WorldWideScience

Sample records for total relative uncertainty

  1. Total error vs. measurement uncertainty: revolution or evolution?

    Science.gov (United States)

    Oosterhuis, Wytze P; Theodorsson, Elvar

    2016-02-01

    The first strategic EFLM conference "Defining analytical performance goals, 15 years after the Stockholm Conference" was held in the autumn of 2014 in Milan. It maintained the Stockholm 1999 hierarchy of performance goals but rearranged them and established five task and finish groups to work on topics related to analytical performance goals including one on the "total error" theory. Jim Westgard recently wrote a comprehensive overview of performance goals and of the total error theory critical of the results and intentions of the Milan 2014 conference. The "total error" theory originated by Jim Westgard and co-workers has a dominating influence on the theory and practice of clinical chemistry but is not accepted in other fields of metrology. The generally accepted uncertainty theory, however, suffers from complex mathematics and conceived impracticability in clinical chemistry. The pros and cons of the total error theory need to be debated, making way for methods that can incorporate all relevant causes of uncertainty when making medical diagnoses and monitoring treatment effects. This development should preferably proceed not as a revolution but as an evolution.

  2. Code development for eigenvalue total sensitivity analysis and total uncertainty analysis

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Zu, Tiejun; Shen, Wei

    2015-01-01

    Highlights: • We develop a new code for total sensitivity and uncertainty analysis. • The implicit effects of cross sections can be considered. • The results of our code agree well with TSUNAMI-1D. • Detailed analysis for origins of implicit effects is performed. - Abstract: The uncertainties of multigroup cross sections notably impact eigenvalue of neutron-transport equation. We report on a total sensitivity analysis and total uncertainty analysis code named UNICORN that has been developed by applying the direct numerical perturbation method and statistical sampling method. In order to consider the contributions of various basic cross sections and the implicit effects which are indirect results of multigroup cross sections through resonance self-shielding calculation, an improved multigroup cross-section perturbation model is developed. The DRAGON 4.0 code, with application of WIMSD-4 format library, is used by UNICORN to carry out the resonance self-shielding and neutron-transport calculations. In addition, the bootstrap technique has been applied to the statistical sampling method in UNICORN to obtain much steadier and more reliable uncertainty results. The UNICORN code has been verified against TSUNAMI-1D by analyzing the case of TMI-1 pin-cell. The numerical results show that the total uncertainty of eigenvalue caused by cross sections can reach up to be about 0.72%. Therefore the contributions of the basic cross sections and their implicit effects are not negligible

  3. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Devic, S; Tomic, N; DeBlois, F; Seuntjens, J [McGill University, Montreal, QC (Canada); Lewis, D [RCF Consulting, LLC, Monroe, CT (United States); Aldelaijan, S [King Faisal Specialist Hospital & Research Center, Riyadh (Saudi Arabia)

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response by using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis

  4. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J; Okuda, T [Toyota memorial hospital, Toyota, Aichi (Japan); Sakaino, S; Yokota, N [Suzukake central hospital, Hamamatsu, Shizuoka (Japan)

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  5. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-01-01

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  6. Total sensitivity and uncertainty analysis for LWR pin-cells with improved UNICORN code

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei

    2017-01-01

    Highlights: • A new model is established for the total sensitivity and uncertainty analysis. • The NR approximation applied in S&U analysis can be avoided by the new model. • Sensitivity and uncertainty analysis is performed to PWR pin-cells by the new model. • The effects of the NR approximation for the PWR pin-cells are quantified. - Abstract: In this paper, improvements to the multigroup cross-section perturbation model have been proposed and applied in the self-developed UNICORN code, which is capable of performing the total sensitivity and total uncertainty analysis for the neutron-physics calculations by applying the direct numerical perturbation method and the statistical sampling method respectively. The narrow resonance (NR) approximation was applied in the multigroup cross-section perturbation model, implemented in UNICORN. As improvements to the NR approximation to refine the multigroup cross-section perturbation model, an ultrafine-group cross-section perturbation model has been established, in which the actual perturbations are applied to the ultrafine-group cross-section library and the reconstructions of the resonance cross sections are performed by solving the neutron slowing-down equation. The total sensitivity and total uncertainty analysis were then applied to the LWR pin-cells, using both the multigroup and the ultrafine-group cross-section perturbation models. The numerical results show that the NR approximation overestimates the relative sensitivity coefficients and the corresponding uncertainty results for the LWR pin-cells, and the effects of the NR approximation are significant for σ_(_n_,_γ_) and σ_(_n_,_e_l_a_s_) of "2"3"8U. Therefore, the effects of the NR approximation applied in the total sensitivity and total uncertainty analysis for the neutron-physics calculations of LWR should be taken into account.

  7. Uncertainty in relative energy resolution measurements

    International Nuclear Information System (INIS)

    Volkovitsky, P.; Yen, J.; Cumberland, L.

    2007-01-01

    We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like

  8. Entropic uncertainty relations-a survey

    International Nuclear Information System (INIS)

    Wehner, Stephanie; Winter, Andreas

    2010-01-01

    Uncertainty relations play a central role in quantum mechanics. Entropic uncertainty relations in particular have gained significant importance within quantum information, providing the foundation for the security of many quantum cryptographic protocols. Yet, little is known about entropic uncertainty relations with more than two measurement settings. In the present survey, we review known results and open questions.

  9. Two multi-dimensional uncertainty relations

    International Nuclear Information System (INIS)

    Skala, L; Kapsa, V

    2008-01-01

    Two multi-dimensional uncertainty relations, one related to the probability density and the other one related to the probability density current, are derived and discussed. Both relations are stronger than the usual uncertainty relations for the coordinates and momentum

  10. Additivity of entropic uncertainty relations

    Directory of Open Access Journals (Sweden)

    René Schwonnek

    2018-03-01

    Full Text Available We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.

  11. Stronger Schrödinger-like uncertainty relations

    International Nuclear Information System (INIS)

    Song, Qiu-Cheng; Qiao, Cong-Feng

    2016-01-01

    Highlights: • A stronger Schrödinger-like uncertainty relation in the sum of variances of two observables is obtained. • An improved Schrödinger-like uncertainty relation in the product of variances of two observables is obtained. • A stronger uncertainty relation in the sum of variances of three observables is proposed. - Abstract: Uncertainty relation is one of the fundamental building blocks of quantum theory. Nevertheless, the traditional uncertainty relations do not fully capture the concept of incompatible observables. Here we present a stronger Schrödinger-like uncertainty relation, which is stronger than the relation recently derived by Maccone and Pati (2014) [11]. Furthermore, we give an additive uncertainty relation which holds for three incompatible observables, which is stronger than the relation newly obtained by Kechrimparis and Weigert (2014) [12] and the simple extension of the Schrödinger uncertainty relation.

  12. Relational uncertainty in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2017-01-01

    in service dyads and how they resolve it through suitable organisational responses to increase the level of service quality. Design/methodology/approach: We apply the overall logic of Organisational Information-Processing Theory (OIPT) and present empirical insights from two industrial case studies collected...... the relational uncertainty increased the functional quality while resolving the partner’s organisational uncertainty increased the technical quality of the delivered service. Originality: We make two contributions. First, we introduce relational uncertainty to the OM literature as the inability to predict...... and explain the actions of a partnering organisation due to a lack of knowledge about their abilities and intentions. Second, we present suitable organisational responses to relational uncertainty and their effect on service quality....

  13. Improvement of uncertainty relations for mixed states

    International Nuclear Information System (INIS)

    Park, Yong Moon

    2005-01-01

    We study a possible improvement of uncertainty relations. The Heisenberg uncertainty relation employs commutator of a pair of conjugate observables to set the limit of quantum measurement of the observables. The Schroedinger uncertainty relation improves the Heisenberg uncertainty relation by adding the correlation in terms of anti-commutator. However both relations are insensitive whether the state used is pure or mixed. We improve the uncertainty relations by introducing additional terms which measure the mixtureness of the state. For the momentum and position operators as conjugate observables and for the thermal state of quantum harmonic oscillator, it turns out that the equalities in the improved uncertainty relations hold

  14. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  15. State-independent uncertainty relations and entanglement detection

    Science.gov (United States)

    Qian, Chen; Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

  16. Some applications of uncertainty relations in quantum information

    Science.gov (United States)

    Majumdar, A. S.; Pramanik, T.

    2016-08-01

    We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the Einstein, Podolsky and Rosen (EPR) paradox. Entropic uncertainty relations (EURs) are used to reveal quantum steering for non-Gaussian continuous variable states. EURs for discrete variables are studied in the context of quantum memory where fine-graining yields the optimum lower bound of uncertainty. The fine-grained uncertainty relation is used to obtain connections between uncertainty and the nonlocality of retrieval games for bipartite and tripartite systems. The Robertson-Schrödinger (RS) uncertainty relation is applied for distinguishing pure and mixed states of discrete variables.

  17. Uncertainty relation and probability. Numerical illustration

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Umetsu, Koichiro

    2011-01-01

    The uncertainty relation and the probability interpretation of quantum mechanics are intrinsically connected, as is evidenced by the evaluation of standard deviations. It is thus natural to ask if one can associate a very small uncertainty product of suitably sampled events with a very small probability. We have shown elsewhere that some examples of the evasion of the uncertainty relation noted in the past are in fact understood in this way. We here numerically illustrate that a very small uncertainty product is realized if one performs a suitable sampling of measured data that occur with a very small probability. We introduce a notion of cyclic measurements. It is also shown that our analysis is consistent with the Landau-Pollak-type uncertainty relation. It is suggested that the present analysis may help reconcile the contradicting views about the 'standard quantum limit' in the detection of gravitational waves. (author)

  18. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels

    International Nuclear Information System (INIS)

    Moutsatsos, A.; Karaiskos, P.; Pantelis, E.; Georgiou, E.; Petrokokkinos, L.; Sakelliou, L.; Torrens, M.; Seimenis, I.

    2013-01-01

    Purpose: This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. Methods: A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a “control point” in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. Results: MR spatial distortions stemming from main field (B 0 ) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total

  19. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels.

    Science.gov (United States)

    Moutsatsos, A; Karaiskos, P; Petrokokkinos, L; Sakelliou, L; Pantelis, E; Georgiou, E; Torrens, M; Seimenis, I

    2013-03-01

    This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a "control point" in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. MR spatial distortions stemming from main field (B0) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total geometric uncertainty ranged from

  20. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    CERN Document Server

    Fazzari, D M

    2001-01-01

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a containe...

  1. Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation

    Science.gov (United States)

    Barchielli, Alberto; Gregoratti, Matteo; Toigo, Alessandro

    2018-02-01

    We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.

  2. Role of information theoretic uncertainty relations in quantum theory

    International Nuclear Information System (INIS)

    Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo

    2015-01-01

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed

  3. Role of information theoretic uncertainty relations in quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.

  4. Generalized Landau-Pollak uncertainty relation

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2007-01-01

    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented. A possible application to the problem of separability criterion is also suggested

  5. Examining Dark Triad traits in relation to sleep disturbances, anxiety sensitivity and intolerance of uncertainty in young adults.

    Science.gov (United States)

    Sabouri, Sarah; Gerber, Markus; Lemola, Sakari; Becker, Stephen P; Shamsi, Mahin; Shakouri, Zeinab; Sadeghi Bahmani, Dena; Kalak, Nadeem; Holsboer-Trachsler, Edith; Brand, Serge

    2016-07-01

    The Dark Triad (DT) describes a set of three closely related personality traits, Machiavellianism, narcissism, and psychopathy. The aim of this study was to examine the associations between DT traits, sleep disturbances, anxiety sensitivity and intolerance of uncertainty. A total of 341 adults (M=29years) completed a series of questionnaires related to the DT traits, sleep disturbances, anxiety sensitivity, and intolerance of uncertainty. A higher DT total score was associated with increased sleep disturbances, and higher scores for anxiety sensitivity and intolerance of uncertainty. In regression analyses Machiavellianism and psychopathy were predictors of sleep disturbances, anxiety sensitivity, and intolerance of uncertainty. Results indicate that specific DT traits, namely Machiavellianism and psychopathy, are associated with sleep disturbances, anxiety sensitivity and intolerance of uncertainty in young adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Quantum uncertainty relation based on the mean deviation

    OpenAIRE

    Sharma, Gautam; Mukhopadhyay, Chiranjib; Sazim, Sk; Pati, Arun Kumar

    2018-01-01

    Traditional forms of quantum uncertainty relations are invariably based on the standard deviation. This can be understood in the historical context of simultaneous development of quantum theory and mathematical statistics. Here, we present alternative forms of uncertainty relations, in both state dependent and state independent forms, based on the mean deviation. We illustrate the robustness of this formulation in situations where the standard deviation based uncertainty relation is inapplica...

  7. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    DEFF Research Database (Denmark)

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously...... developed mathematical model of the anemometer in combination with a large database of representative room flows measured with a 3-D Laser Doppler anemometer (LDA). A direct comparison between measurements with a thermal anemometer and a 3-D LDA in flows of varying velocity and turbulence intensity shows...... good agreement not only between the two instruments but also between the thermal anemometer and its mathematical model. The differences in the measurements performed with the two instruments are all well within the measurement uncertainty of both anemometers....

