WorldWideScience

Sample records for total river runoff

  1. [Total pollution features of urban runoff outlet for urban river].

    Science.gov (United States)

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  2. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  3. Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Fang

    2017-02-01

    Full Text Available Melt runoff (MR contributes significantly to the total runoff in many river basins. Knowledge of the meltwater contribution (MCR, defined as the ratio of MR to the total runoff to the total runoff benefits water resource management and flood control. A process-based land surface model, Noah-MP, was used to investigate the spatiotemporal characteristics of MR and MCR in the Upper Changjiang River (as known as Yangtze River Basin (UCRB located in southwestern China. The model was first calibrated and validated using snow cover fraction (SCF, runoff, and evapotranspiration (ET data. The calibrated model was then used to perform two numerical experiments from 1981 to 2010: control experiment that considers MR and an alternative experiment that MR is removed. The difference between two experiments was used to quantify MR and MCR. The results show that in the entire UCRB, MCR was approximately 2.0% during the study period; however, MCR exhibited notable spatiotemporal variability. Four sub-regions over the Qinghai-Tibet Plateau (QTP showed significant annual MCR ranging from 3.9% to 6.0%, while two sub-regions in the low plain regions showed negligible annual MCR. The spatial distribution of MCR was generally consistent with the distribution of glaciers and elevation distribution. Mann-Kendall (M-K tests of the long-term annual MCR indicated that the four sub-regions in QTP exhibited increasing trends ranging from 0.01%/year to 0.21%/year during the study period but only one displayed statistically significant trend. No trends were found for the peak time (PT of MR and MCR, in contrast, advancing trend were observed for the center time (CT of MR, ranging from 0.01 months/year to 0.02 months/year. These trends are related to the changes of air temperature and precipitation in the study area.

  4. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  5. Assessment of the effect of land use /land cover changes on total runoff from Ofu River catchment in Nigeria

    Directory of Open Access Journals (Sweden)

    Meshach Ileanwa Alfa

    2018-04-01

    Full Text Available The total runoff from a catchment is dependednt on both the soil characteristics and the land use/land cover (LULC type. This study was conducted to examine the effect of changes in land cover on the total runoff from Ofu River Catchment in Nigeria. Classified Landsat imageries of 1987, 2001 and 2016 in combination with the soil map extracted from the Digital Soil Map of the World was used to estimate the runoff curve number for 1987, 2001 and 2016. The runoff depth for 35 years daily rainfall data was estimated using Natura Resource Conservation Services Curve Number (NRCS-CN method. The runoff depths obtained for the respective years were subjected to a one-way analysis of variance at 95% level of significance. P-value < 0.05 was taken as statistically significant. Runoff curve numbers obtained for 1987, 2001 and 2016 were 61.83, 63.26 and 62.79 respectively. The effects of the changes in LULC for 1987-2001, 2001-2016 and 1987-2016 were statistically significant (P<0.001 at 95% confident interval.  The average change in runoff depths were 79.81%, -11.10% and 48.09% respectively for 1987-2001, 2001-2016 and 1987-2016. The study concluded that the changes in LULC of the catchment had significant effect on the runoff from the catchment.

  6. Measured and simulated runoff to the lower Charles River, Massachusetts, October 1999-September 2000

    Science.gov (United States)

    Zarriello, Phillip J.; Barlow, Lora K.

    2002-01-01

    Management Model of the Stony Brook Subbasin previously developed by others was evaluated with the newly collected data from this study; this model had a model fit comparable to the models developed by the U.S. Geological Survey. The total annual runoff to the lower Charles River during the 2000 water year, not including contributions from combined-sewer-overflows except from the Stony Brook Subbasin, was 16,500 million cubic feet; 92 percent of the inflow was from the Charles River above Watertown Dam, 3 percent was from the Stony Brook Subbasin, 2 percent was from the Muddy River Subbasin, and less than 1 percent was from the combined inflows of Laundry and Faneuil Brooks. The remaining ungaged drainage area contributed about 2 percent of the total annual inflow to the lower Charles River. Excluding discharge from the Charles River above Watertown Dam, total annual runoff to the lower Charles River was 1,240 million cubic feet; 39 percent was from the Stony Brook Subbasin, 27 percent was from the Muddy River, which includes runoff that drains to the Muddy River conduit, 7 percent was from the Laundry Brook Subbasin, and 4 percent was from the Faneuil Brook Subbasin. Flow from the ungaged areas composed about 23 percent of the total annual inflow to the lower Charles River, excluding discharge from the Charles River above Watertown Dam. Runoff to the lower Charles River was calculated for two design storms representing a 3-month and a 1-year event, 1.84 and 2.79 inches of total rainfall, respectively. These simulated discharges were provided to the Massachusetts Water Resources Authority for use in a receiving-water model of the lower Charles River. Total storm runoff to the lower Charles River was 111 and 257 million cubic feet for the 3-month and 1-year storms, respectively. Excluding discharge from the Charles River above Watertown Dam, total runoff to the lower Charles River was 30 and 53 million cubic feet for the 3-month and 1-year storms, respectively. Runoff from

  7. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (runoff particles contained a higher proportion of nano-scale particles (runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Runoff analysis by means of multiple isotope tracers in Iwami river drainage, Akita, Japan

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Yoshida, Minako; Tanaka-Miyamoto, Kiriko.

    1990-01-01

    By means of three isotope tracer techniques, proportion of direct runoff and characters of groundwater runoff were studied in the Iwami River drainage during a high runoff period for about 3 days, caused by a heavy rainfall of 85 mm for 17 hours. The proportion of direct runoff is 15 % or less of the total runoff caused by the rainfall, while 65 % of river water at the peak of runoff. Differences observed in the runoff manners among 18 O, 2 H, and 3 H are interpreted as a result of preferential runoff of previous precipitations stored in some unsaturated zone above the saturated groundwater zone. Cl - content is not conservative as a tracer to study runoff mechanisms. (author)

  9. The impact of global warming on river runoff

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1992-01-01

    A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.

  10. Multi-linear model of transformation of runoff in river-basins

    International Nuclear Information System (INIS)

    Szolgay, J.; Kubes, R.

    2005-01-01

    The component part of atmospheric precipitations-runoff model of Hron River is a individual model of transformation of flows in river network, too, which transforms runoff from separate partial catchment basin into terminal profile. This component of precipitations-runoff model can also be used as individual hydrologic transformation model of runoff waves in river-basin. Identification and calibration of this model is realised independently on precipitations-runoff model of Hron River, which is described in this chapter in detail.

  11. River runoff influences on the Central Mediterranean overturning circulation

    Science.gov (United States)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and

  12. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  13. Runoff projection under climate change over Yarlung Zangbo River, Southwest China

    Science.gov (United States)

    Xuan, Weidong; Xu, Yue-Ping

    2017-04-01

    The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.

  14. Influences of deglaciation on the river run-off in Central Asia

    Directory of Open Access Journals (Sweden)

    G. E. Glazyrin

    2013-01-01

    Full Text Available Glaciers form a great deal of runoff of rivers in Central Asia. It is clear that amount of melted water directly depends on total area of glaciers in the river basins – their glaciation. It is well known that at present the area quickly reduces. The complete inventory of glaciers was performed in former Soviet Union in the middle of last century. Airphoto images were used as a basis for our calculations. The inventory was repeated later for several river basins using airphoto- and space images. Unfortunately only three inventories is performed in several river basins for the last half of XX century. Amount of water, coming to a river network from glaciers, can be divided into two parts. The first is usual annual melting. It exists under stationary glaciation condition. The second, being part of the first, is caused by reduction of the glaciation volume. It can be negative in some years when glaciers volume is increasing as a result of favorable meteorological conditions. In these cases the part of water containing in seasonal snow cover does not go to river network. Two components of the glacial feeding were calculated for six rivers located in various regions of Central Asia. It is shown that present day glaciers reduction does not lead to disastrous consequences for river run-off. It leads only to the changes of annual distribution in the run-off. The results should be considered as preliminary because of low accuracy of hydrometeorolological data and number of admissions during calculation.

  15. DETERMINATION OF CHARACTERISTICS MAXIMAL RUNOFF MOUNTAIN RIVERS IN CRIMEA

    Directory of Open Access Journals (Sweden)

    V. A. Ovcharuk

    2016-05-01

    Full Text Available This article has been examined maximum runoff of the rivers of theCrimeanMountains. The rivers flow through the western and eastern part of the northern slope Crimean Mountains, and on its southern coast. The largest of them: Belbek, Alma, Salgir, Su-Indol and others. To characterize the maximum runoff of rain floods (the layers of rain floods and maximum discharge of water on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation.

  16. Impact of possible climate changes on river runoff under different natural conditions

    Science.gov (United States)

    Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).

  17. Determination of characteristics maximal runoff mountain rivers in ...

    African Journals Online (AJOL)

    ... water) on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive) on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation. Keywords: maximum runoff; rain floods; hillslope runoff; karst ...

  18. Determination of characteristics maximal runoff Mountain Rivers

    African Journals Online (AJOL)

    Ovcharuk V and Todorova O

    Odessa State Environmental University, Ukraine. Received: 03 December 2015 / Accepted: 23 April 2016 / Published online: 01 May 2016. ABSTRACT. This article has been examined maximum runoff of the rivers of the Crimean Mountains. The rivers flow through the western and eastern part of the northern slope Crimean ...

  19. Climate Change Impacts on Runoff Regimes at a River Basin Scale in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Hoai Nam

    2012-01-01

    Full Text Available Global warming has resulted in significant variability of global climate especially with regard to variation in temperature and precipitation. As a result, it is expected that river flow regimes will be accordingly varied. This study presents a preliminary projection of medium-term and long-term runoff variation caused by climate change at a river basin scale. The large scale precipitation projection at the middle and the end of the 21st century under the A1B scenario simulated by the CGCM model (MRI & JMA, 300 km resolution is statistically downscaled to a basin scale and then used as input for the super-tank model for runoff analysis at the upper Thu Bon River basin in Central Vietnam. Results show that by the middle and the end of this century annual rainfall will increase slightly; together with a rising temperature, potential evapotranspiration is also projected to increase as well. The total annual runoff, as a result, is found to be not distinctly varied relative to the baseline period 1981 - 2000; however, the runoff will decrease in the dry season and increase in the rainy season. The results also indicate the delay tendency of the high river flow period, shifting from Sep-Dec at present to Oct-Jan in the future. The present study demonstrates potential impacts of climate change on streamflow regimes in attempts to propose appropriate adaptation measures and responses at the river basin scales.

  20. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  1. Simulated runoff at many stream locations in the Methow River Basin, Washington

    Science.gov (United States)

    Mastin, Mark C.

    2015-01-01

    A collaborative Bureau of Reclamation-U.S. Geological Survey (USGS) team has been brought together to incorporate a conceptual geomorphic-habitat model with a process-based trophic model to understand the processes important to stream habitat for anadromous fish populations. The Methow River Basin was selected as a test basin for this hybrid geomorphic-habitat/trophic model, and one of the required model inputs is long-term daily runoff at reaches with potential habitat. Leveraging the existence of a watershed model that was constructed for the Methow River Basin by the USGS, the team approached the USGS at the Washington Water Science Center to resurrect the original model and to simulate runoff at many locations in the basin to test the trophic model. Thirteen new flow-routing sites were added to the model, creating a total of 61 sites in the basin where daily runoff was simulated and provided as output. The input file that contains observed meteorological data that drives the watershed model and observed runoff data for comparisons with simulated runoff was extended from water year 2001 to water year 2013 using data from 18 meteorological sites and 12 observed runoff sites. The watershed model included simulation of 16 irrigation diversions that simulated 50-percent water loss through canal seepage. Irrigation was simulated as a constant application of 0.2 inches per day to during the irrigation season, May 1–October 7.

  2. Investigating runoff efficiency in upper Colorado River streamflow over past centuries

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  3. Runoff Variability in the Scott River (SW Spitsbergen in Summer Seasons 2012–2013 in Comparison with the Period 1986–2009

    Directory of Open Access Journals (Sweden)

    Franczak Łukasz

    2016-09-01

    Full Text Available River runoff variability in the Scott River catchment in the summer seasons 2012 and 2013 has been presented in comparison to the multiannual river runoff in 1986–2009. Both in particular seasons and in the analysed multiannual, high variability of discharge rate was recorded. In the research periods 2012–2013, a total of 11 952 water stages and 20 flow rates were measured in the analysed cross-section for the determination of 83 daylong discharges. The mean multiannual discharge of the Scott River amounted to 0.96 m3·s−1. The value corresponds to a specific runoff of 94.6 dm3·s−1·km2, and the runoff layer 937 mm. The maximum values of daily discharge amounted to 5.07 m3·s−1, and the minimum values to 0.002 m3·s−1. The highest runoff occurs in the second and third decade of July, and in the first and second decade of August. The regime of the river is determined by a group of factors, and particularly meteorological conditions affecting the intensity of ablation, and consequently river runoff volume. We found a significant correlation (0.60 in 2012 and 0.67 in 2013 between the air temperature and the Scott River discharge related to the Scott Glacier ice melt.

  4. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    International Nuclear Information System (INIS)

    Jidin, Razali; Othman, Bahari

    2013-01-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  5. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    Science.gov (United States)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  6. Influence of climate variability on large rivers runoff

    Directory of Open Access Journals (Sweden)

    B. Nurtaev

    2015-06-01

    Full Text Available In accordance with IPCC Report the influence of climate change on the water cycle will increase hydrologic variability by means of changing of precipitation patterns, melting of ice and change of runoff. Precipitation has increased in high northern latitudes and decreased in southern latitudes. This study presents an analysis of river runoffs trends in different climatic zones of the world in condition of climate change.

  7. Impact of Cryosphere Hydrological Changes on the River Runoff in the Tibetan Plateau

    Science.gov (United States)

    Wang, Y.; Yang, D.

    2015-12-01

    The Tibetan Plateau is the headwaters of many major rivers in Asia, the change in streamflow is significant for social and economic development and natural ecology in the middle and lower reaches. Located in the alpine region, streamflow in the plateau is mainly affected by the cryosphere hydrological processes. Due to global warming in recent decades, the Tibetan Plateau is experiencing glaciers shrinking and permafrost degradation. Accelerated glacier melt led to the increasing meltwater, thus affecting the streamflow. Permafrost is an important factor in stabilizing the water cycle and streamflow, the ecological degradation and the significant changes of rivers, lakes, swamps, wetlands and other hydrological environment in recent decades in the Tibetan plateau is closely related to permafrost degradation. Therefore, it is important to explore the impact of cryosphere hydrological changes on the streamflow for the future water management. This study uses a method of base flow separation and a stepwise multiple regression model to investigate the reasons for the runoff changes in different regions of the Tibetan Plateau during 1960-2000. The contribution of glacier melt to annual runoff is particularly estimated to explore the possible influences of soil freezing and thawing on annual runoff changes. The results show an increasing trend of the annual runoff in the upstream of Nujiang River, Lancang River and Qilian Mountains, dominated by the increasing of base flow; and a decreasing trend of the runoff in the upper reach of the Yarlung Zangbo River, Yellow River and Yangtze River, dominated by the reduction of quick flow. Change in the amount of runoff was mainly due to change in precipitation. Rising temperature accelerates the melting of glaciers and increases the summer quick flow. In addition, rising temperature may reduce the quick flow and increase the base flow due to change of the active permafrost layers, which leads to the increase of soil water storage

  8. Analysing the influence of human activity on runoff in the Weihe River basin

    Directory of Open Access Journals (Sweden)

    C. Shen

    2015-05-01

    Full Text Available Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994–2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393 and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  9. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    The Breede River is the largest river in the Western Cape Province of South Africa, and as such, is a key resource for a variety of activities within the region. It is this significance of the river that prompted a study into the impact of climate change on future runoff in the river and hence, the potential impacts a projected change ...

  10. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island

    Science.gov (United States)

    Barbaro, Jeffrey R.; Zarriello, Phillip J.

    2007-01-01

    A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological

  11. Human impacts on runoff regime of middle and lower Yellow River

    Directory of Open Access Journals (Sweden)

    Yan-fang Sang

    2011-03-01

    Full Text Available In this study, the 54-year (1950 to 2003 monthly runoff series from February, April, August, and November, as well as the annual runoff series, measured at both Huayuankou and Lijin hydrological stations were chosen as representative data, and the continuous wavelet transform (CWT was applied to analyze the impacts of human activities on the runoff regime of the middle and lower Yellow River. A point of change in 1970 was first determined, and the observed series before 1970 were considered natural runoff while those after 1970 were restored according to linear trends. Then, the CWT was applied to both the observed and restored runoff series to reveal their variations at multi-temporal scales, including the five temporal ranges of 1–4, 6–8, 9–12, 16–22, and 22–30 years, and the trend at the temporal scale of 54 years. These analysis results are compared and discussed in detail. In conclusion, because of the impacts of human activities, there have been significant changes in the runoff regime in the middle and lower Yellow River since 1970. The decaying tendency of annual runoff has become more pronounced, and the inner-annual distribution of runoff has changed, but human activities have had little impact on the periodic characteristics of runoff.

  12. Climate change impact on the river runoff: regional study for the Central Asian Region

    International Nuclear Information System (INIS)

    Agaitseva, Natalya

    2004-01-01

    The water resources of the Aral Sea Basin are jointly used by the Central Asian states. The river flow is concentrated in the two largest transboundary rivers: the Amudarya and Syrdarya Rivers, which run down from the mountains to the plains, cross the deserts and flow into the Aral Sea. Uzbekistan is the major water consumer in the Aral Sea Basin. In accordance with interstate agreements, on average 43-52 km 2 of water per year as allotted for use by Uzbekistan from the boundary rivers. About 90% of river flow is formed beyond Uzbekistan boundaries. Under current conditions, water resource shortages in Uzbekistan, even a small but stable reduction of these resources presents a drastic problem. The degree of impact of possible climate changes on the regime of mountain rivers of the Central Asia can be evaluated by sufficiently reliable mathematical models of the runoff formation in mountains. The basic mathematical model describes a complete cycle of the runoff formation, reflecting the main factors and processes: precipitation, dynamics of a snow cover, evaporation, contribution of melting and rain water to the catchment, glacial runoff, runoff transformation and losses in basin. The model complex consists of the model Of snow cover formation in the mountains basin, model of glacial runoff and model of snow melt and rainfall water inflow transformation in runoff. Model calculations of snow reserves in the mountains under different climatic scenarios have demonstrated their gradual decrease due to growing aridity of the climate. Contribution of the snow is expected to decrease by 15-30%1 especially for rivers, which are snow-fed. At present, the annual glacial runoff of the rivers of the Syrdarya River basin amounts to 8-15%. Under different prognoses,,, increase in this flow of up to 20% is expected. Contribution of glacial runoff to the rivers of the Amudarya River basin might grow 32-39% under the most 'severe' climatic scenarios. During the cropping season, an

  13. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    Science.gov (United States)

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  14. A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2014-03-01

    Full Text Available River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydropower and an essential element of water balance. This study presents a system-theory-based model for river runoff forecasting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was calibrated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Following model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is acceptable.

  15. Analyzing temporal changes in maximum runoff volume series of the Danube River

    International Nuclear Information System (INIS)

    Halmova, Dana; Pekarova, Pavla; Onderka, Milan; Pekar, Jan

    2008-01-01

    Several hypotheses claim that more extremes in climatic and hydrologic phenomena are anticipated. In order to verify such hypotheses it is inevitable to examine the past periods by thoroughly analyzing historical data. In the present study, the annual maximum runoff volumes with t-day durations were calculated for a 130-year series of mean daily discharge of Danube River at Bratislava gauge (Slovakia). Statistical methods were used to clarify how the maximum runoff volumes of the Danube River changed over two historical periods (1876-1940 and 1941-2005). The conclusion is that the runoff volume regime during floods has not changed significantly during the last 130 years.

  16. Regime Shift Identification of Runoff and Sediment Loads in the Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-10-01

    Full Text Available Runoff and sediment loads have exhibited significant changes over the past six decades in the Yellow River Basin, China. The current study evaluates the changing trends and regime shifts in runoff and sediment loads at both the annual and monthly time scales. The associated spatial and temporal variations are analyzed by a sequential t-test analysis of the regime shifts (STARS approach and the “breaks for additive seasonal and trend” (BFAST model using hydrological data at eight stations from the 1950s to 2011. Both runoff and sediment loads exhibit significant declines (p < 0.05, except in the upper reaches of the river near the Tangnaihai station. The regime shifts detected by the STARS approach are not completely consistent with the results from the BFAST method. In most cases, the regime shifts occurred in 1969 and 1986, due to the construction of large reservoirs. Climate change and other human activities, such as large-scale soil and water conservation measures, can result in abrupt changes in hydrological series at some stations. The trapping effects of reservoirs not only cause regime shifts of runoff and sediment loads, but also adjust their inter-annual and seasonal distributions. Various soil and water conservation measures are responsible for the significant reduction in runoff and sediment loads in the mid-lower reaches of the Yellow River Basin. In addition, water withdrawals from both river runoff and ground water play a critical role in the changing trends in runoff and indirectly alter the sediment loads. The findings provide a good reference for the effective promotion of climate change adaptation, water resources planning and river basin management.

  17. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Xue; JiaQiang Lei; DongWei Gui; JianPing Zhao; DongLei Mao; Jie Zhou

    2016-01-01

    The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958–2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden-tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can im-prove the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economic development.

  18. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    Science.gov (United States)

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  19. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  20. Assessing basin heterogeneities for rainfall–runoff modelling of the Okavango River and its transboundary management

    Directory of Open Access Journals (Sweden)

    V. Baumberg

    2014-09-01

    Full Text Available The neighbouring river systems Cubango and Cuito drain the southeastern part of the Angolan Highlands and form the Okavango River after their confluence, thus providing 95% of the Okavango River discharge. Although they are characterised by similar environmental conditions, runoff records indicate remarkable differences regarding the hydrological dynamics. The Cubango River is known for rapid discharges with high peaks and low baseflow whereas the Cuito runoff appears more balanced. These differences are mainly caused by heterogeneous geological conditions or terrain features. The Cubango headwaters are dominated by crystalline bedrock and steeper, v-shaped valleys while the Cuito system is characterised by wide, swampy valleys and thick sand layers, thus attenuating runoff. This study presents model exercises which have been performed to assess and quantify these effects by applying the distributive model J2000g for each sub-basin. The models provide reasonable results representing the spatio-temporal runoff pattern, although some peaks are over- or underestimated, particularly in the Cuito catchment. This is explained by the scarce information on extent and structure of storages, such as aquifers or swamps, in the Cuito system. However, the model results aid understanding of the differences of both tributaries in runoff generation and underpin the importance of floodplains regarding the control of runoff peaks and low flows in the Cuito system. Model exercises reveal that basin heterogeneity needs to be taken into account and must be parameterised appropriately for reliable modelling and assessment of the entire Okavango River basin for managing the water resources of the transboundary Okavango River in a harmonious way.

  1. Quantitative analysis of the effect of climate change and human activities on runoff in the Liujiang River Basin

    Science.gov (United States)

    LI, X.

    2017-12-01

    Abstract: As human basic and strategic natural resources, Water resources have received an unprecedented challenge under the impacts of global climate change. Analyzing the variation characteristics of runoff and the effect of climate change and human activities on runoff could provide the basis for the reasonable utilization and management of water resources. Taking the Liujiang River Basin as the research object, the discharge data of hydrological station and meteorological data at 24 meteorological stations in the Guangxi Province as the basis, the variation characteristics of runoff and precipitation in the Liujiang River Basin was analyzed, and the quantitatively effect of climate change and human activities on runoff was proposed. The results showed that runoff and precipitation in the Liujiang River Basin had an increasing trend from 1964 to 2006. Using the method of accumulative anomaly and the orderly cluster method, the runoff series was divided into base period and change period. BP - ANN model and sensitivity coefficient method were used for quantifying the influences of climate change and human activities on runoff. We found that the most important factor which caused an increase trend of discharges in the Liujiang River Basin was precipitation. Human activities were also important factors which influenced the intra-annual distribution of runoff. Precipitation had a more sensitive influence to runoff variation than potential evaporation in the Liujiang River Basin. Key words: Liujiang River Basin, climate change, human activities, BP-ANN, sensitivity coefficient method

  2. The Impact of Urban Run-Off on Ogbor River | Atuluegwu | Nigerian ...

    African Journals Online (AJOL)

    Impact of urban run-off on Ogbor River in Aba metropolis has been studied. The run-off contains toxic chemical, heavy metals and suspended solids. Water samples were collected from three discharged points in the months of May to September. The results of the analysis of the samples show high-level concentration of ...

  3. Runoff sensitivity to climate change in the Nile River Basin

    Science.gov (United States)

    Hasan, Emad; Tarhule, Aondover; Kirstetter, Pierre-Emmanuel; Clark, Race; Hong, Yang

    2018-06-01

    In data scarce basins, such as the Nile River Basin (NRB) in Africa, constraints related to data availability, quality, and access often complicate attempts to estimate runoff sensitivity using conventional methods. In this paper, we show that by integrating the concept of the aridity index (AI) (derived from the Budyko curve) and climate elasticity, we can obtain the first order response of the runoff sensitivity using minimal data input and modeling expertise or experience. The concept of runoff elasticity relies on the fact that the energy available for evapotranspiration plays a major role in determining whether the precipitation received within a drainage basin generates runoff. The approach does not account for human impacts on runoff modification and or diversions. By making use of freely available gauge-corrected satellite data for precipitation, temperature, runoff, and potential evapotranspiration, we derived the sensitivity indicator (β) to determine the runoff response to changes in precipitation and temperature for four climatic zones in the NRB, namely, tropical, subtropical, semiarid and arid zones. The proposed sensitivity indicator can be partitioned into different elasticity components i.e: precipitation (εp), potential evapotranspiration (εETp), temperature (εT) and the total elasticity (εtot) . These elasticities allow robust quantification of the runoff response to the potential changes in precipitation and temperature with a high degree of accuracy. Results indicate that the tropical zone is energy-constrained with low sensitivity, (β 1.0) . The subtropical-highland zone moves between energy-limited to water-limited conditions during periods of wet and dry spells with varying sensitivity. The semiarid and arid zones are water limited, with high sensitivity, (β > 1.0) . The calculated runoff elasticities show that a 10% decrease in precipitation leads to a decrease in runoff of between 19% in the tropical zone and 30% in the arid zones

  4. Analyse on changes of runoff generation and confluence of the Luohe River

    International Nuclear Information System (INIS)

    Yiming Si; Xiaowei Liu

    2004-01-01

    The change trend of water cycle factors such as rainfall, runoff and flood events etc. in the Luohe River basin are analysed based on hydrological data since 1950s. The analysis shows that rainfall has been decreasing, but not much, while runoff has been decreasing remarkably. Under the same rainfall conditions, runoff and peak discharge have dropped considerably, runoff coefficient has become much smaller, and the frequency of flood occurrence has been decreasing. It is considered that environmental variation caused by human activities accounts for the change, in characteristics of runoff generation and confluence in the basin.(Author)

  5. Influence of Cattle Trails on Runoff Quantity and Quality.

    Science.gov (United States)

    Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D

    2017-03-01

    Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  7. The Spatiotemporal Variations of Runoff in the Yangtze River Basin under Climate Change

    OpenAIRE

    Xiao, Ziwei; Shi, Peng; Jiang, Peng; Hu, Jianwei; Qu, Simin; Chen, Xingyu; Chen, Yingbing; Dai, Yunqiu; Wang, Jianjin

    2018-01-01

    A better understanding of the runoff variations contributes to a better utilization of water resources and water conservancy planning. In this paper, we analyzed the runoff changes in the Yangtze River Basin (YRB) including the spatiotemporal characteristics of intra-annual variation, the trend, the mutation point, and the period of annual runoff using various statistical methods. We also investigated how changes in the precipitation and temperature could impact on runoff. We found that the i...

  8. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.

    2017-01-01

    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  9. Detecting runoff variation in Weihe River basin, China

    Science.gov (United States)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  10. Detecting runoff variation in Weihe River basin, China

    Directory of Open Access Journals (Sweden)

    F. Jingjing

    2015-05-01

    Full Text Available Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  11. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Science.gov (United States)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  12. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    Science.gov (United States)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  13. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks

    International Nuclear Information System (INIS)

    Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun

    2013-01-01

    Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L −1 . The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. -- Highlights: •Antibiotics were ubiquitous in the river water and costal water in the Pearl River Delta. •Antibiotics exhibited distinct temporal and spatial trends in the riverine runoff outlets. •Annual outflows of antibiotics were 193 tons from the Pearl River to coastal ocean. •Some antibiotics posed high risks to some organisms in the PRD environments. -- Antibiotics were ubiquitous in the river and coastal water in the Pearl River Delta and posed various ecological risks to the relevant aquatic organisms

  14. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    Science.gov (United States)

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  15. Runoff and degradation of aerially applied dinotefuran in paddy fields and river.

    Science.gov (United States)

    Yokoyama, Sayako; Ito, Masataka; Nagasawa, Shunsuke; Morohashi, Masayuki; Ohno, Masaki; Todate, Yukitaka; Kose, Tomohiro; Kawata, Kuniaki

    2015-06-01

    Variation, run-off and degradation characteristics of the insecticide dinotefuran, (EZ)-(RS)-1-methyl-2-nitro-3-(tetrahydro-3-furyl-methyl)guanidine, in water and soil from two paddy fields after aerial application was investigated as well as in river water. Maximum concentrations of dinotefuran were 290 and 720 µg/L in the two paddy waters, 25 and 28 µg/kg dry in the two paddy soils, and 10 µg/L in the river water. Runoff ratios of dinotefuran from the paddy fields were calculated as 14%-41%. Mean half-lives of dinotefuran were 5.4 days in the paddy water and 12 days in the paddy soil. Results obtained in this study are important for the evaluation of the actual behavior of dinotefuran in paddy fields and rivers.

  16. Does runoff or temperature control chemical weathering rates?

    International Nuclear Information System (INIS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurdur Reynir; Oelkers, Eric H.

    2011-01-01

    Highlights: → The rate chemical weathering is affected by both temperature and runoff. Separating out these two factors is challenging because runoff tends to increase with increasing temperature. → In this study, natural river water samples collected on basaltic catchments over a five year period are used together with experimentally derived dissolution rate model for basaltic glass to pull apart the effects of runoff and temperature. → This study shows that the rate of chemical denudation is controlled by both temperature and runoff, but is dominated by runoff. - Abstract: The rate of chemical denudation is controlled by both temperature and runoff. The relative role of these two factors in the rivers of NE Iceland is determined through the rigorous analysis of their water chemistry over a 5-a period. River catchments are taken to be analogous to laboratory flow reactors; like the fluid in flow reactors, the loss of each dissolved element in river water is the sum of that of the original rainwater plus that added from kinetically controlled dissolution and precipitation reactions. Consideration of the laboratory determined dissolution rate behaviour of basalts and measured water chemistry indicates that the maximum effect of changing temperature on chemical denudation in the NE Icelandic rivers was 5-25% of the total change, whereas that of runoff was 75-95%. The bulk of the increased denudation rates with runoff appear to stem from an increase in reactive surface area for chemical weathering of catchment solids.

  17. Event-based rainfall-runoff modelling of the Kelantan River Basin

    Science.gov (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  18. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W

    2014-01-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  19. Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China

    Science.gov (United States)

    Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong

    2015-01-01

    The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181

  20. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    Science.gov (United States)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of

  1. Runoff and Sediment Response to Cascade Hydropower Exploitation in the Middle and Lower Han River, China

    Directory of Open Access Journals (Sweden)

    Junhong Zhang

    2017-01-01

    Full Text Available With the rapid development of hydropower exploitation in China, changes in runoff and sediment transport have become a significant issue that cannot be neglected. In this study, the Han River was selected as a study case, where the runoff variation and changes in sediment load at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations were analyzed in different time periods. The results indicate that impact of cascade hydropower exploitation on runoff and sediment transport is significantly different even during the same time periods. After reservoir regulation, the decreasing of sediment load is faster than that of runoff. Strong positive correlation between runoff and sediment load exists during different time periods, while reservoir operation leads to different turning points at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations in the middle and lower Han River. As a key driving factor, runoff variation contributed to sediment transport with different impact index CR. The impact index CR before and after the first change point at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations is 43.35%, −3.68%, 11.17%, and 30.12%, respectively. This study helps us understand and evaluate the hydrological changes under cascade hydropower exploitation in the middle and lower Han River.

  2. Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India

    Directory of Open Access Journals (Sweden)

    L. M. Bouwer

    2006-01-01

    Full Text Available Variations in climate, land-use and water consumption can have profound effects on river runoff. There is an increasing demand to study these factors at the regional to river basin-scale since these effects will particularly affect water resources management at this level. This paper presents a method that can help to differentiate between the effects of man-made hydrological developments and climate variability (including both natural variability and anthropogenic climate change at the basin scale. We show and explain the relation between climate, water consumption and changes in runoff for the Krishna river basin in central India. River runoff variability due to observed climate variability and increased water consumption for irrigation and hydropower is simulated for the last 100 years (1901–2000 using the STREAM water balance model. Annual runoff under climate variability is shown to vary only by about 14–34 millimetres (6–15%. It appears that reservoir construction after 1960 and increasing water consumption has caused a persistent decrease in annual river runoff of up to approximately 123 mm (61%. Variation in runoff under climate variability only would have decreased over the period under study, but we estimate that increasing water consumption has caused runoff variability that is three times higher.

  3. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  4. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  5. Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China

    Science.gov (United States)

    Han, Z.; Long, D.; Hong, Y.

    2017-12-01

    Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.

  6. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    Science.gov (United States)

    Christiansen, Daniel E.

    2012-01-01

    . The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.

  7. Runoff modeling of the Amazon basin using 18 O as a conservative tracer

    International Nuclear Information System (INIS)

    Mortatti, Jefferson; Victoria, Reynaldo L.; Moraes, Jorge M.; Rodrigues Junior, Jose C.; Matsumoto, Otavio M.

