magnetic correlations in cuprates by means of neutron scattering experiments

    International Nuclear Information System (INIS)

    Henggeler, W.

    1996-01-01

    This thesis shows the results of our investigation on cuprate materials containing rare earth ions. The main experimental tools were inelastic and elastic neutron scattering techniques. In some cases we also performed μSR, susceptibility and specific heat measurements. One aim was to learn more about the crystalline environment of the rare earth ions in these substances via the crystalline electric field (CEF) interaction. Furthermore, we investigated the correlations of the magnetic moments of these ions by a determination of the dispersion of the CEF excitations. The theory that is essential for the understanding of this work is outlined. The instruments on which the experiments have been performed are presented in the third chapter. In the fourth chapter we show the measurements of the CEF excitations of Ho 3+ in Y 0.99 Ho 0.01 Ba 2 Cu 3 O 6+x . The Ho ions represent ideal local probes to examine changes of the charge distribution in the copper oxide planes upon doping with oxygen. To prevent any influence of the Ho-Ho exchange interaction on the CEF excitations we performed the experiments on substances containing only one percent of Ho. Our results show that for all the intermediately doped compounds the charge distribution is very inhomogeneous. For all the highly doped samples we observe a line asymmetry for which several possible origins are discussed. In the fifth chapter we examine the Pr 3+ CEF excitations in the Pr 2-x Ce x CuO 4(-δ) (0≤x≤0.2)-substances. Our results show a coexistence of different environments of the Pr ions in all the doped compounds. We try to describe these inhomogeneities with the help of a model. We used the μSR-technique on some of these samples in order to learn more about the oxygen reduction process. Finally, we performed inelastic neutron scattering experiments on Pr 1.86 Ce 0.14 CuO 4 single crystal, which allowed a direct determination of the coupling constants between the magnetic moments of the Pr ions. (author

  11. Total internal reflection tomography of small objects

    International Nuclear Information System (INIS)

    Chen Xudong

    2008-01-01

    The multiple signal classification (MUSIC) imaging method is applied to determine the locations of a collection of small anisotropic spherical scatterers in the framework of the total internal reflection tomography. Multiple scattering between scatterers is considered and the inverse scattering problem is nonlinear, which, however, is solved by the proposed fast analytical approach where no associated forward problem is iteratively evaluated. The paper also discusses the role of the polarization of incidence waves, the incidence angle, the separation of scatterers from the surface of the substrate, and the level of noise on the resolution of imaging.

  12. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  13. Pion scattering from very light nuclei

    International Nuclear Information System (INIS)

    Berman, B.

    1993-01-01

    Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout

  14. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  15. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  16. Stakeout electronic total station construction layout boring of the experience and precision

    International Nuclear Information System (INIS)

    Xu Zhiqiang

    2012-01-01

    Electronic total station can simultaneously measure angle and distance, together with the appropriate calculation methods and operating skills, able to efficiently complete the survey work, this paper based on practical experience, theoretical analysis, based on total station introduced in setting out a few boring in the skills and the measurement of total station in the construction layout for accuracy. (authors)

  17. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  18. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  19. K-α X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, Andrea L.; Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H.; Falcone, Roger W.; Ja Lee, Hae; Lee, Richard W.; Morse, Edward C.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  20. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, A.L.; Neumayer, P.; Castor, J.; Doppner, T.; Falcone, R.W.; Landen, O.L.; Lee, H.J.; Lee, R.W.; Morse, E.C.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S.H.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation

  1. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  2. Description of nucleon scattering on 208Pb by a fully Lane-consistent dispersive spherical optical model potential

    Science.gov (United States)

    Sun, W. L.; Wang, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.

    2017-09-01

    A fully Lane-consistent dispersive spherical optical potential is proposed to describe nucleon scattering interaction with doubly magic nucleus 208Pb up to 200 MeV. The experimental neutron total cross sections, elastically scattered nucleon angular distributions and (p,n) data had been used to search the potential parameters. Good agreement between experiments and the calculations with this potential is observed. Meanwhile, the application of the determined optical potential with the same parameters to neighbouring near magic Pb-Bi isotopes is also examined to show the predictive power of this potential.

  3. Processing of thermal scattering data with NJOY experience and comments

    International Nuclear Information System (INIS)

    Mattes, M.

    1989-01-01

    The THERMR module of NJOY-89 generates pointwise integrated cross sections and double differential neutron scattering cross sections in the thermal energy range where the binding of the scatterer in a material or the motion of atoms in a gas is important. The results are added to an existing PENDF tape using special MT numbers in the range 221 to 250. The cross sections can then be group-averaged with the GROUPR module or plotted and reformated in subsequent modules

  4. Determination of the potential and coherent scattering cross-sections of the elements Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Hamouda, I.

    1976-01-01

    The potential scattering cross-sections for slow neutrons have been measured for Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta in order to determine the nuclear potential radius and to investigate the prediction of nuclear optical model. The coherent scattering cross-sections for these elements have been measured from the obtained values of the Bragg cut-offs observed in the behaviour of the total cross-sections at cold neutron energies. The measurements were based on the total neutron cross-sections resulting from transmission experiments performed with the neutron chopper at ET-RR-1 reactor

  5. Calculation of electron scattering on the He+ ion

    International Nuclear Information System (INIS)

    Bray, I.; McCarthy, I.E.; Wigley, J.; Stelbovics, A.T.