  8. Uncertainty relation and simultaneous measurements in quantum theory

    International Nuclear Information System (INIS)

    Busch, P.

    1982-01-01

    In this thesis the question for the interpretation of the uncertainty relation is picked up, and a program for the justification of its individualistic interpretation is formulated. By means of quantum mechanical models for the position and momentum measurement a justification of the interpretaton has been tried by reconstruction of the origin of the uncertainties from the conditions of the measuring devices and the determination of the relation of the measured results to the object. By means of a model of the common measurement it could be shown how the uncertainty relation results from the not eliminable mutual disturbance of the devices and the uncertainty relation for the measuring system. So finally the commutation relation is conclusive. For the illustration the split experiment is discussed, first according to Heisenberg with fixed split, then for the quantum mechanical, movable split (Bohr-Einstein). (orig./HSI) [de

  9. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    Science.gov (United States)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  10. Nonclassicality in phase-number uncertainty relations

    International Nuclear Information System (INIS)

    Matia-Hernando, Paloma; Luis, Alfredo

    2011-01-01

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  11. Nonclassicality in phase-number uncertainty relations

    Energy Technology Data Exchange (ETDEWEB)

    Matia-Hernando, Paloma; Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)

    2011-12-15

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  12. Uncertainty relations for information entropy in wave mechanics

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Pittsburgh Univ., Pa.; Mycielski, J.

    1975-01-01

    New uncertainty relations in quantum mechanics are derived. They express restrictions imposed by quantum theory on probability distributions of canonically conjugate variables in terms of corresponding information entropies. The Heisenberg uncertainty relation follows from those inequalities and so does the Gross-Nelson inequality. (orig.) [de

  13. Uncertainty Relations and Possible Experience

    Directory of Open Access Journals (Sweden)

    Gregg Jaeger

    2016-06-01

    Full Text Available The uncertainty principle can be understood as a condition of joint indeterminacy of classes of properties in quantum theory. The mathematical expressions most closely associated with this principle have been the uncertainty relations, various inequalities exemplified by the well known expression regarding position and momentum introduced by Heisenberg. Here, recent work involving a new sort of “logical” indeterminacy principle and associated relations introduced by Pitowsky, expressable directly in terms of probabilities of outcomes of measurements of sharp quantum observables, is reviewed and its quantum nature is discussed. These novel relations are derivable from Boolean “conditions of possible experience” of the quantum realm and have been considered both as fundamentally logical and as fundamentally geometrical. This work focuses on the relationship of indeterminacy to the propositions regarding the values of discrete, sharp observables of quantum systems. Here, reasons for favoring each of these two positions are considered. Finally, with an eye toward future research related to indeterminacy relations, further novel approaches grounded in category theory and intended to capture and reconceptualize the complementarity characteristics of quantum propositions are discussed in relation to the former.

  14. Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters

    Science.gov (United States)

    Liman, Julian; Schröder, Marc; Fennig, Karsten; Andersson, Axel; Hollmann, Rainer

    2018-03-01

    Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an

  15. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    International Nuclear Information System (INIS)

    Wan, C.; Cao, L.; Wu, H.; Zu, T.; Shen, W.

    2015-01-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  16. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, C.; Cao, L.; Wu, H.; Zu, T., E-mail: chenghuiwan@stu.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: tiejun@mail.xjtu.edu.cn [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Shen, W., E-mail: Wei.Shen@cnsc-ccsn.gc.ca [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  17. Uncertainty relations for approximation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaeha, E-mail: jlee@post.kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsutsui, Izumi, E-mail: izumi.tsutsui@kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-05-27

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  18. Uncertainty relations for approximation and estimation

    International Nuclear Information System (INIS)

    Lee, Jaeha; Tsutsui, Izumi

    2016-01-01

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  19. Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment

    Science.gov (United States)

    Zhang, Jun; Liu, Liang; Han, Yan

    2018-05-01

    In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.

  20. Covariant energy–momentum and an uncertainty principle for general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Cooperstock, F.I., E-mail: cooperst@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Dupre, M.J., E-mail: mdupre@tulane.edu [Department of Mathematics, Tulane University, New Orleans, LA 70118 (United States)

    2013-12-15

    We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy–momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system. The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum. -- Highlights: •We present a totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. •Demand for the general expression to reduce to the Tolman integral for stationary systems supports the Ricci integral as energy–momentum. •Localized energy via the Ricci integral is consistent with the energy localization hypothesis. •New localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. •Suggest the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum in strong gravity extreme.

  1. Majorization uncertainty relations for mixed quantum states

    Science.gov (United States)

    Puchała, Zbigniew; Rudnicki, Łukasz; Krawiec, Aleksandra; Życzkowski, Karol

    2018-04-01

    Majorization uncertainty relations are generalized for an arbitrary mixed quantum state ρ of a finite size N. In particular, a lower bound for the sum of two entropies characterizing the probability distributions corresponding to measurements with respect to two arbitrary orthogonal bases is derived in terms of the spectrum of ρ and the entries of a unitary matrix U relating both bases. The results obtained can also be formulated for two measurements performed on a single subsystem of a bipartite system described by a pure state, and consequently expressed as an uncertainty relation for the sum of conditional entropies.

  2. Energy and Uncertainty in General Relativity

    Science.gov (United States)

    Cooperstock, F. I.; Dupre, M. J.

    2018-03-01

    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.

  3. Uncertainty, joint uncertainty, and the quantum uncertainty principle

    International Nuclear Information System (INIS)

    Narasimhachar, Varun; Poostindouz, Alireza; Gour, Gilad

    2016-01-01

    Historically, the element of uncertainty in quantum mechanics has been expressed through mathematical identities called uncertainty relations, a great many of which continue to be discovered. These relations use diverse measures to quantify uncertainty (and joint uncertainty). In this paper we use operational information-theoretic principles to identify the common essence of all such measures, thereby defining measure-independent notions of uncertainty and joint uncertainty. We find that most existing entropic uncertainty relations use measures of joint uncertainty that yield themselves to a small class of operational interpretations. Our notion relaxes this restriction, revealing previously unexplored joint uncertainty measures. To illustrate the utility of our formalism, we derive an uncertainty relation based on one such new measure. We also use our formalism to gain insight into the conditions under which measure-independent uncertainty relations can be found. (paper)

  4. Ascertaining the uncertainty relations via quantum correlations

    International Nuclear Information System (INIS)

    Li, Jun-Li; Du, Kun; Qiao, Cong-Feng

    2014-01-01

    We propose a new scheme to express the uncertainty principle in the form of inequality of the bipartite correlation functions for a given multipartite state, which provides an experimentally feasible and model-independent way to verify various uncertainty and measurement disturbance relations. By virtue of this scheme, the implementation of experimental measurement on the measurement disturbance relation to a variety of physical systems becomes practical. The inequality in turn, also imposes a constraint on the strength of correlation, i.e. it determines the maximum value of the correlation function for two-body system and a monogamy relation of the bipartite correlation functions for multipartite system. (paper)

  5. Towards minimizing measurement uncertainty in total petroleum hydrocarbon determination by GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Saari, E.

    2009-07-01

    Despite tightened environmental legislation, spillages of petroleum products remain a serious problem worldwide. The environmental impacts of these spillages are always severe and reliable methods for the identification and quantitative determination of petroleum hydrocarbons in environmental samples are therefore needed. Great improvements in the definition and analysis of total petroleum hydrocarbons (TPH) were finally introduced by international organizations for standardization in 2004. This brought some coherence to the determination and, nowadays, most laboratories seem to employ ISO/DIS 16703:2004, ISO 9377-2:2000 and CEN prEN 14039:2004:E draft international standards for analysing TPH in soil. The implementation of these methods, however, usually fails because the reliability of petroleum hydrocarbon determination has proved to be poor.This thesis describes the assessment of measurement uncertainty for TPH determination in soil. Chemometric methods were used to both estimate the main uncertainty sources and identify the most significant factors affecting these uncertainty sources. The method used for the determinations was based on gas chromatography utilizing flame ionization detection (GC-FID).Chemometric methodology applied in estimating measurement uncertainty for TPH determination showed that the measurement uncertainty is in actual fact dominated by the analytical uncertainty. Within the specific concentration range studied, the analytical uncertainty accounted for as much as 68-80% of the measurement uncertainty. The robustness of the analytical method used for petroleum hydrocarbon determination was then studied in more detail. A two-level Plackett-Burman design and a D-optimal design were utilized to assess the main analytical uncertainty sources of the sample treatment and GC determination procedures. It was also found that the matrix-induced systematic error may also significantly reduce the reliability of petroleum hydrocarbon determination

  6. Position-momentum uncertainty relations in the presence of quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Berta, Mario [Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125 (United States); Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Tomamichel, Marco [School of Physics, The University of Sydney, Sydney 2006 (Australia); Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Scholz, Volkher B. [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark)

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting of position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.

  7. New class of uncertainty relations for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1984-01-01

    A class of uncertainty relations for partially coherent light is derived; the uncertainty relations in this class express the fact that the product of the effective widths of the space-domain intensity and the spatial-frequency-domain intensity of the light has a lower bound and that this lower

  8. Generalized uncertainty relations and characteristic invariants for the multimode states

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Chiu, C.B.; Bhamathi, G.

    1995-01-01

    The close relationship between the zero-point energy, the uncertainty relation, coherent states, squeezed states, and correlated states for one mode is investigated. This group theoretic perspective of the problem enables the parametrization and identification of their multimode generalization. A simple and efficient method of determining the canonical structure of the generalized correlated states is presented. Implication of canonical commutation relations for correlations are not exhausted by the Heisenberg uncertainty relation, not even by the Schroedinger-Robertson uncertainty inequality, but there are relations in the multimode case that are the generalization of the Schroedinger-Robertson relation

  9. Heisenberg's principle of uncertainty and the uncertainty relations

    International Nuclear Information System (INIS)

    Redei, Miklos

    1987-01-01

    The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs

  10. Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states

    International Nuclear Information System (INIS)

    Hertz, Anaelle; Jabbour, Michael G; Cerf, Nicolas J

    2017-01-01

    We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle. (paper)

  11. Reconsiderations of long debated subjects: uncertainty relations and Planck's constant

    International Nuclear Information System (INIS)

    Dumitru, S.

    2005-01-01

    Some earlier unresolved controversies about uncertainty relations and quantum measurements have persisted to this day. They originate in the shortcomings of the conventional interpretation of uncertainty relations. In this paper, we showed that those shortcomings exposed credible, unavoidable facts making it imperative that the conventional interpretation should be dropped. So, the primitive uncertainty relations appeared as being either figments or fluctuation formulae. Subsequently, we showed that for quantum microparticles the Planck constant h acted as an indicator of stochasticity, a role entirely similar to the one the Boltzmann constant k played in respect of the thermodynamic stochasticity of macroscopic systems. (author)

  12. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    Science.gov (United States)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  13. On entropic uncertainty relations in the presence of a minimal length

    Science.gov (United States)

    Rastegin, Alexey E.

    2017-07-01

    Entropic uncertainty relations for the position and momentum within the generalized uncertainty principle are examined. Studies of this principle are motivated by the existence of a minimal observable length. Then the position and momentum operators satisfy the modified commutation relation, for which more than one algebraic representation is known. One of them is described by auxiliary momentum so that the momentum and coordinate wave functions are connected by the Fourier transform. However, the probability density functions of the physically true and auxiliary momenta are different. As the corresponding entropies differ, known entropic uncertainty relations are changed. Using differential Shannon entropies, we give a state-dependent formulation with correction term. State-independent uncertainty relations are obtained in terms of the Rényi entropies and the Tsallis entropies with binning. Such relations allow one to take into account a finiteness of measurement resolution.

  14. Fifth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  15. Universal quantum uncertainty relations between nonergodicity and loss of information

    Science.gov (United States)

    Awasthi, Natasha; Bhattacharya, Samyadeb; SenDe, Aditi; Sen, Ujjwal

    2018-03-01

    We establish uncertainty relations between information loss in general open quantum systems and the amount of nonergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the nonergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that nonergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the "minimal" situations that saturate the uncertainty relations.

  16. Optimal entropic uncertainty relation for successive measurements ...

    Indian Academy of Sciences (India)

    measurements in quantum information theory. M D SRINIVAS ... derived by Robertson in 1929 [2] from the first principles of quantum theory, does not ... systems and may hence be referred to as 'uncertainty relations for distinct measurements'.

  17. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  18. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

    Science.gov (United States)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene

    2018-03-01

    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  19. Uncertainty relations, zero point energy and the linear canonical group

    Science.gov (United States)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  20. Uncertainties related to the fault tree reliability data

    International Nuclear Information System (INIS)

    Apostol, Minodora; Nitoi, Mirela; Farcasiu, M.