    1997-01-01

    Using the δO 18 O content of natural waters as a conservative tracer, a runoff modelling of the Amazon river basin was carried out in order to study the hydrological characteristics of the precipitation-runoff relationship. Measurements of the δ 18 O in rainfall waters made in the high Solimoes region at Benjamin Constant, in the central part of basin at Manaus, and at the mouth near the Marajo Island, while the river waters were measured at Obidos only, as a proxy for the mouth, during the 1973-1974 hydrological years. The hydrography separation of the Amazon river was performed using the isotopic method to estimate the contributions of the surface runoff (event water) and baseflow (pre-event water) components to the total river flow. At peak discharge, the average contribution of the baseflow was 57% of the total river flow. The annual average contributions for surface runoff and baseflow were 30.3 and 69.7%, respectively. The residence time of the subsurface water in the basin was estimated as being 7 months, by fitting a sinusoidal function to the isotopic values of rainfall and river waters. The low values of the amplitude damping in the basin suggest high mixing waters during the runoff process. (author). 21 refs., 4 figs., 1 tab

  8. Analysis and Modeling of Time-Correlated Characteristics of Rainfall-Runoff Similarity in the Upstream Red River Basin

    Directory of Open Access Journals (Sweden)

    Xiuli Sang

    2012-01-01

    Full Text Available We constructed a similarity model (based on Euclidean distance between rainfall and runoff to study time-correlated characteristics of rainfall-runoff similar patterns in the upstream Red River Basin and presented a detailed evaluation of the time correlation of rainfall-runoff similarity. The rainfall-runoff similarity was used to determine the optimum similarity. The results showed that a time-correlated model was found to be capable of predicting the rainfall-runoff similarity in the upstream Red River Basin in a satisfactory way. Both noised and denoised time series by thresholding the wavelet coefficients were applied to verify the accuracy of model. And the corresponding optimum similar sets obtained as the equation solution conditions showed an interesting and stable trend. On the whole, the annual mean similarity presented a gradually rising trend, for quantitatively estimating comprehensive influence of climate change and of human activities on rainfall-runoff similarity.

  9. Effects of IPCC SRES* emissions scenarios on river runoff: a global perspective

    Directory of Open Access Journals (Sweden)

    N. W. Arnell

    2003-01-01

    Full Text Available This paper describes an assessment of the implications of future climate change for river runoff across the entire world, using six climate models which have been driven by the SRES emissions scenarios. Streamflow is simulated at a spatial resolution of 0.5°x0.5° using a macro-scale hydrological model, and summed to produce total runoff for almost 1200 catchments. The effects of climate change have been compared with the effects of natural multi-decadal climatic variability, as determined from a long unforced climate simulation using HadCM3. By the 2020s, change in runoff due to climate change in approximately a third of the catchments is less than that due to natural variability but, by the 2080s, this falls to between 10 and 30%. The climate models produce broadly similar changes in runoff, with increases in high latitudes, east Africa and south and east Asia, and decreases in southern and eastern Europe, western Russia, north Africa and the Middle East, central and southern Africa, much of North America, most of South America, and south and east Asia. The pattern of change in runoff is largely determined by simulated change in precipitation, offset by a general increase in evaporation. There is little difference in the pattern of change between different emissions scenarios (for a given model, and only by the 2080s is there evidence that the magnitudes of change in runoff vary, with emissions scenario A1FI producing the greatest change and B1 the smallest. The inter-annual variability in runoff increases in most catchments due to climate change — even though the inter-annual variability in precipitation is not changed — and the frequency of flow below the current 10-year return period minimum annual runoff increases by a factor of three in Europe and southern Africa and of two across North America. Across most of the world climate change does not alter the timing of flows through the year but, in the marginal zone between cool and

  10. Modern (1992–2011) and projected (2012–99) peak snowpack and May–July runoff for the Fort Peck Lake and Lake Sakakawea watersheds in the Upper Missouri River Basin

    Science.gov (United States)

    Stamm, John F.; Todey, Dennis; Mayes Bousted, Barbara; Rossi, Shawn; Norton, Parker A.; Carter, Janet M.

    2016-02-09

    Mountain snowpack is an important contributor to runoff in the Upper Missouri River Basin; for example, high amounts of winter and spring precipitation in the mountains and plains in 2010–11 were associated with the peak runoff of record in 2011 in the Upper Missouri River Basin. To project trends in peak mountain snowpack and runoff in the upcoming decades, multiple linear regression models of peak mountain snowpack and total May–July runoff were developed for the Fort Peck Lake (above Fort Peck Dam) and lower Lake Sakakawea watersheds (between Fort Peck and Garrison Dams) in the Upper Missouri River Basin. Input to regression models included seasonal estimates of precipitation, air temperature, and total reference evapotranspiration stratified by elevation. Calibration was based on records from 107 weather stations from 1991 to 2011. Regressed annual peak mountain snowpack was used as input to the transfer function of May–July runoff. Peak snowpack and May–July runoff were projected for 2012–99 on the basis of air temperature and precipitation from the Community Climate System Model (CCSM) output. Two estimates of projected peak snowpack and May–July runoff for 2012–99 were computed: one estimate was based on output from the CCSM, version 3.0 (CCSM3), and the second estimate was based on output from the CCSM, version 4.0 (CCSM4). The significance of projected trends was based on the Kendall’s tau nonparametric test.

  11. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin

    2017-10-01

    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  12. Effects of low-impact-development (LID) practices on streamflow, runoff quantity, and runoff quality in the Ipswich River Basin, Massachusetts-A Summary of field and modeling studies

    Science.gov (United States)

    Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.

    2010-01-01

    Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June

  13. Multi-scale response of runoff to climate fluctuation in the headwater region of Kaidu River in Xinjiang of China

    Science.gov (United States)

    Bai, Ling; Chen, Zhongsheng; Xu, Jianhua; Li, Weihong

    2016-08-01

    Based on the hydrological and meteorological data in the headwater region of the Kaidu River during 1960-2009, the multi-scale characteristics of runoff variability were analyzed using the ensemble empirical mode decomposition method (EEMD), and the aim is to investigate the oscillation mode structure characteristics of runoff change and its response to climate fluctuation at different time scales. Results indicated that in the past 50 years, the overall runoff of Kaidu River in Xinjiang has showed a significant nonlinear upward trend, and its changes have obviously exhibited an inter-annual scale (quasi-3 and quasi-6-year) and inter-decadal scale (quasi-10 and quasi-25-year). Variance contribution rates of each component manifested that the inter-decadal change had been playing a more important role in the overall runoff change for Kaidu River, and the reconstructed inter-annual variation trend could describe the fluctuation state of the original runoff anomaly during the study period. The reconstructed inter-decadal variability effectively revealed that the runoff for Kaidu River changed over the years, namely the states of abundance and low water period appear alternately. In addition, we found that runoff has a positive correlation to precipitation and temperature at different time scales, but they are most significant and relevant at inter-decadal scale, indicating the inter-decadal scale is most suitable for investigating the responses of runoff dynamics to climate fluctuation. At the same time, the results also suggested that EEMD is an effective method to analyze the multi-scale characteristics of nonlinear and non-stationary signal.

  14. Study on Water Quality of Surface Runoff and Groundwater Runoff on the Basis of Separation by a Numerical Filter

    OpenAIRE

    Kawara, Osami; Fukumoto, Kohji

    1994-01-01

    In this study we investigated the water quality of surface runoff and groundwater runoff from the basins of the Yodo River and the Asahi River based on that separated by a numerical filter. The water quality of the surface runoff is greatly different from the groundwater runoff. The tendency of concentration change in accordance with river discharges is different from each other. The water qtiality of groundwater runoff changes with river discharges clockwise in many cases. The differences of...

  15. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA

    International Nuclear Information System (INIS)

    Hwang, H.-M.; Foster, Gregory D.

    2006-01-01

    To investigate the sources, fate, and transport dynamics of PAHs (polycyclic aromatic hydrocarbons) in stormwater runoff that is a leading source of pollution in urban watersheds, storm and base flow samples were collected in six branches along the lower Anacostia River. PAHs in storm flow (1510-12,500 ng/L) were significantly enriched in the particle phase, which accounted for 68-97% of the total PAHs. It suggests that reducing particles in stormwater using post-treatment system would decrease PAHs considerably. The solid-water distribution coefficients (K D ) of PAHs in the storm flow samples were up to 340 times higher than predicted values. A greater portion of high molecular weight PAHs and their distribution patterns indicate higher contribution of automobile originated pyrogenic PAHs. Total suspended solids in storm flow had a positive relationship with flow rates and exceeded benchmark level for the protection of aquatic biota in some samples. - PAHs in urban stormwater runoff degrade the quality of watersheds and need to be removed before runoff enters into receiving water bodies

  16. Runoff and Sediment load of the Yan River, China: changes over the last 60 yr

    NARCIS (Netherlands)

    Wang, F.; Mu, X.; Hessel, R.; Zhang, W.; Ritsema, C.J.; Li, R.

    2013-01-01

    Runoff and sediment load changes are affected by climate change and human activities in an integrated way. Historical insight into these effects can not only improve the knowledge of river processes, but also promote more effective land and water management. In this study, we looked at runoff and

  17. Assessment of heavy metals, pH and EC in effluent run-off, river and ...

    African Journals Online (AJOL)

    Heavy metal contents from effluent run-off, neighboring Holeta River, and adjacent soils around floriculture greenhouses in Holeta town, Ethiopia were determined using Atomic Absorption Spectrophotometer (AAS) to assess their potentialities as pollutants. Samples were taken from four sites for the effluent, two river bank ...

  18. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  19. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Directory of Open Access Journals (Sweden)

    Jianhua Ping

    Full Text Available Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  20. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Science.gov (United States)

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  1. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-07-01

    Full Text Available The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  2. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: Assessment of mass loading, input source and environmental fate

    International Nuclear Information System (INIS)

    Guan Yufeng; Wang Jizhong; Ni Honggang; Zeng, Eddy Y.

    2009-01-01

    A large-scale sampling program was conducted to simultaneously collect water samples at the eight major riverine runoff outlets of the Pearl River Delta (PRD), South China to assess the importance of riverine runoff in transporting anthropogenic pollutants from terrestrial sources to the coastal ocean. The concentrations of Σ 21 OCPs (sum of 21 OCP components) and Σ 20 PCBs (sum of 20 PCB congeners) were 2.57-41.2 and 0.12-1.47 ng/L, respectively. Compositional distributions of DDTs suggested the possibility of new input sources in the study area, but contributions from dicofol seemed considerably low. The annual inputs of Σ 21 OCPs and Σ 20 PCBs were 3090 and 215 kg, with those of total HCHs and DDTs being 1110 and 1020 kg, respectively. A mass balance consideration indicated that riverine runoff is the major mode carrying OCPs from the PRD to the coastal ocean, and the majority of OCPs is further dissipated to open seas. - Mass loadings, input sources and environmental fate of organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China are assessed

  3. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    Science.gov (United States)

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  4. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    Science.gov (United States)

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  5. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1 The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2 Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3 The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013. The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  6. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    Science.gov (United States)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  7. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.

    Science.gov (United States)

    Wang, Yousheng; Cheng, Congcong; Xie, Yun; Liu, Baoyuan; Yin, Shuiqing; Liu, Yingna; Hao, Yanfang

    2017-08-15

    As the head source of the two longest rivers in China and the longest river in Southeast Asia, the East Qinghai-Tibetan Plateau (QTP) is experiencing increasing thaw snowmelt and more heavy precipitation events under global warming, which might lead to soil erosion risk. To understand the potential driving force of soil erosion and its relationship with precipitation in the context of climate change, this study analyzed long-term variations in annual rainfall-runoff erosivity, a climatic index of soil erosion, by using the Mann-Kendall statistical test and Theil and Sen's approach in the Source Region of the Three Rivers during 1961-2012. The results showed the followings: (i) increasing annual rainfall-runoff erosivity was observed over the past 52years, with a mean relative trend index (RT 1 ) value of 12.1%. The increasing trend was more obvious for the latest two decades: RT 1 was nearly three times larger than that over the entire period; (ii) more precipitation events and a higher precipitation amount were the major forces for the increasing rainfall-runoff erosivity; (iii) similar rising trends in sediment yields, which corresponded to rainfall-runoff erosivity under slightly increasing vegetation coverage in the study area, implied a large contribution of rainfall-runoff erosivity to the increasing sediment yields; and (iv) high warming rates increased the risk of soil destruction, soil erosion and sediment yields. Conservation measures, such as enclosing grassland, returning grazing land to grassland and rotation grazing since the 1980s, have maintained vegetation coverage and should be continued and strengthened. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The interrelation of circulation processes in the atmosphere by B. L. Dzerdzeyevskiy with the change of runoff in the basins of rivers of South Kazakhstan

    Science.gov (United States)

    Tursunova, Aisulu

    2017-05-01

    The article contains analysis of the interrelation of circulation processes in the atmosphere with the change of runoff in the basins of rivers. The results of estimates which show the relationship of circulation processes in the atmosphere with the runoff of the zone of formation of one of southern regions of Kazakhstan are discussed. The typification of circulation processes by B. L. Dzerdzeyevskiy and previously made estimates of water resources in the basins of rivers of South Kazakhstan were assumed as a basis. Certain areas were considered in this work: the Ile-Balkash basin, basin of rivers Shu-Talas and basin of the Syrdariya river, each basin is considered separately, since the runoff varies by regions and by the value of fluctuations, it is not permanent, because of the various factors of runoff formation in individual basins of that region. The calculations performed have shown the possibility of using typification of elementary circulation mechanism (ECM) for further researches of climatic changes, including to determine the direction of change of river runoff in other river basins. The created database on annual values of each of the 41 types of ECM can be used in other studies as well.

  9. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    Science.gov (United States)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  10. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    Science.gov (United States)

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban

  11. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    Science.gov (United States)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  12. Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years

    Directory of Open Access Journals (Sweden)

    J. Wang

    2010-10-01

    Full Text Available The spatial and temporal variations of snowcover distribution, and snowmelt runoff are considered as sensitive indicators for climatic change. The purpose of this paper is to analyze and forecast the responses of snowmelt runoff to climate change in an inland river basin. The upper basin of Heihe River in Northwestern China was chose as the study area, and the observation data from the meteorological and hydrological stations were utilized to analyze the status and regularity of the climatic change over the past 50 years. Snow cover area was obtained by an optimized technology using Moderate Resolution Imaging Spectroradiometer data with Normalized Difference Snow Index adjustment and topographic correction. A concept of potential snowmelt was suggested to illustrate the response of spatial snowmelt to climate change. The results show that the annual SCA proportion and the potential snowmelt keep an increasing trend since 2000. There is a negative relationship between annual air temperature and SCA proportion from 2000 to 2008. Snowmelt Runoff Model was chose to simulate snowmelt runoff and scenario forecast the change trend of snowmelt runoff in this region. The results show that climatic warming was apparent in the upper basin of Heihe River over the past 50 a. Annual average air temperature of three different weather stations located in the basin has increased 2.1 °C, 2.6 °C and 2.9 °C respectively from 1956 to present. The snowmelt runoff has increased obviously from 1970 to present. With different warming climate scenarios, the results by using SRM simulating showed that the first occurred time of snowmelt runoff shift ahead and discharge become larger as responses of snowmelt runoff to air temperature increasing, and the influence of temperature rising on average discharge of the whole snow season is not obvious.

  13. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study

    Science.gov (United States)

    Vu, M. T.; Raghavan, S. V.; Liong, S. Y.

    2012-08-01

    Many research studies that focus on basin hydrology have applied the SWAT model using station data to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) a modified version of Global Historical Climatology Network (GHCN2) and one reanalysis dataset, National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dak Bla river (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. Results indicate that the APHRODITE dataset performed very well on a daily scale simulation of discharge having a good NSE of 0.54 and R2 of 0.55, when compared to the discharge simulation using station data (0.68 and 0.71). The GPCP proved to be the

  14. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    Directory of Open Access Journals (Sweden)

    K. Chi

    2018-06-01

    Full Text Available Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann–Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1 the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2 The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3 According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  15. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation

    NARCIS (Netherlands)

    Lutz, A. F.; Immerzeel, W. W.|info:eu-repo/dai/nl/290472113; Shrestha, A. B.; Bierkens, M. F P|info:eu-repo/dai/nl/125022794

    Rivers originating in the high mountains of Asia are among the most meltwater-dependent river systems on Earth, yet large human populations depend on their resources downstream1. Across High Asias river basins, there is large variation in the contribution of glacier and snow melt to total runoff 2,

  16. Quantitative analysis on sensitive factors of runoff change in Fenhe watershed based on integration approach

    Science.gov (United States)

    Wang, Deng; Jian, Shengqi; Wu, Zening; Zhang, Zhaoxi; Hu, Caihong

    2018-06-01

    The runoff of the Fenhe River flowed into the Yellow River (RRY) is reducing significantly due to the influence of climate change and human activities. It is generating bad situation of shortage of water resources and led to the deterioration of ecological environment of Shanxi Province. At the same time, the reduction in RRY causes the runoff reduction in Yellow River and exacerbated the water resources shortage of the middle area of the Yellow River. Therefore, it is important to alleviate water shortage and develop the soil and water conservation measurements and regional water policy by analyzing the influence of human activities and climate change on the RRY. The existing study quantified the reduction in amount of RRY which caused by human activities and climate change using statistical methods and watershed hydrological model. The main results of the study were as follow: Using hydrological variation diagnosis system, the variation characteristics of long time series of measured annual runoff were analyzed in Hejin station that is the Fenhe River control station. The results showed that the runoff of Fenhe River run into Yellow River declined year by year, in 1971, fell the most obviously. The impact of LUCC on runoff was calculated using the method of area ratio in the Fenhe River basin. Human activities were major factor in the reduction of RRY than the climate change, contributed 83.09 % of the total reduction in RRY, Groundwater exploitation gave the greatest contribution to the decrease in RRY in the scope of several kinds of human activity (30.09 %), followed by coal mining (26.03 %), climate changed contributed 19.17 % of the total reduction of RRY, and the decrease of precipitation contributed 20.81 %. But the variation of air temperature and wind speed would result in the increase of the amount of RRY.

  17. Possible change on the runoff in the upper Yellow River basin under global climate change

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study,the characteristics and changing trends of temperature,precipitation,and runoff in the upper Yellow River basin up Tangnag station are analyzed by using hydrological and meteorological data in the past 50 years from observation stations in the basin.Further,in this study,the evolving trend of runoff in the future decades is forecasted in the basin based on the method of suppositional climate scenes combination.The results indicate temperature variation in the basin has an evident positive relation with global warming,and the precipitation variations are quite complicated in the basin because of differences of located geographic positions during the past 50 years.Runoff in the basin has been decreasing continually since the end of the 1980s because the mean temperature in the basin has been rising and precipitation in the main areas of runoff formation in the basin has been decreasing.Runoff will largely decrease if precipitation decreases and temperature rises continuously,whereas runoff will increase if temperature is invariable and precipitation increases largely;the increase magnitude of runoff may be more than that of precipitation because of the synchronously increasing supply of meltwater from snow,glacier,and frozen soils in future several decades.

  18. The coupling of runoff and dissolved organic matter transport: Insights from in situ fluorescence measurements in small streams and large rivers

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Shanley, J. B.; Aiken, G.; Murdoch, P. S.

    2011-12-01

    Understanding dissolved organic matter (DOM) dynamics in streams and rivers can help characterize mercury transport, assess causes of drinking water issues, and lead to improved understanding of watershed source areas and carbon loads to downstream ecosystems. However, traditional sampling approaches that collect discrete concentration data at weekly to monthly intervals often fail to adequately capture hydrological pulses ranging from early snowmelt periods to short-duration rainfall events. Continuous measurements of chromophoric dissolved organic matter fluorescence (FDOM) in rivers and streams now provide an opportunity to more accurately quantify DOM loads and processes in aquatic ecosystems at a range of scales. In this study, we used continuous FDOM data from in situ sensors along with discharge data to assess the coupling of FDOM transport and runoff in small streams and large rivers. Results from headwater catchments in New England and California show that FDOM is tightly coupled with runoff, supporting strong linkages between watershed flow paths and DOM concentrations in streams. Results also show that the magnitude of FDOM response relative to runoff varies seasonally, with highest concentrations during autumn rainfall events (after leaf fall) and lower concentrations during peak snowmelt for equivalent runoff. In large river basins, FDOM dynamics are also coupled with runoff and exhibit the same seasonal variability in the magnitude of FDOM response relative to discharge. However, the peaks in FDOM typically lag runoff by several days, reflecting the influence of a variety of factors such as water residence times, reservoir releases, and connectivity to organic matter-rich riparian floodplains and wetlands. Our results show that in situ FDOM data will be important for understanding the coupling of runoff and DOM across multiple scales and could serve a critical role in monitoring, assessment and decision-making in both small and large watersheds.

  19. ARIES CATCHMENT UPPER AND MIDDLE COURSE SMALL STREAMS SEASONAL RUNOFF REGIME CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    CS. HORVATH

    2013-03-01

    Full Text Available The study is based on the processing and interpreting data from 16 gauging stations, of which 10 control catchments smaller than 150 km2 and so reflects more faithfully the local characteristics of the runoff. To highlight the runoff regime features during the year we selected three periods (1950-1967, 1950-2009 and 1970-2009. The geographical features of the central eastern part of the Apuseni Mountains, especially the climatic and geomorphic characteristics, are faithfully reflected in the rivers runoff regime. So, on all rivers the dominant is the spring runoff and the lowest percentage of the total annual average water volume is measured in the winter. Distribution and frequency of the richest (March, April and May and the poorest (January, February, August and September average runoff months vary according to the catchments altitude. The multiannual seasonal and monthly variation of the runoff was highlighted by the coefficients of variation. The study reveals that the rhythmic structure of the runoff regime reflects the local supply, the geological conditions and the reliefs morphological and morphometric characteristics.

  20. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  1. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    International Nuclear Information System (INIS)

    Georgievsky, M V

    2009-01-01

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  2. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Georgievsky, M V, E-mail: mgeorgievsky@hotmail.co [State Hydrological Institute, St Petersburg (Russian Federation)

    2009-10-15

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  3. Study on Variations in Climatic Variables and Their Influence on Runoff in the Manas River Basin, China

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-04-01

    Full Text Available Climate change in Northwest China could lead to the change of the hydrological cycle and water resources. This paper assessed the influence of climate change on runoff in the Manas River basin as follows. First, the temporal trends and abrupt change points of runoff, precipitation, and mean, lowest and highest temperature in yearly scale during the period of 1961–2015 were analyzed using the Mann-Kendall (MK test. Then the correlation between runoff and climatic variables was characterized in a monthly, seasonal and yearly scale using the partial correlation method. Furthermore, three global climate models (GCMs from Coupled Model Inter-comparison Project Phase 5 (CMIP5 were bias-corrected using Equidistant Cumulative Distribution Functions (EDCDF method to reveal the future climate change during the period from 2021 to 2060 compared with the baseline period of 1961–2000. The influence of climate change on runoff was studied by simulating the runoff with the GCMs using a modified TOPMODEL considering the future snowmelt during the period from 2021 to 2060. The results showed that the runoff, precipitation, and mean, lowest and highest temperature all presented an increasing trend in yearly scale during the period of 1961–2015, and their abrupt change points were at a similar time; the runoff series was more strongly related to temperature than to precipitation in the spring, autumn and yearly scales, and the opposite was true in winter. All GCMs projected precipitation and temperature, and the runoff simulated with these GCMs were predicted to increase in the period from 2021 to 2060 compared with the baseline period of 1961–2000. These findings provide valuable information for assessing the influence of climate change on water resources in the Manas River basin, and references for water management in such regions.

  4. Burdekin River Runoff Reconstruction from Fluorescence Data in Havannah and Pandora Reefs for 1644 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual (water year, October-September) runoff (mm) of the Burdekin River, Queensland, Australia was reconstructed from intensity of fluorescence measured in two...

  5. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    Science.gov (United States)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  6. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System

  7. Linear alkylbenzenes in riverine runoff of the Pearl River Delta (China) and their application as anthropogenic molecular markers in coastal environments

    International Nuclear Information System (INIS)

    Ni Honggang; Lu Fenghui; Wang Jizhong; Guan Yufeng; Luo Xianlin; Zeng, Eddy Y.

    2008-01-01

    The average concentrations of ΣLABs (sum of C 10 -C 13 -LABs) in runoff samples collected from the eight major riverine outlets of the Pearl River Delta (PRD) of China ranged from 1.4 to 6124 ng/L in the dissolved phase and from 0.01 to 11.4 μg/g dry weight in the particulate phase during March 2005-February 2006. The annual riverine flux of ΣLABs from the PRD to the coastal ocean was estimated at approximately 14 tons/yr. The inventories of ΣLABs in agricultural lands of Guangdong Province ranged from 313 to 1825 kg/yr. The early and late rice fields were the major sink of LABs, accounting for approximately 68% of total LABs inventory in agricultural lands. The social-economically estimated annual discharge of LABs from household detergents in the PRD was ∼696 tons/yr, more than an order of magnitude higher than that estimated from field measurements (about 14 tons/yr), which was attributed to several factors. - Occurrence of LABs in riverine runoff of the Pearl River Delta (China) was examined

  8. Analysis of climate and anthropogenic impacts on runoff in the Lower Pra River Basin of Ghana.

    Science.gov (United States)

    Awotwi, Alfred; Anornu, Geophrey Kwame; Quaye-Ballard, Jonathan; Annor, Thompson; Forkuo, Eric Kwabena

    2017-12-01

    The Lower Pra River Basin (LPRB), located in the forest zone of southern Ghana has experienced changes due to variability in precipitation and diverse anthropogenic activities. Therefore, to maintain the functions of the ecosystem for water resources management, planning and sustainable development, it is important to differentiate the impacts of precipitation variability and anthropogenic activities on stream flow changes. We investigated the variability in runoff and quantified the contributions of precipitation and anthropogenic activities on runoff at the LPRB. Analysis of the precipitation-runoff for the period 1970-2010 revealed breakpoints in 1986, 2000, 2004 and 2010 in the LPRB. The periods influenced by anthropogenic activities were categorized into three periods 1987-2000, 2001-2004 and 2005-2010, revealing a decrease in runoff during 1987-2000 and an increase in runoff during 2001-2004 and 2005-2010. Assessment of monthly, seasonal and annual runoff depicted a significant increasing trend in the runoff time series during the dry season. Generally, runoff increased at a rate of 9.98 × 10 7 m 3 yr -1 , with precipitation variability and human activities contributing 17.4% and 82.3% respectively. The dominant small scale alluvial gold mining activity significantly contributes to the net runoff variability in LPRB.

  9. SWAT use of gridded observations for simulating runoff – a Vietnam river basin study

    Directory of Open Access Journals (Sweden)

    M. T. Vu

    2012-08-01

    Full Text Available Many research studies that focus on basin hydrology have applied the SWAT model using station data to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1 Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE, (2 Tropical Rainfall Measuring Mission (TRMM, (3 Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN, (4 Global Precipitation Climatology Project (GPCP, (5 a modified version of Global Historical Climatology Network (GHCN2 and one reanalysis dataset, National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR are used to simulate runoff over the Dak Bla river (a small tributary of the Mekong River in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE and Coefficient of Determination (R2 indices are used to benchmark the model performance. Results indicate that the APHRODITE dataset performed very well on a daily scale simulation of discharge having a good NSE of 0.54 and R2 of 0.55, when compared to the discharge simulation using station data (0

  10. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  11. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    Science.gov (United States)

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

  12. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    Science.gov (United States)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  13. RUNOFF HYDROGRAPHS USING SNYDER AND SCS SYNTHETIC UNIT HYDROGRAPH METHODS: A CASE STUDY OF SELECTED RIVERS IN SOUTH WEST NIGERIA

    Directory of Open Access Journals (Sweden)

    Wahab Adebayo Salami

    2017-01-01

    Full Text Available This paper presents the development of runoff hydrographs for selected rivers in Ogun-Osun river catchment, south west, Nigeria using Snyder and Soil Conservation Service (SCS methods of synthetic unit hydrograph to determine the ordinates. The Soil Conservation Service (SCS curve Number method was used to estimate the excess rainfall from storm of different return periods. The peak runoff hydrographs were determined by convoluting the unit hydrographs ordinates with the excess rainfall and the value of peak flows obtained by both Snyder and SCS methods observed to vary from one river watershed to the other. The peak runoff hydrograph flows obtained based on the unit hydrograph ordinate determined with Snyder method for 20-yr, 50-yr, 100-yr, 200-yr and 500-yr, return period varied from 112.63m3/s and 13364.30m3/s, while those based on the SCS method varied from 304.43m3/s and 6466.84m3/s for the eight watersheds. However, the percentage difference shows that for values of peak flows obtained with Snyder and SCS methods varies from 13.14% to 63.30%. However, SCS method is recommended to estimate the ordinate required for the development of peak runoff hydrograph in the river watersheds because it utilized additional morphometric parameters such as watershed slope and the curve number (CN which is a function of the properties of the soil and vegetation cover of the watershed.

  14. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya.

    Science.gov (United States)

    Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar

    2018-02-20

    Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2  > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.

  15. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    Science.gov (United States)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  16. Identification of the Impacts of Climate Changes and Human Activities on Runoff in the Jinsha River Basin, China

    Directory of Open Access Journals (Sweden)

    Xiaowan Liu

    2017-01-01

    Full Text Available Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.

  17. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.

  18. Water-quality data for the Missouri River and Missouri River alluvium near Weldon Spring, St. Charles County, Missouri, 1991--92

    International Nuclear Information System (INIS)

    Kleeschulte, M.J.

    1993-01-01

    This report contains the water-quality data collected at two cross sections across the Missouri River and from monitoring wells in the Missouri River alluvium near Defiance, Missouri. The sampling results indicate the general water composition from the Missouri River changes with different flow conditions. During low-base flow conditions, the water generally contained about equal quantities of calcium and sodium plus potassium and similar quantities of bicarbonate and sulfate. During high-base flow conditions, water from the river predominantly was a calcium bicarbonate type. During runoff conditions, the water from the river was a calcium bicarbonate type, and sulfate concentrations were larger than during high-base flow conditions but smaller than during low-base flow conditions. The total and dissolved uranium concentrations at both the upstream and downstream cross sections, as well as from the different vertical samples across the river, were similar during each sampling event. However, sodium, sulfate, nitrate, and total and dissolved uranium concentrations varied with different flow conditions. Sodium and sulfate concentrations were larger during low-base flow conditions than during high-base flow or runoff conditions, while nitrate concentrations decreased during low-base flow conditions. Both total and dissolved uranium concentrations were slightly larger during runoff events than during low-base or high-base flow conditions

  19. Long-term runoff changes in regions of Slovakia

    International Nuclear Information System (INIS)

    Miklanek, Pavol; Pekarova; Pavla

    2004-01-01

    Mean annual runoff variability includes both natural and anthropogenic (climate change) impacts. Aim of the paper is to identify the long-term trends and the cyclic runoff components of selected Slovak rivers for the period 1931-2000, and of the Danube river for the period 1840-2000. The variability is analysed by the long-term runoff trends of 27 Slovak rivers for the period 1931-2000. The stations were included into the Slovak National Climate Program and they are supposed not to be influenced by anthropogenic activities except of possible climate change. Comparison of the monthly runoff series of the 27 rivers allowed us to draw 3 regions with different runoff trends on the territory of Slovakia (constant trend in Northern and Eastern Slovakia, slow decrease in Central Slovakia, and rapid decrease in Southern Slovakia; The identification of different cyclic components of the runoff series is included. The length of the series allows to identify the 22-year cycles as maximum. By means of the longer runoff series of the Danube river it is shown that the more dry periods occurred in the central Europe and Slovakia in mid 19 th century. The longer Danube series were used also to find the longer runoff cycles of about 31 and 46 years. The mean annual temperature in Europe was lower by 0.6 o C in mid 19 th century compared to 1990s. The temperature increase is put down to climate change impact. The driest period shown by Danube runoff series in mid 19 th century occurred before the start of the climate change. Therefore it is probable that the long-term runoff variability has its own dynamics as well. (Author)

  20. Integrating Artificial Neural Networks into the VIC Model for Rainfall-Runoff Modeling

    Directory of Open Access Journals (Sweden)

    Changqing Meng

    2016-09-01

    Full Text Available A hybrid rainfall-runoff model was developed in this study by integrating the variable infiltration capacity (VIC model with artificial neural networks (ANNs. In the proposed model, the prediction interval of the ANN replaces separate, individual simulation (i.e., single simulation. The spatial heterogeneity of horizontal resolution, subgrid-scale features and their influence on the streamflow can be assessed according to the VIC model. In the routing module, instead of a simple linear superposition of the streamflow generated from each subbasin, ANNs facilitate nonlinear mappings of the streamflow produced from each subbasin into the total streamflow at the basin outlet. A total of three subbasins were delineated and calibrated independently via the VIC model; daily runoff errors were simulated for each subbasin, then corrected by an ANN bias-correction model. The initial streamflow and corrected runoff from the simulation for individual subbasins serve as inputs to the ANN routing model. The feasibility of this proposed method was confirmed according to the performance of its application to a case study on rainfall-runoff prediction in the Jinshajiang River Basin, the headwater area of the Yangtze River.

  1. Effects of Climate Change and Human Activities on Surface Runoff in the Luan River Basin

    Directory of Open Access Journals (Sweden)

    Sidong Zeng

    2015-01-01

    Full Text Available Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.

  2. Simulation and assessment of urbanization impacts on runoff metrics

    DEFF Research Database (Denmark)

    Zhang, Yongyong; Xia, Jun; Yu, Jingjie

    2018-01-01

    changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000–2015, while the percentages of impervious surface...... information for urban planning such as Sponge City design.......Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified...