    1993-11-01

    The Convergent Close-Coupling method is applied to the calculation of electron scattering on the ground state of He + . The inclusion of the treatment of the continuum, even below the ionization threshold, significantly reduces the calculated 2S cross section. Generally, it shows good agreement with the measurements of the 2S excitation cross section, though in the vicinity of a few eV near threshold the results are characteristically higher than the experiment. Complete quantitative agreement is obtained with the measurement of the total ionization cross section from threshold to 700 eV. 18 refs., 3 fig

  6. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  7. Simulation of isotropic scattering of charged particles by composed potentials

    CERN Document Server

    Gerasimov, O Y

    2003-01-01

    The analytical model of scattering of charged particles by a multicentered adiabatic potential which consists of the long-range Coulomb and short-range potentials is used for the parametrization of experiments of elastic low-energy proton-deuteron scattering. For the energies 2.26-13 MeV, the analytical expressions for the phase scattering function in terms of identical parameters which depend on the lengths and effective radii of proton-proton and proton-neutron scattering and on the effective size of deuteron are obtained. The results are in good qualitative accordance with experiments.

  8. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  9. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    Science.gov (United States)

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  10. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  11. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  12. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  13. Possible interpretation of the scale invariance violation during a deep inelastic muons scattering experiment on an hadron target

    International Nuclear Information System (INIS)

    Salati, Pierre.

    1980-01-01

    The purpose of this work is to analyse the structure functions produced by a deep inelastic scattering experiment of muons upon a hadronic target. A non perturbative model is tested. In order to chek the quantum chromodynamics, the moments and the Altarelli-Parisi equations are used. The main result is the scaling parameter lambda [fr

  14. Probing Supersymmetry with Neutral Current Scattering Experiments

    Science.gov (United States)

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, S.

    2004-02-01

    We compute the supersymmetric contributions to the weak charges of the electron (QWe) and proton (QWp) in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R v and Rv¯ at v (v¯)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.

  15. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate

    Science.gov (United States)

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-08-01

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.

  16. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  17. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  18. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  19. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  20. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  1. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  2. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  3. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  4. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  5. Additional information about the chemistry of precipitates by variation of the scattering contrast in SANS and SAXS experiments

    International Nuclear Information System (INIS)

    Grosse, M.

    1999-01-01

    Contrast variation experiments provide the possibility to get information about the chemical composition of heterogeneities seen in the small angle scattering experiment. Phases in complex materials can become visible or invisible by changing the contrast. A very important question in this field is the determination of the type of precipitates which are formed during neutron irradiation. These irradiation-induced precipitates are the cause for the neutron embrittlement, which is the life time limiting process for a nuclear power plant. An example is presented, which shows that with contrast variation experiments information about chemical composition of precipitates can be obtained. Several phases in complex materials can be separated. (K.A.)

  6. Nucleon-nucleon scattering data

    International Nuclear Information System (INIS)

    Bystricky, J.; Lehar, F.

    1981-01-01

    The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)

  7. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  8. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  9. Neutron scattering study of dilute supercritical solutions

    International Nuclear Information System (INIS)

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-01-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast

  10. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  11. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  12. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  13. Multipoint Thomson scattering system for the EXTRAP Z-pinch experiment

    International Nuclear Information System (INIS)

    Karlsson, P.

    1986-03-01

    A Thomson scattering system for simultaneous measurements of the electron temperature and density at three different positions at two different times during a single plasma shot has been developed for the EXTRAP-L1 Z-pinch. The plasma in the present version of EXTRAP-L1 is characterized by densities in the range from 10 21 to 10 22 m -3 , temperatures up to 50 eV and a pinch radius of the order of 1 cm. A spatial resolution down to 3 mm between positions is obtained by imaging the plasma onto an array of quartz optical fibres at the output slit of the spectrometer. Fifteen PM-tubes are used to detect the scattered radiation as well as the background radiation. Due to the relatively dense plasma prevailing in the present version of EXTRAP-L1 the number of scattered photons in large and the photon to electron conversion noise is small. The background radiation is the most important factor limiting the accuracy of the measurements. (author)

  14. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  15. Electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo

    2014-01-01

    Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.

  16. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    International Nuclear Information System (INIS)

    Ketkar, S.N.

    1984-01-01

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H 2 and D 2 , are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A -1 ), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A -1 ) to obtain structural information about the molecules

  17. Raman scattering of light off a superconductor

    International Nuclear Information System (INIS)

    Cuden, C.B.

    1976-01-01

    Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11

  18. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  19. Astrophysical applications of Delbrück scattering: Dust scattered gamma radiation from gamma ray bursts

    International Nuclear Information System (INIS)

    Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen

    2014-01-01

    A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed

  20. Study of inelastic processes in proton-proton collisions at the LHC with the TOTEM Experiment

    CERN Document Server

    Brogi, Paolo; Latino, Giuseppe

    2011-01-01

    The TOTEM experiment, located into the CMS cavern at the CERN Large Hadron Collider (LHC), is one of the six experiments that are investigating high energy physics at this new machine. In particular TOTEM has been designed for TOTal cross-section, Elastic scattering and diffraction dissociation Measurements. The total proton-proton cross-section will be measured with the luminosity-independent method based on the Optical Theorem. This method will allow a precision of 1÷2% at the center of mass energy of 14 TeV. In order to reach such a small error it is necessary to study the p-p elastic scattering cross-section (dσ/dt) down to |t|∼ 10^−3 GeV^2 (to evaluate at best the extrapolation to t = 0) and, at the same time, to measure the total inelastic interaction rate. For this aim, elastically scattered protons must be detected at very small angles with respect to the beam while having the largest possible η coverage for particle detection in order to reduce losses of inelastic events. In addition, TOTEM wi...