    2003-01-01

    Uncertainty analyses related to the fault trees evaluate the system variability which appears from the uncertainties of the basic events probabilities. Having a logical model which describes a system, to obtain outcomes means to evaluate it, using estimations for each basic event of the model. If the model has basic events that incorporate uncertainties, then the results of the model should incorporate the uncertainties of the events. Uncertainties estimation in the final result of the fault tree means first the uncertainties evaluation for the basic event probabilities and then combination of these uncertainties, to calculate the top event uncertainty. To calculate the propagating uncertainty, a knowledge of the probability density function as well as the range of possible values of the basic event probabilities is required. The following data are defined, using suitable probability density function: the components failure rates; the human error probabilities; the initiating event frequencies. It was supposed that the possible value distribution of the basic event probabilities is given by the lognormal probability density function. To know the range of possible value of the basic event probabilities, the error factor or the uncertainty factor is required. The aim of this paper is to estimate the error factor for the failure rates and for the human errors probabilities from the reliability data base used in Cernavoda Probabilistic Safety Evaluation. The top event chosen as an example is FEED3, from the Pressure and Inventory Control System. The quantitative evaluation of this top event was made by using EDFT code, developed in Institute for Nuclear Research Pitesti (INR). It was supposed that the error factors for the component failures are the same as for the failure rates. Uncertainty analysis was made with INCERT application, which uses the moment method and Monte Carlo method. The reliability data base used at INR Pitesti does not contain the error factors (ef

  1. Uncertainty related to Environmental Data and Estimated Extreme Events

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    The design loads on rubble mound breakwaters are almost entirely determined by the environmental conditions, i.e. sea state, water levels, sea bed characteristics, etc. It is the objective of sub-group B to identify the most important environmental parameters and evaluate the related uncertainties...... including those corresponding to extreme estimates typically used for design purposes. Basically a design condition is made up of a set of parameter values stemming from several environmental parameters. To be able to evaluate the uncertainty related to design states one must know the corresponding joint....... Consequently this report deals mainly with each parameter separately. Multi parameter problems are briefly discussed in section 9. It is important to notice that the quantified uncertainties reported in section 7.7 represent what might be regarded as typical figures to be used only when no more qualified...

  2. Position-momentum uncertainty relations in the presence of quantum memory

    DEFF Research Database (Denmark)

    Furrer, Fabian; Berta, Mario; Tomamichel, Marco

    2014-01-01

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear oper....... As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states....

  3. Plutonium Finishing Plant (PFP) Generalized Geometry Holdup Calculations and Total Measurement Uncertainty

    International Nuclear Information System (INIS)

    Keele, B.D.

    2005-01-01

    A collimated portable gamma-ray detector will be used to quantify the plutonium content of items that can be approximated as a point, line, or area geometry with respect to the detector. These items can include ducts, piping, glove boxes, isolated equipment inside of gloveboxes, and HEPA filters. The Generalized Geometry Holdup (GGH) model is used for the reduction of counting data. This document specifies the calculations to reduce counting data into contained plutonium and the associated total measurement uncertainty.

  4. The role of general relativity in the uncertainty principle

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1986-01-01

    The role played by general relativity in quantum mechanics (especially as regards the uncertainty principle) is investigated. It is confirmed that the validity of time-energy uncertainty does depend on gravitational time dilation. It is also shown that there exists an intrinsic lower bound to the accuracy with which acceleration due to gravity can be measured. The motion of equivalence principle in quantum mechanics is clarified. (author)

  5. Uncertainty relations and semi-groups in B-algebras

    International Nuclear Information System (INIS)

    Papaloucas, L.C.

    1980-07-01

    Starting from a B-algebra which satisfies the conditions of a structure theorem, we obtain directly a Lie algebra for which the Lie ring satisfies automatically the Heisenberg uncertainty relations. (author)

  6. Uncertainties of exposure-related quantities in mammographic x-ray unit quality control

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Pattison, John E.; Bibbo, Giovanni

    2006-01-01

    Breast screening programs operate in many countries with mammographic x-ray units subject to stringent quality control tests. These tests include the evaluation of quantities based on exposure measurements, such as half value layer, automatic exposure control reproducibility, average glandular dose, and radiation output rate. There are numerous error sources that contribute to the uncertainty of these exposure-related quantities, some of which are unique to the low energy x-ray spectrum produced by mammographic x-ray units. For each of these exposure-related quantities, the applicable error sources and their magnitudes vary, depending on the test equipment used to make the measurement, and whether or not relevant corrections have been applied. This study has identified and quantified a range of error sources that may be used to estimate the combined uncertainty of these exposure-related quantities, given the test equipment used and corrections applied. The uncertainty analysis uses methods described by the International Standards Organization's Guide to the Expression of Uncertainty in Measurement. Examples of how these error sources combine to give the uncertainty of the exposure-related quantities are presented. Using the best test equipment evaluated in this study, uncertainties of the four exposure-related quantities at the 95% confidence interval were found to be ±1.6% (half value layer), ±0.0008 (automatic exposure control reproducibility), ±2.3% (average glandular dose), and ±2.1% (radiation output rate). In some cases, using less precise test equipment or failing to apply corrections, resulted in uncertainties more than double in magnitude

  7. Generalization of uncertainty relation for quantum and stochastic systems

    Science.gov (United States)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  8. Estimation of uncertainty of a reference material for proficiency testing for the determination of total mercury in fish in nature

    International Nuclear Information System (INIS)

    Santana, L V; Sarkis, J E S; Ulrich, J C; Hortellani, M A

    2015-01-01

    We provide an uncertainty estimates for homogeneity and stability studies of reference material used in proficiency test for determination of total mercury in fish fresh muscle tissue. Stability was estimated by linear regression and homogeneity by ANOVA. The results indicate that the reference material is both homogeneous and chemically stable over the short term. Total mercury concentration of the muscle tissue, with expanded uncertainty, was 0.294 ± 0.089 μg g −1

  9. Uncertainty of forest carbon stock changes. Implications to the total uncertainty of GHG inventory of Finland

    International Nuclear Information System (INIS)

    Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.

    2007-01-01

    Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions

  10. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  11. Intolerance of uncertainty, cognitive complaints, and cancer-related distress in prostate cancer survivors.

    Science.gov (United States)

    Eisenberg, Stacy A; Kurita, Keiko; Taylor-Ford, Megan; Agus, David B; Gross, Mitchell E; Meyerowitz, Beth E

    2015-02-01

    Prostate cancer survivors have reported cognitive complaints following treatment, and these difficulties may be associated with survivors' ongoing cancer-related distress. Intolerance of uncertainty may exacerbate this hypothesized relationship by predisposing individuals to approach uncertain situations such as cancer survivorship in an inflexible and negative manner. We investigated whether greater cognitive complaints and higher intolerance of uncertainty would interact in their relation to more cancer-related distress symptoms. This cross-sectional, questionnaire-based study included 67 prostate cancer survivors who were 3 to 5 years post treatment. Hierarchical multiple regression analyses tested the extent to which intolerance of uncertainty, cognitive complaints, and their interaction were associated with cancer-related distress (measured with the Impact of Event Scale-Revised; IES-R) after adjusting for age, education, physical symptoms, and fear of cancer recurrence. Intolerance of uncertainty was positively associated with the IES-R avoidance and hyperarousal subscales. More cognitive complaints were associated with higher scores on the IES-R hyperarousal subscale. The interaction of intolerance of uncertainty and cognitive complaints was significantly associated with IES-R intrusion, such that greater cognitive complaints were associated with greater intrusive thoughts in survivors high in intolerance of uncertainty but not those low in it. Prostate cancer survivors who report cognitive difficulties or who find uncertainty uncomfortable and unacceptable may be at greater risk for cancer-related distress, even 3 to 5 years after completing treatment. It may be beneficial to address both cognitive complaints and intolerance of uncertainty in psychosocial interventions. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Uncertainty relation on a world crystal and its applications to micro black holes

    International Nuclear Information System (INIS)

    Jizba, Petr; Kleinert, Hagen; Scardigli, Fabio

    2010-01-01

    We formulate generalized uncertainty relations in a crystal-like universe - a 'world crystal' - whose lattice spacing is of the order of Planck length. In the particular case when energies lie near the border of the Brillouin zone, i.e., for Planckian energies, the uncertainty relation for position and momenta does not pose any lower bound on involved uncertainties. We apply our results to micro black holes physics, where we derive a new mass-temperature relation for Schwarzschild micro black holes. In contrast to standard results based on Heisenberg and stringy uncertainty relations, our mass-temperature formula predicts both a finite Hawking's temperature and a zero rest-mass remnant at the end of the micro black hole evaporation. We also briefly mention some connections of the world-crystal paradigm with 't Hooft's quantization and double special relativity.

  13. The grey relational approach for evaluating measurement uncertainty with poor information

    International Nuclear Information System (INIS)

    Luo, Zai; Wang, Yanqing; Zhou, Weihu; Wang, Zhongyu

    2015-01-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) is the master document for measurement uncertainty evaluation. However, the GUM may encounter problems and does not work well when the measurement data have poor information. In most cases, poor information means a small data sample and an unknown probability distribution. In these cases, the evaluation of measurement uncertainty has become a bottleneck in practical measurement. To solve this problem, a novel method called the grey relational approach (GRA), different from the statistical theory, is proposed in this paper. The GRA does not require a large sample size or probability distribution information of the measurement data. Mathematically, the GRA can be divided into three parts. Firstly, according to grey relational analysis, the grey relational coefficients between the ideal and the practical measurement output series are obtained. Secondly, the weighted coefficients and the measurement expectation function will be acquired based on the grey relational coefficients. Finally, the measurement uncertainty is evaluated based on grey modeling. In order to validate the performance of this method, simulation experiments were performed and the evaluation results show that the GRA can keep the average error around 5%. Besides, the GRA was also compared with the grey method, the Bessel method, and the Monte Carlo method by a real stress measurement. Both the simulation experiments and real measurement show that the GRA is appropriate and effective to evaluate the measurement uncertainty with poor information. (paper)

  14. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field

    Science.gov (United States)

    Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu

    2017-08-01

    In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.

  15. Multidimensional entropic uncertainty relation based on a commutator matrix in position and momentum spaces

    Science.gov (United States)

    Hertz, Anaelle; Vanbever, Luc; Cerf, Nicolas J.

    2018-01-01

    The uncertainty relation for continuous variables due to Byałinicki-Birula and Mycielski [I. Białynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975), 10.1007/BF01608825] expresses the complementarity between two n -tuples of canonically conjugate variables (x1,x2,...,xn) and (p1,p2,...,pn) in terms of Shannon differential entropy. Here we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two n -variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to Rényi entropies and also prove a covariance-based uncertainty relation which generalizes the Robertson relation.

  16. Quantification of variability and uncertainty in lawn and garden equipment NOx and total hydrocarbon emission factors.

    Science.gov (United States)

    Frey, H Christopher; Bammi, Sachin

    2002-04-01

    Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (EIs).

  17. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.

  18. Detecting quantum entanglement. Entanglement witnesses and uncertainty relations

    International Nuclear Information System (INIS)

    Guehne, O.

    2004-01-01

    This thesis deals with methods of the detection of entanglement. After recalling some facts and definitions concerning entanglement and separability, we investigate two methods of the detection of entanglement. In the first part of this thesis we consider so-called entanglement witnesses, mainly in view of the detection of multipartite entanglement. Entanglement witnesses are observables for which a negative expectation value indicates entanglement. We first present a simple method to construct these witnesses. Since witnesses are nonlocal observables, they are not easy to measure in a real experiment. However, as we will show, one can circumvent this problem by decomposing the witness into several local observables which can be measured separately. We calculate the local decompositions for several interesting witnesses for two, three and four qubits. Local decompositions can be optimized in the number of measurement settings which are needed for an experimental implementation. We present a method to prove that a given local decomposition is optimal and discuss with this the optimality of our decompositions. Then we present another method of designing witnesses which are by construction measurable with local measurements. Finally, we shortly report on experiments where some of the witnesses derived in this part have been used to detect three- and four-partite entanglement of polarized photons. The second part of this thesis deals with separability criteria which are written in terms of uncertainty relations. There are two different formulations of uncertainty relations since one can measure the uncertainty of an observable by its variance as well as by entropic quantities. We show that both formulations are useful tools for the derivation of separability criteria for finite-dimensional systems and investigate the resulting criteria. Our results in this part exhibit also some more fundamental properties of entanglement: We show how known separability criteria for

  19. Differentiating intolerance of uncertainty from three related but distinct constructs.

    Science.gov (United States)

    Rosen, Natalie O; Ivanova, Elena; Knäuper, Bärbel

    2014-01-01

    Individual differences in uncertainty have been associated with heightened anxiety, stress and approach-oriented coping. Intolerance of uncertainty (IU) is a trait characteristic that arises from negative beliefs about uncertainty and its consequences. Researchers have established the central role of IU in the development of problematic worry and maladaptive coping, highlighting the importance of this construct to anxiety disorders. However, there is a need to improve our understanding of the phenomenology of IU. The goal of this paper was to present hypotheses regarding the similarities and differences between IU and three related constructs--intolerance of ambiguity, uncertainty orientation, and need for cognitive closure--and to call for future empirical studies to substantiate these hypotheses. To assist with achieving this goal, we conducted a systematic review of the literature, which also served to identify current gaps in knowledge. This paper differentiates these constructs by outlining each definition and general approaches to assessment, reviewing the existing empirical relations, and proposing theoretical similarities and distinctions. Findings may assist researchers in selecting the appropriate construct to address their research questions. Future research directions for the application of these constructs, particularly within the field of clinical and health psychology, are discussed.