  3. Long-term Trend and Fractal of Annual Runoff Process in Mainstream of Tarim River

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; LI Weihong; DONG Shan

    2008-01-01

    Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using thewavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale pointof view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a wholefrom 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trendas the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for theannual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteris-tics. The correlation dimension is above 3, which means that at least four independent variables are needed to describethe dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, whichequals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second(1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff processshowed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indi-cates that the annual runoffwill show a slightly increasing trend in the 16 years after 2005.

  4. Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Salami Adebayo Wahab

    2016-03-01

    Full Text Available This study utilized Spatial Information Technology (SIT such as Remote Sensing (RS, a Geographical Information System (GIS, the Global Positioning System (GPS and a high-resolution Digital Elevation Model (DEM for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35 as the most hazardous site where floods could reach a great volume over a small area.

  5. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin

    Directory of Open Access Journals (Sweden)

    M. Prasch

    2013-05-01

    Full Text Available Water supply of most lowland cultures heavily depends on rain and melt water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to global climate change (GCC, in particular for large parts of Central and Southeast Asia. In this paper, the application and validation of a coupled modeling approach with regional climate model (RCM outputs and a process-oriented glacier and hydrological model is presented for the central Himalayan Lhasa River basin despite scarce data availability. Current and possible future contributions of ice melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snowmelt. Ice melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  6. Application and Evaluation of a Snowmelt Runoff Model in the Tamor River Basin, Eastern Himalaya Using a Markov Chain Monte Carlo (MCMC) Data Assimilation Approach

    Science.gov (United States)

    Panday, Prajjwal K.; Williams, Christopher A.; Frey, Karen E.; Brown, Molly E.

    2013-01-01

    Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds.

  7. Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.

    Science.gov (United States)

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  8. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  9. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    Science.gov (United States)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  10. Evaluating the coefficients of autocorrelation in a series of annual run-off of the Far East rivers

    Energy Technology Data Exchange (ETDEWEB)

    Sakharyuk, A V

    1981-01-01

    An evaluation is made of the coefficients of autocorrelation in series of annual river run-off based on group analysis using data on the distribution law of sampling correlation coefficients of temporal series subordinate to the III type Pearson's distribution.

  11. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    Science.gov (United States)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  12. Asynchronous changes in vegetation, runoff and erosion in the nile river watershed during the holocene.

    Science.gov (United States)

    Blanchet, Cécile L; Frank, Martin; Schouten, Stefan

    2014-01-01

    The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African hunter-gatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and ∼6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations.

  13. Rainfall and runoff regime trends in mountain catchments (Case study area: the upper Hron River basin, Slovakia

    Directory of Open Access Journals (Sweden)

    Blahušiaková Andrea

    2015-09-01

    Full Text Available This paper presents an analysis of trends and causes of changes of selected hydroclimatic variables influencing the runoff regime in the upper Hron River basin (Slovakia. Different methods for identifying trends in data series are evaluated and include: simple mass curve analysis, linear regression, frequency analysis of flood events, use of the Indicators of Hydrological Alteration software, and the Mann-Kendall test. Analyses are performed for data from two periods (1931-2010 and 1961-2010. The changes in runoff are significant, especially in terms of lower QMax and 75 percentile values. This fact is also confirmed by the lower frequency and extremity of flood events. The 1980s are considered a turning point in the development of all hydroclimatic variables. The Mann-Kendall test shows a significant decrease in runoff in the winter period. The main causes of runoff decline are: the considerable increase in air temperature, the decrease in snow cover depth and changes in seasonal distribution of precipitation amounts.

  14. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    Directory of Open Access Journals (Sweden)

    Erhui Li

    2014-01-01

    Full Text Available Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010, Huangfuchuan watershed (from 1954 to 2010, and Yanhe watershed (from 1952 to 2010 in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P=0.01 while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  15. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    Science.gov (United States)

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed. PMID:24955424

  16. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.

    Science.gov (United States)

    Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L

    2009-02-25

    The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes

  17. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    Science.gov (United States)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  18. Applicability of GLDAS in the Yarlung Zangbo River Basin under Climate Change

    Science.gov (United States)

    Jia, L.; Hong, Z.; Linglei, Z.; Yun, D.

    2017-12-01

    The change of runoff has a great influence on global water cycle, and migration or transformation of biogenic matters. As the Tibet's most important economic region, the Yarlung Zangbo River basin is extremely sensitive and fragile to the global climate change. But the river is a typical lack-data basin, where the quantity of available runoff data is extremely limited and the spatial and temporal resolutions are very low. This study Chooses middle reaches of Yarlung Zangbo River basin as the study area, 4 models of Global Land Data Assimilation System (GLDAS) and the water balance equation are used to calculate surface runoff of Nuxia hydrological station from year of 2009 to 2013. Through the analysis of hydrological elements change, the impact of climate factors to surface runoff is discussed. At last, Statistical method is used to compare correlation and error between the 4 models results and in situ runoff observation. The Broke ranking method is applied to evaluate data quality and applicability of the 4 models in the Yarlung Zangbo River basin. The results reveal that the total runoff calculated from 4 models all have similar change cycle around 12 months, and the values all tend to have slight increase as in situ runoff data during research period. Moreover, it can conclude that the runoff time series show obvious period and mutation characters. During study period, monthly mean precipitation and temperature both have obvious seasonal variability, and the variation trend is relatively consistent. Through the analysis of the runoff affecting factors, it shows that the changes of precipitation and temperature are the most direct factors affecting runoff of the Yarlung Zangbo River. Correlation between precipitations, temperature with runoff of Nuxia hydrological station is good, and the correlation coefficients are in the range of 0.727 to 0.924.It shows that climate change controls basin runoff change to some extent. At last, runoff estimated from GLDAS

  19. Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques

    Science.gov (United States)

    Romulus, Costache; Iulia, Fontanine; Ema, Corodescu

    2014-09-01

    S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

  20. Isotope techniques in catchment behaviour studies with particular emphasis on snowmelt runoff investigations

    International Nuclear Information System (INIS)

    Yurtsever, Y.

    1984-05-01

    The dynamics of runoff occurring mainly by snowmelt have been investigated by the aid of environmental isotopes. Regular samples collected from river water and snow cover throughout 1978 to 1981 at two selected catchment basins in eastern Turkey were analysed for their oxygen-18, deuterium and tritium contents. The tritium results together with detailed hydrological and hydro-meteorological data have enabled to study the time distribution of various component flow systems involved in the total runoff resulting from snowmelt

  1. Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds

    OpenAIRE

    Berezovskaya, Svetlana; Yang, Daqing; Kane, Douglas L.

    2004-01-01

    The consistency of long-term yearly precipitation and runoff trends over the largest Arctic watersheds (Ob, Yenisei and Lena Rivers) is examined. Three gridded precipitation datasets (Climatic Research Unit, University of Delaware, NCEP) are used for comparative analyses with runoff data collected at basin outlets. The results generally demonstrate inconsistency in long-term changes of basin precipitation and runoff. The Yenisei River runoff increases significantly, while precipitation data s...

  2. Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China

    Science.gov (United States)

    He, Yi; Wang, Fei; Mu, Xingmin; Guo, Lanqin; Gao, Peng; Zhao, Guangju

    2017-07-01

    We analyze the variability of sediment discharge and runoff in the Hekou-Longmen segment in the middle reaches of the Yellow River, China. Our analysis is based on Normalized Difference Vegetation Index (NDVI), sediment discharge, runoff, and monthly meteorological data (1961-2010). The climate conditions are controlled via monthly regional average precipitation and potential evapotranspiration (ET0) that are calculated with the Penman-Monteith method. Data regarding water and soil conservation infrastructure and their effects were investigated as causal factors of runoff and sediment discharge changes. The results indicated the following conclusions: (1) The sediment concentration, sediment discharge, and annual runoff, varied considerably during the study period and all of these factors exhibited larger coefficients of variation than ET0 and precipitation. (2) Sediment discharge, annual runoff, and sediment concentration significantly declined over the study period in a linear fashion. This was accompanied by an increase in ET0 and decline in precipitation that were not significant. (3) Within paired years with similar precipitation and potential evapotranspiration conditions (SPEC), all pairs showed a decline in runoff, sediment discharge, and sediment concentration. (4) Human impacts in this region were markedly high as indicated by NDVI, and soil and water measurements, and especially the soil and water conservation infrastructure resulting in an approximately 312 Mt year-1 of sediment deposition during 1960-1999.

  3. HYDROLOGICAL REGIME OF GLACIERS IN THE RIVER BASINS OF THE NORTHERN CAUCASUS AND ALTAI

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2018-01-01

    Full Text Available Rivers with snow-glacier alimentation in six basins of the Northern Caucasus (Cherek, Chegem, Baksan, Malka, Teberda, and upper course of the Terek River and Altai (the Katun’ River were investigated in 1946–2005 for the purpose to analyze long-term streamflow variations. It was noted that in 1976–2005 volume of annual runoff increased relative to the previous 30-year interval in four of six rivers of the Northern Caucasus. During the vegetation period the volume of runoff changed synchronously with the annual one. As for the river Katun’, its volumes and variability of both, the annual runoff and that for the vegetation season, decreased. In the course of investigation of spatial-temporal dynamics of hydrological and glaciological characteristics in the above river basins of the Northern Caucasus and the same of Katun’ River the following problems were considered and solved: a the information and methodological basis for regional calculations of the runoff for the rivers with snow-glacier alimentation had been improved and corrected; b changes of the components of hydrological cycle (precipitation, evaporation, and glacier runoff over the glaciation area had been estimated for the period of 1946–2005; c data on quality of the initial glaciological and hydrological information were integrated; d definitions of the runoff were verified by means of comparison of measured runoff with similar values calculated by equation of the annual water budget as a whole for the basin. It should be noted that the total areas of glaciers and areas of their ablation were significantly reduced, but areas and thicknesses of ice under the moraine cover increased. Despite widespread, sometimes twofold decrease in the relative part of glacier alimentation in the total river streamflow for period of April–September this did make almost no effect on the water supply of the vegetation period in individual basins as well as in the whole the Northern

  4. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  5. Radioactive contamination of the Dnepr-Sozh river basin in Belarus after the accident at the Chernobyl NPP

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Matveenko, I.I.; Pokumejko, Yu.M.; Shagalova, E.D.

    1998-01-01

    Systematic control over the radioactive contamination of surface waters is carried out at five main rivers of Belarus: Dnepr, Sozh, Pripyat, Iput, Besed. The experimental watershed of Iput river (Dnepr-Sozh basin) have been chosen for revealing the general rules of radioactive contamination of the rivers of Belarus on the basis of generalization of the monitoring data and field investigations. It has been found that transport of radionuclides on suspended solids is one of the main forms of migration of radionuclides in the river (caesium-137 in particular). Thus, the analysis of contamination of the rivers of Belarus has shown that the most intensive runoff of radionuclides from the territories of the watershed occurs in the head of the Dnepr basin, namely by its tributaries, Iput and Sozh. The annual runoff of radionuclides in soluble form by the rivers of Belarus in 1987-1996 has decreased significantly. Transport of radioisotopes with suspended and drawn wash loads significantly affects their migration and its contribution to the total runoff of radionuclides has increased with time. The runoff of radionuclides with transported wash loads varied within 20-80% from the total runoff of radionuclides. Sedimentation of river suspended load carrying radionuclides in the sites with slow river flow creates local movable ecologically dangerous centres of accumulation of radionuclides in bottom sediments particularly in front of the diverting dams. Existence of such centres of radioactive contamination requires their monitoring, assessment of their possible effects, and, if necessary, their decontamination

  6. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    Science.gov (United States)

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for

  8. Upscaling Surface and Subsurface Runoff Process Using a Travel Time Matching Strategy: Application to the Ohio River Basin

    Science.gov (United States)

    Zhao, Y.; Beighley, E.

    2017-12-01

    While hydrologic understanding gained from model assessment and sensitivity analyses continues to grow, computational efficiency is still a challenge for the hydrologic and hydraulic modeling community, especially at continental and global scales. This research presents a runoff flowpath travel-time matching method to upscale hydrologic response characteristics of surface and subsurface runoff from fine to coarse model resolutions. Five model resolutions are investigated in this study: 10, 32, 100, 320, 1000 km2, where model resolution represents the threshold areas used to define the underlying river network and catchment boundaries. Here, the 1 km2 mode resolution is set as the reference model. A case study in the Ohio River Basin (roughly 500,000 km2) is presented using a synthetic SCS 2-year flood event. The velocities of surface and subsurface runoff from Hillslope River Routing (HRR) model operating at 1 km2 resolution is determined on a high-performance computing cluster. Using these simulated velocities and 90-m Digital Elevation Model (DEM), pixel level velocities are determined separately for hillslopes (surface and subsurface) and channels. Cumulative Probability Distributions (CDFs) for surface and subsurface travel times based on the gridded 90-m velocities and conceptualized model units representing individual catchments in the HRR model are matched by adjusting surface roughness and subsurface hydraulic conductivity along HRR hillslopes in the courser model resolutions. The beta distribution is applied to approximate the CDF travel time to reduce pixel-level processing time for large model units. Simulated hydrographs at the outlet of the Ohio River Basin for the five coarser model resolutions are shown to have nearly identical peak discharge and time-to-peak discharge values as compared to the reference model. The proposed upscaling method can reduce the computation time by transferring the hydrologic characteristics captured at fine scales to

  9. Characteristics of the event mean concentration (EMCs) from rainfall runoff on mixed agricultural land use in the shoreline zone of the Yamuna River in Delhi, India

    Science.gov (United States)

    Sharma, Deepshikha; Gupta, Ruchi; Singh, Ram Karan; Kansal, Arun

    2012-03-01

    This paper is focused on the monitoring of the diffuse pollution characteristics from the agricultural land confining the River Yamuna in Delhi (capital of India). Agricultural fields surrounding the Yamuna river are direct nonpoint source of pollution impacting the river quality. The study includes watershed delineation for the River Yamuna using SWAT (2005) and land use classification for the city using GIS and remote sensing. Thereafter, the rainfall-runoff pollutant concentrations from the mixed agricultural land use were assessed for the 2006 and 2007 monsoon period (July-September). Runoff was measured using SCS method and grab samples of rainfall runoff were collected at three stations namely Old Delhi Railway Bridge (ODRB), Nizamuddin and Okhla bridge in Delhi. The samples were analysed for physico-chemical and biological parameters. Rainfall runoff and event mean concentrations (EMCs) for different water quality parameters were characterized and the effect of land use was analyzed. The average EMCs for BOD, COD, ammonia, nitrate, TKN, hardness, TDS, TSS, chlorides, sulfates, phosphate, fluorides and TC were 21.82 mg/L, 73.48 mg/L, 72.68 μg/L, 229.87 μg/L, 15.32 μg/L, 11.36 mg/L, 117.44 mg/L, 77.60 mg/L, 117.64 mg/L, 135.82 mg/L, 0.08 mg/L, 0.85 mg/L and 2,827.47 MPN/100 mL, respectively. The EMCs of TSS, nitrogen and its compounds, phosphate and BOD were high.

  10. Long-range downstream effects of urban runoff and acid mine drainage in the Debed River, Armenia: insights from lead isotope modeling

    International Nuclear Information System (INIS)

    Kurkjian, Robert; Dunlap, Charles; Flegal, A. Russell

    2004-01-01

    transport in the Debed River indicates the natural outflow of Pb is ∼10 kg/a, while the contributions from industrial runoff and acid mine drainage are each ∼10 3 kg/a, two orders of magnitude greater than the natural flux. Thus, the total annual flux of Pb from the Debed River as it leaves Armenia and flows into Georgia is calculated to be 2500 kg/a. This value is consistent with the average annual Pb flux of 2360 kg/a estimated for the last 20 a. The predicted effects of local climate change over the next 100 a may reduce annual Pb flux by 10-15%, slowing the removal of contaminant Pb and maintaining the two order of magnitude increase over the natural flux

  11. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa

    Science.gov (United States)

    de Winnaar, G.; Jewitt, G. P. W.; Horan, M.

    Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff

  12. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Directory of Open Access Journals (Sweden)

    Mingyong Cai

    Full Text Available Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050 climatic data (precipitation and air temperature from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5 are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP scenarios (RCP2.6, RCP4.5 and RCP8.5 for 2050. Historical station observations (1960-2000 at Nuxia and model simulations for two periods (2006-2009 and 2050 are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000, the present period (2006-2009 has a slightly uneven intra-annual runoff temporal distribution, and becomes more

  13. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Science.gov (United States)

    Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng

    2017-01-01

    Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in

  14. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  15. Simulation of rainfall-runoff for major flash flood events in Karachi

    Science.gov (United States)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  16. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China

    Science.gov (United States)

    Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming

    2018-01-01

    Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to

  17. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haiyun Shi

    2017-09-01

    Full Text Available River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper and ETM (Enhanced Thematic Mapper+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1 TM/ETM+ images met the criteria of information extraction of river islands; (2 generally, the total area of these islands in this section and their changing rate decreased over time; (3 sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles.

  18. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua

    2017-11-13

    As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

  19. Applying a Multi-Model Ensemble Method for Long-Term Runoff Prediction under Climate Change Scenarios for the Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Linus Zhang

    2018-03-01

    Full Text Available Given the substantial impacts that are expected due to climate change, it is crucial that accurate rainfall–runoff results are provided for various decision-making purposes. However, these modeling results often generate uncertainty or bias due to the imperfect character of individual models. In this paper, a genetic algorithm together with a Bayesian model averaging method are employed to provide a multi-model ensemble (MME and combined runoff prediction under climate change scenarios produced from eight rainfall–runoff models for the Yellow River Basin. The results show that the multi-model ensemble method, especially the genetic algorithm method, can produce more reliable predictions than the other considered rainfall–runoff models. These results show that it is possible to reduce the uncertainty and thus improve the accuracy for future projections using different models because an MME approach evens out the bias involved in the individual model. For the study area, the final combined predictions reveal that less runoff is expected under most climatic scenarios, which will threaten water security of the basin.

  20. Global estimation of long-term persistence in annual river runoff

    Science.gov (United States)

    Markonis, Y.; Moustakis, Y.; Nasika, C.; Sychova, P.; Dimitriadis, P.; Hanel, M.; Máca, P.; Papalexiou, S. M.

    2018-03-01

    Long-term persistence (LTP) of annual river runoff is a topic of ongoing hydrological research, due to its implications to water resources management. Here, we estimate its strength, measured by the Hurst coefficient H, in 696 annual, globally distributed, streamflow records with at least 80 years of data. We use three estimation methods (maximum likelihood estimator, Whittle estimator and least squares variance) resulting in similar mean values of H close to 0.65. Subsequently, we explore potential factors influencing H by two linear (Spearman's rank correlation, multiple linear regression) and two non-linear (self-organizing maps, random forests) techniques. Catchment area is found to be crucial for medium to larger watersheds, while climatic controls, such as aridity index, have higher impact to smaller ones. Our findings indicate that long-term persistence is weaker than found in other studies, suggesting that enhanced LTP is encountered in large-catchment rivers, were the effect of spatial aggregation is more intense. However, we also show that the estimated values of H can be reproduced by a short-term persistence stochastic model such as an auto-regressive AR(1) process. A direct consequence is that some of the most common methods for the estimation of H coefficient, might not be suitable for discriminating short- and long-term persistence even in long observational records.

  1. Potential of commercial microwave link network derived rainfall for river runoff simulations

    Science.gov (United States)

    Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald

    2017-03-01

    Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.

  2. EVALUATION OF RAINFALL-RUNOFF MODELS FOR MEDITERRANEAN SUBCATCHMENTS

    Directory of Open Access Journals (Sweden)

    A. Cilek

    2016-06-01

    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  3. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%), and they are generally larger for indicators of high and low monthly runoff. However

  4. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  5. Chemism of the run-off wastewater from urbanized areas based on the Kielce City example

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The study was conducted at the collector of run-off wastewater (Si9, located in Kielce. Silnica River is a small river cutting through the city of Kielce from the North to the South-West. It has its source in Masłowskie Range at a height of 360 m a.s.l. and it flows into Bobrza River. It is ranked among mountain rivers at a 6.4 ‰ gradient. Its river-bed bas belonged to Kielecki Protected Landscape Area since 2006. Next to Szydłowek estate the artificial water body was build - Kielecki Bay. Beneath Kielecki Bay, Silnica River flows in regu1ated river-bed. Because of no separated storm water drainage, the rainwater washes away pollutants among others from industrial plants, houses, pavements, and streets into Silnica River. The wastewater treatment plant is located at the mouth of the Silnica River. It receives rainwater and snowmelt from the central - eastern part of the city with an area of 62 ha. The primary channel has a length of 1569 m and its diameter varies from 600 mm to 1250 mm. Is attached to the side of seventeen channels (with diameters from 300 mm to 1000 mm. The collector wells are 32 inspection and connection, and 24 entries. The side channels are located 119 wells and 82 outlets. The total length of the sewerage system is equal to 5583 m. The decrease of the collector changes to individual sections from 0.04% to 3.9%, and decreases in side channels to reach 2.61%. On average, one groove receives water from the surface of 0.585 ha. Ordinate the highest point in the catchment area is 271.20 m, 260.0 m above sea level the lowest, the average decrease in surface area is equal to 0.71%. Within the basin was isolated six types of surface runoff: roofs (14.3%, walks (8.4%, roads (17.7%, parking (11.2%, green (47.2% and pitch school (1.3%. Generally, paved areas with a high coefficient of runoff represent 52.83% of the total catchment area, which shows the typical urban character. The run-off wastewater is collected from the roofs by

  6. Run-off analyses using isotopes and hydrochemistry in Yushugou ...

    Indian Academy of Sciences (India)

    Xiaoyan Wang

    2017-08-31

    Aug 31, 2017 ... Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, ... Stable isotopes; run-off composition; hydrograph separation; Yushugou River basin. ..... rock weathering and hydrogeological condition in.

  7. Influence of land runoff on rates and agents of bioerosion of coral substrates.

    Science.gov (United States)

    Hutchings, Pat; Peyrot-Clausade, Mireille; Osnorno, Alicia

    2005-01-01

    Annually large volumes of fresh water laden with sediment are washed down the Daintree River in North Queensland into the Great Barrier Reef lagoon. To investigate the effects of land runoff on bioerosion, samples of recently killed colonies of Porites were laid at 6 sites on a cross shelf transect from Snapper Island at the entrance to the river to Osprey Reef, approximately 328 km from the river mouth out in the Coral Sea. Rates and agents of bioerosion were determined over 4 years and inshore sites exhibited significantly lower rates of total bioerosion than the other sites. Offshore sites experienced high rates of bioerosion primarily due to grazing and internal bioerosion by macroborers such as sponges and bivalves was also important at some of these sites. Inshore sites were covered in heavy layers of silt which inhibited colonization and growth of microborers, primarily algae. This resulted in lower levels of grazing than at offshore sites. However the activity of macroborers (primarily sponges and bivalves) was often high at these sites. The macroboring communities differed between sites and over time and it is hypothesised that these site differences were due to different levels of terrestrial runoff. These results are compared with those from French Polynesia where contaminated terrestrial runoff greatly influenced rates and agents of bioerosion. However other factors such as overfishing may also play an important role in some locations.

  8. Geometric dependency of Tibetan lakes on glacial runoff

    NARCIS (Netherlands)

    Phan Hien, V.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    The Tibetan Plateau is an essential source of water for Southeast Asia. The runoff from its ~34 000 glaciers, which occupy an area of ~50 000 km2, feeds Tibetan lakes and major Asian rivers like the Indus and Brahmaputra. Reported glacial shrinkage likely has an impact on the runoff. Unfortunately,

  9. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  10. Improving runoff risk estimates: Formulating runoff as a bivariate process using the SCS curve number method

    Science.gov (United States)

    Shaw, Stephen B.; Walter, M. Todd

    2009-03-01

    The Soil Conservation Service curve number (SCS-CN) method is widely used to predict storm runoff for hydraulic design purposes, such as sizing culverts and detention basins. As traditionally used, the probability of calculated runoff is equated to the probability of the causative rainfall event, an assumption that fails to account for the influence of variations in soil moisture on runoff generation. We propose a modification to the SCS-CN method that explicitly incorporates rainfall return periods and the frequency of different soil moisture states to quantify storm runoff risks. Soil moisture status is assumed to be correlated to stream base flow. Fundamentally, this approach treats runoff as the outcome of a bivariate process instead of dictating a 1:1 relationship between causative rainfall and resulting runoff volumes. Using data from the Fall Creek watershed in western New York and the headwaters of the French Broad River in the mountains of North Carolina, we show that our modified SCS-CN method improves frequency discharge predictions in medium-sized watersheds in the eastern United States in comparison to the traditional application of the method.

  11. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale

    Science.gov (United States)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.

    2016-12-01

    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  12. SPATIAL DISTRIBUTION OF THE AVERAGE RUNOFF IN THE IZA AND VIȘEU WATERSHEDS

    Directory of Open Access Journals (Sweden)

    HORVÁTH CS.

    2015-03-01

    Full Text Available The average runoff represents the main parameter with which one can best evaluate an area’s water resources and it is also an important characteristic in al river runoff research. In this paper we choose a GIS methodology for assessing the spatial evolution of the average runoff, using validity curves we identifies three validity areas in which the runoff changes differently with altitude. The tree curves were charted using the average runoff values of 16 hydrometric stations from the area, eight in the Vișeu and eight in the Iza river catchment. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on altitudinal intervals. By integrating the curves functions in to GIS we created an average runoff map for the area; from which one can easily extract runoff data using GIS spatial analyst functions. The study shows that from the three areas the highest runoff corresponds with the third zone but because it’s small area the water volume is also minor. It is also shown that with the use of the created runoff map we can compute relatively quickly correct runoff values for areas without hydrologic control.

  13. A "total parameter estimation" method in the varification of distributed hydrological models

    Science.gov (United States)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  14. Using GIS techniques for surface runoff potential analysis in the Subcarpathian area between Buzãu and Slãnic rivers, in Romania

    Directory of Open Access Journals (Sweden)

    IULIA FONTANINE

    2013-08-01

    Full Text Available The Subcarpathian area between Buzău and Slănic rivers, located in the south-eastern part of Romania, is one of the most affected areas by the torrential related phenomena. This occurs due to physical-geographical and economical-geographical factors, such as: slope, curvature profile, lithology, soil texture and land use. In order to calculate and spatially model the surface runoff potential index, these factors were integrated and worked in GIS enviroment. Each characteristic of the factors was given a bonitation score, according to the way that it influences surface runoff. By applying the methodology mainly taken after Smith (2003 [1], the Flash-Flood Potential Index was obtained, with values between 19.4 - 44.5. The highest values of the index correspond to deforestated slopes, which exceed 15º, located in Bălăneasa and Sărățel river basins.

  15. Climate Change on Discharge and Sedimentation of River Awara, Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa O. Idogho

    2014-07-01

    Full Text Available The dynamics of variation in effect of climate change on discharges and sedimentation mechanism of River Awara is investigated using 14-year data of rainfall (mm, discharges (m 3 /s, temperature ( 0 c and sediment load (t. Surface runoff (mm was computed using Water Balance Equation and some other empirical iteration based on the observed rainfall and temperature over a period of time. Analysis of Paired Sample reveals the relationship between tested hydrological variables: Rainfall-Runoff; Runoff-Sediment load; and DischargeSediment load are significant at 0.95 level of confidence interval. Logarithm calibration curve further illustrates that Rainfall-Runoff and Runoff-Sediment have coefficient values (R 2 of 0.996 and 0.822 respectively. Analytical iteration shows that the intensity and duration of precipitation determine the magnitude of river, generation of surface runoff and sedimentation rate. Increase in rainfall depth by 100 mm within the 14-year has resulted to serious erodobility and erositivity around River Awara. Cumulative average sediment load ratio of 0.46 has significantly reduced the reservoir capacity of the river by 10%. 78% of total annual surface runoff is lost to ocean; since reservoir capacity has been silted up which in turns reduces the volume of water that could be held for storage, treatment and distribution for its intended purposes. Comparative physics-based output indicates that temperature increase of 0.7 0 c between 1997 and 2004, due to internal processes of the Earth and some human activities. It is however projected that temperature will rise by 0.9 0 c by the end of 2015. Projected rise in temperature will adversely affect hydrological cycle and complicate already scarce-water resources due to intensive evapotranspiration, infiltration and reduction in stream flow. Holistic integration using bottom-up mechanism needs to be applied to address this constraint. Dredging of river Awara is very important to enhance

  16. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708

    Directory of Open Access Journals (Sweden)

    C. A. Grove

    2013-03-01

    Full Text Available Pacific Ocean sea surface temperatures (SST influence rainfall variability on multidecadal and interdecadal timescales in concert with the Pacific Decadal Oscillation (PDO and Interdecadal Pacific Oscillation (IPO. Rainfall variations in locations such as Australia and North America are therefore linked to phase changes in the PDO. Furthermore, studies have suggested teleconnections exist between the western Indian Ocean and Pacific Decadal Variability (PDV, similar to those observed on interannual timescales related to the El Niño Southern Oscillation (ENSO. However, as instrumental records of rainfall are too short and sparse to confidently assess multidecadal climatic teleconnections, here we present four coral climate archives from Madagascar spanning up to the past 300 yr (1708–2008 to assess such decadal variability. Using spectral luminescence scanning to reconstruct past changes in river runoff, we identify significant multidecadal and interdecadal frequencies in the coral records, which before 1900 are coherent with Asian-based PDO reconstructions. This multidecadal relationship with the Asian-based PDO reconstructions points to an unidentified teleconnection mechanism that affects Madagascar rainfall/runoff, most likely triggered by multidecadal changes in North Pacific SST, influencing the Asian Monsoon circulation. In the 20th century we decouple human deforestation effects from rainfall-induced soil erosion by pairing luminescence with coral geochemistry. Positive PDO phases are associated with increased Indian Ocean temperatures and runoff/rainfall in eastern Madagascar, while precipitation in southern Africa and eastern Australia declines. Consequently, the negative PDO phase that started in 1998 may contribute to reduced rainfall over eastern Madagascar and increased precipitation in southern Africa and eastern Australia. We conclude that multidecadal rainfall variability in Madagascar and the western Indian Ocean needs to be

  17. Rainfall-runoff modeling in the Turkey River using numerical and ...

    African Journals Online (AJOL)

    Modeling rainfall-runoff relationships in a watershed have an important role in water resources engineering. Researchers have used numerical models for modeling rainfall-runoff ... Also, by using SPSS software, the regression equations were developed and then the best equation was selected from regression analysis.

  18. Impact of Crop Conversions on Runoff and Sediment Output in the Lower Mississippi River Basin

    Science.gov (United States)

    Momm, H.; Bingner, R. L.; Elkadiri, R.; Yaraser, L.; Porter, W.

    2017-12-01

    Farming management practices influence sediment and agrochemical loads exiting fields and entering downstream water bodies. These practices impact multiple physical processes responsible for sediment and nutrient detachment, transport, and deposition. Recent changes in farming practices in the Southern United States coincide with increased grain production, replacing traditional crops such as cotton with corn and soybeans. To grow these crops in the South, adapted crop management practices are needed (irrigation, fertilizer, etc.). In this study, the impact of grain crop adoption on hydrologic processes and non-point source pollutant production is quantified. A watershed located in the Big Sunflower River drainage basin (14,179 km2) - a part of the greater Lower Mississippi River basin - was selected due to its economic relevance, historical agricultural output, and depiction of recent farming management trends. Estimates of runoff and sediment loads were produced using the U.S. Department of Agriculture supported Annualized Agriculture Non-Point Source Pollution (AnnAGNPS) watershed pollution and management model. Existing physical conditions during a 16-year period (2000-2015) were characterized using 3,992 sub-catchments and 1,602 concentrated flow paths. Algorithms were developed to integrate continuous land use/land cover information, variable spatio-temporal irrigation practices, and crop output yield in order to generate a total of 2,922 unique management practices and corresponding soil-disturbing operations. A simulation representing existing conditions was contrasted with simulations depicting alternatives of management, irrigation practices, and temporal variations in crop yield. Quantification of anthropogenic impacts to water quality and water availability at a watershed scale supports the development of targeted pollution mitigation and custom conservation strategies.

  19. MODELLING THE IMPACTS OF WILDFIRE ON SURFACE RUNOFF IN THE UPPER UBERABINHA RIVER WATERSHED USING HEC-HMS

    Directory of Open Access Journals (Sweden)

    Jean Maikon Santos Oliveira

    2017-01-01

    Full Text Available Fire significantly affects hydrological processes in the waters hed because it changes land cover and it creates a double layer of hydrophobic soil co vered with ash, increasing the surface runoff and the production of debris flow in the basin. Assessing the impacts of fire on overland flow requires the use of modeli ng softwares capable of simulating post-fire discharge. Because a total of 760 wildfire s were detected in the Upper Uberabinha River subbasin in the last nine years, it is o f dire importance to understand the consequential impacts of fire on hydrological pr ocesses in this basin. In this study, the HEC-HMS model was used to evaluate post-fire di scharge in the Upper Uberabinha River watershed. Model was previously calibrated and validated using two representative storms observed in the wet season. After calibra tion, the 5-, 10-, 25-, 50-, 100-, and 200-year storms were simulated in scenarios with incr easing burn severity. The calibrated model performed well in the prediction of discha rge values at a daily basis (0% difference in peak tim ing; 0% difference in peak flow ; 31.8% BIAS . Peak flow and discharge volume increased and peak timing shifted to the left as severity of burn increased. The highest increment in peak discharge was 74. 7% for the 10-year storm, whereas overall discharge volume raised in up to 31.9% f or the 50-year storm, both after simulation in the mos t fire-impacted scenario. The results reveal that fire highly affects hydrological characteristics, e.g. peak timing a nd flow and discharge volume, in the Upper Uberabinha River watershed. The authors su ggest further investigations concerning the impacts of wildfire on other proc esses, such as the production of debris flow in the basin.