  1. Do Cloaked Objects Really Scatter Less?

    Directory of Open Access Journals (Sweden)

    Francesco Monticone

    2013-10-01

    Full Text Available We discuss the global scattering response of invisibility cloaks over the entire electromagnetic spectrum, from static to very high frequencies. Based on linearity, causality, and energy conservation, we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal, and nondiamagnetic cloak, necessarily increase compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses.

  2. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    NARCIS (Netherlands)

    Antonov, A. N.; Gaidarov, M. K.; Ivanov, M. V.; Kadrev, D. N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.; Audouin, L.; Khan, E.; Tassan-Got, L.; Aumann, T.; Beller, P.; Boretzky, K.; Dolinskii, A.; Egelhof, P.; Emling, H.; Franzke, B.; Geissel, H.; Kelic-Heil, A.; Kester, O.; Kurz, N.; Litvinov, Y.; Muenzenberg, G.; Nolden, F.; Schmidt, K. -H.; Scheidenberger, Ch.; Simon, H.; Steck, M.; Weick, H.; Enders, J.; Pietralla, N.; Richter, A.; Schrieder, G.; Zilges, A.; Distler, M. O.; Merkel, H.; Mueller, U.; Junghans, A. R.; Lenske, H.; Fujiwara, M.; Suda, T.; Kato, S.; Adachi, T.; Hamieh, S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Woertche, H.; Berg, G. P. A.; Koop, I. A.; Logatchov, P. V.; Otboev, A. V.; Parkhomchuk, V. V.; Shatilov, D. N.; Shatunov, P. Y.; Shatunov, Y. M.; Shiyankov, S. V.; Shvartz, D. I.; Skrinsky, A. N.; Chulkov, L. V.; Danilin, B. V.; Korsheninnikov, A. A.; Kuzmin, E. A.; Ogloblin, A. A.; Volkov, V. A.; Grishkin, Y.; Lisin, V. P.; Mushkarenkov, A. N.; Nedorezov, V.; Polonski, A. L.; Rudnev, N. V.; Turinge, A. A.; Artukh, A.; Avdeichikov, V.; Ershov, S. N.; Fomichev, A.; Golovkov, M.; Gorshkov, A. V.; Grigorenko, L.; Klygin, S.; Krupko, S.; Meshkov, I. N.; Rodin, A.; Sereda, Y.; Seleznev, I.; Sidorchuk, S.; Syresin, E.; Stepantsov, S.; Ter-Akopian, G.; Teterev, Y.; Vorontsov, A. N.; Kamerdzhiev, S. P.; Litvinova, E. V.; Karataglidis, S.; Alvarez Rodriguez, R.; Borge, M. J. G.; Ramirez, C. Fernandez; Garrido, E.; Sarriguren, P.; Vignote, J. R.; Fraile Prieto, L. M.; Lopez Herraiz, J.; Moya de Guerra, E.; Udias-Moinelo, J.; Amaro Soriano, J. E.; Rojo, A. M. Lallena; Caballero, J. A.; Johansson, H. T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.; Golubev, P.; Rudolph, D.; Hencken, K.; Jourdan, J.; Krusche, B.; Rauscher, T.; Kiselev, D.; Trautmann, D.; Al-Khalili, J.; Catford, W.; Johnson, R.; Stevenson, P. D.; Barton, C.; Jenkins, D.; Lemmon, R.; Chartier, M.; Cullen, D.; Bertulani, C. A.; Heinz, A.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the

  3. Neutron scattering from 12C in the few-MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Holt, R.; Whalen, J.

    1978-09-01

    Neutron total cross sections of natural carbon are deduced from the observed transmission of approximately monoenergetic neutrons through carbon samples of varying thickness. The measurements extend from approximately equal to 0.1 to 4.5 MeV with resolutions of approximately equal to 2 to 100 keV. Neutron differential-elastic-scattering cross sections of natural carbon are measured from 1.5 to 4.0 MeV at incident-neutron energy intervals of approximately less than 100 keV, over an angular range of approximately equal to 20 to 160 0 and with energy resolutions of 20 to 50 keV. The experimental results are interpreted in terms of a multilevel R-function analysis. Results are compared with the large body of measured and evaluated neutron total and scattering cross sections and scattered neutron polarizations reported in the literature. It is suggested that the observed neutron total and scattering cross sections of carbon are physically consistent and suitable for use as a reference standard in experimental studies of neutron processes. The R-function description should provide a convenient description of neutron total and scattering cross sections of carbon as a function of both angle and energy. 88 references

  4. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  5. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  6. Compton scattering by mesons in nuclei: Experiment on 208Pb

    International Nuclear Information System (INIS)

    Fuhrberg, K.; Martin, G.; Haeger, D.; Ludwig, M.; Schumacher, M.; Andersson, B.E.; Blomqvist, K.I.; Ruijter, H.; Sandell, A.; Schroeder, B.; Hayward, E.; Nilsson, L.; Zorro, R.