  20. Symmetry, Contingency, Complexity: Accommodating Uncertainty in Public Relations Theory.

    Science.gov (United States)

    Murphy, Priscilla

    2000-01-01

    Explores the potential of complexity theory as a unifying theory in public relations, where scholars have recently raised problems involving flux, uncertainty, adaptiveness, and loss of control. Describes specific complexity-based methodologies and their potential for public relations studies. Offers an account of complexity theory, its…

  1. Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.

    Science.gov (United States)

    Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji

    2015-07-17

    Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.

  2. On uncertainty relations in quantum mechanics

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2004-01-01

    Uncertainty relations (UR) are shown to have nothing specific for quantum mechanics (QM), being the general property valid for the arbitrary function. A wave function of a particle simultaneously having a precisely defined position and momentum in QM is demonstrated. Interference on two slits in a screen is shown to exist in classical mechanics. A nonlinear classical system of equations replacing the QM Schroedinger equation is suggested. This approach is shown to have nothing in common with the Bohm mechanics

  3. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials

    International Nuclear Information System (INIS)

    Romera, E; Calixto, M

    2015-01-01

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback–Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems. (paper)

  4. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  5. New photon-nucleon dispersion relation for evaluating the Thomson limit using rising total cross sections

    International Nuclear Information System (INIS)

    Dean, N.W.

    1978-01-01

    New data showing that the photon-nucleon total cross section increases with energy for ν > or = 50 GeV invalidate earlier comparisons with dispersion relations. Parametrization of the data are presented and used in a new formulation of the dispersion relations, in which an assumed asymptotic behavior avoids the need for subtraction. With this form the fitted amplitude can be compared directly with the Thomson limit. The experimental uncertainties are shown to have a significant effect upon such a comparison

  6. Effects of Uncertainty and Spatial Variability on Seepage into Drifts in the Yucca Mountain Total system Performance Assessment Model

    International Nuclear Information System (INIS)

    Kalinich, D. A.; Wilson, M. L.

    2001-01-01

    Seepage into the repository drifts is an important factor in total-system performance. Uncertainty and spatial variability are considered in the seepage calculations. The base-case results show 13.6% of the waste packages (WPs) have seepage. For 5th percentile uncertainty, 4.5% of the WPs have seepage and the seepage flow decreased by a factor of 2. For 95th percentile uncertainty, 21.5% of the WPs have seepage and the seepage flow increased by a factor of 2. Ignoring spatial variability resulted in seepage on 100% of the WPs, with a factor of 3 increase in the seepage flow

  7. Fourth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  8. Correlated quadratures of resonance fluorescence and the generalized uncertainty relation

    Science.gov (United States)

    Arnoldus, Henk F.; George, Thomas F.; Gross, Rolf W. F.

    1994-01-01

    Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an unrealistic lower bound. A generalized uncertainty relation, due to Schroedinger, takes into account the possible correlation between the quadrature components of the radiation, and it suggests a modified definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is responsible for the correlation between the quadrature components of the emitted fluorescence, and that the Schrodinger uncertainty limit increases monotonically with the coherence. On the other hand, the fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely when the coherence reaches 1/2, provided that certain phase relations hold.

  9. Interpretation of the peak areas in gamma-ray spectra that have a large relative uncertainty

    International Nuclear Information System (INIS)

    Korun, M.; Maver Modec, P.; Vodenik, B.

    2012-01-01

    Empirical evidence is provided that the areas of peaks having a relative uncertainty in excess of 30% are overestimated. This systematic influence is of a statistical nature and originates in way the peak-analyzing routine recognizes the small peaks. It is not easy to detect this influence since it is smaller than the peak-area uncertainty. However, the systematic influence can be revealed in repeated measurements under the same experimental conditions, e.g., in background measurements. To evaluate the systematic influence, background measurements were analyzed with the peak-analyzing procedure described by Korun et al. (2008). The magnitude of the influence depends on the relative uncertainty of the peak area and may amount, in the conditions used in the peak analysis, to a factor of 5 at relative uncertainties exceeding 60%. From the measurements, the probability for type-II errors, as a function of the relative uncertainty of the peak area, was extracted. This probability is near zero below an uncertainty of 30% and rises to 90% at uncertainties exceeding 50%. - Highlights: ► A systematic influence affecting small peak areas in gamma-ray spectra is described. ► The influence originates in the peak locating procedure, using a pre-determined sensitivity. ► The predetermined sensitivity makes peak areas with large uncertainties to be overestimated. ► The influence depends on the relative uncertainty of the number of counts in the peak. ► Corrections exceeding a factor of 3 are attained at peak area uncertainties exceeding 60%.

  10. Complementarity and the Nature of Uncertainty Relations in Einstein–Bohr Recoiling Slit Experiment

    Directory of Open Access Journals (Sweden)

    Shogo Tanimura

    2015-07-01

    Full Text Available A model of the Einstein–Bohr recoiling slit experiment is formulated in a fully quantum theoretical setting. In this model, the state and dynamics of a movable wall that has two slits in it, as well as the state of a particle incoming to the two slits, are described by quantum mechanics. Using this model, we analyzed complementarity between exhibiting an interference pattern and distinguishing the particle path. Comparing the Kennard–Robertson type and the Ozawa-type uncertainty relations, we conclude that the uncertainty relation involved in the double-slit experiment is not the Ozawa-type uncertainty relation but the Kennard-type uncertainty relation of the position and the momentum of the double-slit wall. A possible experiment to test the complementarity relation is suggested. It is also argued that various phenomena which occur at the interface of a quantum system and a classical system, including distinguishability, interference, decoherence, quantum eraser, and weak value, can be understood as aspects of entanglement. Quanta 2015; 4: 1–9.

  11. New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit

    Directory of Open Access Journals (Sweden)

    Xu Guanlei

    2009-01-01

    Full Text Available The uncertainty principle plays an important role in mathematics, physics, signal processing, and so on. Firstly, based on definition of the linear canonical transform (LCT and the traditional Pitt's inequality, one novel Pitt's inequality in the LCT domains is obtained, which is connected with the LCT parameters a and b. Then one novel logarithmic uncertainty principle is derived from this novel Pitt's inequality in the LCT domains, which is associated with parameters of the two LCTs. Secondly, from the relation between the original function and LCT, one entropic uncertainty principle and one Heisenberg's uncertainty principle in the LCT domains are derived, which are associated with the LCT parameters a and b. The reason why the three lower bounds are only associated with LCT parameters a and b and independent of c and d is presented. The results show it is possible that the bounds tend to zeros.

  12. The Second International Workshop on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  13. A new uncertainty relation for angular momentum and angle

    International Nuclear Information System (INIS)

    Kranold, H.U.

    1984-01-01

    An uncertainty relation of the form ΔL 2 ΔSo >=sup(h/2π)/sub(2) is derived for angular momentum and angle. The non-linear operator So measures angles and has a simple interpretation. Subject to very general conditions of rotational invariance the above relation is unique. Radial momentum is not quantized

  14. Estimation of environment-related properties of chemicals for design of sustainable processes: Development of group-contribution+ (GC+) models and uncertainty analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Kalakul, Sawitree; Sarup, Bent

    2012-01-01

    The aim of this work is to develop group-3 contribution+ (GC+)method (combined group-contribution (GC) method and atom connectivity index (CI)) based 15 property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated...... property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality......, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22...

  15. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    Science.gov (United States)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  16. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials

    Science.gov (United States)

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V (x ) tilted by a force f , we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q , and in order to limit the output fluctuation within a relative uncertainty ɛ , at least 2 kBT /ɛ2 of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f ≪V'(x ) ] but also at far-from-equilibrium [f ≫V'(x ) ] , more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σq2) increases with its mean (μq), and it cannot be smaller than 2 kBT μq .

  17. Uncertainty analysis of the FRAP code

    International Nuclear Information System (INIS)

    Peck, S.O.

    1978-01-01

    A user oriented, automated uncertainty analysis capability has been built into the Fuel Rod Analysis Program (FRAP) code and has been applied to a pressurized water reactor (PWR) fuel rod undergoing a loss-of-coolant accident (LOCA). The method of uncertainty analysis is the response surface method. The automated version significantly reduced the time required to complete the analysis and, at the same time, greatly increased the problem scope. Results of the analysis showed a significant difference in the total and relative contributions to the uncertainty of the response parameters between steady state and transient conditions

  18. Realistic Approach of the Relations of Uncertainty of Heisenberg

    Directory of Open Access Journals (Sweden)

    Paul E. Sterian

    2013-01-01

    Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.

  19. Entanglement detection via tighter local uncertainty relations

    International Nuclear Information System (INIS)

    Zhang Chengjie; Zhang Yongsheng; Guo Guangcan; Nha, Hyunchul

    2010-01-01

    We propose an entanglement criterion based on local uncertainty relations (LURs) in a stronger form than the original LUR criterion introduced by Hofmann and Takeuchi [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. Using arbitrarily chosen operators (A k ) and (B k ) of subsystems A and B, the tighter LUR criterion, which may be used not only for discrete variables but also for continuous variables, can detect more entangled states than the original criterion.

  20. Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Hansen, Ase Marie; Kristiansen, Jesper

    2004-01-01

    When measuring biomarkers in urine, volume (and time) or concentration of creatinine are both accepted methods of standardization for diuresis. Both types of standardization contribute uncertainty to the final result. The aim of the present paper was to compare the uncertainty introduced when usi...... increase in convenience for the participants, when collecting small volumes rather than complete 24 h samples....... the two types of standardization on 24 h samples from healthy individuals. Estimates of uncertainties were based on results from the literature supplemented with data from our own studies. Only the difference in uncertainty related to the two standardization methods was evaluated. It was found...... that the uncertainty associated with creatinine standardization (19-35%) was higher than the uncertainty related to volume standardization (up to 10%, when not correcting for deviations from 24 h) for 24 h urine samples. However, volume standardization introduced an average bias of 4% due to missed volumes...

  1. Another two dark energy models motivated from Karolyhazy uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Cheng-Yi; Yang, Wen-Li; Song, Yu. [Northwest University, Institute of Modern Physics, Xian (China); Yue, Rui-Hong [Ningbo University, Faculty of Science, Ningbo (China)

    2012-03-15

    The Karolyhazy uncertainty relation indicates that there exists a minimal detectable cell {delta}t{sup 3} over the region t{sup 3} in Minkowski space-time. Due to the energy-time uncertainty relation, the energy of the cell {delta}t {sup 3} cannot be less {delta}t{sup -1}. Then we get a new energy density of metric fluctuations of Minkowski spacetime as {delta}t{sup -4}. Motivated by the energy density, we propose two new dark-energy models. One model is characterized by the age of the universe and the other is characterized by the conformal age of the universe. We find that in the two models, the dark energy mimics a cosmological constant in the late time. (orig.)

  2. A quantum uncertainty relation based on Fisher's information

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, P; Plastino, A R; Dehesa, J S, E-mail: pablos@ugr.es, E-mail: arplastino@ugr.es, E-mail: dehesa@ugr.es [Departamento de Fisica Atomica, Molecular y Nuclear and Instituto Carlos I de Fisica Teorica y Computacional, University of Granada, Granada (Spain)

    2011-02-11

    We explore quantum uncertainty relations involving the Fisher information functionals I{sub x} and I{sub p} evaluated, respectively, on a wavefunction {Psi}(x) defined on a D-dimensional configuration space and the concomitant wavefunction {Psi}-tilde(p) on the conjugate momentum space. We prove that the associated Fisher functionals obey the uncertainty relation I{sub x}I{sub p} {>=} 4D{sup 2} when either {Psi}(x) or {Psi}-tilde(p) is real. On the other hand, there is no lower bound to the above product for arbitrary complex wavefunctions. We give explicit examples of complex wavefunctions not obeying the above bound. In particular, we provide a parametrized wavefunction for which the product I{sub x}I{sub p} can be made arbitrarily small.

  3. Simplified propagation of standard uncertainties

    International Nuclear Information System (INIS)

    Shull, A.H.

    1997-01-01

    An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards'' uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper

  4. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    International Nuclear Information System (INIS)

    Fontenot, Jonas D; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D

    2010-01-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

  5. Advancing Uncertainty: Untangling and Discerning Related Concepts

    Directory of Open Access Journals (Sweden)

    Janice Penrod

    2002-12-01

    Full Text Available Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal investigation into the meaning of the concept. Through concept analysis, the concept was deconstructed to identify conceptual components and gaps in understanding. Using this skeletal framework of the concept identified through concept analysis, subsequent studies were carried out to add ‘flesh’ to the concept. First, a concept refinement using the literature as data was completed. Findings revealed that the current state of the concept of uncertainty failed to incorporate what was known of the lived experience. Therefore, using interview techniques as the primary data source, a phenomenological study of uncertainty among caregivers was conducted. Incorporating the findings of the phenomenology, the skeletal framework of the concept was further fleshed out using techniques of concept correction to produce a more mature conceptualization of uncertainty. In this section, I describe the flow of this qualitative project investigating the concept of uncertainty, with special emphasis on a particular threat to validity (called conceptual tunnel vision that was identified and addressed during the phases of concept correction. Though in this article I employ a study of uncertainty for illustration, limited substantive findings regarding uncertainty are presented to retain a clear focus on the methodological issues.