  20. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    Science.gov (United States)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS

  1. Concentrations and loads of cadmium, lead, and zinc measured near the peak of the 1999 snowmelt-runoff hydrographs for 42 water-quality stations, Coeur d'Alene River basin, Idaho

    Science.gov (United States)

    Woods, Paul F.

    2000-01-01

    The Remedial Investigation/Feasibility Study conducted by the U.S. Environmental Protection Agency within the Spokane River Basin of northern Idaho and eastern Washington included extensive data-collection activities to determine the nature and extent of trace-element contamination within the basin. The U.S. Geological Survey designed and implemented synoptic sampling of the 1999 snowmelt-runoff event at 42 water- quality stations during the 1999 water year. The distribution of the 42 stations was as follows: North Fork Coeur d’Alene River and tributaries, 4 stations; South Fork Coeur d’Alene River, 13 stations; Canyon, Ninemile, and Pine Creeks, 4 stations each; other tributaries to South Fork Coeur d’Alene River, 10 stations; and main stem Coeur d’Alene River, 3 stations. The objective was to synoptically collect discharge and water-quality data in order to significantly improve the estimation of trace-element loads from multiple contributing source areas during the snowmelt-runoff event. Discharge and water-quality data were collected near the peak discharge during late May 1999. Each station was sampled for whole-water recoverable and dissolved concentrations and loads of cadmium, lead, and zinc.

  2. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    Science.gov (United States)

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  3. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    Science.gov (United States)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  4. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  5. Impact of global SST gradients on the Mediterranean runoff changes across the Plio-Pleistocene transition

    Science.gov (United States)

    Colleoni, Florence; Cherchi, Annalisa; Masina, Simona; Brierley, Christopher M.

    2015-06-01

    This work explores the impact of the development of global meridional and zonal sea surface temperature (SST) gradients on the Mediterranean runoff variability during the Plio-Pleistocene transition, about 3 Ma. Results show that total annual mean Pliocene Mediterranean runoff is about 40% larger than during the preindustrial period due to more increased extratropical specific humidity. As a consequence of a weakened and extended Hadley cell, the Pliocene northwest Africa hydrological network produces a discharge 30 times larger than today. Our results support the conclusion that during the Pliocene, the Mediterranean water deficit was reduced relative to today due to a larger river discharge. By means of a stand-alone atmospheric general circulation model, we simulate the separate impact of extratropical and equatorial SST cooling on the Mediterranean runoff. While cooling the equatorial SST does not imply significant changes to the Pliocene Mediterranean hydrological budget, the extratropical SST cooling increases the water deficit due to a decrease in precipitation and runoff. Consequently, river discharge from this area reduces to preindustrial levels. The main teleconnections acting upon the Mediterranean area today, i.e., the North Atlantic Oscillation during winter and the "monsoon-desert" mechanism during summer already have a large influence on the climate of our Pliocene simulations. Finally, our results also suggest that in a climate state significantly warmer than today, changes of the Hadley circulation could potentially lead to increased water resources in northwest Africa.

  6. Measurement of the ecological flow of the Acaponeta river, Nayarit, comparing different time intervals

    Directory of Open Access Journals (Sweden)

    Guadalupe de la Lanza Espino

    2012-07-01

    Full Text Available The diverse management of river water in Mexico has been unequal due to the different anthropological activities, and it is associated with inter-annual changes in the climate and runoff patterns, leading to a loss of the ecosystem integrity. However, nowadays there are different methods to assess the water volume that is necessary to conserve the environment, among which are hydrological methods, such as those applied here, that are based on information on water volumes recorded over decades, which are not always available in the country. For this reason, this study compares runoff records for different time ranges: minimum of 10 years, medium of 20 years, and more than 50 years, to quantify the environmental flow. These time intervals provided similar results, which mean that not only for the Acaponeta river, but possibly for others lotic systems as well, a 10-year interval may be used satisfactorily. In this river, the runoff water that must be kept for environmental purposes is: for 10 years 70.1%, for 20 years 78.1% and for >50 years 68.8%, with an average of 72.3% of the total water volume or of the average annual runoff.

  7. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity. Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive shows chemistries similar to that for the Lambourn site, but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N. Keywords: water quality, nitrate, ammonium, phosphorus, ammonia, nitrogen dioxide, pH, alkalinity, nutrients, trace metals, rainfall, river, Pang, Lambourn, LOCAR

  8. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    OpenAIRE

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars Henrik

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation...

  9. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    Science.gov (United States)

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Impacts of climate variability on the runoff in the South Eastern part of Bulgaria

    International Nuclear Information System (INIS)

    Lizama Rivas, Bernardo; Koleva-Lizama, Ivanka

    2004-01-01

    The basic climatic factors, which affect the river runoff, are atmospheric precipitation and temperature. On the basis of the set of data from some hydro-meteorological gauging stations with more than 45 years observations have been studied the effect of meteorological conditions on runoff in the southeastern region of Bulgaria. The change of the temperature, precipitation and runoff over the southeastern Bulgarian catchments are investigated and analyzed. During the application of several statistical tests was found that there are changes in the runoff, which are not caused by the man's activity. The features in the variations of above mentioned hydro-meteorological elements and their inherent trends are determined. The results of this study show that the runoff decreases considerably all over the studied region in the last years. An attempt to find a cause of the changes was done. The significant tendency to gradual reduction of runoff in the region is due to considerably decrease of the precipitation all over the Balkans. The study shows that high temperatures and low precipitation conduct to drought in the region and appears unsuitable conditions for the river runoff feeding and development of plants. (Author)

  11. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    Science.gov (United States)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  12. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff

    Science.gov (United States)

    Agricultural runoff containing nitrogen fertilizer is a major contributor to eutrophication in aquatic systems. One method of lowering amounts of nitrogen entering rivers or lakes is the transport of runoff through vegetated drainage ditches. Drainage ditch vegetation can enhance the mitigation of...

  13. Investigation of Quality and Reclamation of Urban Storm Runoff in City of Shiraz

    Directory of Open Access Journals (Sweden)

    Mohammad Parvinnia

    2008-06-01

    Full Text Available Urban storm runoff is considered as a potentially reclaimable and valuable resource in many arid and semiarid areas, in Iran. Urban storm runoff in Shiraz is collected mainly by Khoshk River and transported to the Maharloo Lake without any treatment or reclamation. In this study, storm runoff quality and the possibility for its reclamation from different parts of the city in certain canals and pipes are investigated. The quality of the first flush in three relatively large and small suburban areas with different land uses is studied. For the purposes of this study, three stations were considered: one near the downstream end of the city on Khoshk River with a relatively large watershed, one in the middle of the city where street runoff is the main constituent of the flush, and a third one near the western outskirts of the city with relatively small mainly residential watershed.

  14. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  15. Variation among sub-basins of the upper Nelson River in relationships between precipitation, runoff and the Pacific Decadal Oscillation

    International Nuclear Information System (INIS)

    McCullough, G.

    2008-01-01

    In this paper, I examine relationships between precipitation and river discharge in the Nelson River watershed and several global climate indices. Inter-decadal patterns in discharge and precipitation for several sub-basins closely tracked the Pacific Decadal Oscillation (PDO) through much of the 20th century. The PDO explained 53% of the variability in precipitation and 70% in discharge for the Red River (5-y averages) from 1915-1975. However, since 1975, both precipitation and discharge have increased relative to trend of the PDO. Winnipeg River discharge likewise increased relative to the PDO, but diverged earlier, beginning in 1965. The hydrograph of the Saskatchewan River followed the PDO only until mid-century, after which discharge declined relative to the PDO. The decline of discharge in the Saskatchewan River is not matched by consistent declines in precipitation, but may be partly due to consumptive use, mainly irrigation, and losses due to evaporation from large reservoirs created in the 1960s and 1970s. However, the increases in the Red and Winnipeg River are well-explained by increased spring and summer precipitation. For instance, precipitation was 20-30% higher in the decade 1996-2005 than in the previous decade. By examining historical data, we show the runoff coefficient to increase with increasing discharge, and that the proportional increase is greater in the Red than in the Winnipeg River basin. In the Red, the moderate difference in precipitation was amplified into a doubling of annual mean discharge. Comparing the same 2 periods, a smaller 10% increase in precipitation in the Winnipeg River basin explains a 27% increase in discharge. (author)

  16. Hydrobiological studies in river Burhi Ganga in district Etah (U.P., India

    Directory of Open Access Journals (Sweden)

    Mukesh Chandra

    2014-07-01

    Full Text Available Water pollution is a major problem today. Excessive agricultural chemicals like fertilizers and pesticides, sewage and industrial effluent runoff in rivers and pollute aquatic ecosystem. It in turns affects the aquatic fauna and flora and water quality also. In the present study, quality of Burhi Ganga river water has been tested on the basis of some hydrobiological parameters like water hardness, total solids and dissolved oxygen.

  17. Maximum Runoff of the Flood on Wadis of Northern Part of Algeria ...

    African Journals Online (AJOL)

    Wadis of Algeria are characterized by a very irregular hydrological regime. The question of estimating the maximum flow of wadis is relevant. We propose in this paper a method based on an interpretation of the transformation of surface runoff in streamflow. The technique of account the maximal runoff of flood for the rivers ...

  18. Application of The Rainfall-runoff Model Topkapi For The Entire Basin of The Po River As Part of The European Project Effs

    Science.gov (United States)

    Todini, E.; Bartholmes, J.

    The project EFFS (European Flood Forecasting System) aims at developing a flood forecasting system for the major river basins all over Europe. To extend the forecast- ing and thus the warning time in a significant way (up to 10 days) meteorological forecasting data from the ECMWF will be used as input to hydrological models. For this purpose it is fundamental to have a reliable rainfall-runoff model. For the river Po basin we chose the TOPKAPI model (Ciarapica, Todini 1998). TOPKAPI is a physi- cally based rainfall-runoff model that maintains its physical significance passing from hillslope to large basin scale. The aim of the distributed version is to reproduce the spatial variability and to lead to a better understanding of scaling effects on meteo- rological data used as well as of physical phenomena and parameters. By now the TOPKAPI model has been applied successfully to basins of smaller and medium size (up to 8000 km2). The present work also proves that TOPKAPI is a valuable flood forecasting tool for larger basins such as the Po river. An advantage of the TOPKAPI model is its physical basis. It doesn't need a "real" calibration in the common sense of the expression. The calibration work that has to be done is due to the unavoidable averaging and approximation in the input data representing various phenomena. This reduces the calibration work as well as the length of data required. The model was implemented on the Po river at spatial steps of 1km and time steps of 1 hour using available data during the year 1994. After the calibration phase, mesoscale forecasts (from ECMWF) as well as forecasts of LAM models (DWD,DMI) will be used as input to the Po river models and their behaviour will be studied as a function of the prediction quality and of the coarseness of the spatial discretisation.

  19. Observed Hydrologic Impacts of Landfalling Atmospheric Rivers in the Salt and Verde River Basins of Arizona, United States

    Science.gov (United States)

    Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James

    2017-12-01

    Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.

  20. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    Science.gov (United States)

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  1. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Science.gov (United States)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  2. Prediction and optimization of runoff via ANFIS and GA

    Directory of Open Access Journals (Sweden)

    D.K. Ghose

    2013-06-01

    Full Text Available In planning of water resource projects, the estimation of the availability of water plays an important role. The first step in the water availability estimation is the computation of runoff resulting from the precipitation on river catchments. The length of the runoff measured in a stream may be of short period or long period depending upon the catchment characteristics. Keeping this in mind the present work is focused on two different model generation. In the first phase of this study, runoff rating curves are developed considering present day water level (H(t as input and present day runoff (Q(t as the model output. In the second phase of the study runoff prediction models are developed considering 1 day lag water level (H(t − 1, 2 day lag water level (H(t − 2 and 1 day lag runoff (Q(t − 1 as inputs and 1 day ahead runoff (Q(t + 1 as the output of the model. Models developed and used for prediction of runoff are Non-Linear Multiple Regression (NLMR and Adaptive Neuro-Fuzzy Inference System (ANFIS. Both the models were trained and tested to predict the performance of models. Genetic Algorithm (GA is then coupled with NLMR model to obtain the condition of hydrological parameter for which the runoff is maximum.

  3. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)

    Science.gov (United States)

    Carey, Mark; Baraer, Michel; Mark, Bryan G.; French, Adam; Bury, Jeffrey; Young, Kenneth R.; McKenzie, Jeffrey M.

    2014-10-01

    Glacier shrinkage caused by climate change is likely to trigger diminished and less consistent stream flow in glacier-fed watersheds worldwide. To understand, model, and adapt to these climate-glacier-water changes, it is vital to integrate the analysis of both water availability (the domain of hydrologists) and water use (the focus for social scientists). Drawn from a case study of the Santa River watershed below Peru’s glaciated Cordillera Blanca mountain range, this paper provides a holistic hydro-social framework that identifies five major human variables critical to hydrological modeling because these forces have profoundly influenced water use over the last 60 years: (1) political agendas and economic development; (2) governance: laws and institutions; (3) technology and engineering; (4) land and resource use; and (5) societal responses. Notable shifts in Santa River water use-including major expansions in hydroelectricity generation, large-scale irrigation projects, and other land and resource-use practices-did not necessarily stem from changing glacier runoff or hydrologic shifts, but rather from these human variables. Ultimately, then, water usage is not predictable based on water availability alone. Glacier runoff conforms to certain expected trends predicted by models of progressively reduced glacier storage. However, societal forces establish the legal, economic, political, cultural, and social drivers that actually shape water usage patterns via human modification of watershed dynamics. This hydro-social framework has widespread implications for hydrological modeling in glaciated watersheds from the Andes and Alps to the Himalaya and Tien Shan, as well as for the development of climate change adaptation plans.

  4. Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar

    Directory of Open Access Journals (Sweden)

    C. A. Grove

    2012-08-01

    Full Text Available Coral cores provide vital climate reconstructions for site-specific temporal variability in river flow and sediment load. Yet, their ability to record spatial differences across multiple catchments is relatively unknown. Here, we investigate spatial linkages between four coral proxies of terrestrial runoff and their relationships between sites. Coral cores were drilled in and around Antongil Bay, the largest bay in Madagascar, and individually analysed for fifteen years of continuous luminescence (G / B, Ba / Ca, δ18Osw and δ13C data. Each coral core was drilled close to individual river mouths (≥ 7 km, and proxy data were compared to modelled river discharge and sediment runoff data for the three corresponding catchments. A reasonable agreement between terrestrial runoff proxies with modelled river discharge and sediment yield was observed. Some inconsistencies between proxy and modelled data are likely linked to proxy behaviour, watershed size and local environmental physiochemical parameters. In general, the further a coral resided from its river source, the weaker the proxy relationship was with modelled data and other corals, due to mixing gradients and currents. Nevertheless, we demonstrate that two coral Ba / Ca and luminescence (G / B records influenced by the same watershed are reproducible. Furthermore, a strong Ba / Ca relationship was observed between two cores from distant watersheds, with baseline averages in agreement with modelled sediment runoff data. As humic acids behave conservatively in the water column, luminescence (G / B data gave the highest regional correlations between cores, and showed the most consistent relationship with site specific modelled discharge. No statistical relationship was observed between cores in terms of interannual δ18Osw and δ13C, meaning corals were recording a localised signal at their respective sites, confounded by vital

  5. APPLICATION OF GIS IN MODELING ZILBERCHAI BASIN RUNOFF

    Directory of Open Access Journals (Sweden)

    L. Malekani

    2014-10-01

    Full Text Available Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN is a key factor in determining runoff in the SCS (Soil Conservation Service based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  6. Application of GIS in Modeling Zilberchai Basin Runoff

    Science.gov (United States)

    Malekani, L.; Khaleghi, S.; Mahmoodi, M.

    2014-10-01

    Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.

  7. Salinity response to seasonal runoff in a complex estuarine system (Cochin estuary, west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Vinita, J.; Shivaprasad, A.; Revichandran, C.; Manoj, N.T.; Muraleedharan, K.R.; Jacob B

    of freshwater. However, during the period from January to April, the dependence of the salinity field on runoff was weakened by axial diffusivity. The salt transport was a balance between seaward flux induced by river runoff and tidally induced diffusive...

  8. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  9. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  10. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  11. Impact of LULC change on the runoff, base flow and ...

    Indian Academy of Sciences (India)

    Pulakesh Das

    2018-03-02

    Mar 2, 2018 ... 1Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur,. Kharagpur .... Runoff Modeling System (PRMS; Markstrom et al. 2015) ..... to extract the cloud-free pixels for each month.

  12. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  13. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  14. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    International Nuclear Information System (INIS)

    Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P.

    2016-01-01

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  15. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Wang, Dong, E-mail: wangdong@nju.edu.cn [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Wang, Yuankun; Zeng, Xiankui [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Ge, Shanshan; Yan, Hengqian [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Singh, Vijay P. [Department of Biological and Agricultural Engineering Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843 (United States)

    2016-07-15

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  16. Potential compensation of hydrological extremes in headwaters: case study of upper Vltava River basin, Šumava Mts., Czechia

    Science.gov (United States)

    Kocum, Jan; Janský, Bohumír.; Česák, Julius

    2010-05-01

    reaction to causal amount of precipitation in the case of highly peaty areas, therefore more distinct runoff variability of streams draining peat land localities. These findings were affirmed by geochemical approach laboratory outcomes within the meaning of significant contribution of runoff from peat lands to the total runoff during extreme flood situations. An important component of rainfall-runoff process in source areas of czech rivers represented by snow conditions was analyses very in detail by means of monitoring of snow cover height and its water equivalent in chosen experimental catchments. Outcomes of this study should markedly help with significant precising of estimation of water storage retained in a snow cover. Consecutive runoff simulations using mathematical techniques would then improve a hydrological forecast. In terms of present dyking of former channels draining peat land represented by so called peat bog revitalization partial findings refer to positive effect during mean runoff situations but their considerably negative influence on runoff process in cases of extremely high discharges. In order to achieve retention potential enhancement in source areas of czech rivers an evaluation of possible former accumulative reservoirs (used for wood floating in former times) restoration which could function for example as dry (green) polders should be considered. The system of such small storage bins could function as an alternative and supplement to greater dam reservoirs. Possible spaces for water retention are measured by geodetic total station and modelled by suitable methods in GIS software. Existing outcomes advert to the fact that the effectiveness of such reservoir system would not have to be neglecting. By implementation of these unforceable measures realized in river headstream areas it could be contributed to reduction of peak flows and to increase of water resources during extreme droughts in future.

  17. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia

    International Nuclear Information System (INIS)

    Hlavcova, K; Szolgay, J; Kohnova, S; Balint, G

    2008-01-01

    The hydrological scenarios of future seasonal distributions of runoff in the upper Hron River basin, which was chosen as a representative mountainous region in Central Slovakia, were evaluated. Changes in the future climate were expressed by three different climate change scenarios developed within the framework of the Central and Eastern Europe Climate Change Impact and Vulnerability Assessment Project (CECILIA). The climate change scenarios were constructed using the pattern scaling method from the outputs of transient simulations made by 3 GCMs - ECHAM4/OPYC3, HadCM2 and NCAR DOE-PCM. A conceptual hydrological balance model calibrated with data from the period 1971-2000 was used for modelling changes in runoff with monthly time steps. The runoff change scenarios for the selected basin in the future time horizons of 2025, 2050 and 2100 show changes in the seasonal runoff distribution.

  18. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  19. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C

    NARCIS (Netherlands)

    Gosling, S.N.; Zaherpour, J.J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; Kundu, D.; Liu, J.; van Griensven, A.; Veldkamp, T.I.E.; Vetter, T.; Wang, X.; Zhang, X.

    2017-01-01

    We present one of the first climate change impact assessments on river runoff that utilises an ensemble of global hydrological models (Glob-HMs) and an ensemble of catchment-scale hydrological models (Cat-HMs), across multiple catchments: the upper Amazon, Darling, Ganges, Lena, upper Mississippi,

  20. Can Rice (Oryza sativa) Mitigate Pesticides and Nutrients in Agricultural Runoff?

    Science.gov (United States)

    Moore, M T; Locke, M A

    2018-01-01

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, and permethrin. Twenty-two high density polyethylene circular containers (56 cm x 45 cm) were used as mesocosms, with 12 mesocosms planted with rice and 10 mesocosms remaining unvegetated. Mesocosms were hydraulically connected and arranged in a series of two, with each system providing a 4 h hydraulic retention time (HRT) for a total system retention time of 8 h. Two treatments (RICE/RICE and RICE/BARE) of four replicates each were utilized, with three replicates of controls (BARE/BARE). Systems with RICE/RICE (8 h HRT) significantly reduced diazinon (p = 0.0126), cis-permethrin (p = 0.0442), filtered orthophosphate (p = 0.0058), and total orthophosphate (p = 0.0123) compared to control systems. No significant differences were noted for trans-permethrin, nitrate, or ammonium. Results indicate promise in phytoremediation of agricultural runoff by rice. If further studies reveal contaminants are not transferred into seeds, then rice could potentially serve as both a remediation tool and food source in countries facing agricultural pollution challenges.

  1. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  2. Total Suspended Load and Sediment Yield of Kayan River, Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2016-12-01

    Full Text Available This research was carried out the the drainage system of Kayan river, Bulungan District, East Kalimantan. The purpose of the research were to study the physical conditions of the Kayan catchment area, calculate the suspended sediment load, and to define the total sediment yield of Kayan River. Observation method were used in this research both of direct field observation as well as laboratory observation. Data acquired in this study were include of climatic data, geology, geomorphology, soil and land cover data. Besides also rain-fall data, temperature, river discharge and suspended sediment load. The total sediment yield were calculated by mean of mathematical and statistical analysis especially of linier regression analysis. The result of the research show that total the sediment yield of Kayan River with drainage area of 6,329.452 km² is about 236,921.25 m³/km²/year. The interesting result of the statistical analysis was that the existing negative correlation between river discharge and suspended sediment load. It is the effect of the location of discharge and suspended measurement. This condition caused by sea tide effect on river discharge at the apex delta. During high tide water river trend rising up on discharge but not on suspended sediment load. Instead, also existing setting down processes takes places of the suspended sediment load into the river bottom upper stream and the apex.

  3. Environmental variation and macrofauna response in a coastal area influenced by land runoff

    Science.gov (United States)

    Akoumianaki, Ioanna; Papaspyrou, Sokratis; Kormas, Konstantinos Ar.; Nicolaidou, Artemis

    2013-11-01

    Macrofauna community interactions with environmental variables in the water column (salinity, temperature, turbidity, transparency, suspended particulate matter, particulate organic matter, choloroplastic pigments) and in the sediment (granulometric variables, organic carbon and pigments) were investigated in a coastal area with high land runoff due to riverine and temporary stream discharges (Greece, Aegean Sea, Maliakos Gulf). Samples were taken along a distance-depositional gradient from the river mouth to the open sea at eight stations, at times of different precipitation regime from August 2000 to May 2001. The physical variables, such as transparency and median grain size, generally increased seawards, and parallelled the depositional gradient as opposed to measures of food inputs and hydrodynamic regime. High environmental heterogeneity was observed during peak precipitation. The total number of species increased seawards and from August (122 species) to May (170 species). Maximum abundance also increased from August (4953 m-2) to May (10,220 individuals m-2), irrespective of distance from river mouth. Species belonging to different functional groups, as to recolonization, feeding, motility and substrate preferences, coexisted at all times indicating high functional diversity. Non-parametric multivariate regression showed that at times of low, rising and falling precipitation 78-81% of community variation was explained by environmental variables, indicating that macrofauna distribution and species composition respond to food inputs and sediment characteristics. During peak land runoff the community-environment relationship weakened (57% of the variability explained). The diversity of functional traits of the most abundant species indicates that the macrofauna community can absorb the impact of increased turbidity, sedimentation and current-driven dispersion. The study offers baseline information for the integrated coastal zone management in microtidal areas

  4. Distribution of Total Suspended Solids Concentration in a River

    Directory of Open Access Journals (Sweden)

    Ahmad Hanif Asyhar

    2012-08-01

    Full Text Available Disposal of either industrial or nonindustrial wastewater into a river has a potential to cause riverpollution. Because each load of wastewater discharged into a river contains physical, chemical, and biological parametersthat determine water quality, so that it can affect the dissolved oxygen concentration in a river. Therefore the conductedresearch was aimed to determine the pattern of pollutant dispersion in Surabaya River within the section that is closed tothe Karang Pilang Monitoring Station - Surabaya. Parameter used in this research was Total Suspended Solids (TSS. Themethod used was the finite volume method with Quadratic Upwind Interpolation Convective Kinematics (QUICK schemeby means of developing models of dispersion water pollutants in a river. The governing equation was controlled by the lawsof mass conservation, momentum conservation, and pollution transport equation. Further, these equations were solvedusing numerical calculation and followed by numerical simulation. From the numerical simulation results, it can beconcluded that the magnitude of pollutant dispersion is determined by the initial discharged TSS concentrations into theriver, however the longitudinal direction is more dominantly influenced than in lateral directions.

  5. Simulation of Nitrogen and Phosphorus Load Runoff by a GIS-based Distributed Model for Chikugo River Watershed

    Science.gov (United States)

    Iseri, Haruka; Hiramatsu, Kazuaki; Harada, Masayoshi

    A distributed model was developed in order to simulate the process of nitrogen and phosphorus load runoff in the semi-urban watershed of the Chikugo River, Japan. A grid of cells 1km in size was laid over the study area, and several input variables for each cell area including DEM, land use and statistical data were extracted by GIS. In the process of water runoff, hydrograph calculated at Chikugo Barrage was in close agreement with the observed one, which achieved Nash-Sutcliffe coefficient of 0.90. In addition, the model simulated reasonably well the movement of TN and TP at each station. The model was also used to analyze three scenarios based on the watershed management: (1) reduction of nutrient loads from livestock farm, (2) improvement of septic tanks' wastewater treatment system and (3) application of purification function of paddy fields. As a result, effectiveness of management strategy in each scenario depended on land use patterns. The reduction rates of nutrient load effluent in scenarios (1) and (3) were higher than that in scenario (2). The present result suggests that an appropriate management of livestock farm together with the effective use of paddy environment would have significant effects on the reduction of nutrient loads. A suitable management strategy should be planned based on the land use pattern in the watershed.

  6. Impacts of the thawing-freezing process on runoff generation in the Sources Area of the Yellow River on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Wu, Xiaoling; Xiang, Xiaohua; Qiu, Chao; Li, Li

    2018-06-01

    In cold regions, precipitation, air temperature and snow cover significantly influence soil water, heat transfer, the freezing-thawing processes of the active soil layer, and runoff generation. Hydrological regimes of the world's major rivers in cold regions have changed remarkably since the 1960s, but the mechanisms underlying the changes have not yet been fully understood. Using the basic physical processes for water and heat balances and transfers in snow covered soil, a water-heat coupling model for snow cover and its underlying soil layers was established. We found that freezing-thawing processes can affect the thickness of the active layer, storage capacity for liquid water, and subsequent surface runoffs. Based on calculations of thawing-freezing processes, we investigated hydrological processes at Qumalai. The results show that the water-heat coupling model can be used in this region to provide an understanding of the local movement of hydrological regimes.

  7. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  8. Fecal contamination in several rivers of the Greater Metropolitan Area and the Osa Peninsula

    OpenAIRE

    Calvo-Brenes, Guillermo; Mora-Molina, Jesús

    2012-01-01

    Contamination of rivers in Costa Rica is an issue that requires special attention. The term “river con- tamination” means the incorporation of strange matter such as microorganisms (total and fecal coliforms), chemical products (soaps, fertilizers, pesti- cides), heavy metals (such as chrome, lead, mercury), or organic matter, the last one coming from soil through superficial water runoff as well as domestic wastewaters. All of them deteriorate the water qua- lity and reduce the different wat...

  9. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  10. Sampling and chemical analysis of urban street runoff

    International Nuclear Information System (INIS)

    Daub, J.; Striebel, T.; Robien, A.; Herrmann, R.

    1993-01-01

    In order to characterize the environmentally relevant physical and chemical properties of urban street runoff, an automatic sampling device was developed. Precipitation samples were collected together with runoff samples. Organic and inorganic compounds were analysed in the runoff. Dissolved and particle bound substances were analysed separately. The concentrations in runoff are generally considerably higher than in precipitation. Concentrations of lead, fluoranthene and benzo(a)pyrene, in particular are higher in runoffs at sites with high traffic densities than at sites with low traffic densities. Preceding dry period normally has no effect on the measured concentrations. The typical chemograph of a dissolved substance shows a maximum at the beginning of the event dropping quickly to a minimum, which often coincides with the maximum in runoff rate. A slight rise is observed with decreasing runoff rates at the end of the event. Applying a mathematical model, chemographs may be described by three terms: - Relatively large amounts of easily soluble material at the beginning of the event decrease with increasing runoff. Conservative behaviour is assumed. - A part which varies inversely to the runoff rate. This term assumes zero-order kinetics; the amount dissolved from surfaces is constant with time. - A small constant term. Concentrations of particle bound substances correlate with amounts of total suspended solids. Frequently a negative correlation between the specific concentration of substances and the concentration of total suspended solids is observed. (orig.) [de

  11. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain)

    Science.gov (United States)

    Donker, N. H. W.

    2001-01-01

    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  12. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    OpenAIRE

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitr...

  13. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang,. Pingtung ... study, a model for estimating runoff by using rainfall data from a river basin is developed and a neural ... For example, 2009 typhoon Morakot in Pingtung ... Tokar and Markus (2000) applied ANN to predict.

  14. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  15. First-flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system.

    Science.gov (United States)

    Zushi, Yasuyuki; Masunaga, Shigeki

    2009-08-01

    Worldwide environmental pollution by perfluorinated compounds (PFCs) has been reported. PFCs have also been reported to have nonpoint sources (NPSs). A fixed-point hourly monitoring in the river was conducted during a storm event using an automatic sampler to estimate the impact of the first-flush of PFCs from NPS in this study. Perfluorocarboxylates (PFCAs) and perfluoroalkyl sulfonates (PFASs) with different chain lengths were monitored. The concentrations of short- to medium-chain-length PFCAs such as PFHpA, PFOA and PFNA, and PFASs such as PFBS, PFPeS, PFHxS, PFHpS and PFOS showed no marked increase with the storm-runoff event. However, in contrast to this, concentrations of long-chain-length PFCAs such as PFDA and PFUnA increased markedly. The concentrations of PFDA and PFUnA increased 3.4 (1.5-5.0 ng L(-1))- and 2.0 (3.3-6.7 ng L(-1))-fold, respectively. This study demonstrates that large loads of long-chain-length PFCAs are discharged to the Hayabuchi River during the first-flush after the rain event.

  16. Impacts of forest management on runoff and erosion

    Science.gov (United States)

    William J. Elliot; Brandon D. Glaza

    2009-01-01

    In a parallel study, ten small watersheds (about 5 ha) were installed in the Priest River Experimental Forest (PREF) in northern Idaho, and another ten were installed in the Boise Basin Experimental Forest (BBEF) in central Idaho. The long-term objective of the study is to compare the effects of different forest management activities on runoff and...

  17. The Patoka River, Indiana: An ecosystem at risk

    International Nuclear Information System (INIS)

    Morales, N.E.; Sobiech, S.

    1993-01-01

    An ecological assessment of the Patoka River was conducted during the summer of 1992. The purpose of the study was to determine the status of the fish population along 68 sampling stations in the mainstream of the river and the watershed. The river system was subjected to various forms of man-made alterations including acid mine drainage, agricultural runoff, oil film drainage from oil drilling operations, feed lot runoff, domestic sewage disposal, illegal solid waste dumping, and partial channelization. The observed effects of these alterations to the fish community depended on the dominant environmental alterations to the studied sites. In sites impacted by heavy mine drainage, the fish were absent, probably due to the high toxicity observed at the sites. Oil film drainage effects were overshadowed by the effects of the nutrient enrichment from farm and feed lot runoff. Water eutrophication effects caused higher abundance of juvenile fish at selected sites. Within the channelized portion of the river, larger individuals were collected. This was probably due to the loss of habitat for young and for small individuals along the banks of the river. The extreme effects of these environmental alterations could be decreased by initiating a series of restoration efforts in the river and the watershed

  18. Cryospheric Change Impacts on Alpine Hydrology: Combining Model With Observations in the Upper Reaches of Hei River, China

    Science.gov (United States)

    Li, X.; Chen, R.; Wang, G.; Liu, J.; Yang, Y.; Han, C.; Song, Y.; Liu, Z.; Kang, E.

    2017-12-01

    Cryospheric change impacts largely on alpine hydrology but they are still unclear owing to rare observations and suitable models in the Western Cold Regions of China (WCRC), where many large rivers including almost inland rivers originate and some of them flow to adjacent countries. The upstream of the inland river provides nearly almost water resources to the arid mid-downstream areas, such as the Hei River. Based on the long term field observation in WCRC, a Cryospheric Basin Hydrological Model (CBHM) was created to evaluate the cryospheric impacts on streamflow in the upper reaches of Hei river (UHR), and relationships between Cryosphere and streamflow were further discussed by using measured data. The NorESM1-ME were chosen to project future streamflow under scenarios RCP2.6, RCP4.5 and RCP8.5. The monthly basin runoff in UHR was simulated with a coefficient of efficiency about 0.93 and 0.94, and a mass balance error about 2.5% and -0.2% during the calibration period from 1960 to 1990 and validation period from 1991 to 2013, respectively. The CBHM results were then well validated by measured evapotranspiration (ET), soil temperature, glacier area, water balance of land covers etc. in UHR. It found that the moraine-talus region was the major runoff contribution (60.5%) area though its area proportion was only about 20%, whereas the total runoff contribution of meadow and grassland was only about 27% but their area ratio was about 70% in UHR. Glacier and snow cover contributed 3.5% and 25.4% fresh water in average to streamflow during 1960 to 2013 in HUR. Owing to the increased air temperature (2.9 oC/54a) and precipitation (69.2 mm/54a) in the past 54 years, glacial and snow melting runoff increased 9.8% and 12.1%, respectively. The air temperature rise decreased and brought forward the snowmelt flood peak, and increased the winter flow due to permafrost degradation in UHR. Glaciers would disappear in the near future owing to its small size and increasing air

  19. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    Directory of Open Access Journals (Sweden)

    L. Hejduk

    2015-06-01

    Full Text Available One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN method, developed by Soil Conservation Service (SCS of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2 of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  20. Characterizing snowmelt regime of the river swat - a case study

    International Nuclear Information System (INIS)

    Malik, M.A.