    1992-01-01

    Using 58 and 73 MeV tagged photons and scattering angles from 60deg to 150deg, it is shown that is possible to observe Compton scattering by 'mesons in nuclei ' through an incomplete cancellation of the mesonic (exchange- current) seagull amplitude by parts of the nuclear resonance amplitude related to the giant-dipole resonance of 208 Pb. This phenomenon is a property of an extended nucleus and , therefore, cannot be dtudied on the deuteron. Predictions of the exchange form factor which determines the angular distribution of the exchange seagull amplitude are compared with experimental data. (orig.)

  7. Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments

    DEFF Research Database (Denmark)

    Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.

    2000-01-01

    outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...

  8. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  9. Robotic transanal total mesorectal excision for rectal cancer: experience with a first case

    NARCIS (Netherlands)

    Verheijen, P.M.; Consten, E.C.J.; Broeders, Ivo Adriaan Maria Johannes

    2014-01-01

    Background: A transanal approach for total mesorectal excision (TME) using a single incision port is feasible. The disadvantages are technical difficulties associated with limited manoeuvrability. Methods: We present our first experience with robotic-assisted transanal total mesorectal excision. A

  10. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  11. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  12. Current status of neutron scattering in Thailand

    International Nuclear Information System (INIS)

    Ampornrat, Pantip

    1999-01-01

    Thailand's neutron spectrometer has been installed soon after the startup of the reactor. The neutron scattering experiments have been done continuously, although there were some problems involving the neutron intensity and instruments. Development program has been planned for better experimental result. This paper reports the past and present status of neutron scattering equipment and experiments in Thailand. In addition, installation of a HRPD (High Resolution Powder Diffraction) system is included within the scope of the Ongkharak Nuclear Research Center project. (author)

  13. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  14. Inclusive and exclusive deep-inelastic electron scattering

    International Nuclear Information System (INIS)

    Morgenstern, J.

    1985-11-01

    In this talk, I will present some deep inelastic electron scattering experiments done recently at Saclay with the purpose of studying high momentum components in the nucleus, many body effects as correlations, exchange currents, and the electron-nucleon interaction inside the nuclear medium. For that purpose we have performed (e,e') and (ee'p) experiments. When we detect only the scattered electron, we get some average properties less sensitive to final state interaction; in ee'p measurements we are more specific

  15. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  16. A molecular beam machine for the measurement of the scattering of polar diatomic molecules

    International Nuclear Information System (INIS)

    Everdij, J.J.

    1976-01-01

    This thesis describes an experimental method to determine the long range, angular dependent part of the intermolecular potential between a polar diatomic molecule and a spherical symmetric partner. The method contains the study of the scattering behaviour of the molecules in a crossed beam experiment. The primary beam consisting of polar diatomic molecules at thermal velocities (approximately 0.1 eV), is selected in a specified rotational state by means of an electrostatic, inhomogeneous field before the scattering center, where it crosses the (supersonic) secondary beam under an angle of 90 0 . By means of a second state selector, followed by a velocity selector and a particle detector, the consequences are studied of the scattering process on the primary beam, i.e. the behaviour of the total and differential elastic cross sections plus the transition probability of a collision induced transition to another rotational state. (Auth.)

  17. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, Simone

    2012-10-08

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  18. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    International Nuclear Information System (INIS)

    Gutzwiller, Simone

    2012-01-01

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32 3 x 64 and a 40 3 x 64 lattice with N f =2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  19. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  20. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  1. Search for weak M 1 transitions in 48Ca with inelastic proton scattering

    Science.gov (United States)

    Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.

    2017-05-01

    Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron-scattering

  2. Inelastic scattering. Time of flight

    International Nuclear Information System (INIS)

    Eccleston, R.

    1999-01-01

    It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)

  3. Commercial applications of neutron scattering

    International Nuclear Information System (INIS)

    Hutchings, M.T.

    1993-01-01

    The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)

  4. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  5. Multiple scattering processes: inverse and direct

    International Nuclear Information System (INIS)

    Kagiwada, H.H.; Kalaba, R.; Ueno, S.

    1975-01-01

    The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text

  6. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  7. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  8. Electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Anselmino, M.; Aschenauer, E.C.; Belostotski, S.

    2000-11-01

    Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e + arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q 2 -dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q 2 -evolution to that of the corresponding helicity distributions constitutes an important precision test of the predictive power of QCD in the spin sector. Measuring transversity distributions and tensor charges allows access to the hitherto unmeasured chirally odd operators in QCD which are of great importance to understand the role of chiral symmetry. The possibilities of using unpolarized targets and of experiments with a real photon beam turn TESLA-N into a versatile next-generation facility at the intersection of particle and nuclear physics. (orig.)

  9. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  10. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  11. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    Science.gov (United States)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  12. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    Science.gov (United States)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  13. Design and development of the large helical device TV Thomson scattering

    International Nuclear Information System (INIS)

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-01-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data

  14. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  15. The anisotropic potential of molecular hydrogen determined from the scattering of oriented H2 on inert gases

    International Nuclear Information System (INIS)

    Zandee, A.P.L.M.

    1977-01-01

    This thesis deals with an experiment aimed at determining the angle dependence of an intermolecular potential between H 2 molecule and a rare gas atom. The small relative difference in total collision cross section for beams of differently oriented H 2 molecules colliding with inert gas atoms in a scattering box is measured (anisotropy A). Through variation of the orientation and by studying its influence on the total collision cross sections, the angle dependence of the intermolecular potential can be arrived at

  16. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  17. The nucleon-nucleus scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.-P.