  6. Heisenberg's uncertainty relation: Violation and reformulation

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2014-01-01

    The uncertainty relation formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable so that their product should be no less than a limit set by Planck's constant. In 1980, Braginsky, Vorontsov, and Thorne claimed that this relation leads to a sensitivity limit for gravitational wave detectors. However, in 1988 a model of position measurement was constructed that breaks both this limit and Heisenberg's relation. Here, we discuss the problems as to how we reformulate Heisenberg's relation to be universally valid and how we experimentally quantify the error and the disturbance to refute the old relation and to confirm the new relation.

  7. Do the Uncertainty Relations Really have Crucial Significances for Physics?

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2010-10-01

    Full Text Available It is proved the falsity of idea that the Uncertainty Relations (UR have crucial significances for physics. Additionally one argues for the necesity of an UR-disconnected quantum philosophy.

  8. Cauchy inequality and uncertainty relations for mixed states

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    2004-01-01

    Cauchy inequality (CI) relates scalar products of two vectors and their norms. I point out other similar inequalities (SI). Starting with CI Schroedinger derived his uncertainty relation (UR). By using SI other various UR can be obtained. It is shown that they follow from the Schroedinger UR. Two generalizations of CI are obtained for mixed states described by density matrices. Using them two generalizations of UR for mixed states are derived. Both differ from the UR generalization known from the literature. The discussion of these generalizations is given

  9. Event-by-event simulation of single-neutron experiments to test uncertainty relations

    International Nuclear Information System (INIS)

    Raedt, H De; Michielsen, K

    2014-01-01

    Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawa's generalization of Heisenberg's uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not require the knowledge of the solution of a wave equation, nor does it rely on detailed concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy uncertainty relations derived in the context of quantum theory. (paper)

  10. Interpretation of uncertainty relations for three or more observables

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    2003-01-01

    Conventional quantum uncertainty relations (URs) contain dispersions of two observables. Generalized URs are known which contain three or more dispersions. They are derived here starting with suitable generalized Cauchy inequalities. It is shown what new information the generalized URs provide. Similar interpretation is given to generalized Cauchy inequalities

  11. Uncertainty Characterization of Reactor Vessel Fracture Toughness

    International Nuclear Information System (INIS)

    Li, Fei; Modarres, Mohammad

    2002-01-01

    To perform fracture mechanics analysis of reactor vessel, fracture toughness (K Ic ) at various temperatures would be necessary. In a best estimate approach, K Ic uncertainties resulting from both lack of sufficient knowledge and randomness in some of the variables of K Ic must be characterized. Although it may be argued that there is only one type of uncertainty, which is lack of perfect knowledge about the subject under study, as a matter of practice K Ic uncertainties can be divided into two types: aleatory and epistemic. Aleatory uncertainty is related to uncertainty that is very difficult to reduce, if not impossible; epistemic uncertainty, on the other hand, can be practically reduced. Distinction between aleatory and epistemic uncertainties facilitates decision-making under uncertainty and allows for proper propagation of uncertainties in the computation process. Typically, epistemic uncertainties representing, for example, parameters of a model are sampled (to generate a 'snapshot', single-value of the parameters), but the totality of aleatory uncertainties is carried through the calculation as available. In this paper a description of an approach to account for these two types of uncertainties associated with K Ic has been provided. (authors)

  12. On economic resolution and uncertainty in hydrocarbon exploration assessment

    International Nuclear Information System (INIS)

    Lerche, I.

    1998-01-01

    When assessment of parameters of a decision tree for a hydrocarbon exploration project can lie within estimated ranges, it is shown that the ensemble average expected value has two sorts of uncertainties: one is due to the expected value of each realization of the decision tree being different than the average; the second is due to intrinsic variance of each decision tree. The total standard error of the average expected value combines both sorts. The use of additional statistical measures, such as standard error, volatility, and cumulative probability of making a profit, provide insight into the selection process leading to a more appropriate decision. In addition, the use of relative contributions and relative importance for the uncertainty measures guides one to a better determination of those parameters that dominantly influence the total ensemble uncertainty. In this way one can concentrate resources on efforts to minimize the uncertainty ranges of such dominant parameters. A numerical illustration is provided to indicate how such calculations can be performed simply with a hand calculator. (author)

  13. Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-04-01

    The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.

  14. Extension of EU Emissions Trading Scheme to Other Sectors and Gases: Consequences for Uncertainty of Total Tradable Amount

    International Nuclear Information System (INIS)

    Monni, S.; Syri, S.; Pipatti, R.; Savolainen, I.

    2007-01-01

    Emissions trading in the European Union (EU), covering the least uncertain emission sources of greenhouse gas emission inventories (CO 2 from combustion and selected industrial processes in large installations), began in 2005. During the first commitment period of the Kyoto Protocol (2008-2012), the emissions trading between Parties to the Protocol will cover all greenhouse gases (CO 2 , CH 4 , N 2 O, HFCs, PFCs, and SF 6 ) and sectors (energy, industry, agriculture, waste, and selected land-use activities) included in the Protocol. In this paper, we estimate the uncertainties in different emissions trading schemes based on uncertainties in corresponding inventories. According to the results, uncertainty in emissions from the EU15 and the EU25 included in the first phase of the EU emissions trading scheme (2005-2007) is ±3% (at 95% confidence interval relative to the mean value). If the trading were extended to CH 4 and N 2 O, in addition to CO 2 , but no new emissions sectors were included, the tradable amount of emissions would increase by only 2% and the uncertainty in the emissions would range from -4 to +8%. Finally, uncertainty in emissions included in emissions trading under the Kyoto Protocol was estimated to vary from -6 to +21%. Inclusion of removals from forest-related activities under the Kyoto Protocol did not notably affect uncertainty, as the volume of these removals is estimated to be small

  15. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    Science.gov (United States)

    2016-03-01

    CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  16. Total Monte-Carlo method applied to the assessment of uncertainties in a reactivity-initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Rochman, D.; Koning, A.J. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands)

    2014-07-01

    The Total Monte-Carlo (TMC) method has been applied extensively since 2008 to propagate the uncertainties in nuclear data for reactor parameters and fuel inventory, and for several types of advanced nuclear systems. The analyses have been performed considering different levels of complexity, ranging from a single fuel rod to a full 3-D reactor core at steady-state. The current work applies the TMC method for a full 3-D pressurized water reactor core model under steady-state and transient conditions, considering thermal-hydraulic feedback. As a transient scenario the study focused on a reactivity-initiated accident, namely a control rod ejection accident initiated by a mechanical failure of the control rod drive mechanism. The uncertainties on the main reactor parameters due to variations in nuclear data for the isotopes {sup 235},{sup 238}U, {sup 239}Pu and thermal scattering data for {sup 1}H in water were quantified. (author)

  17. Determination of time-dependent uncertainty of the total solar irradiance records from 1978 to present

    Directory of Open Access Journals (Sweden)

    Fröhlich Claus

    2016-01-01

    Full Text Available Aims. The existing records of total solar irradiance (TSI since 1978 differ not only in absolute values, but also show different trends. For the study of TSI variability these records need to be combined and three composites have been devised; however, the results depend on the choice of the records and the way they are combined. A new composite should be based on all existing records with an individual qualification. It is proposed to use a time-dependent uncertainty for weighting of the individual records. Methods. The determination of the time-dependent deviation of the TSI records is performed by comparison with the square root of the sunspot number (SSN. However, this correlation is only valid for timescales of the order of a year or more because TSI and SSN react quite differently to solar activity changes on shorter timescales. Hence the results concern only periods longer than the one-year-low-pass filter used in the analysis. Results. Besides the main objective to determine an investigator-independent uncertainty, the comparison of TSI with √SSN turns out to be a powerful tool for the study of the TSI long-term changes. The correlation of √SSN with TSI replicates very well the TSI minima, especially the very low value of the recent minimum. The results of the uncertainty determination confirm not only the need for adequate corrections for degradation, but also show that a rather detailed analysis is needed. The daily average of all TSI values available on that day, weighted with the correspondingly determined uncertainty, is used to construct a “new” composite, which, overall, compares well with the Physikalisch-Meteorologisches Observatorium Davos (PMOD composite. Finally, the TSI − √SSN comparison proves to be an important diagnostic tool not only for estimating uncertainties of observations, but also for a better understanding of the long-term variability of TSI.

  18. Quantification of uncertainties of modeling and simulation

    International Nuclear Information System (INIS)

    Ma Zhibo; Yin Jianwei

    2012-01-01

    The principles of Modeling and Simulation (M and S) is interpreted by a functional relation, from which the total uncertainties of M and S are identified and sorted to three parts considered to vary along with the conceptual models' parameters. According to the idea of verification and validation, the space of the parameters is parted to verified and applied domains, uncertainties in the verified domain are quantified by comparison between numerical and standard results, and those in the applied domain are quantified by a newly developed extrapolating method. Examples are presented to demonstrate and qualify the ideas aimed to build a framework to quantify the uncertainties of M and S. (authors)

  19. Creation of a long-term data record of total O3 - issues and challenges in prescribing the uncertainties

    Science.gov (United States)

    Haffner, D. P.; Bhartia, P. K.; Li, J. Y.

    2012-12-01

    With the launch of the BUV instrument on NASA's Nimbus-4 satellite in April 1970, ozone became one of the first atmospheric variables to be measured from space with high accuracy. By 1980, the quality of total column ozone measured from the TOMS instrument on the Nimbus-7 satellite had improved to the point that it started to be used to identify poorly calibrated instruments in the venerable Dobson ground-based network. Now we have a total ozone record spanning 42 years created by more than a dozen instruments. We will discuss the issues and challenges that we have faced in creating a consistent long-term record and in providing uncertainty estimates. This work is not yet finished. We are currently developing a new algorithm (Version 9) that will be used to reprocess the entire record. The main motivation for developing this algorithm is not so much to improve the quality of the data, which is quite high already, but to provide better estimates of uncertainties when errors are spatially and temporally correlated, and to develop better techniques to catch "Black Swan" events (BSE). These are events that occur infrequently but cause errors larger than expected by Gaussian probability distribution. For example, the eruption of El Chichón revealed that our ozone algorithm had unexpected sensitivity to volcanic SO2, and evidence of the ozone hole was initially interpreted as a problem with the TOMS instrument. We also provide mathematical operators that can be applied by sophisticated users to compute their own uncertainties for their particular applications. This is necessary because uncertainties change in complex ways when the data are smoothed or averaged. The modern data archival system should be designed to accommodate such operators and provide software for using them.

  20. Facing uncertainty in ecosystem services-based resource management.

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter

    2013-09-01

    The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Do the Uncertainty Relations Really have Crucial Significances for Physics?

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2010-10-01

    Full Text Available It is proved the falsity of idea that the Uncertainty Relations (UR have crucial signif- icances for physics. Additionally one argues for the necesity of an UR-disconnected quantum philosophy.

  2. The angle-angular momentum and entropic uncertainty relations for quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    1999-01-01

    Recently the entropic uncertainty relations are obtained in a more general form by using Tsallis-like entropies for the quantum scattering. Hence, using Riesz theorem, the state-independent entropic angle-angular momentum uncertainty relations are proved for the Tsallis-like scattering entropies of spinless particles. The generalized entropic inequalities for the Tsallis-like entropies are presented. The two upper bounds are optimal bounds and can be obtained via Lagrange multipliers by extremizing the Tsallis-like entropies subject to the normalization constraints, respectively. The proof of the lower bound is provided by considering the condition that the angular distribution of probability, P(x) has, everywhere, a finite magnitude. Next, by using the Riesz Theorem a general result was obtained, appearing as inequalities valid for the case of hadron-hadron scattering. An important entropic uncertainty relation for the scattering of spinless particle was thus obtained. For σ el and dσ/dΩ, fixed from experiment, we proved that the optimal scattering entropies are the maximum possible entropies in the scattering process. In as previous paper it was shown that the experimental values of the entropies for the pion--nucleus scatterings are systematically described by the optimal entropies, at all available pion kinetic energies. In this sense the obtained results can also be considered as new experimental signatures for the validity of the principle of minimum distance in space of scattering states. The extension of the optimal state analysis to the generalized non-extensive statistics case, as well as, a test of the entropic inequalities, can be obtained in similar way by using non-extensive optimal entropies. Since this kind of analysis is more involved the numerical examples will be given in a following more extended paper. Finally, we believe that the results obtained here are encouraging for further investigations of the entropic uncertainty relations as well

  3. Maximizing probable oil field profit: uncertainties on well spacing

    International Nuclear Information System (INIS)

    MacKay, J.A.; Lerche, I.