    2015-01-01

    Snowmelt generates 70 to 80% of runoff of Indus River and its tributaries. Forecasting snowmelt generated flow is important for water management, reservoir operation and channel diversion. River Swat being not direct contributor to the existing reservoirs remained out of focus for characterizing its snowmelt regime. Thirty years (1971-2000) data of upper Swat catchment above Kalam gauging station was acquired from WAPDA. Normal monthly values over the period and average monthly values of each year were determined for stream flow, precipitation and temperature together with average monthly values of weighted and maximum temperature. Snowmelt regime was ascertained from plot of normal values of flow, precipitation and temperature. Using temperature index approach, average monthly flow over the snowmelt months (April, May and June) in terms of mm depth over the catchment was regressed on all the temperature indices using exponential, power and third degree polynomial functions. Tmax was found the best index for snowmelt with R2 as 0.902 for the third degree polynomial function. Runoff coefficient (ROC) for the total precipitation was conceptualized and through iteration was found as T max 100. The optimized value of ROC was used to segregate rain induced and snowmelt induced runoff. The segregated snowmelt induced runoff was again regressed on Tmax using the same function which slightly improved R2 to 0.916. The model was tested for four years of data and forecasted flow was found reasonable in the context of simplicity of the approach. (author)

  1. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  2. Detecting Abrupt Change of Streamflow at Lintong Station of Wei River

    Directory of Open Access Journals (Sweden)

    Jingjing Fan

    2013-01-01

    Full Text Available According to abrupt diagnosis of runoff, two methods, that is, moving approximate entropy and moving permutation entropy, are used to analyse the abrupt year of the daily river runoff from 1961 to 2006 at Lintong station of Wei River in Loess Plateau. The runoff series are divided into 4 stages. With the analysis of hydrological characters of different stages, we find that there are abrupt changes at the three years 1972, 1983, and 2002. The result shows that moving approximate entropy and moving permutation entropy methods are useful tools for abrupt diagnosis of runoff. The attribution of abrupt change at the Lintong runoff series is primarily due to the reduced precipitation, increased water conservancy project, increased water consumption of industry and agriculture, significantly decreased groundwater table, and increased evaporation.

  3. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  4. [Regulation effect of forest vegetation on watershed runoff in the Loess Plateau].

    Science.gov (United States)

    Huang, Mingbin; Liu, Xianzhao

    2002-09-01

    The runoff and rainfall data of typical forested and non-forested watersheds in Ziwuling region, which is located in the hinterland of the Loess Plateau, were used to analyze their annual runoff variation comparatively. The result showed that the annual distribution of runoff in forested watersheds was uniform, compared with that in non-forested watersheds. The total runoff in flood season decreased by 8.88 mm and 7.1 mm. Regression analyses between runoff in dried-up season and rainfall in flood season or in dried-up season showed that the rainfall in flood season in forested watersheds could be changed into underground runoff by forest vegetation, and increased the runoff in dried-up season. The annual variation of runoff also indicated that the total effect of forest vegetation on dried-up runoff complement from October to December was 1.69 mm and 0.5 mm, and that from January to May was not significant.

  5. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  6. Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River Estuary

    Science.gov (United States)

    An, Qiang; Wu, Yanqing; Taylor, Shauna; Zhao, Bin

    2009-02-01

    The Three Gorges Project (TGP) is a transcentury project that has aroused world attention. It is expected that the flow velocity and runoff of the Yangtze River will be changed after the project has been accomplished. Consequently, however, the ecological environment in the Yangtze River Basin, particularly in the estuary region, will be affected. Salinity intrusion into the Yangtze River estuary, in general, is mostly affected by the Yangtze River discharge and its external tidal level. This paper focuses on examining the influence of changes in runoff on salinity value. The question, to which should be paid attention is: how is the interaction between changes in runoff of the Yangtze River and salinity distribution in the Yangtze River estuary, China? In this research, a three-dimensional model has been used to identify the effects of runoff change on salinity distribution. The drawn conclusion is that the change of salinity is influenced by discharge variation. Positive and negative impacts of TGP would both turn up but in different period. In sum, TGP is in favor of restraining saltwater intrusion. Nevertheless a suitable method should be found to resolve its negative influences.

  7. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    Science.gov (United States)

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  8. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes

    2012-10-01

    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  9. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    Science.gov (United States)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    steep (>5%, with measured slopes of more than 22%) and soil textures were predominantly sandy loam and sandy silt loam with medium topsoil permeability. Subsurface traffic pans were observed in almost all tested fields from 20 to 40 cm depth. Where VSA scores were low, runoff potential scores were high, which shows a positive relation between both diagnostic tools. Lessons taken from field diagnosis are that farm managers cannot always implement "good" soil, water and input management practices. For example, grape quality may be adversely impacted which creates a reluctance to change (White 2003). In our paper, we review current advisory practices to mitigate runoff in Sicilian vineyards, such as residue management, continuous soil cover and no-till (Novara et al. 2011, 2013, Leys et al. 2010, Arneaz et al. 2007), against our observations and discussions with farm managers. Our findings, especially in the Regaleali vineyards, indicate that the focus for change should not only be at the edge of the field, but also in the field (Sabbagh et al. 2009). Runoff should be stopped at source first and discussion with farm managers is critical before advising on BMP plans for runoff mitigation, especially in viticulture since wine production is a multidisciplinary profession. References Arneaz, J., Lasanta, T., Ruiz-Flaño, Ortigosa, L. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards, Soil & Tillage Research 93 (2007) 324-334. ARPA, Water Incore, Sustainable water management through common responsibility enhancement in Mediterranean River Basins, 2010. Diodato, N., Bellocchi, G. Storminess and environmental changes in the Mediterranean Central Area, Earth Interactions (2010), 14, Paper No. 4. Leys, A. Govers, G., Gillijns K., Berckmoes E., Takken I. Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: the role of residue cover, Journal of Hydrology (2010), 390, 143-154. Novara, A

  10. Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau

    Science.gov (United States)

    Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.

    2017-12-01

    In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.

  11. Comparison of modelled runoff with observed proglacial discharge across the western margin of the Greenland ice sheet

    Science.gov (United States)

    Moustafa, S.; Rennermalm, A.; van As, D.; Overeem, I.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.; Fettweis, X.; Pitcher, L. H.; Hubbard, A.

    2017-12-01

    Greenland ice sheet surface ablation now dominates its total mass loss contributions to sea-level rise. Despite the increasing importance of Greenland's sea-level contribution, a quantitative inter-comparison between modeled and measured melt, runoff and discharge across multiple drainage basins is conspicuously lacking. Here we investigate the accuracy of model discharge estimates from the Modèle Atmosphérique Régionale (MAR v3.5.2) regional climate model by comparison with in situ proglacial river discharge measurements at three West Greenland drainage basins - North River (Thule), Watson River (Kangerlussuaq), and Naujat Kuat River (Nuuk). At each target catchment, we: 1) determine optimal drainage basin delineations; 2) assess primary drivers of melt; 3) evaluate MAR at daily, 5-, 10- and 20-day time scales; and 4) identify potential sources for model-observation discrepancies. Our results reveal that MAR resolves daily discharge variability poorly in the Nuuk and Thule basins (r2 = 0.4-0.5), but does capture variability over 5-, 10-, and 20-day means (r2 > 0.7). Model agreement with river flow data, though, is reduced during periods of peak discharge, particularly for the exceptional melt and discharge events of July 2012. Daily discharge is best captured by MAR across the Watson River basin, whilst there is lower correspondence between modeled and observed discharge at the Thule and Naujat Kuat River basins. We link the main source of model error to an underestimation of cloud cover, overestimation of surface albedo, and apparent warm bias in near-surface air temperatures. For future inter-comparison, we recommend using observations from catchments that have a self-contained and well-defined drainage area and an accurate discharge record over variable years coincident with a reliable automatic weather station record. Our study highlights the importance of improving MAR modeled surface albedo, cloud cover representation, and delay functions to reduce model

  12. Rainfall-runoff characteristics and effects of increased urban density on streamflow and infiltration in the eastern part of the San Jacinto River basin, Riverside County, California

    Science.gov (United States)

    Guay, Joel R.

    2002-01-01

    To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated

  13. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  14. A century of hydrological variability and trends in the Fraser River Basin

    International Nuclear Information System (INIS)

    Déry, Stephen J; Hernández-Henríquez, Marco A; Owens, Philip N; Parkes, Margot W; Petticrew, Ellen L

    2012-01-01

    This study examines the 1911–2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in

  15. A century of hydrological variability and trends in the Fraser River Basin

    Science.gov (United States)

    Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.

    2012-06-01

    This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in

  16. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  17. Inputs from Indian rivers to the ocean: A synthesis

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; SenGupta, R.

    ). Fluxes of chemical substances to the Indian Ocean from these rivers are computed to a first approximation. The major ion contents are inversely proportional to the river runoff especially for the rivers entering the Arabian Sea. On an average Indian...

  18. Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Yu, Jingjie; Randall, Mark; Zhang, Yichi; Zhao, Tongtiegang; Pan, Xingyao; Zhai, Xiaoyan; Shao, Quanxi

    2018-05-01

    Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified by coupling a simplified flow routing module of the urban drainage system and landuse dynamics to improve long-term urban runoff simulations. Moreover, multivariate statistical approach is adopted to mine the spatial variations of runoff metrics so as to further identify critical impact factors of landuse changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000-2015, while the percentages of impervious surface, forest and grass are increased from 63.5% to 72.4%, 13.5% to 16.6% and 5.1% to 6.5%, respectively. The most dramatic landuse changes occur in the middle and downstream regions; (2) The combined landuse changes do not alter the average flow metrics obviously at the catchment outlet, but slightly increase the high flow metrics, particularly the extreme high flows; (3) The impacts on runoff metrics in the sub-catchments are more obvious than those at the catchment outlet. For the average flow metrics, the most impacted metric is the runoff depth in the dry season (October ∼ May) with a relative change from -10.9% to 11.6%, and the critical impact factors are the impervious surface and grass. For the high flow metrics, the extreme high flow depth is increased most significantly with a relative change from -0.6% to 10.5%, and the critical impact factors are the impervious surface and dryland agriculture; (4) The runoff depth metrics in the sub-catchments are increased because of the landuse changes from dryland agriculture to impervious surface, but are decreased because of the

  19. MAXIMUM RUNOFF OF THE FLOOD ON WADIS OF NORTHERN ...

    African Journals Online (AJOL)

    lanez

    The technique of account the maximal runoff of flood for the rivers of northern part of Algeria based on the theory of ... north to south: 1) coastal Tel – fertile, high cultivated and sown zone; 2) territory of Atlas. Mountains ... In the first case the empiric dependence between maximum intensity of precipitation for some calculation ...

  20. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    Science.gov (United States)

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.

  1. Integration and calibration of a conceptual rainfall-runoff model in the framework of a decision support system for river basin management

    Directory of Open Access Journals (Sweden)

    J. Götzinger

    2005-01-01

    Full Text Available Water balance models provide significant input to integrated models that are used to simulate river basin processes. However, one of the primary problems involves the coupling and simultaneous calibration of rainfall-runoff and groundwater models. This problem manifests itself through circular arguments - the hydrologic model is modified to calculate highly discretized groundwater recharge rates as input to the groundwater model which provides modeled base flow for the flood-routing module of the rainfall-runoff model. A possibility to overcome this problem using a modified version of the HBV Model is presented in this paper. Regionalisation and optimization methods lead to objective and efficient calibration despite large numbers of parameters. The representation of model parameters by transfer functions of catchment characteristics enables consistent parameter estimation. By establishing such relationships, models are calibrated for the parameters of the transfer functions instead of the model parameters themselves. Simulated annealing, using weighted Nash-Sutcliffe-coefficients of variable temporal aggregation, assists in efficient parameterisations. The simulations are compared to observed discharge and groundwater recharge modeled by the State Institute for Environmental Protection Baden-Württemberg using the model TRAIN-GWN.

  2. Investigation on the 1970s and 1980s droughts in four tributaries of the Niger River Basin (West Africa).

    CSIR Research Space (South Africa)

    Badou, DF

    2015-07-01

    Full Text Available this question, we evaluated spatio-temporal pattern of rainfall and runoff in four tributaries (Sota, Alibori, Mekrou and Kompa-gorou) of the Niger River basin, covering a total area of 40,000km2 for the period 1971 to 2010. First, decadal rainfall variability...

  3. Distributed physically-based precipitation-runoff models for continuous simulation of daily runoff in the Columbia River Basin, British Columbia

    International Nuclear Information System (INIS)

    Chin, W.Q.; Salmon, G.M.; Luo, W.

    1997-01-01

    The need to accurately forecast precipitation and water runoff is essential to the operations of hydroelectric power plants. In 1993, BC Hydro established a program to develop, test and improve new and existing atmospheric and hydrologic models that would be suitable for application over the mountainous terrain of British Columbia. The objective was to improve the reliability and accuracy of hydrological models that simulate and forecast precipitation and runoff. Another objective was to develop a modelling system for hydrologic risk assessment in dam safety evaluation. This paper describes progress made in implementing timely measures to resolve problems of reservoir operation in balancing the need for generation of hydroelectric power with conflicting requirements for flood control, fisheries, recreation and other environmental concerns. 23 refs., 11 figs

  4. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.

  5. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  6. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    Science.gov (United States)

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  7. Effect of discharges from re-channeled rivers and municipal runoff ...

    African Journals Online (AJOL)

    OWNER

    municipal runoff on water quality of Opa reservoir, Ile-. Ife, Southwest ... 2. 1Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria. 2Natural ... water quality parameters that are modified by land uses. (Deacon and ... The reservoir was primarily created to supply potable water to the ... Inter-relationship among.

  8. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    OpenAIRE

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan wat...

  9. Impact of raized bogs on export of carbon and river water chemical composition in Western Siberia

    Science.gov (United States)

    Voistinova, Elena

    2010-05-01

    Bogs play an important role in functioning of the biosphere. Specific geochemical environment of the bogs results in formation of the special biogeochemical cycle of the elements. Processes of decay and transformation of organic material define the reductive conditions of bog water, form and migratory mobility of the chemical elements. Particular interest in recent years is aroused by the question of content and dynamics of the carbon in bog and river water according to indicated natural and climatic changes on the territory. The most important parts of the carbon balance in bog ecosystems together with processes of exhalation from deposit surface in the form of CO2 is its export with river water. The results of research carried out in scientific station "Vasyugansky" in south taiga subzone of Western Siberia showed that chemical composition of raised bog water includes high amounts of total iron (2,13 mg/l), ammonium ions (5,33 mg/l), humic and fulvic acids (5,21 mg/l and 45,8 mg/l), dissolved organic carbon (69,1 mg/l), COD (236,93 mgO/l), there are low mineralization and indicators of pH. Carbon comes in bog water in organic compounds: carboxylic acids, phenols, aromatic and paraffin hydrocarbons, organic phosphates, phthalates and other compounds. Formation of river waters composition in the Western Siberia takes place in the following context: high level of bogged river catchments (sometimes up to 70%), excess humidification and low heat provision. Basing on the results of study of hydrochemical runoff in small and medium rivers with different levels of bogged in river catchments (Chaya, Bakchar, Klyuch, Gavrilovka) it was noted that raised bog influence on river waters chemical composition shows in ion runoff decrease, organic substances runoff increase, increase of amounts of total iron, ammonium irons and water pH indicators decrease. Study of humic matters migration is very important in the context of formation of flexible complexes of humic and fulvic

  10. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China.

    Science.gov (United States)

    Wu, Luhua; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tian, Yichao; Zeng, Cheng; Luo, Guangjie; He, Shiyan

    2017-12-01

    The Yinjiang River watershed is a typical karst watershed in Southwest China. The present study explored runoff change and its responses to different driving factors in the Yinjiang River watershed over the period of 1984 to 2015. The methods of cumulative anomaly, continuous wavelet analysis, Mann-Kendall rank correlation trend test, and Hurst exponent were applied to analyze the impacts of climate change and human activities on runoff change. The contributions of climate change and human activities to runoff change were quantitatively assessed using the comparative method of the slope changing ratio of cumulative quantity (SCRCQ). The following results were obtained: (1) From 1984 to 2015, runoff and precipitation exhibited no-significant increasing trend, whereas evaporation exhibited significant decreasing trend. (2) In the future, runoff, precipitation, and evaporation will exhibit weak anti-persistent feature with different persistent times. This feature indicated that in their persistent times, runoff and precipitation will continuously decline, whereas evaporation will continuously increase. (3) Runoff and precipitation were well-synchronized with abrupt change features and stage characteristics, and exhibited consistent multi-timescale characteristics that were different from that of evaporation. (4) The contribution of precipitation to runoff change was 50%-60% and was considered high and stable. The contribution of evaporation to runoff change was 10%-90% and was variable with a positive or negative effects. The contribution of human activities to runoff change was 20%-60% and exerted a low positive or negative effect. (5) Climatic factors highly contributed to runoff change. By contrast, the contribution of human activities to runoff change was low. The contribution of climatic factors to runoff change was highly variable because of differences among base periods. In conclusion, this paper provides a basic theoretical understanding of the main factors

  11. Runoff measurement and prediction for a watershed under natural vegetation in central Brazil

    Directory of Open Access Journals (Sweden)

    C. L. Silva

    1999-09-01

    Full Text Available This work aimed to measure and analyze total rainfall (P, rainfall intensity and five-day antecedent rainfall effects on runoff (R; to compare measured and simulated R values using the Soil Conservation Service Curve Number method (CN for each rainfall event; and to establish average R/P ratios for observed R values. A one-year (07/01/96 to 06/30/97 rainfall-runoff data study was carried out in the Capetinga watershed (962.4 ha, located at the Federal District of Brazil, 47° 52' longitude West and 15° 52' latitude South. Soils of the watershed were predominantly covered by natural vegetation. Total rainfall and runoff for the period were 1,744 and 52.5 mm, respectively, providing R/P of 3% and suggesting that watershed physical characteristics favored water infiltration into the soil. A multivariate regression analysis for 31 main rainfall-runoff events totaling 781.9 and 51.0 mm, respectively, indicated that the amount of runoff was only dependent upon rainfall volume. Simulated values of total runoff were underestimated about 15% when using CN method and an area-weighted average of the CN based on published values. On the other hand, when average values of CN were calculated for the watershed, total runoff was overestimated about 39%, suggesting that CN method shoud be used with care in areas under natural vegetation.

  12. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  13. Climate change and runoff in south-western Australia

    Science.gov (United States)

    Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.

    2012-12-01

    SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.

  14. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985-2005 using variable infiltration capacity approach

    Science.gov (United States)

    Das, Pulakesh; Behera, Mukunda Dev; Patidar, Nitesh; Sahoo, Bhabagrahi; Tripathi, Poonam; Behera, Priti Ranjan; Srivastava, S. K.; Roy, Partha Sarathi; Thakur, Praveen; Agrawal, S. P.; Krishnamurthy, Y. V. N.

    2018-03-01

    As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985-1995, but a slight increase with 0.0097% during 1995-2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985-1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.

  15. Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin

    Science.gov (United States)

    Wałęga, A.; Rutkowska, A.; Grzebinoga, M.

    2017-04-01

    Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu-Mishra-Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.

  16. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  17. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    Science.gov (United States)

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. The influence of climatic and anthropogenic factors on hydrological regime of rivers at the south of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    T. A. Burenia

    2018-04-01

    Full Text Available Despite a large number of publications covering various aspects of the influence of climatic factors on runoff, this direction in hydrological research acquires a new meaning in connection with the increase in anthropogenic pressure on river systems. In order to identify regional and local features of the hydrological regime of the rivers in Sayan mountain region, the spatial and temporal dynamics of runoff of the main rivers in the study area were analyzed; the analysis of river flow trends against the backdrop of climate change and forest management in the drain areas was performed. Studies have shown that the revealed trends in the annual runoff of the studied rivers differ in type and in magnitude. The hydrological regime of the rivers with the negative trend of annual runoff is determined by the general nature of the humidification of the territory, which overrides the influence of all other factors. Despite a general trend of decreasing precipitation, the positive trend of annual runoff is due to a decrease in evaporation in the drainage areas, which depends both on the temperature regime of the research area and on the anthropogenic transformation of forest vegetation under logging impact. In spite of the considerable variability of annual river flow, trends in runoff coefficients for study rivers vary slightly, indicating the relative stability in water availability. This is due to cumulative effect of anthropogenic transformation of forest vegetation in the drainage areas, i.e. new felling, regeneration on logging sites and creating forest crops. Obtained results show that at the regional level in conditions of anthropogenic pressure on the forests in the drainage areas of medium and small rivers, the trends of climatic parameters, in particular precipitation, are offset by the forest harvesting and subsequent reforestation dynamics at clear cuts.

  19. COMPARATIVE ASSESSMENT OF RUNOFF AND ITS COMPONENTS IN TWO CATCHMENTS OF UPPER INDUS BASIN BY USING A SEMI DISTRIBUTED GLACIO-HYDROLOGICAL MODEL

    Directory of Open Access Journals (Sweden)

    S. H. Ali

    2017-09-01

    Full Text Available The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 m a.s.l where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree day model (MPDDM was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow and ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential and water resources assessment in these catchments.

  20. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong

    2016-09-01

    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  1. Gis Approach to Estimation of the Total Phosphorous Transfer in the Pilica River Lowland Catchment

    Directory of Open Access Journals (Sweden)

    Magnuszewski Artur

    2014-09-01

    Full Text Available In this paper, the Pilica River catchment (central Poland is analyzed with a focus on understanding the total phosphorous transfer along the river system which also contains the large artificial Sulejów Reservoir. The paper presents a GIS method for estimating the total phosphorous (TP load from proxy data representing sub-catchment land use and census data. The modelled load of TP is compared to the actual transfer of TP in the Pilica River system. The results shows that the metrics of connectivity between river system and dwelling areas as well as settlement density in the sub-catchments are useful predictors of the total phosphorous load. The presence of a large reservoir in the middle course of the river can disrupt nutrient transport along a river continuum by trapping and retaining suspended sediment and its associated TP load. Analysis of the indirect estimation of TP loads with the GIS analysis can be useful for identifying beneficial reservoir locations in a catchment. The study has shown that the Sulejów Reservoir has been located in a subcatchment with a largest load of the TP, and this feature helps determine the problem of reservoir eutrphication

  2. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    Science.gov (United States)

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  3. Daily variability of suspended particulate concentrations and yields and their effect on river particulates chemistry

    Directory of Open Access Journals (Sweden)

    M. Meybeck

    2015-03-01

    Full Text Available Daily total suspended solids concentrations (TSS, mg L-1, yields (Y, kg day-1 km-2 and runoff (q, L s-1 km-2 in world rivers are described by the median (C50, the upper percentile (C99, the discharge-weighted average concentrations (C*, and by their corresponding yields (Y50, Y99, Y* and runoff (q*, q50, q99. These intra-station descriptors range over two to six orders of magnitude at a given station. Inter-station variability is considered through three sets of dimensionless metrics: (i q*/q50, C*/C50 and Y*/Y50, defining the general temporal variability indicators, and q99/q50, C99/C50 and Y99/Y50, defining the extreme variability indicators; (ii river flow duration (W2 and flux duration (M2 in 2% of time; and (iii the truncated rating curve exponent (b50sup of the C vs q relationship for the upper flows. The TSS and Y variability, measured on US, French and world rivers, are first explained by hydrological variability through the b50sup metric, the variability amplifier, then by basin size, erodibility, relief and lake occurrence. Yield variability is the product of runoff variability × TSS variability. All metrics are considerably modified after river damming. The control of river particulate matter (RPM composition by TSS or yields depends on the targeted component. For major elements (Al, Fe, Mn, Ti, Si, Ca, Mg, Na, K, the average RPM chemistry is not dependent on C* and Y* in most world hydroregions, except in the tropical hydrobelt where it is controlled by basin relief. By contrast, the particulate organic carbon content (POC, as a percentage of RPM is inversely correlated to TSS concentrations for (i intra-station measurements in any hydroregion, and (ii inter-station average POC and TSS figures in world rivers. TSS controls heavy metal content (ppm in highly contaminated basins (e.g. Cd in the Seine vs the Rhone, and total metal concentration (ng/L in all cases. Relations between RPM composition and TSS should be taken into account

  4. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: graig@cecs.pdx.edu [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)

    2011-08-15

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  5. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  6. Characteristics of Phosphorus Runoff Losses from Typical Paddy Fields in Guangdong Province, China

    Directory of Open Access Journals (Sweden)

    NING Jian-feng

    2018-03-01

    Full Text Available Three experimental paddy fields located in the city of Zengcheng, Qingyuan and Gaozhou in Guangdong Province were selected to monitor the runoff losses of phosphorus from the year of 2008 to 2012. The results showed that runoff event in paddy field occurred mainly in the early rice season. The runoff concentration of total phosphorus(TP under conventional fertilization treatment was in the range of 0.02~1.56 mg·L-1. It was recorded that TP concentration in 11%~18% of the total runoff samples exceeded the grade Ⅴ of the national surface water environmental quality(0.4 mg·L-1. Peak concentration of different phosphorus forms[TP, dissolved total P(DTP and particulate P(PP] were observed within 14 days after fertilization, which indicated the high environmental pollution risk of phosphorus during this period. Application of phosphorus fertilizer increased runoff load of DTP in paddy field and showed no effect on that of PP and TP. The annual runoff loads of 0.63~4.05, 0.33~2.91 kg·hm-2 and 1.10~6.68 kg·hm-2 for DTP, PP and TP, respectively, were recorded under conventional fertilizer model. Runoff load of phosphorus exhibited wide spatial and temporal variation during experimental period. Runoff coefficient of 0.06%~6.81% of phosphorus was recorded. It was observed that DTP dominated the phosphorus runoff load. Phosphorus runoff losses from paddy field was affected by a variety of natural and human factors, and fertilization, precipitation and runoff volume were identified as the main factors.

  7. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  8. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    International Nuclear Information System (INIS)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge; Hoehener, Patrick

    2008-01-01

    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 μg L -1 . The three other pesticides were found in concentrations between 5.2 and 28.2 μg L -1 in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model

  9. Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally

  10. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated....

  11. Investigation of the Hydrological Quality of Ethiope River Watershed ...

    African Journals Online (AJOL)

    The surface and groundwater resources of the Ethiope river watershed have been investigated for its hydrological and quality characteristics. The results indicate that Ethiope River is perennial and fed by groundwater seepages, precipitation and surface run-off from adjacent areas. The lowest discharge rate of the river is ...

  12. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  13. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico

    Science.gov (United States)

    Larsen, M.C.; Webb, R.M.T.

    2009-01-01

    Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.

  14. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2009-10-01

    Full Text Available A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwater and river water, overland flow, river flow and artificial cycle processes of water utilization. A simulation of 21 years from 1982 to 2002 was carried out after obtaining various input data and model parameters. The model was validated for both the simulation of monthly discharge process and that of daily discharge process. Water budgets and spatial and temporal variations of hydrological cycle components as well as energy cycle components in the upper and middle reach Heihe basin (36 728 km2 were studied by using the distributed hydrological model. In addition, the model was further used to predict the water budgets under the future land surface change scenarios in the basin. The modeling results show: (1 in the upper reach watershed, the annual average evapotranspiration and runoff account for 63% and 37% of the annual precipitation, respectively, the snow melting runoff accounts for 19% of the total runoff and 41% of the direct runoff, and the groundwater storage has no obvious change; (2 in the middle reach basin, the annual average evapotranspiration is 52 mm more than the local annual precipitation, and the groundwater storage is of an obvious declining trend because of irrigation water consumption; (3 for the scenario of conservation forest construction in the upper reach basin, although the evapotranspiration from interception may increase, the soil evaporation may reduce at the same time, therefore the total evapotranspiration may not

  15. Variations of annual and seasonal runoff in Guangdong Province, south China: spatiotemporal patterns and possible causes

    Science.gov (United States)

    Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng

    2015-06-01

    In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.

  16. Origins and transport of aquatic dioxins in the Japanese watershed: soil contamination, land use, and soil runoff events.

    Science.gov (United States)

    Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi

    2009-06-15

    Significant dioxins accumulations in Japanese forests and paddy fields have been observed, and surface soil runoff caused by rainfall and irrigation (i.e., soil puddling in paddy fields) results in dioxins input into the aquatic environment. An extensive investigation into the origins and transport of aquatic dioxins in the Yasu watershed, Japan was conducted considering surface soil contamination level, land use, and type of soil runoff event (i.e., irrigation runoff [IR], rainfall runoff [RR], and base flow [BF]). Combined use of the chemically activated luciferase expression (CALUX) assay together with high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) efficiently enabled this study, so that origins, transport, and dynamic movement of aquatic dioxins in the watershed were revealed. The particulate organic carbon normalized particulate-dioxins WHO-toxic equivalent (TEQ) concentration predicted by the CALUX assay (Spar) was found to be a convenient molecular marker to indicate origins of aquatic dioxins and clearly reflect surface soil contamination level, land use, and soil runoff events. Using experimental results and theoretical modeling, the annual loading amount of dioxins at the middle reach of the river was estimated to be 0.458 mg WHO-TEQ in 2004. More than 96.6% of the annual loading amount was attributed to RR and derived almost evenly from forest and paddy fields at the study location. Because the annual loading amount at the middle reach is less than 0.5% of the total dioxins accumulated in the upper basin, dioxins runoff from the Japanese watershed will continue. This study shows that the combined use of the bioassay with HRGC/HRMS can provide new insights into dioxins transport and fate in the environment.

  17. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    Science.gov (United States)

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  18. Environmental flow calculation for the maintenance of the water reserve of the Piaxtla River, Sinaloa, Mexico

    Directory of Open Access Journals (Sweden)

    Guadalupe de la Lanza Espino

    2014-03-01

    status to be achieved within the watershed to maintain the integrity of existing ecosystems or when they believe that they are degraded, contributing to the recovery or rehabilitation; and annual percentage rate recommended for environmental protection. Based on this, the purpose of this study was to quantify the river flow of the Piaxtla river, in the state of Sinaloa. The river runoff data bases for 36 and nine years were compared, showed differences mainly between the frequency of maximum runoff and its origin, and indicated that it is advisable to use a data base of more than 20 years. However, results were similar in the final calculation of the environmental or ecological river flows; that is to say, total runoff volume was 62.1% considering 36 years and 57.7% for nine years of information. We conclude that the ecological importance of Piaxtla river was very high and the use of water pressure was low (considering that database runoff only included until 1999 and did not take into account population growth and activities. To determine the final volume reserved for the environment or ecological flow, could be estimated not only with a database of 36 years, but for nine years also confirming that those rivers that have databases of 10 years can the methodology used hydrological indicated by the NMX said. Particularly in this study it was determined that for parameters more detailed as the volume of the base rate of the annual volume, according to the frequency of occurrence, both very dry years, dry, average and wet, and influence of meteorological events that determine periods separate return, it is advisable to use minimum data bases as brand NMX 20 years.

  19. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Modeling of runoff pollution load in a data scarce situation using ...

    African Journals Online (AJOL)

    This study used Soil Water Assessment Tool (SWAT) to simulate temporal-spatial distribution of surface water runoff (river flow), sediment and nutrient generation in Sondu watershed, and to identify soil erosion and nutrient source hot spots. Annual sediment generation to the lake is 80,000 t/yr composed of mainly silt while ...

  1. Colloidal mobilization of arsenic from mining-affected soils by surface runoff.

    Science.gov (United States)

    Gomez-Gonzalez, Miguel Angel; Voegelin, Andreas; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando

    2016-02-01

    Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    Science.gov (United States)

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  3. LARGE-SCALE INDICATIVE MAPPING OF SOIL RUNOFF

    Directory of Open Access Journals (Sweden)

    E. Panidi

    2017-11-01

    Full Text Available In our study we estimate relationships between quantitative parameters of relief, soil runoff regime, and spatial distribution of radioactive pollutants in the soil. The study is conducted on the test arable area located in basin of the upper Oka River (Orel region, Russia. Previously we collected rich amount of soil samples, which make it possible to investigate redistribution of the Chernobyl-origin cesium-137 in soil material and as a consequence the soil runoff magnitude at sampling points. Currently we are describing and discussing the technique applied to large-scale mapping of the soil runoff. The technique is based upon the cesium-137 radioactivity measurement in the different relief structures. Key stages are the allocation of the places for soil sampling points (we used very high resolution space imagery as a supporting data; soil samples collection and analysis; calibration of the mathematical model (using the estimated background value of the cesium-137 radioactivity; and automated compilation of the map (predictive map of the studied territory (digital elevation model is used for this purpose, and cesium-137 radioactivity can be predicted using quantitative parameters of the relief. The maps can be used as a support data for precision agriculture and for recultivation or melioration purposes.

  4. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  5. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    Science.gov (United States)

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  6. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico)]. E-mail: gzo@nuclear.inin.mx; Avila-Perez, P. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Tejeda, S. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Barcelo-Quintal, I. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Mexico, D.F. (Mexico); Martinez, T. [Universidad Nacional Autonoma de Mexico, Facultad de Quimica, Mexico, D.F. (Mexico)

    2006-11-15

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 {mu}g/L) > Mn (300 {mu}g/L) > Cu (66 {mu}g/L) > Cr (21 {mu}g/L) > Pb (15 {mu}g/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  7. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  8. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila-Perez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martinez, T.