    1976-01-01

    The Glauber model has the merit to connect directly the nucleon-nucleus elastic differential cross section with the nucleon-nucleon amplitude and nuclear densities. The general agreement between the 1 GeV proton elastic scattering differential cross sections calculated without adjustable parameter and the experimental data (from He 4 to Pb 208 ) is rather satisfactory up to 2. - 2.5 fm -1 momentum transfer. Although the 1 GeV proton elastic scattering experiments constitute at present one of the best method in determining neutron densities, it seems that self-consistent calculations bring the best knowledge of these densities. The model independent analysis performed with electron and proton scattering experiments show that the difference between neutron and proton r.m.s. radius cannot be determined better than 25-30% for Pb 208 [fr

  18. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  19. Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Vlastimil, E-mail: vlastimil.vrba01@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Procházka, Vít, E-mail: v.prochazka@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Smrčka, David, E-mail: david.smrcka@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovicova 3, 812 19 Bratislava (Slovakia); Department of Nuclear Reactors, Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic)

    2017-03-01

    This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.

  20. Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments

    International Nuclear Information System (INIS)

    Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel

    2017-01-01

    This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.

  1. Study of the proton structure by measurements of polarization transfers in real Compton scattering at J Lab

    International Nuclear Information System (INIS)

    Fanelli, C.; Salme, G.; Cisbani, E.; Hamilton, D.; Wojtsekhowski, B.

    2014-01-01

    A preliminary analysis of polarization-transfer data at large scattering angle (70 degrees), obtained in an experiment of real Compton scattering on proton, performed in Hall-C of Jefferson Lab, is presented. It is also discussed the relevance of this kind of experiments for shedding light on the non-perturbative structure of the proton, at low energy, and on the transition from the non-perturbative regime to the perturbative one, that occurs at high energy. Moreover, the possibility to extract Compton form factors and the Generalized Parton Distributions (GPD), one of the most promising theoretical tool to determine the total angular momentum contribution of quarks and gluons to nucleon spin, is emphasized. The preliminary results appear consistent with GPD's based and Regge predictions. This is not sufficient yet to exclude pQCD COZ (Chernyak-Oglobin-Zhitnistsky) model, but it is another preliminary indication that the handbag approach seems to be the dominant mechanism at the energy of the experiment

  2. A study of molecular correlations observed in the small-angle photon scattering distributions of 60 KeV photons interacting with low-atomic-number media

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1988-01-01

    A variant of the multisection filter and annular target geometry, with a designed angular acceptance of +-0.5 0 , has been utilised in measuring accurate, O(5%), absolute total differential scattering cross sections of 60 KeV photons for H 2 O, methyl methacrylate (C 5 H 8 O 2 ) n and nylon-6 (C 12 H 22 O 3 N 2 ) n in the angular scattering range of 2 0 -10 0 . The effects of molecular correlations manifest, to varying degree, in strong forward peaking of the scattered photon distribution. Comparison is made with available experiment and theory [pt

  3. Charged mediators in dark matter scattering

    Science.gov (United States)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  4. Antiproton-Proton Glory Scattering

    CERN Multimedia

    2002-01-01

    This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).

  5. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  6. Feasibility study of a microwave or far-infrared scattering experiment to measure small scale turbulence and anomalous transport in J.E.T

    International Nuclear Information System (INIS)

    Koechlin, F.; Olivain, J.; Gresillon, D.; Truc, A.

    1981-03-01

    In the first part, we make a rapid review of what can be expected as low frequency turbulence in J.E.T. This is to define the parameters of the density fluctuations which can be expected. A method to deduce the anomalous transport is described. In the second part, the physical problems of measuring these parameters by microwave or far-infrared scattering are outlined. In the third part, a preliminary study of a microwave scattering experiment at lambda approximately 1.3 mm is made. In the fourth part, a F.I.R. laser experiment at 10.6 μm is also proposed to perform the same measurements. In this last case, an estimation of the thermal nature of the plasma emission could be made, in order to eventually extend the diagnostic to the ion temperature measurement

  7. Neutron scattering studies of modulated magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Soerensen, Steen

    1999-08-01

    This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization

  8. Theory of phonon inelastic atom--surface scattering. I. Quantum mechanical treatment of collision dynamics

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.

    1985-01-01

    We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment

  9. Assessment of beryllium and molybdenum nuclear data files with the RPI neutron scattering system in the energy region from 0.5 to 20 MeV

    Science.gov (United States)

    Daskalakis, Adam; Blain, Ezekiel; Leinweber, Gregory; Rapp, Michael; Barry, Devin; Block, Robert; Danon, Yaron

    2017-09-01

    A series of neutron scattering benchmark measurements were performed on beryllium and molybdenum with the Rensselaer Polytechnic Institute's Neutron Scattering System. The pulsed neutron source was produced by the Rensselaer Polytechnic Institute's Linear Accelerator and a well collimated neutron beam was incident onto the samples located at a distance of 30.07 m. Neutrons that scattered from the sample were measured using the time-of-flight by eight EJ-301 liquid scintillator detectors positioned 0.5 m from the sample of interest. A total of eight experiments were performed with two sample thicknesses each, measured by detectors placed at two sets of angles. All data were processed using pulse shape analysis that separated the neutron and gamma ray events and included a gamma misclassification correction to account for erroneously identified gamma rays. A detailed model of the neutron scattering system simulated each experiment with several current evaluated nuclear data libraries and their predecessors. Results for each evaluation were compared to the experimental data using a figure-of-merit. The neutron scattering system has been used as a means to quantify a library's performance.