    1997-01-01

    The influence of uncertainties in field development costs, well costs, lifting costs, selling price, discount factor, and oil field reserves are evaluated for their impact on assessing probable ranges of uncertainty on present day worth (PDW), oil field lifetime τ 2/3 , optimum number of wells (OWI), and the minimum (n-) and maximum (n+) number of wells to produce a PDW ≥ O. The relative importance of different factors in contributing to the uncertainties in PDW, τ 2/3 , OWI, nsub(-) and nsub(+) is also analyzed. Numerical illustrations indicate how the maximum PDW depends on the ranges of parameter values, drawn from probability distributions using Monte Carlo simulations. In addition, the procedure illustrates the relative importance of contributions of individual factors to the total uncertainty, so that one can assess where to place effort to improve ranges of uncertainty; while the volatility of each estimate allows one to determine when such effort is needful. (author)

  4. Projecting future air pollution-related mortality under a changing climate: progress, uncertainties and research needs.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Yu, Weiwei; Tong, Shilu

    2015-02-01

    Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. The Sobolev inequality and the Tsallis entropic uncertainty relation

    International Nuclear Information System (INIS)

    Rajagopal, A.K.

    1995-01-01

    The Heisenberg uncertainty relation is expressed in terms of the Tsallis entropies associated with the conjugate coordinate and momentum probability densities. By rewriting this in terms of a positive joint probability distribution suggested by Cohen and coworkers, a different insight into the statistical dependence of the quantum variables is obtained. A discussion of how this improves the previous results on this subject is given. (orig.)

  6. Conditional uncertainty principle

    Science.gov (United States)

    Gour, Gilad; Grudka, Andrzej; Horodecki, Michał; Kłobus, Waldemar; Łodyga, Justyna; Narasimhachar, Varun

    2018-04-01

    We develop a general operational framework that formalizes the concept of conditional uncertainty in a measure-independent fashion. Our formalism is built upon a mathematical relation which we call conditional majorization. We define conditional majorization and, for the case of classical memory, we provide its thorough characterization in terms of monotones, i.e., functions that preserve the partial order under conditional majorization. We demonstrate the application of this framework by deriving two types of memory-assisted uncertainty relations, (1) a monotone-based conditional uncertainty relation and (2) a universal measure-independent conditional uncertainty relation, both of which set a lower bound on the minimal uncertainty that Bob has about Alice's pair of incompatible measurements, conditioned on arbitrary measurement that Bob makes on his own system. We next compare the obtained relations with their existing entropic counterparts and find that they are at least independent.

  7. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed

  8. Observation of quantum-memory-assisted entropic uncertainty relation under open systems, and its steering

    Science.gov (United States)

    Chen, Peng-Fei; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Wang, Dong; Ye, Liu

    2018-01-01

    Quantum objects are susceptible to noise from their surrounding environments, interaction with which inevitably gives rise to quantum decoherence or dissipation effects. In this work, we examine how different types of local noise under an open system affect entropic uncertainty relations for two incompatible measurements. Explicitly, we observe the dynamics of the entropic uncertainty in the presence of quantum memory under two canonical categories of noisy environments: unital (phase flip) and nonunital (amplitude damping). Our study shows that the measurement uncertainty exhibits a non-monotonic dynamical behavior—that is, the amount of the uncertainty will first inflate, and subsequently decrease, with the growth of decoherence strengths in the two channels. In contrast, the uncertainty decreases monotonically with the growth of the purity of the initial state shared in prior. In order to reduce the measurement uncertainty in noisy environments, we put forward a remarkably effective strategy to steer the magnitude of uncertainty by means of a local non-unitary operation (i.e. weak measurement) on the qubit of interest. It turns out that this non-unitary operation can greatly reduce the entropic uncertainty, upon tuning the operation strength. Our investigations might thereby offer an insight into the dynamics and steering of entropic uncertainty in open systems.

  9. Sixth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  10. Uncertainty of Water-hammer Loads for Safety Related Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chan; Yoon, Duk Joo [Korea Hydro and Nuclear Power Co., LT., Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the basic methodology is base on ISO GUM (Guide to the Expression of Uncertainty in Measurements). For a given gas void volumes in the discharge piping, the maximum pressure of water hammer is defined in equation. From equation, uncertainty parameter is selected as U{sub s} (superficial velocity for the specific pipe size and corresponding area) of equation. The main uncertainty parameter (U{sub s}) is estimated by measurement method and Monte Carlo simulation. Two methods are in good agreement with the extended uncertainty. Extended uncertainty of the measurement and Monte Carlo simulation is 1.30 and 1.34 respectively in 95% confidence interval. In 99% confidence interval, the uncertainties are 1.95 and 1.97 respectively. NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the possibility of noncondensable gas accumulation for the Emergency Core Cooling System. Specially, gas accumulation can result in system pressure transient in pump discharge piping at a pump start. Consequently, this evolves into a gas water, a water-hammer event and the force imbalances on the piping segments. In this paper, MCS (Monte Carlo Simulation) method is introduced in estimating the uncertainty of water hammer. The aim is to evaluate the uncertainty of the water hammer estimation results carried out by KHNP CRI in 2013.

  11. Advancing Uncertainty: Untangling and Discerning Related Concepts

    OpenAIRE

    Janice Penrod

    2002-01-01

    Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal in...

  12. Characterizing quantum correlations. Entanglement, uncertainty relations and exponential families

    Energy Technology Data Exchange (ETDEWEB)

    Niekamp, Soenke

    2012-04-20

    This thesis is concerned with different characterizations of multi-particle quantum correlations and with entropic uncertainty relations. The effect of statistical errors on the detection of entanglement is investigated. First, general results on the statistical significance of entanglement witnesses are obtained. Then, using an error model for experiments with polarization-entangled photons, it is demonstrated that Bell inequalities with lower violation can have higher significance. The question for the best observables to discriminate between a state and the equivalence class of another state is addressed. Two measures for the discrimination strength of an observable are defined, and optimal families of observables are constructed for several examples. A property of stabilizer bases is shown which is a natural generalization of mutual unbiasedness. For sets of several dichotomic, pairwise anticommuting observables, uncertainty relations using different entropies are constructed in a systematic way. Exponential families provide a classification of states according to their correlations. In this classification scheme, a state is considered as k-correlated if it can be written as thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-order interactions are constructed, and an algorithm for the computation of the nearest k-correlated state is developed.

  13. Characterizing quantum correlations. Entanglement, uncertainty relations and exponential families

    International Nuclear Information System (INIS)

    Niekamp, Soenke

    2012-01-01

    This thesis is concerned with different characterizations of multi-particle quantum correlations and with entropic uncertainty relations. The effect of statistical errors on the detection of entanglement is investigated. First, general results on the statistical significance of entanglement witnesses are obtained. Then, using an error model for experiments with polarization-entangled photons, it is demonstrated that Bell inequalities with lower violation can have higher significance. The question for the best observables to discriminate between a state and the equivalence class of another state is addressed. Two measures for the discrimination strength of an observable are defined, and optimal families of observables are constructed for several examples. A property of stabilizer bases is shown which is a natural generalization of mutual unbiasedness. For sets of several dichotomic, pairwise anticommuting observables, uncertainty relations using different entropies are constructed in a systematic way. Exponential families provide a classification of states according to their correlations. In this classification scheme, a state is considered as k-correlated if it can be written as thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-order interactions are constructed, and an algorithm for the computation of the nearest k-correlated state is developed.

  14. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  15. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  16. Projected uranium measurement uncertainties for the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Younkin, J.M.

    1979-02-01

    An analysis was made of the uncertainties associated with the measurements of the declared uranium streams in the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The total uncertainty for the GCEP is projected to be from 54 to 108 kg 235 U/year out of a measured total of 200,000 kg 235 U/year. The systematic component of uncertainty of the UF 6 streams is the largest and the dominant contributor to the total uncertainty. A possible scheme for reducing the total uncertainty is given

  17. The uncertainties in estimating measurement uncertainties

    International Nuclear Information System (INIS)

    Clark, J.P.; Shull, A.H.

    1994-01-01

    All measurements include some error. Whether measurements are used for accountability, environmental programs or process support, they are of little value unless accompanied by an estimate of the measurements uncertainty. This fact is often overlooked by the individuals who need measurements to make decisions. This paper will discuss the concepts of measurement, measurements errors (accuracy or bias and precision or random error), physical and error models, measurement control programs, examples of measurement uncertainty, and uncertainty as related to measurement quality. Measurements are comparisons of unknowns to knowns, estimates of some true value plus uncertainty; and are no better than the standards to which they are compared. Direct comparisons of unknowns that match the composition of known standards will normally have small uncertainties. In the real world, measurements usually involve indirect comparisons of significantly different materials (e.g., measuring a physical property of a chemical element in a sample having a matrix that is significantly different from calibration standards matrix). Consequently, there are many sources of error involved in measurement processes that can affect the quality of a measurement and its associated uncertainty. How the uncertainty estimates are determined and what they mean is as important as the measurement. The process of calculating the uncertainty of a measurement itself has uncertainties that must be handled correctly. Examples of chemistry laboratory measurement will be reviewed in this report and recommendations made for improving measurement uncertainties

  18. Uncertainties Related to Extreme Event Statistics of Sewer System Surcharge and Overflow

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Johansen, C.; Thorndahl, Søren Liedtke

    2005-01-01

    Today it is common practice - in the major part of Europe - to base design of sewer systems in urban areas on recommended minimum values of flooding frequencies related to either pipe top level, basement level in buildings or level of road surfaces. Thus storm water runoff in sewer systems is only...... proceeding in an acceptable manner, if flooding of these levels is having an average return period bigger than a predefined value. This practice is also often used in functional analysis of existing sewer systems. If a sewer system can fulfil recommended flooding frequencies or not, can only be verified...... by performing long term simulations - using a sewer flow simulation model - and draw up extreme event statistics from the model simulations. In this context it is important to realize that uncertainties related to the input parameters of rainfall runoff models will give rise to uncertainties related...

  19. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    Science.gov (United States)

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  20. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel

    2017-03-01

    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  1. Quantifying uncertainties of climate signals related to the 11-year solar cycle

    Science.gov (United States)

    Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.

    2017-12-01

    Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the

  2. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  3. Uncertainty analysis of a nondestructive radioassay system for transuranic waste

    International Nuclear Information System (INIS)

    Harker, Y.D.; Blackwood, L.G.; Meachum, T.R.; Yoon, W.Y.

    1996-01-01

    Radioassay of transuranic waste in 207 liter drums currently stored at the Idaho National Engineering Laboratory is achieved using a Passive Active Neutron (PAN) nondestructive assay system. In order to meet data quality assurance requirements for shipping and eventual permanent storage of these drums at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, the total uncertainty of the PAN system measurements must be assessed. In particular, the uncertainty calculations are required to include the effects of variations in waste matrix parameters and related variables on the final measurement results. Because of the complexities involved in introducing waste matrix parameter effects into the uncertainty calculations, standard methods of analysis (e.g., experimentation followed by propagation of errors) could not be implemented. Instead, a modified statistical sampling and verification approach was developed. In this modified approach the total performance of the PAN system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper describes the simulation process and illustrates its application to waste comprised of weapons grade plutonium-contaminated graphite molds

  4. Fisher information, kinetic energy and uncertainty relation inequalities

    International Nuclear Information System (INIS)

    Luo Shunlong

    2002-01-01

    By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)

  5. A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2017-01-01

    Full Text Available The continuous quaternion wavelet transform (CQWT is a generalization of the classical continuous wavelet transform within the context of quaternion algebra. First of all, we show that the directional quaternion Fourier transform (QFT uncertainty principle can be obtained using the component-wise QFT uncertainty principle. Based on this method, the directional QFT uncertainty principle using representation of polar coordinate form is easily derived. We derive a variation on uncertainty principle related to the QFT. We state that the CQWT of a quaternion function can be written in terms of the QFT and obtain a variation on uncertainty principle related to the CQWT. Finally, we apply the extended uncertainty principles and properties of the CQWT to establish logarithmic uncertainty principles related to generalized transform.

  6. Organic and total mercury determination in sediments by cold vapor atomic absorption spectrometry: methodology validation and uncertainty measurements

    Directory of Open Access Journals (Sweden)

    Robson L. Franklin

    2012-01-01

    Full Text Available The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.

  7. Uncertainty contributions to low flow projections in Austria

    Science.gov (United States)

    Parajka, J.; Blaschke, A. P.; Blöschl, G.; Haslinger, K.; Hepp, G.; Laaha, G.; Schöner, W.; Trautvetter, H.; Viglione, A.; Zessner, M.