    2006-01-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits

  9. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    Science.gov (United States)

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  10. [Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].

    Science.gov (United States)

    Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan

    2012-08-01

    Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.

  11. Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria

    Directory of Open Access Journals (Sweden)

    A. Viglione

    2013-06-01

    Full Text Available This is the third of a three-part paper series through which we assess the performance of runoff predictions in ungauged basins in a comparative way. Whereas the two previous papers by Parajka et al. (2013 and Salinas et al. (2013 assess the regionalisation performance of hydrographs and hydrological extremes on the basis of a comprehensive literature review of thousands of case studies around the world, in this paper we jointly assess prediction performance of a range of runoff signatures for a consistent and rich dataset. Daily runoff time series are predicted for 213 catchments in Austria by a regionalised rainfall–runoff model and by Top-kriging, a geostatistical estimation method that accounts for the river network hierarchy. From the runoff time-series, six runoff signatures are extracted: annual runoff, seasonal runoff, flow duration curves, low flows, high flows and runoff hydrographs. The predictive performance is assessed in terms of the bias, error spread and proportion of unexplained spatial variance of statistical measures of these signatures in cross-validation (blind testing mode. Results of the comparative assessment show that, in Austria, the predictive performance increases with catchment area for both methods and for most signatures, it tends to increase with elevation for the regionalised rainfall–runoff model, while the dependence on climate characteristics is weaker. Annual and seasonal runoff can be predicted more accurately than all other signatures. The spatial variability of high flows in ungauged basins is the most difficult to estimate followed by the low flows. It also turns out that in this data-rich study in Austria, the geostatistical approach (Top-kriging generally outperforms the regionalised rainfall–runoff model.

  12. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    Science.gov (United States)

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  13. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  14. Lumped conceptual hydrological model for Purna river basin, India

    Indian Academy of Sciences (India)

    in prediction of real time flood, and devising policies for management of storage reservoirs and ... the world (Refsgaard & Knusden 1996). ... The knowledge on sensitivity of MIKE 11 NAM outputs (runoff volume and peak runoff) ... direct and indirect damages to the Surat city, India, which is located in lower bank of Tapi river.

  15. Ice volume distribution and implications on runoff projections in a glacierized catchment

    Directory of Open Access Journals (Sweden)

    J. Gabbi

    2012-12-01

    Full Text Available A dense network of helicopter-based ground-penetrating radar (GPR measurements was used to determine the ice-thickness distribution in the Mauvoisin region. The comprehensive set of ice-thickness measurements was combined with an ice-thickness estimation approach for an accurate determination of the bedrock. A total ice volume of 3.69 ± 0.31 km3 and a maximum ice thickness of 290 m were found. The ice-thickness values were then employed as input for a combined glacio-hydrological model forced by most recent regional climate scenarios. This model provided glacier evolution and runoff projections for the period 2010–2100. Runoff projections of the measured initial ice volume distribution show an increase in annual runoff of 4% in the next two decades, followed by a persistent runoff decrease until 2100. Finally, we checked the influence of the ice-thickness distribution on runoff projections. Our analyses revealed that reliable estimates of the ice volume are essential for modelling future glacier and runoff evolution. Wrong estimations of the total ice volume might even lead to deviations of the predicted general runoff trend.

  16. Bayesian analyses of seasonal runoff forecasts

    Science.gov (United States)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  17. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  18. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    Science.gov (United States)

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  19. Effects of Varying Cloud Cover on Springtime Runoff in California's Sierra Nevada

    Science.gov (United States)

    Sumargo, E.; Cayan, D. R.

    2017-12-01

    This study investigates how cloud cover modifies snowmelt-runoff processes in Sierra Nevada watersheds during dry and wet periods. We use two of the California Department of Water Resources' (DWR's) quasi-operational models of the Tuolumne and Merced River basins developed from the USGS Precipitation-Runoff Modeling System (PRMS) hydrologic modeling system. Model simulations are conducted after a validated optimization of model performance in simulating recent (1996-2014) historical variability in the Tuolumne and Merced basins using solar radiation (Qsi) derived from Geostationary Operational Environmental Satellite (GOES) remote sensing. Specifically, the questions we address are: 1) how sensitive are snowmelt and runoff in the Tuolumne and Merced River basins to Qsi variability associated with cloud cover variations?, and 2) does this sensitivity change in dry vs. wet years? To address these question, we conduct two experiments, where: E1) theoretical clear-sky Qsi is used as an input to PRMS, and E2) the annual harmonic cycle of Qsi is used as an input to PRMS. The resulting hydrographs from these experiments exhibit changes in peak streamflow timing by several days to a few weeks and smaller streamflow variability when compared to the actual flows and the original simulations. For E1, despite some variations, this pattern persists when the result is evaluated for dry-year and wet-year subsets, reflecting the consistently higher Qsi input available. For E2, the hydrograph shows a later spring-summer streamflow peak in the dry-year subset when compared to the original simulations, indicating the relative importance of the modulating effect of cloud cover on snowmelt-runoff in drier years.

  20. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  1. Arsenic and chloride data for five stream sites in the Madison River drainage, Montana, 1988

    Science.gov (United States)

    Knapton, J.R.; Brosten, Tordis M.

    1989-01-01

    Enriched geothermal waters in Yellowstone National Park contribute large quantities of arsenic to the Madison River. Because arsenic may be acutely or chronically toxic to humans when ingested, it is of concern in the upper Missouri River basin where the water is used for domestic purposes. In passage of water downstream, concentrations of arsenic in the Madison and Missouri Rivers are diluted by tributary inflows. However, insufficient information existed to describe concentrations during runoff at specific locations. As a result, a monitoring network was established to better define arsenic concentrations during the 1988 peak runoff and during periods prior to and following the runoff. In addition to arsenic, samples were analyzed for chloride because of its association with geothermal water and specific conductance because it is a surrogate measure of dissolved-solids concentration. This report presents data acquired during 1988 at five sampling stations in the Madison River drainage. (USGS)

  2. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  3. Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)

    International Nuclear Information System (INIS)

    Buerger, C.M.; Kolditz, O.; Fowler, H.J.; Blenkinsop, S.

    2007-01-01

    Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system. - Future climate change and data-based rainfall-runoff predictions are presented for the Upper Gallego

  4. Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships

    Science.gov (United States)

    Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.

    2011-12-01

    The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At

  5. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...

  6. Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio

    Science.gov (United States)

    Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.

    2016-05-06

    Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that

  7. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  8. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    Science.gov (United States)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  9. Runoff response to climate change and human activities in a typical karst watershed, SW China.

    Science.gov (United States)

    Xu, Yan; Wang, Shijie; Bai, Xiaoyong; Shu, Dongcai; Tian, Yichao

    2018-01-01

    This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968-1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981-2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007-2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981-2007 as the reference period were -81% and 181% in average, respectively, during 1968-1980, and -117% and 217% in average, respectively, during 2007-2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought problem in the karst

  10. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8

  11. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming.

    Science.gov (United States)

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.

  12. Climate and Hydrological Change Characteristics and Applicability of GLDAS Data in the Yarlung Zangbo River Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-03-01

    Full Text Available The hydrological cycle is particularly sensitive to and is greatly affected by global climate change. In addition, runoff change has a strong influence on the hydrological cycle and migration of biogenic substances. The Yarlung Zangbo River basin in China is a typical basin for which climate and hydrological data are lacking. Land surface models can provide data for studying land surface substance and energy circulation, which are meaningful to face climate change. The midstream region of the Yarlung Zangbo River basin, which is strongly affected by climate change, was selected as the study area. First, the observed mean temperature, precipitation and runoff characteristics were analysed. Second, after combining the Global Land Data Assimilation System (GLDAS and the water balance equation, we simulated climate and hydrological processes for the same time period. Finally, the correlation and error between GLDAS and observed data were analysed to verify applicability of the GLDAS data, and the impacts of climate factors on runoff were discussed. The results revealed that under the background of global warming, precipitation, temperature, and runoff changed significantly and showed strong consistency during the research period. Mean monthly precipitation, temperature and runoff exhibited clear cyclical fluctuations of approximately 12 months, and they all tended to increase. GLDAS is not a good system to describe the land surface conditions of the Yarlung Zangbo River basin all the time. However, within a certain time period, GLDAS data have a good applicability in the basin. Thereinto, the GLDAS mean monthly precipitation was moderately correlated with observed precipitation, with a correlation coefficient of 0.75. GLDAS mean monthly temperature was highly correlated with observed data, with a correlation coefficient of 0.94. Based on the Brunke ranking method, it indicates that GLDAS-Noah-based runoff data were closer to observed runoff data

  13. A 3-step framework for understanding the added value of surface soil moisture measurements for large-scale runoff prediction via data assimilation - a synthetic study in the Arkansas-Red River basin

    Science.gov (United States)

    Mao, Y.; Crow, W. T.; Nijssen, B.

    2017-12-01

    Soil moisture (SM) plays an important role in runoff generation both by partitioning infiltration and surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-storm periods. Therefore, more accurate SM state estimation in hydrologic models is potentially beneficial for streamflow prediction. Various previous studies have explored the potential of assimilating SM data into hydrologic models for streamflow improvement. These studies have drawn inconsistent conclusions, ranging from significantly improved runoff via SM data assimilation (DA) to limited or degraded runoff. These studies commonly treat the whole assimilation procedure as a black box without separating the contribution of each step in the procedure, making it difficult to attribute the underlying causes of runoff improvement (or the lack thereof). In this study, we decompose the overall DA process into three steps by answering the following questions (3-step framework): 1) how much can assimilation of surface SM measurements improve surface SM state in a hydrologic model? 2) how much does surface SM improvement propagate to deeper layers? 3) How much does (surface and deeper-layer) SM improvement propagate into runoff improvement? A synthetic twin experiment is carried out in the Arkansas-Red River basin ( 600,000 km2) where a synthetic "truth" run, an open-loop run (without DA) and a DA run (where synthetic surface SM measurements are assimilated) are generated. All model runs are performed at 1/8 degree resolution and over a 10-year period using the Variable Infiltration Capacity (VIC) hydrologic model at a 3-hourly time step. For the DA run, the ensemble Kalman filter (EnKF) method is applied. The updated surface and deeper-layer SM states with DA are compared to the open-loop SM to quantitatively evaluate the first two steps in the framework. To quantify the third step, a set of perfect-state runs are generated where the "true" SM states are directly inserted

  14. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  15. Assessment of pollution in Ndarugu river due to runoff and agro ...

    African Journals Online (AJOL)

    River Ndarugu is a tributary of Athi River in Kenya and is one of the main ... it receives untreated agro‐industrial waste discharges, effluent from coffee and tea ... as to protect the river from the adverse impacts of agricultural activities and save it ...

  16. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    Science.gov (United States)

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel.

  17. Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2013-07-01

    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  18. Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China

    Science.gov (United States)

    Xing, Wanqiu; Wang, Weiguang; Zou, Shan; Deng, Chao

    2018-03-01

    This study established a climate elasticity method based on Budyko hypothesis and enhanced it by selecting the most effective Budyko-type formula to strengthen the runoff change prediction reliability. The spatiotemporal variations in hydrologic variables (i.e., runoff, precipitation and potential evaporation) during historical period were revealed first and the climate elasticities of runoff were investigated. The proposed climate elasticity method was also applied to project the spatiotemporal variations in future runoff and its key influencing factors in 35 watersheds across China. Wherein, the future climate series were retrieved by consulting the historical series, informed by four global climate models (GCMs) under representative concentration pathways from phase five of the Coupled Model Intercomparison Project. Wang-Tang equation was selected as the optimal Budyko-type equation for its best ability in reproducing the runoff change (with a coefficient of determination and mean absolute error of 0.998 and 1.36 mm, respectively). Observed runoff presents significant decreasing trends in the northern and increasing trends in the southern regions of China, and generally its change is identified to be more sensitive to climatic variables in Hai River Basin and lower Yellow River Basin. Compared to the runoff during the reference period, positive change rates in the north and negative change rates in the south of China in the mid-21st century can be practically generalized from the majority of GCMs projections. This maybe resulted from the increasing precipitation, especially in parts of northern basins. Meanwhile, GCMs project a consistently upward trend in potential evaporation although significant decreasing trends occur in the majority of catchments for the historical period. The results indicate that climate change will possibly bring some changes to the water resources over China in the mid-21st century and some countermeasures of water resources planning

  19. Robustness of a multiple-use reservoir to seasonal runoff shifts associated with climate change

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Brettman, K.L.

    1990-05-01

    Although much remains to be learned about long-term climate change associated with anthropogenic increases in concentrations of the so-called ''greenhouse gases,'' such as carbon dioxide and methane, there is a general consensus that some global warming will result from past and present emissions. In the western United States, the dominant hydrologic effect of such warming, aside from any accompanying changes in precipitation, would be to reduce winter snow accumulations in mountainous headwaters regions. To assess the robustness of reservoir operation to such shifts in seasonal runoff, simulations were developed of monthly runoff for the American River, Washington, using the National Weather Service River Forecast System. The American River is presently unregulated; however, we tested the performance of hypothetical reservoirs with capacity of 0.25 and 0.50 of the mean annual flow for a range of annual temperature changes from 0.0 (present climate) to 4.0 degree C. We considered a multiple-purpose reservoir system operated for water supply ad hydropower, with minimum releases required for fisheries enhancement. In addition to evaluating the sensitivity of water supply, low flow, and hydropower performance using a heuristic operating rule, the relative performance of the system under present and altered climates was evaluated using an optimization algorithm, extended linear quadratic Gaussian control. This paper reports the results of hydrologic simulations for the American River, Washington. 13 refs., 8 figs

  20. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Robert G.; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  1. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  2. LDMS: A Low-Dimensional Modeling System for Hillslope, Catchment and River-Basin Runoff

    National Research Council Canada - National Science Library

    Duffy, Christopher

    2000-01-01

    .... The approach assumes that soil moisture and saturated groundwater storage serve as essential state variables in the rainfall-runoff process and that natural variations in topography, drainage area...

  3. [Research on evaluation of water quality of Beijing urban stormwater runoff].

    Science.gov (United States)

    Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping

    2012-01-01

    The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.

  4. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)

    Science.gov (United States)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2014-09-01

    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  5. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    Science.gov (United States)

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, Psoil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, Psoil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, Psoil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  6. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    Science.gov (United States)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2011-08-01

    HydroSHEDS dataset with a resolution of 3" (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  7. Extreme heat and runoff extremes in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    M. Zappa

    2007-06-01

    Full Text Available The hydrological response of Swiss river basins to the 2003 European summer heatwave was evaluated by a combined analysis of historical discharge records and specific applications of distributed hydrological modeling. In the summer of 2003, the discharge from headwater streams of the Swiss Central Plateau was only 40%–60% of the long-term average. For alpine basins runoff was about 60%–80% of the average. Glacierized basins showed the opposite behavior. According to the degree of glacierization, the average summer runoff was close or even above average. The hydrological model PREVAH was applied for the period 1982–2005. Even if the model was not calibrated for such extreme meteorological conditions, it was well able to simulate the hydrological responses of three basins. The aridity index φ describes feedbacks between hydrological and meteorological anomalies, and was adopted as an indicator of hydrological drought. The anomalies of φ and temperature in the summer of 2003 exceeded the 1982–2005 mean by more than 2 standard deviations. Catchments without glaciers showed negative correlations between φ and discharge R. In basins with about 15% glacierization, φ and R were not correlated. River basins with higher glacier percentages showed a positive correlation between φ and R. Icemelt was positively correlated with φ and reduced the variability of discharge with larger amounts of meltwater. Runoff generation from the non-glaciated sub-areas was limited by high evapotranspiration and reduced precipitation. The 2003 summer heatwave could be a precursor to similar events in the near future. Hydrological models and further data analysis will allow the identification of the most sensitive regions where heatwaves may become a recurrent natural hazard with large environmental, social and economical impacts.

  8. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    Science.gov (United States)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    Analysis of runoff and peaks therein is essential for designing hydraulic infrastructures and for assessing the hydrological implications of likely scenarios of climate and/or land-use change. Different methods are available to calculate runoff coefficients. For instance, the runoff coefficient of a catchment can be described either as the ratio of total depth of runoff to total depth of rainfall or as the ratio of peak flow to rainfall intensity for the time of concentration (Dhakal et al. 2012). If the first definition is considered, runoff coefficients represent the global effect of different features and states of catchments and its determination requires a suitable analysis according to the objectives pursued (Chow et al., 1988). In this work, rainfall-runoff data and physical attributes from small rural catchments located in the Iberian Peninsula (Portugal and Spain) were examined in order to compare the representative values of runoff coefficients using three different approaches: i) statistical analysis of rainfall-runoff data and their quantiles (Dhakal et al., 2012); ii) probabilistic runoff coefficients from the rank-ordered pairs of observed rainfall-runoff data and their relationships with rainfall depths (Schaake et al., 1967); iii) finally, a multiple linear model based on geomorphological attributes. These catchments exhibit great variety with respect to their natural settings, such as climate, topography and lithology. We present a preliminary analysis of the rainfall-runoff relationships as well as their variability in a complex context such as the Iberian Peninsula where contrasted environmental systems coexist. We also discuss reference parameters representing runoff coefficients commonly included into hydrological models. This study is conceived as the first step to explore further working protocols and modeling gaps in a very susceptible area to the climate change such as the Iberian Peninsula's, where the analysis of runoff coefficients is

  9. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    Science.gov (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Evaluating the effects of model structure and meteorological input data on runoff modelling in an alpine headwater basin

    Science.gov (United States)

    Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan

    2017-04-01

    Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing

  11. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    Science.gov (United States)

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    Floodwater in the Missouri River in 2011 originated in upper-basin regions and tributaries, and then travelled through a series of large flood-control reservoirs, setting records for total runoff volume entering all six Missouri River main-stem reservoirs. The flooding lasted as long as 3 months. The U.S Geological Survey (USGS) examined sediment transport and deposition in the lower Missouri River in 2011 to investigate how the geography of floodwater sources, in particular the decanting effects of the Missouri River main-stem reservoir system, coupled with the longitudinal characteristics of civil infrastructure and valley-bottom topography, affected sediment transport and deposition in this large, regulated river system. During the flood conditions in 2011, the USGS, in cooperation with the U.S. Army Corps of Engineers, monitored suspended-sediment transport at six primary streamgages along the length of the lower Missouri River. Measured suspended-sediment concentration (SSC) in the lower Missouri River varied from approximately 150 milligrams per liter (mg/L) to 2,000 mg/L from January 1 to September 30, 2011. Median SSC increased in the downstream direction from 355 mg/L at Sioux City, Iowa, to 490 mg/L at Hermann, Missouri. The highest SSCs were measured downstream from Omaha, Nebraska, in late February when snowmelt runoff from tributaries, which were draining zones of high-sediment production, was entering the lower Missouri River, and releases of water at Gavins Point Dam were small. The combination of dilute releases of water at Gavins Point Dam and low streamflows in lower Missouri River tributaries caused sustained lowering of SSC at all streamgages from early July through late August. Suspended-sediment ranged from 5 percent washload (PW; percent silt and clay) to as much as 98 percent in the lower Missouri River from January 1 to September 30, 2011. Median PW increased in the downstream direction from 24 percent at Sioux City, Iowa, to 78 percent at

  12. First stages of zinc runoff in humid tropical climate

    International Nuclear Information System (INIS)

    Meraz, E.; Veleva, L.; Acosta, M.

    2007-01-01

    Frequently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relatively good atmospheric resistance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runoff. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdoor atmosphere (rural and urban). The data reveal high annual values of zinc runoff (8,20-12,40±0.30 g/m''2 ano), being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed. (Author) 48 refs

  13. Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model

    Directory of Open Access Journals (Sweden)

    G. Moretti

    2008-08-01

    Full Text Available The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero River. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The hydrological model is first calibrated by using a 1-year record of hourly meteorological data and river flows observed at the outlet of the 1294 km2 wide Secchia River basin, of which the Riarbero is a tributary. The model is then validated by performing a 100-year long simulation of synthetic river flow data, which allowed us to compare the simulated and observed flood frequency distributions at the Secchia River outlet and the internal cross river section of Cavola Bridge, where the basin area is 337 km2. Finally, another simulation of hourly river flows was performed by referring to the outlet of the Riarbero River, therefore allowing us to estimate the related flood frequency distribution. The results were validated by using estimates of peak river flow obtained by applying hydrological similarity principles and a regional method. The results show that the flood flow estimated through the application of the distributed model is consistent with the estimate provided by the regional procedure as well as the behaviors of the river banks. Conversely, the method based on hydrological similarity delivers an estimate that seems to be not as reliable. The analysis highlights interesting perspectives for the application of

  14. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    Science.gov (United States)

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  15. Geographic Information System and Geoportal «River basins of the European Russia»

    Science.gov (United States)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  16. Assessment of the characteristic of nutrients, total metals, and fecal coliform in Sibu Laut River, Sarawak, Malaysia

    Science.gov (United States)

    Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing

    2016-03-01

    The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.

  17. Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model

    Science.gov (United States)

    Liu, J.; Kou, L.

    2015-12-01

    Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.

  18. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis

    International Nuclear Information System (INIS)

    Döll, Petra; Schmied, Hannes Müller

    2012-01-01

    To assess the impact of climate change on freshwater resources, change in mean annual runoff (MAR) is only a first indicator. In addition, it is necessary to analyze changes of river flow regimes, i.e. changes in the temporal dynamics of river discharge, as these are important for the well-being of humans (e.g. with respect to water supply) and freshwater-dependent biota (e.g. with respect to habitat availability). Therefore, we investigated, in a global-scale hydrological modeling study, the relation between climate-induced changes of MAR and changes of a number of river flow regime indicators, including mean river discharge, statistical low and high flows, and mean seasonal discharge. In addition, we identified, for the first time at the global scale, where flow regime shifts from perennial to intermittent flow regimes (or vice versa) may occur due to climate change. Climate-induced changes of all considered river flow regime indicators (except seasonal river flow changes) broadly follow the spatial pattern of MAR changes. The differences among the computed changes of MAR due to the application of the two climate models are larger than the differences between the change of MAR and the change of the diverse river flow indicators for one climate model. At the sub-basin and grid cell scales, however, there are significant differences between the changes of MAR, mean annual river discharge, and low and high flows. Low flows are projected to be more than halved by the 2050s in almost twice the area as compared to MAR. Similarly, northern hemisphere summer flows decrease more strongly than MAR. Differences between the high emissions scenario A2 (with emissions of 25 Gt C yr −1 in the 2050s) and the low emissions scenario B2 (16 Gt C yr −1 ) are generally small as compared to the differences due to the two climate models. The benefits of avoided emissions are, however, significant in those areas where flows are projected to be more than halved due to climate change

  19. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China.

    Science.gov (United States)

    Wang, Kang; Lin, Zhongbing; Zhang, Renduo

    2016-02-01

    The objective of this study was to investigate the influence of large-scale phosphate mining (PM) on hydrology and water quality in the Huangbai River basin, China. Rainfall and runoff data were used to analyze hydrological changes of the basin before (from 1978 to 2002) and during (from 2003 to 2014) the PM period. From 2009 to 2014, flow rate and concentrations of ammonia nitrogen (NH4(+)), nitrate (NO3(-)), fluoride (F(-)), suspended solids (SS), total nitrogen (TN), soluble phosphorus (SP), and total phosphorus (TP) were measured at the outfalls of PM as well as at outlets of sub-basins with and without PM practices. Results showed that the PM activities generally reduced runoff (i.e., the runoff coefficient and runoff peak). The sequential Mann Kendall test revealed a decrease trend of runoff during wet seasons after 2008 in the PM regions. For a mining scale of one unit of PM productivity (i.e., 10(8)kg phosphate ore per year or 2.74×10(5) kg d(-1)), TN, SS, and TP of 0.633, 1.46 to 5.22, and 0.218 to 0.554 kg d(-1) were generated, respectively. The NH4(+) and TN loads in the sub-basins with PM were significantly higher than these in the sub-basins without PM; however, the NH4(+) and TN loads that discharged into rivers from the background non-point sources discharged were less in the sub-basins with PM than those without PM. The result was attributed to the reduction of runoff volume by PM. The annual mean concentrations of TN in reservoir water increased with the scales of PM, whereas the mean concentrations of SP were low. Nevertheless, the SP concentrations in the reservoirs greatly increased after 2012, mainly related to the dissolution of apatite in the sediment. The information from this study should improve the understanding of changes in hydrology and water quality in regions with large-scale PM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evaluation of water quality index for River Sabarmati, Gujarat, India

    Science.gov (United States)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  1. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    Science.gov (United States)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  2. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    or acid soils with considerable among of dissolve organic matter. And {sup 137}Cs accumulates in slightly alkaline soils with mull in topsoil. The data obtained show that global fallout cesium-137 runoff from undisturbing humid first-order river basins (n=1) is less than 0.5 Ci*km{sup -1}. Runoff from arable semi-humid first-order river basins (n=2) varies from 3 to 35 Ci*km{sup -1}. According to GIS, internal flow areas occur 23% of the Ob' river basin total area and accumulate whole {sup 137}Cs. Humid and semi-humid river basins cover 40% and 8% of study area, respectively. We assume these basins yield as the main contribution in {sup 137}Cs runoff from the Ob' river basin. Thus global fallout caesium-137 runoff is 0.9-6.1 kCi including radioactive decay (0.5-3.4% of total storage) from the Ob' river basin to the Kara sea. Comparable among of caesium-137 could enter to the Kara sea due to liquid radioactive wastes by the nuclear plants located in the Ob' and the Enisey river basins. As a result, global fallout caesium-137 runoff from the background landscapes of the Ob' and the Enisey river basins plays an important role in radioactive contamination of the Kara sea. Conducted research results proved to estimate yield of radiochemical plants to radioactive contamination of the Arctic Ocean. (authors)

  3. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Science.gov (United States)

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  4. Improving risk estimates of runoff producing areas: formulating variable source areas as a bivariate process.

    Science.gov (United States)

    Cheng, Xiaoya; Shaw, Stephen B; Marjerison, Rebecca D; Yearick, Christopher D; DeGloria, Stephen D; Walter, M Todd

    2014-05-01

    Predicting runoff producing areas and their corresponding risks of generating storm runoff is important for developing watershed management strategies to mitigate non-point source pollution. However, few methods for making these predictions have been proposed, especially operational approaches that would be useful in areas where variable source area (VSA) hydrology dominates storm runoff. The objective of this study is to develop a simple approach to estimate spatially-distributed risks of runoff production. By considering the development of overland flow as a bivariate process, we incorporated both rainfall and antecedent soil moisture conditions into a method for predicting VSAs based on the Natural Resource Conservation Service-Curve Number equation. We used base-flow immediately preceding storm events as an index of antecedent soil wetness status. Using nine sub-basins of the Upper Susquehanna River Basin, we demonstrated that our estimated runoff volumes and extent of VSAs agreed with observations. We further demonstrated a method for mapping these areas in a Geographic Information System using a Soil Topographic Index. The proposed methodology provides a new tool for watershed planners for quantifying runoff risks across watersheds, which can be used to target water quality protection strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sustainable water deliveries from the Colorado River in a changing climate.

    Science.gov (United States)

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  6. Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon

    Science.gov (United States)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar

    2016-04-01

    River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood

  7. Runoff response to climate change and human activities in a typical karst watershed, SW China

    Science.gov (United States)

    Xu, Yan; Wang, Shijie; Shu, Dongcai; Tian, Yichao

    2018-01-01

    This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968–1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981–2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007–2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981–2007 as the reference period were −81% and 181% in average, respectively, during 1968–1980, and −117% and 217% in average, respectively, during 2007–2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought

  8. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    Science.gov (United States)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  9. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland.

    Science.gov (United States)

    Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin

    2018-04-01

    A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this

  10. Modeling discharge and water quality in a temporary river basin using SWAT model: A case-study on the Ardila river

    OpenAIRE

    Durão, Anabela; Serafim, António; Brito, David; Morais, Manuela

    2012-01-01

    Temporary rivers have a hydrologic variability, which are characterized by long drought periods and short floods events, that influences water quality. Analysis of river flow generated in the Ardila river basin (temporary regime) using precipitation data (from 1931 to 2003) from a weather station, located within the basin, at the Portuguese side (which represents only 22% of the study area) showed a discrepancy between the modeled and observed runoff since 1981. It was also revealed a satisfa...

  11. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    Science.gov (United States)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  12. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  13. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    Science.gov (United States)

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    The upper Blackfoot River in southeastern Idaho receives runoff from 12 large phosphate mines. Waste shales that are removed to access the phosphate ore are highly enriched with selenium, resulting in elevated selenium in runoff from the mine waste dumps. In 2001, in cooperation with the Bureau of Land Management, the U.S. Geological Survey (USGS) began monitoring streamflow, selenium, and other water-quality parameters at a single location near the outlet of the upper Blackfoot River to the Blackfoot Reservoir. Water samples primarily were collected by a flow triggered, automated pump sampler, supplemented by manual point and equal-width integrated manual samples.

  14. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    Science.gov (United States)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  15. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    Science.gov (United States)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  16. Numerical simulation of runoff from extreme rainfall events in a mountain water catchment

    Directory of Open Access Journals (Sweden)

    J. Burguete

    2002-01-01

    Full Text Available A numerical model for unsteady shallow water flow over initially dry areas is applied to a case study in a small drainage area at the Spanish Ebro River basin. Several flood mitigation measures (reforestation, construction of a small reservoir and channelization are simulated in the model in order to compare different extreme rainfall-runoff scenarios.

  17. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    Science.gov (United States)

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  18. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    Science.gov (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  19. Runoff estimation in residencial area

    Directory of Open Access Journals (Sweden)

    Meire Regina de Almeida Siqueira

    2013-12-01

    Full Text Available This study aimed to estimate the watershed runoff caused by extreme events that often result in the flooding of urban areas. The runoff of a residential area in the city of Guaratinguetá, São Paulo, Brazil was estimated using the Curve-Number method proposed by USDA-NRCS. The study also investigated current land use and land cover conditions, impermeable areas with pasture and indications of the reforestation of those areas. Maps and satellite images of Residential Riverside I Neighborhood were used to characterize the area. In addition to characterizing land use and land cover, the definition of the soil type infiltration capacity, the maximum local rainfall, and the type and quality of the drainage system were also investigated. The study showed that this neighborhood, developed in 1974, has an area of 792,700 m², a population of 1361 inhabitants, and a sloping area covered with degraded pasture (Guaratinguetá-Piagui Peak located in front of the residential area. The residential area is located in a flat area near the Paraiba do Sul River, and has a poor drainage system with concrete pipes, mostly 0.60 m in diameter, with several openings that capture water and sediments from the adjacent sloping area. The Low Impact Development (LID system appears to be a viable solution for this neighborhood drainage system. It can be concluded that the drainage system of the Guaratinguetá Riverside I Neighborhood has all of the conditions and characteristics that make it suitable for the implementation of a low impact urban drainage system. Reforestation of Guaratinguetá-Piagui Peak can reduce the basin’s runoff by 50% and minimize flooding problems in the Beira Rio neighborhood.

  20. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.

    Science.gov (United States)

    Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E

    2002-01-01

    A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.

  1. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

    Directory of Open Access Journals (Sweden)

    L. Gong

    2011-08-01

    is driven by the HydroSHEDS dataset with a resolution of 3" (around 90 m at the equator. The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  2. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    Science.gov (United States)

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  3. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques--a case study

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita

    2005-01-01

    Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the data set on water quality of the Gomti river (India), generated during three years (1999-2001) monitoring at eight different sites for 34 parameters (9792 observations). This study presents usefulness of multivariate statistical techniques for evaluation and interpretation of large complex water quality data sets and apportionment of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Three significant groups, upper catchments (UC), middle catchments (MC) and lower catchments (LC) of sampling sites were obtained through CA on the basis of similarity between them. FA/PCA applied to the data sets pertaining to three catchments regions of the river resulted in seven, seven and six latent factors, respectively responsible for the data structure, explaining 74.3, 73.6 and 81.4% of the total variance of the respective data sets. These included the trace metals group (leaching from soil and industrial waste disposal sites), organic pollution group (municipal and industrial effluents), nutrients group (agricultural runoff), alkalinity, hardness, EC and solids (soil leaching and runoff process). DA showed the best results for data reduction and pattern recognition during both temporal and spatial analysis. It rendered five parameters (temperature, total alkalinity, Cl, Na and K) affording more than 94% right assignations in temporal analysis, while 10 parameters (river discharge, pH, BOD, Cl, F, PO 4 , NH 4 -N, NO 3 -N, TKN and Zn) to afford 97% right assignations in spatial analysis of three different regions in the basin. Thus, DA allowed reduction in dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Further

  4. Sediment transport by runoff on debris-mantled dryland hillslopes

    Science.gov (United States)

    Michaelides, Katerina; Martin, Gareth J.

    2012-09-01

    Hillslopes supply sediment to river channels, and therefore impact drainage basin functioning and evolution. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the long-term topographic evolution of drainage basins, but their specific interactions during individual storm events are not well understood. Runoff-driven erosion of coarse particles, prevalent in dryland environments, presents a particular set of conditions for sediment transport that is poorly resolved in current models. In order to address this gap, we developed a particle-based, force-balance model for sheetwash sediment transport on coarse, debris-mantled hillslopes within a rainfall-runoff model. We use the model to examine how the interplay between hillslope attributes (gradient, length and grain size distribution) and runoff characteristics affects sediment transport, grain-size changes on the hillslope, and sediment supply to the slope base. The relationship between sediment flux and hillslope gradient was found to transition from linear above a threshold to sigmoidal depending on hillslope length, initial grain sizes, and runoff characteristics. Grain sizes supplied to the slope base vary in a complex manner with hillslope attributes but an overall coarsening of the hillslopes is found to occur with increasing gradient, corroborating previous findings from field measurements. Intense, short duration storms result in within-hillslope sediment redistribution and equifinality in sediment supply for different hillslope characteristics, which explain the lack of field evidence for any systematic relationships. Our model findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in dry lands.