  10. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    Science.gov (United States)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  11. [Eleven-Year Experience with Total Ankle Arthroplasty].

    Science.gov (United States)

    Popelka, S; Sosna, A; Vavřík, P; Jahoda, D; Barták, V; Landor, I

    2016-01-01

    frequent complication and had to be removed in six patients (4.5%). No early infection was recorded and late infection was treated in three patients. The prosthesis had to be removed and ankle arthrodesis performed in seven patients (5.3%). All had necrosis of the talus with ankle instability. In five, the retrograde nail Medin was used and extensive defects remaining after talar necrosis were filled with massive bone grafts obtained from a bone bank. One patient required tibio-calcaneal arthrodesis with external fixator; surgery in one case involved the use of a Zimmer Trabecular Metal Ankle Fusion Spacer with retrograde nail fixation. The development of cystic radiolucencies adjacent to tibial or talar components presents another post-operative complication. It was recorded mostly in the patients after AES implantation, in whom eight of 52 (15.3%) had these findings. DISCUSSION Total ankle arthroplasty is a complicated surgical procedure potentially associated with various technical problems. The occurrence of complications is indirectly related to the experience of the orthopaedist performing surgery; literature data show that the number of complication decreases with an increased frequency of ankle replacements done. CONCLUSIONS Total ankle arthroplasty, as every orthopaedic surgery, has its advantages and disadvantages. The positive aspects are pain relief and improved mobility of the ankle allowing for physiological gait. However, it shows a lower survivorship rate that the other large joint replacements. A successful outcome depends on the correct indication. The ankle should be stable, the talus without signs of necrosis and valgus or varus deviations of the ankle should not exceed 10 to 15 degrees. total ankle arthroplasty, re-implantation, aseptic loosening, retrograde nail, Trabecular Metal spacer, revision arthroplasty.

  12. Exclusive compton scattering on the proton

    International Nuclear Information System (INIS)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  13. Exclusive compton scattering on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

    1999-07-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  14. Exclusive Compton Scattering on the Proton

    International Nuclear Information System (INIS)

    Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13

  15. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  16. Scattering of acoustic waves by small crustaceans

    Science.gov (United States)

    Andreeva, I. B.; Tarasov, L. L.

    2003-03-01

    Features of underwater sound scattering by small crustaceans are considered. The scattering data are obtained with the use of unique instrumentation that allows one to measure quantitative scattering characteristics (backscattering cross sections and angular scattering patterns) for crustaceans of different sizes, at different frequencies (20 200 kHz) and different insonification aspects. A computational model of crustaceans is considered with allowance for both the soft tissues of the main massive part of the animal's body and the stiff armour. The model proves to be advantageous for explaining some scattering features observed in the experiments. The scattering cross sections of crustaceans measured by other researchers are presented in a unified form appropriate for comparison. Based on such a quantitative comparison, relatively simple approximate empirical formulas are proposed for estimating the backscattering cross sections of small (within several centimeters) marine crustaceans in a broad frequency range.

  17. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    International Nuclear Information System (INIS)

    Paul Reimer; Peter Bosted; John Arrington; Hamlet Mkrtchyan; Xiaochao Zheng

    2006-01-01

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q 2 , low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (∼ 0.5 x 10 -4 ) these studies may be completed with in a relatively brief period

  18. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  19. Electron scattering off palladium isotopes

    International Nuclear Information System (INIS)

    Laan, J.B. van der.

    1986-01-01

    The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)

  20. Huang diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.

    1979-01-01

    Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)

  1. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tice, Brian George [Rutgers Univ., New Brunswick, NJ (United States)

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  2. Introduction to neutron scattering. Lecture notes of the introductory course

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS '96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs

  3. 'Total girlfriend experience': examining marketplace mythologies on sex tourism websites.

    Science.gov (United States)

    Gezinski, Lindsay B; Karandikar, Sharvari; Levitt, Alexis; Ghaffarian, Roxane

    2016-07-01

    The purpose of this study was to conduct a systematic content analysis of sex tour websites to understand how sex tours are marketed to potential clients. A total of 380 web pages from 21 sex tour websites were reviewed. The sex tour websites sought to promote privacy and hassle-free travel with a local 'escort' and the opportunity for 'hooks-ups' with no strings attached. Three themes emerged around the description of sex workers: (1) enjoyment and complete acceptance, (2) a 'total girlfriend experience' and (3) exoticisation of the 'Third World' woman. The majority of the sex tourism websites used marketplace mythologies concerning racism, sexism and imperialism to appeal to sex tourists' desires for fantasy experiences, power and domination, and a renewed sense of identity. Legal and STI-related information was largely missing from the websites, and when it was included it was aimed at protecting sex tourists, not sex workers. It is of importance for researchers, social workers and others engaging with sex workers and sexscapes to recognise the power of language, cultural myths and framings and their ability to generate real-world social and health implications.