    2015-11-01

    The main objective of the paper is to understand the contributions to the uncertainty in low flow projections resulting from hydrological model uncertainty and climate projection uncertainty. Model uncertainty is quantified by different parameterizations of a conceptual semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three different decades (1976-1986, 1987-1997, 1998-2008), which allows disentangling the effect of modeling uncertainty and temporal stability of model parameters. Climate projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in Austria. The results indicate that the seasonality of the low flow regime is an important factor affecting the performance of model calibration in the reference period and the uncertainty of Q95 low flow projections in the future period. In Austria, the calibration uncertainty in terms of Q95 is larger in basins with summer low flow regime than in basins with winter low flow regime. Using different calibration periods may result in a range of up to 60 % in simulated Q95 low flows. The low flow projections show an increase of low flows in the Alps, typically in the range of 10-30 % and a decrease in the south-eastern part of Austria mostly in the range -5 to -20 % for the period 2021-2050 relative the reference period 1976-2008. The change in seasonality varies between scenarios, but there is a tendency for earlier low flows in the Northern Alps and later low flows in Eastern Austria. In 85 % of the basins, the uncertainty in Q95 from model calibration is larger than the uncertainty from different climate scenarios. The total uncertainty of Q95 projections is the largest in basins with winter low flow regime and, in some basins, exceeds 60 %. In basins with summer low flows and the total uncertainty is mostly less than 20 %. While the calibration uncertainty dominates over climate

  8. Workshop on Squeezed States and Uncertainty Relations

    International Nuclear Information System (INIS)

    Han, D.; Kim, Y.S.; Zachary, W.W.

    1992-02-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory

  9. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-12-15

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.

  10. Statistical analysis of the uncertainty related to flood hazard appraisal

    Science.gov (United States)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  11. Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.

    Science.gov (United States)

    Spadavecchia, L; Williams, M; Law, B E

    2011-07-01

    We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly

  12. Uncertainty and measurement

    International Nuclear Information System (INIS)

    Landsberg, P.T.

    1990-01-01

    This paper explores how the quantum mechanics uncertainty relation can be considered to result from measurements. A distinction is drawn between the uncertainties obtained by scrutinising experiments and the standard deviation type of uncertainty definition used in quantum formalism. (UK)

  13. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region

    Science.gov (United States)

    Ando, Amy W.; Mallory, Mindy L.

    2012-01-01

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914

  14. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments

    International Nuclear Information System (INIS)

    Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang

    2014-01-01

    The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)

  15. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    Science.gov (United States)

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application

  16. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  17. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  18. How to: understanding SWAT model uncertainty relative to measured results

    Science.gov (United States)

    Watershed models are being relied upon to contribute to most policy-making decisions of watershed management, and the demand for an accurate accounting of complete model uncertainty is rising. Generalized likelihood uncertainty estimation (GLUE) is a widely used method for quantifying uncertainty i...

  19. Delivered dose uncertainty analysis at the tumor apex for ocular brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Larocque, Matthew P.; Jans, Hans-Sonke; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Weis, Ezekiel [Department of Ophthalmology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2016-08-15

    depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.

  20. Uncertainty budget in internal monostandard NAA for small and large size samples analysis

    International Nuclear Information System (INIS)

    Dasari, K.B.; Acharya, R.

    2014-01-01

    Total uncertainty budget evaluation on determined concentration value is important under quality assurance programme. Concentration calculation in NAA or carried out by relative NAA and k0 based internal monostandard NAA (IM-NAA) method. IM-NAA method has been used for small and large sample analysis of clay potteries. An attempt was made to identify the uncertainty components in IM-NAA and uncertainty budget for La in both small and large size samples has been evaluated and compared. (author)

  1. Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain

    2015-09-01

    Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.

  2. Who am I? The relationship between self-concept uncertainty and materialism.

    Science.gov (United States)

    Noguti, Valeria; Bokeyar, Alexandra L

    2014-10-01

    It is well accepted that materialism may result in a number of negative consequences, hence the importance of improving its understanding. In this paper, we propose that materialism negatively relates to self-concept uncertainty. Uncertainty about oneself is aversive and those feeling uncertain may use the possession of material objects as a way to reduce the uncertainty. Inasmuch as material objects can serve as concrete signs of self-worth, self-concept uncertainty can therefore relate to more materialism. Over two studies, one in Australia and the other in the US, with a total of 390 participants, our research demonstrates that lower clarity about one's self-concept associates with higher levels of materialism. While this result holds for both genders, this relationship is considerably stronger for women compared to men. We also find that lower self-concept clarity relates to higher compulsive buying. We further demonstrate that materialism relates to higher positive moods during shopping, and also relates to higher negative moods after shopping, more notably negative moods towards what was purchased. This effect is significant even when controlling for general affective states. © 2014 International Union of Psychological Science.

  3. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.

  4. Managing uncertainty in multiple-criteria decision making related to sustainability assessment

    DEFF Research Database (Denmark)

    Dorini, Gianluca Fabio; Kapelan, Zoran; Azapagic, Adisa

    2011-01-01

    In real life, decisions are usually made by comparing different options with respect to several, often conflicting criteria. This requires subjective judgements on the importance of different criteria by DMs and increases uncertainty in decision making. This article demonstrates how uncertainty can......: (1) no uncertainty, (2) uncertainty in data/models and (3) uncertainty in models and decision-makers’ preferences. The results shows how characterising and propagating uncertainty can help increase the effectiveness of multi-criteria decision making processes and lead to more informed decision....... be handled in multi-criteria decision situations using Compromise Programming, one of the Multi-criteria Decision Analysis (MCDA) techniques. Uncertainty is characterised using a probabilistic approach and propagated using a Monte Carlo simulation technique. The methodological approach is illustrated...

  5. Concept of uncertainty in relation to the foresight research

    Directory of Open Access Journals (Sweden)

    Magruk Andrzej

    2017-03-01

    Full Text Available Uncertainty is one of the most important features of many areas of social and economic life, especially in the forward-looking context. On the one hand, the degree of uncertainty is associated with the objective essence of randomness of the phenomenon, and on the other, with the subjective perspective of a man. Future-oriented perception of human activities is laden with an incomplete specificity of the analysed phenomena, their volatility, and lack of continuity. A man is unable to determine, with complete certainty, the further course of these phenomena. According to the author of this article, in order to significantly reduce the uncertainty while making strategic decisions in a complex environment, we should focus our actions on the future through systemic research of foresight. This article attempts to answer the following research questions: 1 What is the relationship between foresight studies in the system perspective to studies of the uncertainty? 2 What classes of foresight methods enable the research of uncertainty in the process of system inquiry of the future? This study conducted deductive reasoning based on the results of the analysis methods and criticism of literature.

  6. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  7. NIST ThermoData Engine: Extension to Solvent Design and Propagation of Uncertainties for Process Simulation

    DEFF Research Database (Denmark)

    Diky, Vladimir; Chirico, Robert D.; Muzny, Chris

    ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured ...... uncertainties, curve deviations, and inadequacies of the models. Uncertainty analysis shows relative contributions to the total uncertainty from each component and pair of components....

  8. Estimation of uncertainty of a reference material for proficiency testing for the determination of total mercury in fish in natura; Estimativa da incerteza de um material de referencia para ensaios de proficiencia para a determinacao de mercurio total em pescado in natura

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.V.; Sarkis, J.E.S.; Ulrich, J.C.; Hortellani, M.A., E-mail: santana-luciana@ig.com.br, E-mail: jesarkis@ipen.br, E-mail: jculrich@ipen.br, E-mail: mahortel@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This study presents the uncertainty estimate for characterization, study of homogeneity and stability study obtained in the preparation of a reference material for the determination of total mercury in fish fresh muscle tissue for proficiency testing. The test results for stability were obtained by linear regression and to homogeneity study was obtained by ANOVA-one way showed that the material is homogeneous and stable. The value of total mercury concentration with expanded uncertainty for the material was 0,294 ± 0,089 μg g{sup -}. (author)

  9. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  10. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  11. High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy

    Science.gov (United States)

    Krämer, J.; König, K.; Geppert, Ch; Imgram, P.; Maaß, B.; Meisner, J.; Otten, E. W.; Passon, S.; Ratajczyk, T.; Ullmann, J.; Nörtershäuser, W.

    2018-04-01

    We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the 4s ^2S1/2 → 4p ^2P3/2 transition of {\\hspace{0pt}}40Ca+ involving the 3d ^2D5/2 metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between  -5 kV and  -19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible with the uncertainty limits of the high-voltage dividers and demonstrate an unprecedented (factor of 20) increase in the precision of direct laser-based high-voltage measurements.

  12. Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: Detection of non-Gaussian entangled states

    International Nuclear Information System (INIS)

    Nha, Hyunchul; Kim, Jaewan

    2006-01-01

    We derive a class of inequalities, from the uncertainty relations of the su(1,1) and the su(2) algebra in conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequalities are presented in terms of the su(2) operators J x =(a † b+ab † )/2, J y =(a † b-ab † )/2i, and the total photon number a +N b >. They include as special cases the inequality derived by Hillery and Zubairy [Phys. Rev. Lett. 96, 050503 (2006)], and the one by Agarwal and Biswas [New J. Phys. 7, 211 (2005)]. In particular, optimization over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su(2) minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially the one using linear optical devices and photodetectors

  13. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  14. Reducing, Maintaining, or Escalating Uncertainty? The Development and Validation of Four Uncertainty Preference Scales Related to Cancer Information Seeking and Avoidance.

    Science.gov (United States)

    Carcioppolo, Nick; Yang, Fan; Yang, Qinghua

    2016-09-01

    Uncertainty is a central characteristic of many aspects of cancer prevention, screening, diagnosis, and treatment. Brashers's (2001) uncertainty management theory details the multifaceted nature of uncertainty and describes situations in which uncertainty can both positively and negatively affect health outcomes. The current study extends theory on uncertainty management by developing four scale measures of uncertainty preferences in the context of cancer. Two national surveys were conducted to validate the scales and assess convergent and concurrent validity. Results support the factor structure of each measure and provide general support across multiple validity assessments. These scales can advance research on uncertainty and cancer communication by providing researchers with measures that address multiple aspects of uncertainty management.

  15. On total noncommutativity in quantum mechanics

    Science.gov (United States)

    Lahti, Pekka J.; Ylinen, Kari

    1987-11-01

    It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.

  16. Health information seeking and the World Wide Web: an uncertainty management perspective.

    Science.gov (United States)

    Rains, Stephen A

    2014-01-01

    Uncertainty management theory was applied in the present study to offer one theoretical explanation for how individuals use the World Wide Web to acquire health information and to help better understand the implications of the Web for information seeking. The diversity of information sources available on the Web and potential to exert some control over the depth and breadth of one's information-acquisition effort is argued to facilitate uncertainty management. A total of 538 respondents completed a questionnaire about their uncertainty related to cancer prevention and information-seeking behavior. Consistent with study predictions, use of the Web for information seeking interacted with respondents' desired level of uncertainty to predict their actual level of uncertainty about cancer prevention. The results offer evidence that respondents who used the Web to search for cancer information were better able than were respondents who did not seek information to achieve a level of uncertainty commensurate with the level of uncertainty they desired.

  17. Management of uncertainties related to renewable generation participation in electricity markets

    International Nuclear Information System (INIS)

    Bourry, Franck

    2009-01-01

    The operation of Renewable Energy Sources (RES) units, such as wind or solar plants, is intrinsically dependent on the variability of the wind or solar resource. This makes large scale integration of RES into power systems particularly challenging. The research work in the frame of this thesis focuses on the participation of renewable power producers in liberalized electricity markets, and more precisely on the management of the regulation costs incurred by the producer for any imbalance between the contracted and delivered energy. In such context, the main objective of the thesis is to model and evaluate different methods for the management of imbalance penalties related to the participation of renewable power producers in short-term electricity markets. First, the thesis gives a classification of the existing solutions for the management of these imbalance penalties. A distinction is made between physical solutions which are related to the generation portfolio, and financial solutions which are based on market products. The physical solutions are considered in the frame of a Virtual Power Plant. A generic model of the imbalance penalty resulting from the use of physical or financial solutions is formulated, based on a market rule model. Then, the decision-making problem relative to both physical and financial solutions is formulated as an optimization problem under uncertainty. The approach is based on a loss function derived from the generic imbalance penalty model. Finally, the uncertainty related to the RES production is considered in the risk-based decision making process. The methods are illustrated using case studies based on real world data. (author)

  18. Sampling-based nuclear data uncertainty quantification for continuous energy Monte-Carlo codes

    International Nuclear Information System (INIS)

    Zhu, T.

    2015-01-01

    nuclear data uncertainty format. The first stage of NUSS development focuses on applying simple random sampling (SRS) algorithm for uncertainty quantification. The effect of combining multigroup and ACE format on the propagated nuclear data uncertainties is assessed. It is found that the number of energy groups has minor impact on the precision of κ_e_f_f uncertainty as long as the group structure reflects the neutron flux spectrum. Successful verification of the NUSS tool for propagating nuclear data uncertainties through MCNPX and quantifying MCNPX output parameter uncertainties is obtained. The second stage of NUSS development is motivated by the need for an efficient sensitivity analysis methodology based on global sampling and coupled with MCNPX. For complex systems, the computing time for obtaining a breakdown of total uncertainty contributions by individual inputs becomes prohibitive when many MCNPX runs are required. The capability of determining simultaneously the total uncertainty and individual nuclear data uncertainty contributions is thus researched and implemented into the NUSS-RF tool. It is based on the Random Balance Design algorithm and is validated by three mathematical test cases for both linear and nonlinear models and correlated inputs. NUSS-RF is then applied to demonstrate the efficient decomposition of total uncertainty by individual nuclear data. However an attempt to decompose total uncertainty into individual contributions using the conventional S/U method shows different decomposition results when the inputs are correlated. The investigation and findings of this PhD work are valuable because of the introduction of global sensitivity analysis into the existing repertoire of nuclear data uncertainty quantification methods. The NUSS tool is expected to be useful for expanding the types of MCNPX-related applications, such as an upgrade to the current PSI criticality safety assessment methodology for Swiss application, for which nuclear data

  19. Sampling-based nuclear data uncertainty quantification for continuous energy Monte-Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T.