  5. Estimating Subcatchment Runoff Coefficients using Weather Radar and a Downstream Runoff Sensor

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate...... the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over...... the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level....

  6. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    Science.gov (United States)

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level.

  7. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    Science.gov (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  8. First flush of storm runoff pollution from an urban catchment in China.

    Science.gov (United States)

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  9. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain)

    International Nuclear Information System (INIS)

    Miguel, Eduardo de; Charlesworth, Susanne; Ordonez, Almudena; Seijas, Eduardo

    2005-01-01

    The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south-east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) 'Total' digestion with HNO 3 , HClO 4 and HF; (b) 'Weak' digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically 'urban' elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca-Mg and Al-Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant

  10. Comparison of planted soil infiltration systems for treatment of log yard runoff.

    Science.gov (United States)

    Hedmark, Asa; Scholz, Miklas; Aronsson, Par; Elowson, Torbjorn

    2010-07-01

    Treatment of log yard runoff is required to avoid contamination of receiving watercourses. The research aim was to assess if infiltration of log yard runoff through planted soil systems is successful and if different plant species affect the treatment performance at a field-scale experimental site in Sweden (2005 to 2007). Contaminated runoff from the log yard of a sawmill was infiltrated through soil planted with Alnus glutinosa (L.) Gärtner (common alder), Salix schwerinii X viminalis (willow variety "Gudrun"), Lolium perenne (L.) (rye grass), and Phalaris arundinacea (L.) (reed canary grass). The study concluded that there were no treatment differences when comparing the four different plants with each other, and there also were no differences between the tree and the grass species. Furthermore, the infiltration treatment was effective in reducing total organic carbon (55%) and total phosphorus (45%) concentrations in the runoff, even when the loads on the infiltration system increased from year to year.

  11. Contaminants in urban runoff to Norwegian fjords

    Energy Technology Data Exchange (ETDEWEB)

    Jartun, Morten [Geological Survey of Norway, Trondheim (Norway); Pettersen, Arne [Norwegian Geotechnical Inst., Oslo (Norway)

    2010-03-15

    Introduction: Sediments from urban stormwater runoff have been collected and analyzed for the content of various contaminants in harbor areas of Harstad, Trondheim, Bergen, and Drammen, Norway. Materials and methods: The concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), tributyltin, heavy metals, and total organic carbon were determined in most samples. This study provides substantial empirical data on the active, ongoing dispersion of pollutants from land-based sources in an urban area toward the marine environments in Norway. Results and discussion: The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. Conclusion: The concentrations of different contaminants in the urban runoff sediments show that there are several active pollution sources supplying the runoff systems with PCBs, PAHs (including benzo(a)pyrene, B(a)p), and heavy metals such as lead, mercury, zinc, and cadmium. This study describe the usefulness of the methods on how to examine ongoing urban contamination of harbors and similar recipients before any remediation plan for improving the environmental condition of marine sediments is effectuated. (orig.)

  12. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred

  13. [Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].

    Science.gov (United States)

    Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong

    2013-05-01

    Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.

  14. Analysis of Runoff due to The Change in Land Use at The Watershed of Upstream Ciliwung

    Directory of Open Access Journals (Sweden)

    Dwi Indriastuti

    2016-01-01

    Full Text Available Climate change has triggered extreme climate such as rising temperature, high rainfall intensity, rising sea water level, drought, and others (Thuc, 2014. Challenges of sustainable development are increases in various disasters, climate change and global crisis such as land use change, soil quality degradation, limited water and mineral, environmental pollution, and decreasing in biodiversity. The cause of flooding in Jakarta is due to the overflow of Ciliwung River. The changes of land use greatly affect Ciliwung River flow. Land degradation in upstream of Ciliwung watershed (Puncak area has triggered new problem, annual flooding, especially in downstream area. The change of surface which cannot accommodate water, increasing runoff, moreover, the change of land condition which easily saturated, greatly affected the runoff conditions in Ciliwung watershed. This research using HEC-HMS software in order to know how the land uses changes and rainfall intensity affected the runoff. By using land use maps in 2000, 2005, 2010, and rainfall data in 5 (five rainfall station near location from 1996 to 2013, it can be known how the runoff changes. Parameter calibration is done with measured discharge in Katulampa weir for each occurrence. The parameter value used in simulation later is the real value approach. Simulation by HEC HMS using CN of Spatial Planning in Ciliwung upstream area and rainfall 25 years return period gives that the highest discharge is 226.25 m3/second and water level reaches to 317 cm. If included into the alert in Katulampa weir, then the condition faces to Alert 1 for during ±6 hours.

  15. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan

    Science.gov (United States)

    Lee, T.-Y.; Shih, Y.-T.; Huang, J.-C.; Kao, S.-J.; Shiah, F.-K.; Liu, K.-K.

    2014-10-01

    Human-induced excess nitrogen outflowing from land through rivers to oceans has resulted in serious impacts on terrestrial and coastal ecosystems. Oceania, which occupies Agriculture and population density control DIN export in less densely populated regions and urban areas, respectively, and runoff controls DIN at the watershed scale. Compared to documented estimates from global models, the observed DIN export from the Danshui River is 2.3 times larger, which results from the region-specific response of DIN yield to dense population and abundant runoff. The dominating DIN species change gradually from NO3- in the headwaters (∼97%) to NH4+ in the estuary (∼60%) following the urbanization gradient. The prominent existence of NH4+ is probably the result of the anaerobic water body and short residence time, unlike in large river basins. Given the analogous watershed characteristics of the Danshui River to the rivers in Oceania, our study could serve as a first example to examine riverine DIN fluxes in Oceania.

  16. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  17. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies.

    Science.gov (United States)

    Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar

    2018-08-01

    River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.

  18. Methodology for Analyzing and Predicting the Runoff and Sediment into a Reservoir

    Directory of Open Access Journals (Sweden)

    Chun-Feng Hao

    2017-06-01

    Full Text Available With the rapid economic growth in China, a large number of hydropower projects have been planned and constructed. The sediment deposition of the reservoirs is one of the most important disputes during the construction and operation, because there are many heavy sediment-laden rivers. The analysis and prediction of the runoff and sediment into a reservoir is of great significance for reservoir operation. With knowledge of the incoming runoff and sediment characteristics, the regulator can adjust the reservoir discharge to guarantee the water supply, and flush more sediment at appropriate times. In this study, the long-term characteristics of runoff and sediment, including trend, jump point, and change cycle, are analyzed using various statistical approaches, such as accumulated anomaly analysis, the Fisher ordered clustering method, and Maximum Entropy Spectral Analysis (MESA. Based on the characteristics, a prediction model is established using the Auto-Regressive Moving Average (ARIMA method. The whole analysis and prediction system is applied to The Three Gorges Project (TGP, one of the biggest hydropower-complex projects in the world. Taking hydrologic series from 1955 to 2010 as the research objectives, the results show that both the runoff and the sediment are decreasing, and the reduction rate of sediment is much higher. Runoff and sediment into the TGP display cyclic variations over time, with a cycle of about a decade, but catastrophe points for runoff and sediment appear in 1991 and 2001, respectively. Prediction models are thus built based on monthly average hydrologic series from 2003 to 2010. ARIMA (1, 1, 1 × (1, 1, 112 and ARIMA (0, 1, 1 × (0, 1, 112 are selected for the runoff and sediment predictions, respectively, and the parameters of the models are also calibrated. The analysis of autocorrelation coefficients and partial autocorrelation coefficients of the residuals indicates that the models built in this study are feasible

  19. Yield-reliability analysis and operating rules for run-of-river ...

    African Journals Online (AJOL)

    Efficient operation of water supply systems requires operating rules as decision support tools. ... Simulated runoff was used to derive unregulated river yield at different levels of assurance ... The results show that Nzhelele River can meet domestic and low-flow requirements at 50–80% (1:2-1:5) LAS. ... HOW TO USE AJOL.

  20. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a Regional Regressive Model

    Directory of Open Access Journals (Sweden)

    Dario Pumo

    2016-05-01

    Full Text Available Many hydrologic applications require reliable estimates of runoff in river basins to face the widespread lack of data, both in time and in space. A regional method for the reconstruction of monthly runoff series is here developed and applied to Sicily (Italy. A simple modeling structure is adopted, consisting of a regression-based rainfall–runoff model with four model parameters, calibrated through a two-step procedure. Monthly runoff estimates are based on precipitation, temperature, and exploiting the autocorrelation with runoff at the previous month. Model parameters are assessed by specific regional equations as a function of easily measurable physical and climate basin descriptors. The first calibration step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such “optimal” sets are used at the second step, part of a regional regression analysis, to establish the regional equations for model parameters assessment as a function of basin attributes. All the gauged watersheds across the region have been analyzed, selecting 53 basins for model calibration and using the other six basins exclusively for validation. Performances, quantitatively evaluated by different statistical indexes, demonstrate relevant model ability in reproducing the observed hydrological time-series at both the monthly and coarser time resolutions. The methodology, which is easily transferable to other arid and semi-arid areas, provides a reliable tool for filling/reconstructing runoff time series at any gauged or ungauged basin of a region.

  1. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......-off is expected to increase about 8 % in 2050 and 14 % in 2100. The changes in sea water level is assessed considering climate projections of mean sea level rise, isostatic changes, and changes in storm surge statistics. At the Vidaa sluice a mean sea level rise of 0.15–0.39 m in 2050 and 0.41–1.11 m in 2010...

  2. Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers

    Directory of Open Access Journals (Sweden)

    G. Benito

    2011-04-01

    Full Text Available In this study we propose a multi-source data approach for quantifying long-term flooding and aquifer recharge in ungauged ephemeral rivers. The methodology is applied to the Buffels River, at 9000 km2 the largest ephemeral river in Namaqualand (NW South Africa, a region with scarce stream flow records limiting research investigating hydrological response to global change. Daily discharge and annual flood series (1965–2006 were estimated from a distributed rainfall-runoff hydrological model (TETIS using rainfall gauge records located within the catchment. The model was calibrated and validated with data collected during a two year monitoring programme (2005–2006 at two stream flow stations, one each in the upper and lower reaches of the catchment. In addition to the modelled flow records, non-systematic flood data were reconstructed using both sedimentary and documentary evidence. The palaeoflood record identified at least 25 large floods during the last 700 yr; with the largest floods reaching a minimum discharge of 255 m3 s−1 (450 yr return period in the upper basin, and 510 m3 s−1 (100 yr return period in the lower catchment. Since AD 1925, the flood hydrology of the Buffels River has been characterised by a decrease in the magnitude and frequency of extreme floods, with palaeoflood discharges (period 1500–1921 five times greater than the largest modelled floods during the period 1965–2006. Large floods generated the highest hydrograph volumes, however their contribution to aquifer recharge is limited as this depends on other factors such as flood duration and storage capacity of the unsaturated zone prior to the flood. Floods having average return intervals of 5–10 yr (120–140 m3 s−1 and flowing for 12 days are able to fully saturate the Spektakel aquifer in the lower Buffels River basin. Alluvial aquifer storage capacity limiting potential recharge

  3. Features of anthropogenic changes in river hydrological parameters (for example Samara river.

    Directory of Open Access Journals (Sweden)

    Dovganenko D.A.

    2008-05-01

    Full Text Available Conducted attempt to analyze the nature of the mechanism of action of anthropogenic factors (in this case, mine water discharge to replace the water regime g. Samara. With typical river hydrographs built for the periods from 1952 to 1962 and from 1963 to 1975, revealed the instability of the spring floods, increased average long-term water consumption and increase the share of underground runoff. Approximately set the starting point changes the water regime of the river and found an association between increasing water inflow of mine water and increase average water discharge of Samara.

  4. Human impact on erosion patterns and sediment transport in the Yangtze River

    NARCIS (Netherlands)

    Sun, Xilin; Li, Chang'an; Kuiper, K. F.; Zhang, Zengjie; Gao, Jianhua; Wijbrans, J. R.

    2016-01-01

    Sediment load in rivers is an indicator of erosional processes in the upstream river catchments. Understanding the origin and composition of the sediment load can help to assess the influence of natural processes and human activities on erosion. Tectonic uplift, precipitation and run-off, hill

  5. Impact of precipitation and land biophysical variables on the simulated discharge of European and Mediterranean rivers

    Science.gov (United States)

    Szczypta, C.; Decharme, B.; Carrer, D.; Calvet, J.-C.; Lafont, S.; Somot, S.; Faroux, S.; Martin, E.

    2012-09-01

    This study investigates the impact on river discharge simulations of errors in the precipitation forcing, together with changes in the representation of vegetation variables and of plant transpiration. The most recent European Centre for Medium-Range Weather Forecasts reanalysis (ERA-Interim) is used to drive the Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system over Europe and the Mediterranean basin over the 1991-2008 period. As ERA-Interim tends to underestimate precipitation, a number of precipitation corrections are proposed. In particular, the monthly Global Precipitation Climatology Centre (GPCC) precipitation product is used to bias-correct the 3-hourly ERA-Interim estimates. This correction markedly improves the match between the ISBA-TRIP simulations and the river discharge observations from the Global Runoff Data Centre (GRDC), at 150 gauging stations. The impact on TRIP river discharge simulations of various representations of the evapotranspiration in the ISBA land surface model is investigated as well: ISBA is used together with its upgraded carbon flux version (ISBA-A-gs). The latter is either driven by the satellite-derived climatology of the Leaf Area Index (LAI) used by ISBA, or performs prognostic LAI simulations. The ISBA-A-gs model, with or without dynamically simulated LAI, allows a better representation of river discharge at low water levels. On the other hand, ISBA-A-gs does not perform as well as the original ISBA model at springtime.

  6. Towards an improved understanding of hillslope runoff as a supply for groundwater recharge: Assessing hillslope runoff under regional deforestation and varying climate conditions in a drainage basin in central coastal California

    Science.gov (United States)

    Young, K. S.; Beganskas, S.; Fisher, A. T.

    2017-12-01

    We use a hydrologic model to analyze hillslope runoff under a range of climate and land use conditions in the San Lorenzo River Basin (SLRB), central coastal California, including contemporary land use and incremental deforestation. The SLRB is a heavily forested watershed with chronically overdrafted aquifers; in some areas, groundwater levels have been lowered by >50 m in recent decades. Managed aquifer recharge (MAR) can help mitigate declines in groundwater storage, routing excess surface flows to locations where they can infiltrate. We are especially interested in opportunities for collection of stormwater runoff, particularly where development and other changes in landuse have increased hill slope runoff. To assess hillslope runoff at the subwatershed scale (10-100 ha; 25-250 ac), we apply the Precipitation Runoff Modeling System (PRMS) to a high-resolution, digital elevation model and populate the simulation with area- and density-weighted vegetation and soil parameters calculated from high resolution input data. We also develop and apply a catalog of dry, normal, and wet climate scenarios from the historic record (1981-2014). In addition, we simulate conditions ranging from 0 to 100 percent of redwoods harvested (representing the mid-1800s to 1930s logging era) using a historical land use data set to alter soil and vegetation conditions. Results under contemporary land use suggest there are ample opportunities to establish MAR projects during all climate scenarios; hill slope runoff generation is spatially variable and on average exceeds 23,000 ac-ft/yr (3.2 in/yr) during the driest climate scenario. Preliminary results from the deforestation scenarios show notable increases in hillslope runoff with progressive redwood harvesting. Relative to pre-logging conditions, between 1.1 in (dry climates) and 1.5 in (wet climates) more runoff is generated under contemporary conditions, with most of the runoff increase occurring in urban areas. These modeling methods

  7. Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin

    Science.gov (United States)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta

    2014-05-01

    Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed

  8. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  9. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations

    Directory of Open Access Journals (Sweden)

    Samuel A. Andam‑Akorful

    2013-07-01

    Full Text Available The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze River (Chang Jiang basin. In this study, we explore the potential response of total discharge to changes in precipitation (from the Tropical Rainfall Measuring Mission—TRMM, evaporation (from four versions of the Global Land Data Assimilation—GLDAS, namely, CLM, Mosaic, Noah and VIC, and water-storage changes (from the Gravity Recovery and Climate Experiment—GRACE by using the terrestrial water budget method. This method has been validated by comparison with the observed streamflow, and shows an agreement with a root mean square error (RMSE of 14.30 mm/month for GRACE-based discharge and 20.98 mm/month for that derived from precipitation minus evaporation (P − E. This improvement of approximately 32% indicates that monthly terrestrial water-storage changes, as estimated by GRACE, cannot be considered negligible over Yangtze basin. The results for the proposed method are more accurate than the results previously reported in the literature.

  10. Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures

    Science.gov (United States)

    Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.

    2011-01-01

    Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.

  11. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  12. Partitioning of the water budget in the main river basins in High Mountain Asia with GRACE, model output, and other observations.

    Science.gov (United States)

    Velicogna, I.; Ciraci, E.; Grogan, D. S.; Lammers, R. B.

    2017-12-01

    Access to freshwater is important as world populations grow, especially in High Mountain Asia, where glaciers are a significant component of the freshwater resources, particularly in summer. Glaciers are sensitive to climate perturbations and affected by climate change. Our understanding of the contribution of glacier runoff to specific watersheds, and projections of glacier runoff in a warming climate, are critical to inform decisions, management and policy development. Here, we quantify changes in glacier mass balance in HMA using GRACE data and determine their contribution to river basin hydrology. We use GRACE data to estimate the HMA glacier mass mas balance and compare the results with changes in total water storage (TWS) for the major watersheds in the HMA regions. We designed ad-hoc mascon configurations to calculate the upstream glacier change in mass balance and contribution to major river basins water supply, determined appropriate corrections and uncertainties for the signal and evaluated the results via comparison with the Water Balance Model (WBM) output and other data (re-analysis data and satellite-derived precipitation and evapotranspiration). Most of the glacier loss is from the Himalaya region (Himalaya, Hengduan Shan S and E Tibet), whereas the western sectors (E and W Tien Shan; and Hindu Kush, Karakoram, W Kunlun, Pamir, Hissar Alay) experienced smaller losses but with larger interannual variability driven by changes in the westerly-driven winter precipitation. For the Indus basin, to evaluate the glacier contribution to the total water budget, we examine the contribution of the upper basin to the lower basin TWS change. Over the Upper Indus basin, we find that the seasonal decline in total water storage between May and September averages 88 Gt during 2002-2012. TRMM cumulative precipitation amounts to 119 Gt, leaving a runoff and evapotranspiration component of 207 Gt. This estimate compares well with an estimate for the WBM modeled runoff of

  13. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Science.gov (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  14. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  15. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins

    KAUST Repository

    Yang, Zong-Liang

    2011-06-24

    The augmented Noah land surface model described in the first part of the two-part series was evaluated here over global river basins. Across various climate zones, global-scale tests can reveal a model\\'s weaknesses and strengths that a local-scale testing cannot. In addition, global-scale tests are more challenging than local- and catchment-scale tests. Given constant model parameters (e. g., runoff parameters) across global river basins, global-scale tests are more stringent. We assessed model performance against various satellite and ground-based observations over global river basins through six experiments that mimic a transition from the original Noah LSM to the fully augmented version. The model shows transitional improvements in modeling runoff, soil moisture, snow, and skin temperature, despite considerable increase in computational time by the fully augmented Noah-MP version compared to the original Noah LSM. The dynamic vegetation model favorably captures seasonal and spatial variability of leaf area index and green vegetation fraction. We also conducted 36 ensemble experiments with 36 combinations of optional schemes for runoff, leaf dynamics, stomatal resistance, and the β factor. Runoff schemes play a dominant and different role in controlling soil moisture and its relationship with evapotranspiration compared to ecological processes such as β the factor, vegetation dynamics, and stomatal resistance. The 36-member ensemble mean of runoff performs better than any single member over the world\\'s 50 largest river basins, suggesting a great potential of land-based ensemble simulations for climate prediction. Copyright © 2011 by the American Geophysical Union.

  16. Treatment of log yard run-off by irrigation of grass and willows

    International Nuclear Information System (INIS)

    Jonsson, Maria; Dimitriou, Ioannis; Aronsson, Paer; Elowson, Torbjoern

    2006-01-01

    Log yard run-off is a potential environmental risk, among other things because it creates an oxygen deficiency in receiving watercourses. This study was conducted to investigate the purification efficiency of soil-plant systems with couchgrass (Elymus repens) and willows (Salix sp.) when intensively irrigated with run-off from an open sprinkling system at a Norway spruce (Picea abies) log yard. The purification efficiency was determined both at the field scale (couchgrass) and in 68-L lysimeters (couchgrass and willows). Groundwater in the field and drainage water from the lysimeters were analysed for Total Organic Carbon (TOC), distillable phenols, total P, and total N. Retention of TOC, phenols and P occurred but no difference between couchgrass and willows was observed. The system had better purification capacity at the field scale than in the lysimeters. -- By irrigating willow and couchgrass soil-plant systems with log yard run-off water, TOC, phenols, and phosphorus were reduced with 35% to 96% in the water

  17. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  18. Global drivers effect in multi-annual variability of runoff

    Directory of Open Access Journals (Sweden)

    Fendeková Miriam

    2014-09-01

    Full Text Available Changes in runoff parameters are very important for Slovakia, where stream-flow discharges, being supplied by precipitation and groundwater runoff, are preferentially influenced by climatic conditions. Therefore, teleconnections between runoff parameters, climate parameters and global atmospheric drivers such as North Atlantic Oscillation, Southern Pacific Oscillation, Quasi-biennial oscillation and solar activity were studied in the Nitra River Basin, Slovakia. Research was mostly based on records of 80 years (1931-2010 for discharges and baseflow, and 34 years for groundwater heads. Methods of autocorrelation, spectral analysis, cross-correlation and coherence function were used. Results of auto- correllograms for discharges, groundwater heads and base flow values showed a very distinct 11-year and 21-year periodicity. Spectrogram analysis documented the 11-year, 7.8-year, 3.6-year and 2.4-year periods in the discharge, precipitation and air temperature time series. The same cycles except of 11-years were also identified in the long-term series of the North Atlantic Oscillation and Southern Pacific Oscillation indices. The cycle from approximately 2.3 to 2.4-years is most likely connected with Quasi-biennial oscillation. The close negative correlation between the North Atlantic Oscillation winter index and the hydrological surface and groundwater parameters can be used for their prediction within the same year and also for one year in advance.

  19. [Characteristics of Nitrogen and Phosphorus Losses in Longhong Ravine Basin of Westlake in Rainstorm Runoff].

    Science.gov (United States)

    Yang, Fan; Jiang, Yi-feng; Wang, Cui-cui; Huang, Xiao-nan; Wu, Zhi-ying; Chen, Lin

    2016-01-15

    In order to understand the non-point source pollution status in Longhong ravine basin of Westlake, the characteristics of nutrient losses in runoff was investigated during three rainstorms in one year. The results showed that long duration rainstorm event generally formed several runoff peaks, and the time of its lag behind the peaks of rain intensity was dependent on the distribution of heavy rainfall. The first flush was related to the antecedent rainfall, and the less rainfall in the earlier period, the more total phosphorus (TP) and ammonia (NH4+ -N) in runoff was washed off. During the recession of runoff, more subsurface runoff would result in a concentration peak of total nitrogen (TN) and nitrogen (NO3- -N) . The event mean concentration (EMC) of runoff nitrogen had a negative correlation with rainfall, rainfall duration, maximum rain intensity and average rain intensity except for antecedent rainfall, whereas the change in TP EMC showed the opposite trend. The transport fluxes of nutrients increased with an elevation in runoffs, and Pearson analysis showed that the transport fluxes of TN and NO3- -N had good correlations with runoff depth. The average transport fluxes of TP, TN, NH4+ -N and NO3- -N were 34.10, 1195.55, 1006.62 and 52.38 g x hm(-2), respectively, and NO3- -N was the main nitrogen form and accounted for 84% of TN.

  20. Soils - Potential Runoff

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the spatial distribution of potential runoff-contributing areas in Kansas. Potential runoff-contributing areas...

  1. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  2. Generalizing a nonlinear geophysical flood theory to medium-sized river networks

    Science.gov (United States)

    Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.

    2010-01-01

    The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.

  3. Incorporation of groundwater losses and well level data in rainfall-runoff models illustrated using the PDM

    Directory of Open Access Journals (Sweden)

    R. J. Moore

    2002-01-01

    Full Text Available Intermittent streamflow is a common occurrence in permeable catchments, especially where there are pumped abstractions to water supply. Many rainfall-runoff models are not formulated so as to represent ephemeral streamflow behaviour or to allow for the possibility of negative recharge arising from groundwater pumping. A groundwater model component is formulated here for use in extending existing rainfall-runoff models to accommodate such ephemeral behaviour. Solutions to the Horton-Izzard equation resulting from the conceptual model of groundwater storage are adapted and the form of nonlinear storage extended to accommodate negative inputs, water storage below which outflow ceases, and losses to external springs and underflows below the gauged catchment outlet. The groundwater model component is demonstrated through using it as an extension of the PDM rainfall-runoff model. It is applied to the River Lavant, a catchment in Southern England on the English Chalk, where it successfully simulates the ephemeral streamflow behaviour and flood response together with well level variations. Keywords: groundwater, rainfall-runoff model, ephemeral stream, well level, spring, abstraction

  4. Skill Assessment of Water Supply Outlooks in the Colorado River Basin

    Directory of Open Access Journals (Sweden)

    Brent Harrison

    2015-07-01

    Full Text Available Water-supply outlooks that predict the April through July (snowmelt runoff and assist in estimating the total water-year runoff, are very important to users that rely on the major contributing watersheds of the Colorado River. This study reviewed the skill level of April through July forecasts at 28 forecast points within the Colorado River basin. All the forecasts were made after 1950, with considerable variation in time period covered. Evaluations of the forecasts were made using summary measures, correlation measures and categorical measures. The summary measure, a skill score for mean absolute error, indicated a steady increase in forecast skill through the forecast season of January to May. The width of the distribution for each monthly forecast over the 28 locations remained similar through the forecast season. The Nash-Sutcliffe score, a correlation measure, showed similar results, with the Nash-Sutcliffe median showing an increase from 0.4 to 0.8 during the forecast season. The categorical measures used a three-section partition of the April through July runoff. The Probability of Detection for low and high flows showed an increase in skill from approx. 0.4 to 0.8 during the forecast season. The same score for mid-flow years showed limited increase in skill. The low False Alarm Rate illustrated the under forecast of high-flow years. The Bias of the mid-runoff forecasts indicated over forecast early in the forecast season (January to March, with lower Bias later in the forecast season (April and May, ending the forecast season at 1.0, indicating no Bias. Forecasts for both low and high runoff were under forecast early in the season with a Bias near 0.5, improving to nearly 1.0 by the end of the forecast season. The Hit Rate measure illustrated the difficulty of mid-flow forecasts, starting at 0.5 in January and increasing to 0.75 in May due to the forecasting assumption of normal climatology for the remaining forecast period. There was no

  5. Effects of Climate and Land Use Changes on Water Resources in the Taoer River

    Directory of Open Access Journals (Sweden)

    Jianwei Liu

    2017-01-01

    Full Text Available The changes of both climate and land use/cover have some impacts on water resources. In the Taoer River basin, these changes have directly influenced the land use pattern adjustment, wetland protection, connections between rivers and reservoirs, local social and economic development, and so forth. Therefore, studying the impacts of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT model is employed in this study. With historical measured runoff data and remote sensing maps of annual land use classifications, we analyzed the impacts of climate change on the runoff of the Taoer River. Based on the land use/cover classifications of 1990, 2000, and 2010, we analyzed the land use/cover change over the last 30 years and the contribution coefficient of farmland, woodland, grassland, and other major land use types to the runoff. This study can provide a reference for the rational allocation of water resources and the adjustment of land use structure for decision makers.

  6. The role of storage capacity in coping with intra-annual runoff variability on a global scale

    Science.gov (United States)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-04-01

    Intra-annual variability poses a risk to water security in many basins as runoff is unevenly distributed over the year. Areas such as Northern Africa, Australia and the South-Western USA are characterized by a high coefficient of variability of monthly runoff. Analyzing the global risk of water scarcity, this study examines 680 basin-country units (BCUs) (403 river basins divided by country borders). By calculating the water balance for each BCU, the interplay of runoff on the one hand and domestic, industrial and environmental water needs on the other hand is shown. In contrast to other studies on average water scarcity, this work focuses on variability of water supply as metrics based on annual average water availability and demand can underestimate the risk of scarcity. The model is based on the assumption that each country-basin with sub-basins and tributaries can be treated as one single reservoir with storage capacity aggregated over that BCU. It includes surface runoff and the possibility to withdraw groundwater as water supply. The storage capacity of each BCU represents the ability to transfer water from wet months to dry months in order to buffer and cope with intra-annual water supply variability and to meet total water demand. Average monthly surface runoff per country-basin for the period 1979 to 2012 is derived from outcomes of the hydrological model Mac-PDM. Mac-PDM is forced with monthly ERAI-Interim reanalysis climate data on a one degree resolution. Groundwater withdrawal capacity, total water demand and storage capacity are taken from the IMPACT model provided by the International Food Research Institute (IFPRI). Storage refers to any kind of surface reservoir whose water can be managed and used for human activities in the industrial, domestic and agricultural sectors. Groundwater withdrawal capacity refers to the technological capacity to pump water rather than the amount of groundwater available. Total water demand includes consumptive water

  7. Total Mercury and Methylmercury Contamination in Fish from Sites along the Elbe River

    Directory of Open Access Journals (Sweden)

    P. Maršálek

    2006-01-01

    Full Text Available The aim of the study was to evaluate total mercury Hg and methylmercury MeHg contamination in muscle tissues of fish collected in 2002 from the Labe (Elbe river at sites upstream of Pardubice and downstream of Pardubice and Hřensko, and in 2004 from the Labe river upstream and downstream of the Spolana factory in Neratovice, and from the Vltava river downstream of Lenora. Eighty eight fish of the following species were sampled: bream (Abramis brama L., perch (Perca fluviatilis L., chub (Leuciscus cephalus L. and barbel (Barbus barbus L.. Total mercury content in chub, perch and bream was in the range of 0.05 - 1.96 mg kg-1 w.w., 0. 09 - 1.46 mg kg-1 w.w. and 0.35 - 0.82 mg kg-1 w.w., respectively. Methylmercury content in chub, perch and bream was in the range of 0.04 - 2.11 mg kg-1 w.w., 0.1 - 1.73 mg kg-1 w.w. and 0.371 - 0.650 mg kg-1 w.w., respectively. Significant correlation (p p < 0.05 between THg and MeHg contents were found between individual sites. In 2002, for example, the most contaminated fish were found downstream of Pardubice, followed by fish from upstream of Pardubice and from Hřensko. In 2004, fish from downstream and upstream of the Spolana factory in Neratovice were more contaminated than fish from the Vltava river downstream of Lenora. The methylmercury-tototal mercury ratio in muscle tissue was close to 1.0.

  8. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  9. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    Science.gov (United States)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  10. Computing LS factor by runoff paths on TIN

    Science.gov (United States)

    Kavka, Petr; Krasa, Josef; Bek, Stanislav

    2013-04-01

    The article shows results of topographic factor (the LS factor in USLE) derivation enhancement focused on detailed Airborne Laser Scanning (ALS) based DEMs. It describes a flow paths generation technique using triangulated irregular network (TIN) for terrain morphology description, which is not yet established in soil loss computations. This technique was compared with other procedures of flow direction and flow paths generation based on commonly used raster model (DEM). These overland flow characteristics together with therefrom derived flow accumulation are significant inputs for many scientific models. Particularly they are used in all USLE-based soil erosion models, from which USLE2D, RUSLE3D, Watem/Sedem or USPED can be named as the most acknowledged. Flow routing characteristics are also essential parameters in physically based hydrological and soil erosion models like HEC-HMS, Wepp, Erosion3D, LISEM, SMODERP, etc. Mentioned models are based on regular raster grids, where the identification of runoff direction is problematic. The most common method is Steepest descent (one directional flow), which corresponds well with the concentration of surface runoff into concentrated flow. The Steepest descent algorithm for the flow routing doesn't provide satisfying results, it often creates parallel and narrow flow lines while not respecting real morphological conditions. To overcome this problem, other methods (such as Flux Decomposition, Multiple flow, Deterministic Infinity algorithm etc.) separate the outflow into several components. This approach leads to unrealistic diffusion propagation of the runoff and makes it impossible to be used for simulation of dominant morphological features, such as artificial rills, hedges, sediment traps etc. The modern methods of mapping ground elevations, especially ALS, provide very detailed models even for large river basins, including morphological details. New algorithms for derivation a runoff direction have been developed as

  11. On forecasting of rivers contamination as a result of Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Novitskij, M.A.

    2016-01-01

    Contamination of rivers on the territory effected by the Chernobyl accident is under consideration. On the base of analysis field and laboratory experiments data understanding about formation of long-lived radionuclides concentration in rain and snow melt runoff was elaborated. The correctness of mathematical model used for forecasting radiation situation on rivers was confirmed by the data of rivers contamination levels in spring 1987 [ru

  12. How much complexity is warranted in a rainfall-runoff model? Findings obtained from symbolic regression, using Eureqa

    Science.gov (United States)

    Abrahart, R. J.; Beriro, D. J.