  4. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  5. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  6. Simplified models for the Monte Carlo simulation of energy distributions of keV electrons transmitted or back-scattered in various solids

    International Nuclear Information System (INIS)

    Liljequist, D.

    1978-01-01

    Simplified models, based on stopping power, transport mean free path and classical straggling, are shown to give results in rather good agreement with experiment and comparable with the results of more detailed, direct Monte Carlo procedure hitherto constructed. The small effects of features such as large-angle scattering and the interaction between straggling and scattering are studied. A description based on the near linearity of the transport mean free path is used to obtain empirical corrections in some cases of the total transmission and back-scattering simulation and empirical estimates of the (Bethe) range and the transport mean free path. The estimates of the range are consistent with a rough calculation of the effect of large binding energies. (author)

  7. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps

    2005-06-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  8. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  9. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  10. Verification of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target using MCNP5 code

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van

    2015-01-01

    This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.

  11. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  12. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.

    Science.gov (United States)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E; Kieffer, Jérôme; Bowler, Matthew W; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  13. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  14. Parity violating asymmetries in polarized electron scattering

    International Nuclear Information System (INIS)

    Derman, E.; Marciano, W.J.

    1979-01-01

    We discuss parity violating asymmetries between the scattering of right and left-handed electrons on a variety of targets. Implications for gauge theories from recent SLAC results on deep-inelastic electron-deuterium and electron-proton scattering are examined. A derivation of the asymmetry for electron-electron scattering is given, its advantages are pointed out, and the feasibility of such a measurement is discussed. Other proposed or contemplated asymmetry experiments are reviewed and the necessity of including the Collins-Wilczek-Zee hadronic axial isoscalar current contribution in asymmetry predictions is noted

  15. Elastic scattering at the LHC

    CERN Document Server

    Kaspar, Jan; Deile, M

    The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...

  16. Critical magnetic scattering of polarized neutrons on iron

    International Nuclear Information System (INIS)

    Hetzelt, M.

    1975-01-01

    A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de

  17. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Resel, Roland, E-mail: roland.resel@tugraz.at; Bainschab, Markus; Pichler, Alexander [Graz University of Technology, Graz (Austria); Dingemans, Theo [Delft University of Technology, Delft (Netherlands); Simbrunner, Clemens [Johannes Kepler University, Linz (Austria); University of Bremen, Bremen (Germany); Stangl, Julian [Johannes Kepler University, Linz (Austria); Salzmann, Ingo [Humboldt University, Berlin (Germany)

    2016-04-20

    The use of grazing-incidence X-ray diffraction to determine the crystal structure from thin films requires accurate positions of Bragg peaks. Refraction effects and multiple scattering events have to be corrected or minimized. Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.

  18. Compton scattering revisited

    International Nuclear Information System (INIS)

    Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.

    2010-01-01

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be

  19. X-ray scattering of soft matter

    International Nuclear Information System (INIS)

    Stribeck, N.

    2007-01-01

    This coherently written volume summarizes the analytical power of modern X-ray scattering in the field of soft matter. Applications of X-ray scattering to soft matter have advanced considerably within recent years, both conceptually and technically. There are now mature high-power X-ray sources, synchrotrons and rotating anodes, as well as high-speed detectors, which have become readily available and which make the whole process more viable. High-quality time-resolved experiments on polymer structure can now be performed with ease, a major advancement due to the genuine power of the scattering method. This manual is a detailed description of simple tools that can elucidate the mechanisms of structure evolution in the studied materials. It is also a step-by-step guide to more advanced methods of the latest X-ray scattering techniques, and breaks down these methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward - with a stress on the careful planning of experiments and adequate recording of all required data. This book, then, serves as a useful ready-reference guide. It has been written for the modern scientist who is a generalist and needs a concise reference, and demonstrates typical errors in data evaluation. (orig.)

  20. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    Science.gov (United States)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  1. Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals

    Science.gov (United States)

    Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.

    2018-04-01

    We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.

  2. Neutron scattering measurements from cryogenic ammonia: a progress report

    International Nuclear Information System (INIS)

    Carpenter, J.; Micklich, B.; Zanotti, J.M.

    2004-01-01

    We survey the results of an earlier study of the inelastic scattering from solid ammonia, and report the results of a preliminary experiment carried out at the ∝100 μeV-resolution quasielastic scattering spectrometer QENS at IPNS. (orig.)

  3. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  4. Quasielastic electron scattering from 40Ca

    International Nuclear Information System (INIS)

    Williamson, C.F.; Yates, T.C.; Schmitt, W.M.; Osborn, M.; Deady, M.; Zimmerman, P.D.; Blatchley, C.C.; Seth, K.K.; Sarmiento, M.; Parker, B.; Jin, Y.; Wright, L.E.; Onley, D.S.

    1997-01-01

    Differential cross sections for quasielastic electron scattering on 40 Ca have been measured at laboratory scattering angles of 45.5 degree, 90 degree, and 140 degree with bombarding energies ranging from 130 to 840 MeV. Transverse and longitudinal response functions have been extracted for momentum transfers from 300 to 500 MeV/c. Contrary to some previously reported results, the total observed longitudinal strength agrees with the relativistic Fermi gas prediction to within ±18%. copyright 1997 The American Physical Society

  5. ELASTIC SCATTERING: How goes the Odderon?

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, Kyungsik; Tan, C-I

    1994-01-01

    Spurred by new measurements of total reaction rates and associated parameters by groups at CERN, DESY, and Fermilab, and with the scent of possible solutions to past controversies in the air, some 110 experimental and theoretical highenergy physicists gathered at Brown University (Providence, Rhode Island) for the fifth traditional 'Blois' Workshop on High-Energy Elastic and Diffractive Scattering. Very much alive is the 'Odderon' - the extra effect to explain the difference between proton-proton and proton-antiproton scattering.

  6. Impact parameter dynamics in quantum theory in large angle scattering

    International Nuclear Information System (INIS)

    Andriyanov, A.A.

    1975-01-01

    High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials

  7. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  8. Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment.

    Science.gov (United States)

    Kroes, G J; Wijzenbroek, Mark; Manson, J R

    2017-12-28

    Specific features of diffractive scattering of H 2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H 2 , and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H 2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H 2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

  9. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  10. Extraction of the neutron-neutron scattering length ann from kinematically complete neutron-deuteron breakup experiments

    International Nuclear Information System (INIS)

    Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.

    1996-01-01

    Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)

  11. First results from the Thomson scattering diagnostic on proto-MPEX

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Ray, H.; Shaw, G. [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-11-15

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  12. Measurement of elastic proton-proton scattering at $\\sqrt{s} = 7$ TeV with the ALFA sub-detector of ATLAS at the LHC

    CERN Document Server

    Kreutzfeldt, Kristof; Stenzel, Hasko

    The ATLAS experiment with the ALFA sub-detector, provides a unique opportunity to measure elastic proton--proton scattering at the LHC at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV, that has never been reached before. The ALFA detector is a tracking detector housed in Roman Pots, which makes it possible to measure elastically scattered protons down to very small scattering angles. From the proton tracks, measured during a LHC fill with special $\\beta^{*} = 90$ m beam optics, the differential elastic cross-section as a function of the four-momentum transfer squared $t$ is determined, and the total hadronic cross-section $\\sigma_\\text{tot}$, the nuclear slope parameter $B$ and further derived quantities are extracted by utilizing the optical theorem. The total hadronic cross-section is a fundamental parameter of strong interaction depending on the centre-of-mass energy. It has been measured for more than 50 years at different energies and accelerators, where a rise with energy was observed. A newly developed...

  13. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.

    Science.gov (United States)

    Sementa, L; Wijzenbroek, M; van Kolck, B J; Somers, M F; Al-Halabi, A; Busnengo, H F; Olsen, R A; Kroes, G J; Rutkowski, M; Thewes, C; Kleimeier, N F; Zacharias, H

    2013-01-28

    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the

  14. A study of quasi-elastic muon (anti) neutrino scattering in the NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, V.V.; Popov, B.A.

    2008-01-01

    We have studied the muon neutrino and antineutrino-quasi-elastic (QEL) scattering reactions (ν μ n → μ - p and νbar μ p → μ + n) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ (νbar μ ) charged current cross section. The results for the flux averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are (σ qel )ν μ = (0.92 ± 0.02 (stat.) ± 0.06 (syst.)) · 10 -38 cm 2 and (σ qel )νbar μ = (0.81 ± 0.05 (stat.) ± 0.08 (syst.)) · 10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A = 1.05 ± 0.02 (stat.) ± 0.06 (syst.) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. The measured M A is found to be in good agreement with the world average value obtained in the previous deuterium filled bubble chamber experiments. These results do not support M A measurements published recently by the K2K and MiniBooNE collaborations, which reported somewhat larger values, which are however compatible with our results within their large errors

  15. Development and performance test of a system available for generating multiple extreme conditions for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kawano, Shinji; Fukui, Susumu; Moriai, Atsushi; Ohtomo, Akitoshi; Ichimura, Shigeki; Onodera, Akifumi; Amita, F.; Katano, Susumu

    1998-01-01

    We have developed unique system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of: (i) a liquid-helium cryostat variable for sample temperature from 1.7 K to 200 K, (ii) a superconducting magnet providing a vertical field up to ±5 T with an antisymmetric split-coil geometry for polarized-beam experiments, and (iii) a non-magnetic piston-cylinder high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 GPa. In the presentation, we will report the outline of the system and some results of performance tests at KURRI and JRR-3M of JAERI. (author)

  16. Molecular beam scattering experiments with polar molecules. 1. Differential elastic scattering of H2+NH3 and H2+H2O

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; Scoles, G.; Smith, K.M.

    1974-01-01

    Differential elastic scattering cross sections with well resolved quantum oscillations have been measuremed for the systems H 2 +NH 3 and H 2 +H 2 O. Assuming a spherically symmetric interaction the data show that a simple spherical potential (i.e. Lennard-Jones) does not properly describe the scattering

  17. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  18. Simulations, measurements, and optimization of OLEDs with scattering layer

    NARCIS (Netherlands)

    Altazin, S.; Reynaud, C.; Mayer, U.M.; Lanz, T.; Lapagna, K.; Knaack, R.; Peninck, L.; Kirsch, C.; Pernstich, K.P.; Harkema, S.; Hermes, D.; Ruhstaller, B.

    2015-01-01

    A multi-scale optical model for organic light-emitting devices containing scattering layers is presented. This model describes the radiation of embedded oscillating dipoles and scattering from spherical particles. After successful model validation with experiments on a top-emitting white OLED, we

  19. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  20. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)