    2012-04-01

    The information content in a rainfall-runoff record is sufficient to support models of only very limited complexity (Jakeman and Hornberger, 1993). This begs the question of what limits should observed data place on the allowable complexity of rainfall-runoff models? Eureqa1 (Schmidt and Lipson, 2009) - pronounced "eureka" - is a software tool for finding equations and detecting mathematical relationships in a dataset. The challenge, for both software and modeller, is to identify, by means of symbolic regression, the simplest mathematical formulas which describe the underlying mechanisms that produced the data. It actually delivers, however, a series of preferred modelling solutions comprising one champion for each specific level of complexity i.e. related to solution enlargement involving the progressive incorporation of additional permitted factors (internal operators/ external drivers). The potential benefit of increased complexity can as a result be assessed in a rational manner. Eureqa is free to download and use; and, in the current study, has been employed to construct a set of rainfall-runoff transfer function models for the Annapolis River at Wilmot, in north-western Nova Scotia, Canada. The climatic conditions in this catchment present an interesting set of modelling challenges; daily variations and seasonal changes in temperature, snowfall and retention result in great difficulty for runoff prediction by means of a data-driven approach. Data from 10 years of daily observations are used in the present study (01/01/2000-31/12/2009): comprising [i] discharge, [ii] total rainfall (excluding snowfall), [iii] total snowfall, [iv] thickness of snow cover, and [v] maximum and [vi] minimum temperature. Precipitation occurs throughout the whole year being slightly lower during summer. Snowfall is common from November until April and rare hurricane weather may occur in autumn. The average maximum temperature is below 0 0C in January and February, but significant

  13. Runoff and loads of nutrients and heavy metals from an urbanized area.

    Science.gov (United States)

    Shirasuna, H; Fukushima, T; Matsushige, K; Imai, A; Ozaki, N

    2006-01-01

    To investigate the run-off characteristics of dissolved and particulate substances from a heavily urbanized area (basin area: 95 ha, percentage of impervious surfaces: 60%), sensors for measuring water level, water temperature, DO, pH, electric conductivity (EC), turbidity and ammonium ion were placed in the channel connecting storm sewers and natural river, together with water sampling for analyzing SS, nutrients and metals. While both turbidity and EC showed apparent "first flush", the peaks of EC were always earlier than those of turbidity. In a similar manner, dissolved nutrients and metals exhibited earlier "first flush" compared with particulate nutrients and acid-extractable metals. Significantly positive correlations between EC and dissolved substances as well as those between turbidity and particulate (acid-extractable minus dissolved) substances were usually observed, and two distinct different regressions were found between the two datasets separated before and after the concentration peaks. Using these relationships, the total loads during the respective rainfall events were calculated on the basis of EC and turbidity changes. The total loads of nitrogen, zinc, etc. were nearly proportional to the lengths of non-rainfall periods before the events, indicating that these loads derived from the atmospheric deposition.

  14. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  15. The Vaal river catchment: Problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available The vaal river catchments contains South African's economic heartland, the Pretoria -Witwatersrand-Vereeniging (PWV) complex. Although the catchments only produces eight per cent of the mean annual runoff of the country it has highest concentration...

  16. Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada

    Science.gov (United States)

    Carolyn T. Hunsaker; Thomas W. Whitaker; Roger C. Bales

    2012-01-01

    Differences in hydrologic response across the rain-snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment...

  17. A rainfall-runoff model for two small ungauged catchment using the water balance of a reservoir for calibration

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    In semi‐arid regions, small artificial surface reservoirs are important to meet the domestic and agricultural water requirements of smallholder farmers. The research objective of the study was to determine the rainfall‐runoff relation of two ungauged rivers using the measured water levels of the

  18. Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Results of a Coordinated Research Project 2002-2006

    International Nuclear Information System (INIS)

    2012-03-01

    River runoff plays a key role in human development in all societies through the provision of water for agriculture, industry and domestic use. Although the monitoring of water availability and our understanding of the main hydrological processes at the catchment scale are relatively good, many important aspects, especially those related to the interaction of runoff and groundwater, remain poorly understood. Additionally, the impact of human activities - such as the construction of large reservoirs and diversions, and the redirection of rivers to supply drinking water or water for irrigation or hydropower - are highly relevant and, together with the predicted impact of climate change, are likely to heavily impact local water cycles. The effects of such changes include: limited availability of water; changes in flood or drought frequency; changes in water quality, sediment load and groundwater recharge; and biodiversity loss in riparian environments. Additionally, political disputes may result as water resources become affected in terms of availability and/or quality. In most instances, stable isotopes and other water tracers provide a deeper insight into hydrological processes, especially in aspects related to water pathways, interconnections, transport of water and pollutants, and the transit time of water. To explore the contribution of these techniques in more detail, the IAEA has launched a monitoring programme, the Global Network of Isotopes in Rivers (GNIR), aimed at regular analysis of the isotope composition of runoff in large rivers. This isotope monitoring network complements an earlier precipitation network, the Global Network of Isotopes in Precipitation (GNIP). To prepare for GNIR, the IAEA launched a coordinated research project (CRP) called Design Criteria for a Network to Monitor Isotope Compositions of Runoff in Large Rivers. The main aim of the CRP was to develop a scientific rationale and a protocol for the operation of such a network, as well as

  19. Analysis of Land Use and Land Cover Changes and Their Impacts on Future Runoff in the Luanhe River Basin in North China Using Markov and SWAT

    Science.gov (United States)

    Yang, W.; Long, D.

    2017-12-01

    Both land use/cover change (LUCC) and climate change exert significant impacts on runoff, which needs to be thoroughly examined in the context of urbanization, population growth, and climate change. The majority of studies focus on the impacts of either LUCC or climate on runoff in the upper reaches of the Panjiakou Reservoir in the Luanhe River basin, North China. In this study, first, two land use change matrices for periods 1970‒1980 and 1980‒2000 were constructed based on the theory of the Markov Chain which were used to predict the land use scenario of the basin in year 2020. Second, a distributed hydrological model, Soil Water Assessment Tools (SWAT), was set up and driven mainly by the China Gauge-based Daily Precipitation Analysis (CGDPA) product and outputs from three general circulation models (GCMs) of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP). Third, under the land use scenario in 2000, streamflow at the Chengde gauging station for the period 1998‒2014 was simulated with the CGDPA as input, and streamflow for the period 2015‒2025 under four representative concentration pathways (RCPs) was simulated using the outputs from GCMs and compared under the land use scenarios in 2000 and 2020. Results show that during 2015‒2025, the ensemble average precipitation in summer (i.e., from June to August) may increase up to 20% but decrease by -16% in fall (i.e., from September to November). The streamflow may increase in all the seasons, particularly in spring (i.e., from March to May) and summer reaching 150% and 142%, respectively. Furthermore, the streamflow may increase even more when the land use scenario for the period 1998‒2025 remains the same as that in 2000. The minimum (61mm) and maximum (77mm) mean annual runoff depth occur under the RCP4.5 and RCP6 scenarios, respectively, compared with the mean annual observed streamflow of 33 mm from 1998 to 2014. Finally, we analyzed the correlation among the main land use types

  20. Application of the PRMS model in the Zhenjiangguan watershed in the Upper Minjiang River basin

    Directory of Open Access Journals (Sweden)

    L. Fang

    2015-05-01

    Full Text Available The PRMS model was established for Zhenjiangguan watershed in the upper reach of the Minjiang River basin, China. The results showed that PRMS had an acceptable performance in simulating monthly runoff in the study area. The analysis on the impacts of precipitation changes on hydrological processes indicated that both runoff and evapotranspiration increased with the increase of precipitation. Moreover, evapotranspiration had larger sensitivity to the change of precipitation than runoff.

  1. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.

    Science.gov (United States)

    Sun, Zhandong; Lotz, Tom; Chang, Ni-Bin

    2017-12-15

    Effects of land use development on runoff patterns are salient at a hydrological response unit scale. However, quantitative analysis at the watershed scale is still a challenge due to the complex spatial heterogeneity of the upstream and downstream hydrological relationships and the inherent structure of drainage systems. This study aims to use the well-calibrated Soil and Water Assessment Tool (SWAT) to assess the response of hydrological processes under different land use scenarios in a large lake watershed (Lake Dongting) in the middle Yangtze River basin in China. Based on possible land use changes, scale-dependent land use scenarios were developed and parameters embedded in SWAT were calibrated and validated for hydrological systems analysis. This approach leads to the simulation of the land use change impacts on the hydrological cycle. Results indicated that evapotranspiration, surface runoff, groundwater flow, and water yield were affected by the land use change scenarios in different magnitudes. Overall, changes of land use and land cover have significant impacts on runoff patterns at the watershed scale in terms of both the total water yield (i.e., groundwater flow, surface runoff, and interflow, minus transmission losses) and the spatial distribution of runoff. The changes in runoff distribution were resulted in opposite impacts within the two land use scenarios including forest and agriculture. Water yield has a decrease of 1.8 percent in the forest-prone landscape scenario and an increase of 4.2 percent in the agriculture-rich scenario during the simulated period. Surface runoff was the most affected component in the hydrological cycle. Whereas surface runoff as part of water yield has a decrease of 8.2 percent in the forest- prone landscape scenario, there is an increase of 8.6 percent in the agriculture-rich landscape scenario. Different runoff patterns associated with each land use scenario imply the potential effect on flood or drought mitigation

  2. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    Science.gov (United States)

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  3. Climatic impacts on the runoff generation processes in British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    A. Loukas

    2002-01-01

    Full Text Available The potential impact of future climate change on runoff generation processes in two southern British Columbia catchments was explored using the Canadian Centre for Climate Modelling Analysis General Circulation Model (CGCMa1 to estimate future changes in precipitation, temperature and cloud cover while the U.B.C. Watershed Model was used to simulate discharges and quantify the separate runoff components, i.e. rainfall, snowmelt, glacier melt and groundwater. Changes, not only in precipitation and temperature but also in the spatial distribution of precipitation with elevation, cloud cover, glacier extension, altitude distribution of vegetation, vegetation biomass production and plant physiology were considered. The future climate of the catchments would be wetter and warmer than the present. In the maritime rain-fed catchment of the Upper Campbell, runoff from rainfall is the most significant source of flow for present and future climatic conditions in the autumn and winter whereas runoff from groundwater generates the flow in spring and summer, especially for the future climate scenario. The total runoff, under the future climatic conditions, would increase in the autumn and winter and decrease in spring and summer. In contrast, in the interior snow-covered Illecillewaet catchment, groundwater is the most significant runoff generation mechanism in the autumn and winter although, at present, significant flow is generated from snowmelt in spring and from glacier runoff in summer. In the future scenario, the contribution to flow from snowmelt would increase in winter and diminish in spring while the runoff from the glacier would remain unchanged; groundwater would then become the most significant source of runoff, which would peak earlier in the season. Keywords: climatic change, hydrological simulation, rainfall, snowmelt, runoff processes

  4. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  5. Studies on the discharge from Vernagtferner with special regard to meltwater within the firn aquifer runoff

    International Nuclear Information System (INIS)

    Oerter, H.

    1981-08-01

    The report describes the runoff from a glacier with the runoff from Vernagtferner glacier as an example. Especially the storage and drainage processes in the firn body and the contribution of the snow meltwater to the total runoff are described using dye tracers and the environmental natural isotopes D, T and O-18. (orig./HP) [de

  6. Performance of Grass Filter Strip in Copper and Zinc Removal in Surface and Subsurface Runoff

    Directory of Open Access Journals (Sweden)

    Huo Weijie

    2017-01-01

    Full Text Available Three filter strips were conducted on self-designed soil bins. Taking a filter strip with no vegetation as contrast, the effectiveness of vegetation and soil conditions on heavy metals (including copper and zinc removal efficiencies were investigated by simulated runoff experiment. The results showed that the adsorbed state is the main existing form of heavy metal. For surface runoff, most of total copper and total zinc are trapped in first 4m and it is ineffective to increase the distance beyond 4m for removal. Vegetation has no significant effect on total copper and total zinc removal, while the soil with higher content of organic matter is contributing to total Zn interception. For subsurface runoff, the removal efficiencies of total copper and total zinc can reach to above 95.38% and both vegetation and soil conditions have no significant effects. Vegetation is contributing to copper ion and zinc ion removal significantly. Soil condition is only a significant factor to zinc ion, with higher content of organic matter as a contributing factor.

  7. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  8. Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management.

    Science.gov (United States)

    Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng

    2017-02-01

    To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.

  9. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA

    International Nuclear Information System (INIS)

    Carling, Gregory T.; Tingey, David G.; Fernandez, Diego P.; Nelson, Stephen T.; Aanderud, Zachary T.; Goodsell, Timothy H.; Chapman, Tucker R.

    2015-01-01

    Numerous natural and anthropogenic processes in a watershed produce the geochemical composition of a river, which can be altered over time by snowmelt and rainfall events and by built infrastructure (i.e., dams and diversions). Trace element concentrations coupled with isotopic ratios offer valuable insights to disentangle the effects of these processes on water quality. In this study, we measured a suite of 40+ trace and major elements (including As, Cd, Ce, Cr, Cs, Fe, La, Li, Mo, Pb, Rb, Sb, Se, Sr, Ti, Tl, U, and Zn), Sr isotopes ("8"7Sr/"8"6Sr), and stable isotopes of H and O (δD and δ"1"8O) to investigate natural and anthropogenic processes impacting the Provo River in northern Utah, USA. The river starts as a pristine mountain stream and passes through agricultural and urban areas, with two major reservoirs and several major diversions to and from the river. We sampled the entire 120 km length of the Provo River at 13 locations from the Uinta Mountains to Utah Valley, as well as two important tributaries, across the range of hydrologic conditions from low flow to snowmelt runoff during the 2013 water year. We also sampled the furthest downstream site in the Utah Valley urban area during a major flood event. Trace element concentrations indicate that a variety of factors potentially influence Provo River chemistry, including inputs from weathering of carbonate/siliciclastic rocks (Sr) and black shales (Se and U), geothermal groundwater (As, Cs, Li, and Rb), soil erosion during snowmelt runoff (Ce, Cr, Fe, La, Pb, and Ti), legacy mining operations (Mo, Sb, and Tl), and urban runoff (Cr, Pb, and Zn). Although specific elements overlap between different groups, the combination of different elements together with isotopic measurements and streamflow observations may act as diagnostic tools to identify sources. "8"7Sr/"8"6Sr ratios indicate a strong influence of siliciclastic bedrock in the headwaters with values exceeding 0.714 and carbonate bedrock in the

  10. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, Jeffrey D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  11. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    Science.gov (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    Science.gov (United States)

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  13. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    Science.gov (United States)

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  14. Assessment of environmental flow requirements for river basin planning in Zimbabwe

    Science.gov (United States)

    Mazvimavi, D.; Madamombe, E.; Makurira, H.

    There is a growing awareness and understanding of the need to allocate water along a river to maintain ecological processes that provide goods and services. Legislation in Zimbabwe requires water resources management plans to include the amount of water to be reserved for environmental purposes in each river basin. This paper aims to estimate the amount of water that should be reserved for environmental purposes in each of the 151 sub-basins or water management units of Zimbabwe. A desktop hydrological method is used to estimate the environmental flow requirement (EFR). The estimated EFRs decrease with increasing flow variability, and increase with the increasing contribution of base flows to total flows. The study has established that in order to maintain slightly modified to natural habitats along rivers, the EFR should be 30-60% of mean annual runoff (MAR) in regions with perennial rivers, while this is 20-30% in the dry parts of the country with rivers, which only flow during the wet season. The inclusion of EFRs in water resources management plans will not drastically change the proportion of the available water allocated to water permits, since the amount of water allocated to water permit holders is less than 50% of the MAR on 77% of the sub-basins in the country.

  15. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    Science.gov (United States)

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  16. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    Science.gov (United States)

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin

    Science.gov (United States)

    Aloysius, Noel; Saiers, James

    2017-08-01

    Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB) have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs) under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016-2035) and mid-century (2046-2065). We find that total runoff from the CRB is projected to increase by 5 % [-9 %; 20 %] (mean - min and max - across model ensembles) over the next two decades and by 7 % [-12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.

  18. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  19. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  20. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  1. Climate change impact on streamflow in large-scale river basins: projections and their uncertainties sourced from GCMs and RCP scenarios

    Science.gov (United States)

    Nasonova, Olga N.; Gusev, Yeugeniy M.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water - Atmosphere - Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006-2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.

  2. Effects of urban grass coverage on rainfall-induced runoff in Xi'an loess region in China

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available In this study, laboratory rainfall simulation experiments were conducted to investigate the regulatory effects of grass coverage on rainfall-runoff processes. A total of 80 grass blocks planted with well-grown manilagrass, together with their root systems, were sampled from an eastern suburban area of Xi'an City in the northwest arid area of China and sent to a laboratory for rainfall simulation experiments. The runoff and infiltration processes of a slope with different grass coverage ratios and vegetation patterns were analyzed. The results show that the runoff coefficient decreases with the increase of the grass coverage ratio, and the influence of grass coverage on the reduction of runoff shows a high degree of spatial variation. At a constant grass coverage ratio, as the area of grass coverage moves downward, the runoff coefficient, total runoff, and flood peak discharge gradually decrease, and the flood peak occurs later. With the increase of the grass coverage ratio, the flood peak discharge gradually decreases, and the flood peak occurs later as well. In conclusion, a high grass coverage ratio with the area of grass coverage located at the lower part of the slope will lead to satisfactory regulatory effects on rainfall-induced runoff.

  3. Trend and concentrations of legacy lead (Pb) in highway runoff

    International Nuclear Information System (INIS)

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0–15 cm) along highways was much higher than the Pb concentration in subsurface soil (15–60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. - Highlights: ► Pb concentrations in highway runoff ranged from 0.5 to 752 mg/L. ► 78% of total lead concentration in highway runoff was in particulate form. ► Pb deposited on highway sites was mostly within 0 to 15 cm of soil column. ► Pb concentration in highway runoff and top soil was strongly correlated. ► Current Pb concentration in highway runoff is up to 11 times lower than late 1980s. - Most Pb deposited on soil near highways is within the top 15 cm. This Pb is the major sources of Pb concentration in highway runoff that has substantially been reduced since lead phase-out era.

  4. Hydrochemistry of rivers in an acid sulphate soil hotspot area in western Finland

    Directory of Open Access Journals (Sweden)

    M. ROOS

    2008-12-01

    Full Text Available During heavy rains and snow melting, acid sulphate (AS soils on the coastal plains of Finland are flushed resulting in discharge of acidic and metal-rich waters that strongly affect small streams. In this study, the impact of AS soils occurrence and hydrological changes on water quality were determined for 21 rivers (catchment sizes between 96–4122 km2 running through an AS soil hotspot area in western central Finland. Water samples, collected at the outlet, during eight selected events, were analysed for pH, dissolved organic carbon, electrical conductivity (EC and 32 chemical elements. Based on the correlation with percentage arable land in the catchments (a rough estimate of AS soil occurrences, as up to 50% of the arable land is underlain with these soils, it was possible to categorize variables into those that are enriched in runoff from such land, depleted in runoff from such land (only one element, and not affected by land-use type in the catchments. Of the variables enriched in runoff from arable land, some were leached from AS soils during high-water flows, in particular (aluminium, boron, beryllium, cadmium, cobalt, copper, lithium, manganese, nickel, sulphur, silicon, thorium, thallium, uranium, and zinc and others occurred in highest concentrations during lower flows (calcium, EC, potassium, magnesium, sodium, rubidium and strontium. Molybdenum and phosphorus were not leached from AS soils in larger amounts than from other soils and thus related to other factors connected to the arable land. Based on the concentrations of potentially toxic metals derived from AS soils, the 21 rivers were ranked from the least (Lestijoki River, Lapväärtinjoki River and Perhonjoki River to the most (Sulvanjoki River, Vöyrinjoki River and Maalahdenjoki River heavily AS soil impacted. It has been decided that Vöyrinjoki is to be dredged along a ca. 20 km distance. This is quite alarming considering the high metal concentrations in the river.;

  5. Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.

    Science.gov (United States)

    de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B

    2011-01-01

    Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.

  6. Vaal River catchment: problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available , the Pretoria-Witwatersrand-Vereeniging (PWV) complex. Although the catchment only produces eight per cent of the mean annual runoff of the country it has the highest concentration of urban, industrial, mining and power generation development in South Africa... of the Vaal River. The purpose of the workshop and preceding symposium was to examine the ever increasing complexity of the Vaal River system, the much enlarged spectrum of user water quality needs and problems, and those activities in the catchment which...

  7. Ensemble empirical model decomposition and neuro-fuzzy conjunction model for middle and long-term runoff forecast

    Science.gov (United States)

    Tan, Q.

    2017-12-01

    Forecasting the runoff over longer periods, such as months and years, is one of the important tasks for hydrologists and water resource managers to maximize the potential of the limited water. However, due to the nonlinear and nonstationary characteristic of the natural runoff, it is hard to forecast the middle and long-term runoff with a satisfactory accuracy. It has been proven that the forecast performance can be improved by using signal decomposition techniques to product more cleaner signals as model inputs. In this study, a new conjunction model (EEMD-neuro-fuzzy) with adaptive ability is proposed. The ensemble empirical model decomposition (EEMD) is used to decompose the runoff time series into several components, which are with different frequencies and more cleaner than the original time series. Then the neuro-fuzzy model is developed for each component. The final forecast results can be obtained by summing the outputs of all neuro-fuzzy models. Unlike the conventional forecast model, the decomposition and forecast models in this study are adjusted adaptively as long as new runoff information is added. The proposed models are applied to forecast the monthly runoff of Yichang station, located in Yangtze River of China. The results show that the performance of adaptive forecast model we proposed outperforms than the conventional forecast model, the Nash-Sutcliffe efficiency coefficient can reach to 0.9392. Due to its ability to process the nonstationary data, the forecast accuracy, especially in flood season, is improved significantly.

  8. A glacier runoff extension to the Precipitation Runoff Modeling System

    Science.gov (United States)

    A. E. Van Beusekom; R. J. Viger

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while...

  9. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. © 2013 Elsevier Ltd.

  10. Osmotically driven membrane process for the management of urban runoff in coastal regions.

    Science.gov (United States)

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Performance of Two Bioswales on Urban Runoff Management

    Directory of Open Access Journals (Sweden)

    Qingfu Xiao

    2017-09-01

    Full Text Available This study evaluated the effectiveness of two bioswales eight years after construction in Davis, California. The treatment bioswale measured 9 m × 1 m × 1 m (L × W × D. Engineered soil mix (75% native lava rock and 25% loam soil replaced the native loam soil. Four Red Tip Photinia (Photinia × fraseri Dress trees and two Blueberry Muffin Hawthorn (Rhaphiolepis umbellata (Thunb. Makino shrubs were planted in the bioswale. Runoff flowed into the bioswale from an adjacent 171 m2 panel of turf grass. An identically sized control bioswale consisting of non-disturbed native soil was located adjacent to the treatment bioswale. Surface runoff quantity and quality were measured during three experiments with different pollutant loads. When compared to the control, the treatment bioswale reduced surface runoff by 99.4%, and reduced nitrogen, phosphate, and total organic carbon loading by 99.1%, 99.5%, and 99.4%, respectively. After eight years, tree growth characteristics were similar across both sites.

  12. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    Science.gov (United States)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  13. Stormwater Runoff Plumes in Southern California Detected with Satellite SAR and MODIS Imagery - Areas of Increased Contamination Risk

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-12-01

    Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.

  14. ANN Model-Based Simulation of the Runoff Variation in Response to Climate Change on the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    Chang Juan

    2017-01-01

    Full Text Available Precisely quantitative assessments of stream flow response to climatic change and permafrost thawing are highly challenging and urgent in cold regions. However, due to the notably harsh environmental conditions, there is little field monitoring data of runoff in permafrost regions, which has limited the development of physically based models in these regions. To identify the impacts of climate change in the runoff process in the Three-River Headwater Region (TRHR on the Qinghai-Tibet Plateau, two artificial neural network (ANN models, one with three input variables (previous runoff, air temperature, and precipitation and another with two input variables (air temperature and precipitation only, were developed to simulate and predict the runoff variation in the TRHR. The results show that the three-input variable ANN model has a superior real-time prediction capability and performs well in the simulation and forecasting of the runoff variation in the TRHR. Under the different scenarios conditions, the forecasting results of ANN model indicated that climate change has a great effect on the runoff processes in the TRHR. The results of this study are of practical significance for water resources management and the evaluation of the impacts of climatic change on the hydrological regime in long-term considerations.

  15. Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.

    Science.gov (United States)

    Ngabe, B; Bidleman, T F; Scott, G I

    2000-06-08

    Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.

  16. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  17. Characterization of chromium species in urban runoff

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2013-01-01

    Little is known about the presence of the element Cr in its toxic hexavalent form Cr(VI) in stormwater runoff from urban areas. Most studies report only total Cr concentration, i.e., including also the nontoxic Cr(III) molecular form. The objective of this study was to evaluate a field method bas...

  18. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  19. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  20. Temporal and spatial variation in the status of acid rivers and potential prevention methods of AS soil-related leaching in peatland forestry

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.

    2013-06-01

    This thesis examines temporal and spatial variations in the status of different rivers and streams of western Finland in terms of acidity and sources of acid load derived from the catchment area. It also examines the monitoring of acid runoff water derived from maintenance drainage in peatland forestry and suggests potential mitigation methods. A total of 17 river basins of different sizes in western Finland were selected for study, including rivers affected by both drainage of agricultural AS soils and forested peatlands. Old data from 1911-1931 were available, but most data were from the 1960s onwards and were taken from the HERTTA database. During 2009-2011, pH and conductivity measurements and water sampling were conducted. Biological monitoring for ecological classification was conducted in the Sanginjoki river system during 2008 and 2009. Three peatland forestry sites were selected to study acid leaching via pH and EC measurements and water sampling. Fluctuations in groundwater level in different drainage conditions were simulated and acid leaching was investigated in laboratory experiments in order to replicate a situation where the groundwater level drops and allows oxidation of sulphidic materials. It was found that river pH decreased and metal concentrations increased with runoff. The highest acidity observed coincided with periods of intense drainage in the 1970s and after dry summers in the past decade. Together with pH, electric conductivity and sulphate in river water were identified as suitable indicators of AS soils in a catchment, because they directly respond to acid leaching derived from AS soils. Acidity derived from organic acids was clearly observed in catchments dominated by forested peatlands and wetlands. Temporal and spatial variations in ecological status were observed, but monitoring at whole-catchment scale and during consecutive years is needed to increase the reliability of the results. Simulations on the potential effects of

  1. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    Science.gov (United States)

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.

  2. Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?

    Science.gov (United States)

    Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.

    2012-04-01

    Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.

  3. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    Science.gov (United States)

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  4. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  5. Runoff inundation hazard cartography

    Science.gov (United States)

    Pineux, N.; Degré, A.

    2012-04-01

    Between 1998 and 2004, Europe suffered from more than hundred major inundations, responsible for some 700 deaths, for the moving of about half a million of people and the economic losses of at least 25 billions Euros covered by the insurance policies. Within this context, EU launched the 2007/60/CE directive. The inundations are natural phenomenon. They cannot be avoided. Nevertheless this directive permits to better evaluate the risks and to coordinate the management measures taken at member states level. In most countries, inundation maps only include rivers' overflowing. In Wallonia, overland flows and mudflows also cause huge damages, and must be included in the flood hazard map. Indeed, the cleaning operations for a village can lead to an estimated cost of 11 000 €. Average construction cost of retention dams to control off-site damage caused by floods and muddy flows was valued at 380 000€, and yearly dredging costs associated with these retention ponds at 15 000€. For a small city for which a study was done in a more specific way (Gembloux), the mean annual cost for the damages that can generate the runoff is about 20 000€. This cost consists of the physical damages caused to the real estate and movable properties of the residents as well as the emergency operations of the firemen and the city. On top of damages to public infrastructure (clogging of trenches, silting up of retention ponds) and to private property by muddy flows, runoff generates a significant loss of arable land. Yet, the soil resource is not an unlimited commodity. Moreover, sediments' transfer to watercourses alters their physical and chemical quality. And that is not to mention the increased psychological stress for people. But to map overland flood and mud flow hazard is a real challenge. This poster will present the methodology used to in Wallonia. The methodology is based on 3 project rainfalls: 25, 50 and 100 years return period (consistency with the cartography of the

  6. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    Science.gov (United States)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  7. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    Science.gov (United States)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  8. Simulated rain events on an urban roadway to understand the dynamics of mercury mobilization in stormwater runoff.

    Science.gov (United States)

    Eckley, Chris S; Branfireun, Brian

    2009-08-01

    This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.

  9. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Ate Poortinga

    2017-01-01

    Full Text Available Due to increasing pressures on water resources, there is a need to monitor regional water resource availability in a spatially and temporally explicit manner. However, for many parts of the world, there is insufficient data to quantify stream flow or ground water infiltration rates. We present the results of a pixel-based water balance formulation to partition rainfall into evapotranspiration, surface water runoff and potential ground water infiltration. The method leverages remote sensing derived estimates of precipitation, evapotranspiration, soil moisture, Leaf Area Index, and a single F coefficient to distinguish between runoff and storage changes. The study produced significant correlations between the remote sensing method and field based measurements of river flow in two Vietnamese river basins. For the Ca basin, we found R2 values ranging from 0.88–0.97 and Nash–Sutcliffe efficiency (NSE values varying between 0.44–0.88. The R2 for the Red River varied between 0.87–0.93 and NSE values between 0.61 and 0.79. Based on these findings, we conclude that the method allows for a fast and cost-effective way to map water resource availability in basins with no gauges or monitoring infrastructure, without the need for application of sophisticated hydrological models or resource-intensive data.

  10. Simulation and Modelling of Climate Change Effects on River Awara Flow Discharge using WEAP Model

    Directory of Open Access Journals (Sweden)

    Oyati E.N.

    2017-11-01

    Full Text Available Modelling of stream flow and discharge of river Awara under changed climate conditions using CLIMGEN for stochastic weather generation and WEAP model was used to simulate reserviour storage volume, water demand and river discharges at high spatial resolution (0.5°×0.5°, total 66,420 grid cells. Results of CLM-Based flow measurement shows a linear regression with R 2 = 0.99 for IFPRI-MNP- IGSM_WRS calibration. Sensitivity simulation of ambient long-term shows an increase in temperature with 0.5 o c thus the results of the studies generally show that annual runoff and river discharges could largely decrease. The projection of water demand 150 million m 3 by 2020 against the reservoir storage volume 60 million m 3 and decrease in rainfall depth by -5.7 mm. The output of the combined models used in this study is veritable to create robust water management system under different climate change scenarios.

  11. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    Science.gov (United States)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  12. APEX simulation of runoff and total phosphorous for three adjacent row-crop watersheds with claypan soils

    Science.gov (United States)

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, runoff, and the transport of sediment and nutrients in small watersheds that have combinations of farm level landscapes, cropping systems and/or management practices. The objectives of the study were to parameteri...

  13. Interoperability challenges in river discharge modelling: A cross domain application scenario

    Science.gov (United States)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin

    2018-06-01

    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  14. Reconnaissance of land-use sources of pesticides in drinking water, McKenzie River, Oregon

    Science.gov (United States)

    Kelly, Valerie J.; Anderson, Chauncey W.; Morgenstern, Karl

    2012-01-01

    The Eugene Water and Electric Board (EWEB) provides water and electricity to the City of Eugene, Oregon, from the McKenzie River. In the spring of 2002, EWEB initiated a pesticide monitoring program in cooperation with the U.S. Geological Survey as part of their Drinking Water Source Protection Plan. Approximately twice yearly pesticide samples were collected from 2002 to 2010 at a suite of sampling sites representing varying land uses in the lower McKenzie River basin. A total of 117 ambient samples were collected from 28 tributary and mainstem sites, including those dominated by forestry, urban, and agricultural activities, as well as the mouths of major tributaries characterized by a mixture of upstream land use. Constituents tested included 175 compounds in filtered water (72 herbicides, 43 insecticides, 10 fungicides, and 36 of their degradation products, as well as 14 pharmaceutical compounds). No attempt was made to sample different site types equivalently; sampling was instead designed primarily to characterize representative storm events during spring and fall runoff conditions in order to assess or confirm the perceived importance of the different site types as sources for pesticides. Sampling was especially limited for agricultural sites, which were only sampled during two spring storm surveys. A total of 43 compounds were detected at least once, with many of these detected only at low concentrations (urban stormwater drains. Urban sites also were associated with the highest concentrations, occasionally exceeding 1 microgram per liter. Many of the compounds detected at urban sites were relatively hydrophobic (do not mix easily with water), persistent, and suspected of endocrine disruption. In contrast, forestry compounds were rarely detectable in the McKenzie River, even though forest land predominates in the basin and forestry pesticide use was detected in small tributaries draining forested lands following application. Agricultural pesticide runoff was

  15. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  16. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    Science.gov (United States)

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Zoning of the White Sea catchment area by the degree of continental runoff influence on the marine environment

    Directory of Open Access Journals (Sweden)

    Bulavina A. S.

    2018-03-01

    Full Text Available Methodologies for the integral evaluation of the potential impact of continental runoff on the marine aquatic environment have been developed and tested in relation to the catchment area of the White Sea. Integral indicators of pollution potential (PP and self-purification capacity (SPC of the river waters have been calculated within the boundaries of the hydrologic areas. The following indicators have been used to calculate the PP: the volume of wastewater and the population density in the catchment area (anthropogenic components of pollution, sediment load (a natural component of pollution. Such natural settings of the catchment as the lake percentage, woodiness and the role of topography in self-purification of rivers have been used to calculate the SPC. The quality of river waters, entering the sea, is the result of the ratio of the proposed integrated indicators. On the basis of the quantitative ratios of PP and SPC, the zoning of the catchment area according to the degree of the negative impact of river waters on water quality in the White Sea has been performed. The resulting zoning scheme is demonstrated as a holistic picture, representing a complex of natural-economic factors on the river catchments of the White Sea basin. It has been revealed that river runoff from a considerable part of the catchment area has not a significant negative impact on the water quality on the White Sea. The greatest pollution effect on the waters of the White Sea has the Northern Dvina River and the Niva River. The obtained data are well correlated with the data of hydrochemical observations in the bays of the White Sea. The objectivity of integrated assessment has been provided by the base on a large number of field data and the exception of the indicators that have not quantitative expression. The obtained results can be used to develop scientifically valid environmental programmes and to plan industrial development in the catchment area.

  18. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  19. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  20. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...