    2015-07-01

    nuclear data uncertainty format. The first stage of NUSS development focuses on applying simple random sampling (SRS) algorithm for uncertainty quantification. The effect of combining multigroup and ACE format on the propagated nuclear data uncertainties is assessed. It is found that the number of energy groups has minor impact on the precision of κ{sub eff} uncertainty as long as the group structure reflects the neutron flux spectrum. Successful verification of the NUSS tool for propagating nuclear data uncertainties through MCNPX and quantifying MCNPX output parameter uncertainties is obtained. The second stage of NUSS development is motivated by the need for an efficient sensitivity analysis methodology based on global sampling and coupled with MCNPX. For complex systems, the computing time for obtaining a breakdown of total uncertainty contributions by individual inputs becomes prohibitive when many MCNPX runs are required. The capability of determining simultaneously the total uncertainty and individual nuclear data uncertainty contributions is thus researched and implemented into the NUSS-RF tool. It is based on the Random Balance Design algorithm and is validated by three mathematical test cases for both linear and nonlinear models and correlated inputs. NUSS-RF is then applied to demonstrate the efficient decomposition of total uncertainty by individual nuclear data. However an attempt to decompose total uncertainty into individual contributions using the conventional S/U method shows different decomposition results when the inputs are correlated. The investigation and findings of this PhD work are valuable because of the introduction of global sensitivity analysis into the existing repertoire of nuclear data uncertainty quantification methods. The NUSS tool is expected to be useful for expanding the types of MCNPX-related applications, such as an upgrade to the current PSI criticality safety assessment methodology for Swiss application, for which nuclear data

  20. Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties

    International Nuclear Information System (INIS)

    Ke, Jing; McNeil, Michael; Price, Lynn; Khanna, Nina Zheng; Zhou, Nan

    2013-01-01

    In 2010, China’s cement output was 1.9 Gt, which accounted for 56% of world cement production. Total carbon dioxide (CO 2 ) emissions from Chinese cement production could therefore exceed 1.2 Gt. The magnitude of emissions from this single industrial sector in one country underscores the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO 2 emissions from cement production, including the three main components of emissions: direct emissions from the calcination process for clinker production, direct emissions from fossil fuel combustion and indirect emissions from electricity consumption. This paper examines in detail the differences between common methodologies for each emission component, and considers their effect on total emissions. We then evaluate the overall level of uncertainty implied by the differences among methodologies according to recommendations of the Joint Committee for Guides in Metrology. We find a relative uncertainty in China’s cement-related emissions in the range of 10 to 18%. This result highlights the importance of understanding and refining methods of estimating emissions in this important industrial sector. - Highlights: ► CO 2 emission estimates are critical given China’s cement production scale. ► Methodological differences for emission components are compared. ► Results show relative uncertainty in China’s cement-related emissions of about 10%. ► IPCC Guidelines and CSI Cement CO 2 and Energy Protocol are recommended

  1. Resolving uncertainty in chemical speciation determinations

    Science.gov (United States)

    Smith, D. Scott; Adams, Nicholas W. H.; Kramer, James R.

    1999-10-01

    Speciation determinations involve uncertainty in system definition and experimentation. Identification of appropriate metals and ligands from basic chemical principles, analytical window considerations, types of species and checking for consistency in equilibrium calculations are considered in system definition uncertainty. A systematic approach to system definition limits uncertainty in speciation investigations. Experimental uncertainty is discussed with an example of proton interactions with Suwannee River fulvic acid (SRFA). A Monte Carlo approach was used to estimate uncertainty in experimental data, resulting from the propagation of uncertainties in electrode calibration parameters and experimental data points. Monte Carlo simulations revealed large uncertainties present at high (>9-10) and low (monoprotic ligands. Least-squares fit the data with 21 sites, whereas linear programming fit the data equally well with 9 sites. Multiresponse fitting, involving simultaneous fluorescence and pH measurements, improved model discrimination. Deconvolution of the excitation versus emission fluorescence surface for SRFA establishes a minimum of five sites. Diprotic sites are also required for the five fluorescent sites, and one non-fluorescent monoprotic site was added to accommodate the pH data. Consistent with greater complexity, the multiresponse method had broader confidence limits than the uniresponse methods, but corresponded better with the accepted total carboxylic content for SRFA. Overall there was a 40% standard deviation in total carboxylic content for the multiresponse fitting, versus 10% and 1% for least-squares and linear programming, respectively.

  2. Stakeholder relations in the oil sands : managing uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Alberta's oil sands are now at the crossroads of a series of significant and complex global issues that will require careful negotiation by all stakeholders involved in the oil sands industry. This paper discussed methods of managing uncertainty and risk related to the oil sands industry's agenda for the future. Oil sands developers must continue to secure permission from communities and other key stakeholders in order to develop oil sand projects. Stakeholder relations between oil sands operators, First Nations, and Metis Nation communities must ensure that respect is maintained while environmental impacts are minimized and long-term economic benefits are secured for all parties. Environmental non-governmental organizations (ENGOs) must ensure that oil sands resources are developed responsibly, and that environmental standards are maintained. Seven key shifts in stakeholder relations resulting from the recent economic crisis were identified. These included (1) withdrawal from the multi-stakeholder process, (2) increased focus on government to demonstrate policy leadership, (3) a stronger push from ENGOs to express environmental concerns, (4) global lobby and public relations efforts from ENGOs, (5) companies retreating to local community stakeholders, (6) more active demands from First Nations and Metis Nations groups, and (7) companies challenging ENGO campaigns. The study concluded by suggesting that government leadership is needed to clear policy and regulatory frameworks for Canada's oil sands.

  3. Analysis of uncertainties in the IAEA/WHO TLD postal dose audit system

    Energy Technology Data Exchange (ETDEWEB)

    Izewska, J. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)], E-mail: j.izewska@iaea.org; Hultqvist, M. [Department of Medical Radiation Physics, Karolinska Institute, Stockholm University, Stockholm (Sweden); Bera, P. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)

    2008-02-15

    The International Atomic Energy Agency (IAEA) and the World Health Organisation (WHO) operate the IAEA/WHO TLD postal dose audit programme. Thermoluminescence dosimeters (TLDs) are used as transfer devices in this programme. In the present work the uncertainties in the dose determination from TLD measurements have been evaluated. The analysis of uncertainties comprises uncertainties in the calibration coefficient of the TLD system and uncertainties in factors correcting for dose response non-linearity, fading of TL signal, energy response and influence of TLD holder. The individual uncertainties have been combined to estimate the total uncertainty in the dose evaluated from TLD measurements. The combined relative standard uncertainty in the dose determined from TLD measurements has been estimated to be 1.2% for irradiations with Co-60 {gamma}-rays and 1.6% for irradiations with high-energy X-rays. Results from irradiations by the Bureau international des poids et mesures (BIPM), Primary Standard Dosimetry Laboratories (PSDLs) and Secondary Standards Dosimetry Laboratories (SSDLs) compare favourably with the estimated uncertainties, whereas TLD results of radiotherapy centres show higher standard deviations than those derived theoretically.

  4. Aleatoric and epistemic uncertainties in sampling based nuclear data uncertainty and sensitivity analyses

    International Nuclear Information System (INIS)

    Zwermann, W.; Krzykacz-Hausmann, B.; Gallner, L.; Klein, M.; Pautz, A.; Velkov, K.

    2012-01-01

    Sampling based uncertainty and sensitivity analyses due to epistemic input uncertainties, i.e. to an incomplete knowledge of uncertain input parameters, can be performed with arbitrary application programs to solve the physical problem under consideration. For the description of steady-state particle transport, direct simulations of the microscopic processes with Monte Carlo codes are often used. This introduces an additional source of uncertainty, the aleatoric sampling uncertainty, which is due to the randomness of the simulation process performed by sampling, and which adds to the total combined output sampling uncertainty. So far, this aleatoric part of uncertainty is minimized by running a sufficiently large number of Monte Carlo histories for each sample calculation, thus making its impact negligible as compared to the impact from sampling the epistemic uncertainties. Obviously, this process may cause high computational costs. The present paper shows that in many applications reliable epistemic uncertainty results can also be obtained with substantially lower computational effort by performing and analyzing two appropriately generated series of samples with much smaller number of Monte Carlo histories each. The method is applied along with the nuclear data uncertainty and sensitivity code package XSUSA in combination with the Monte Carlo transport code KENO-Va to various critical assemblies and a full scale reactor calculation. It is shown that the proposed method yields output uncertainties and sensitivities equivalent to the traditional approach, with a high reduction of computing time by factors of the magnitude of 100. (authors)

  5. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  6. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field

    Science.gov (United States)

    Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu

    2017-06-01

    The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.

  7. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    Science.gov (United States)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  8. Sensitivity, uncertainty assessment, and target accuracies related to radiotoxicity evaluation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.; Hill, R.N.

    1994-01-01

    Time-dependent sensitivity techniques, which have been used in the past for standard reactor applications, are adapted to calculate the impact of data uncertainties and to estimate target data accuracies in radiotoxicity evaluations. The methodology is applied to different strategies of radioactive waste management connected with the European Fast Reactor and the Integral Fast Reactor fuel cycles. Results are provided in terms of sensitivity coefficients of basic data (cross sections and decay constants), uncertainties of global radiotoxicity at different times of storing after discharge, and target data accuracies needed to satisfy maximum uncertainty limits

  9. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    Science.gov (United States)

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  10. Total-System Performance Assessment for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Wilson, M.L.

    2001-01-01

    Yucca Mountain, Nevada, is under consideration as a potential site for a repository for high-level radioactive waste. Total-system performance-assessment simulations are performed to evaluate the safety of the site. Features, events, and processes have been systematically evaluated to determine which ones are significant to the safety assessment. Computer models of the disposal system have been developed within a probabilistic framework, including both engineered and natural components. Selected results are presented for three different total-system simulations, and the behavior of the disposal system is discussed. The results show that risk is dominated by igneous activity at early times, because the robust waste-package design prevents significant nominal (non-disruptive) releases for tens of thousands of years or longer. The uncertainty in the nominal performance is dominated by uncertainties related to waste-package corrosion at early times and by uncertainties in the natural system, most significantly infiltration, at late times

  11. Value change in oil and gas production: V. Incorporation of uncertainties and determination of relative importance

    International Nuclear Information System (INIS)

    Lerche, I.; Noeth, S.

    2002-01-01

    The influence of two fundamentally different types of uncertainty on the value of oil field production are investigated here. First considered is the uncertainty caused by the fact that the expected value estimate is not one of the possible outcomes. To correctly allow for the risk attendant upon using the expected value as a measure of worth, even with statistically sharp parameters, one needs to incorporate the uncertainty of the expected value. Using a simple example we show how such incorporation allows for a clear determination of the relative risk of projects that may have the same expected value but very different risks. We also show how each project can be risked on its own using the expected value and variance. This uncertainty type is due to the possible pathways for different outcomes even when parameters categorizing the system are taken to be known. Second considered is the risk due to the fact that parameters in oil field estimates are just estimates and, as such, have their own intrinsic errors that influence the possible outcomes and make them less certain. This sort of risk depends upon the uncertainty of each parameter, and also the type of distribution the parameters are taken to be drawn from. In addition, not all uncertainties in parameters values are of equal importance in influencing an outcome probability. We show how can determine the relative importance for the parameters and so determine where to place effort to resolve the dominant contributions to risk if it is possible to do so. Considerations of whether to acquire new information, and also whether to undertake further studies under such an uncertain environment, are used as vehicles to address these concerns of risk due to uncertainty. In general, an oil field development project has to contend with all the above types of risk and uncertainty. It is therefore of importance to have quantitative measures of risk so that one can compare and contrast the various effects, and so that

  12. Effect of minimal length uncertainty on the mass-radius relation of white dwarfs

    Science.gov (United States)

    Mathew, Arun; Nandy, Malay K.

    2018-06-01

    Generalized uncertainty relation that carries the imprint of quantum gravity introduces a minimal length scale into the description of space-time. It effectively changes the invariant measure of the phase space through a factor (1 + βp2) - 3 so that the equation of state for an electron gas undergoes a significant modification from the ideal case. It has been shown in the literature (Rashidi 2016) that the ideal Chandrasekhar limit ceases to exist when the modified equation of state due to the generalized uncertainty is taken into account. To assess the situation in a more complete fashion, we analyze in detail the mass-radius relation of Newtonian white dwarfs whose hydrostatic equilibria are governed by the equation of state of the degenerate relativistic electron gas subjected to the generalized uncertainty principle. As the constraint of minimal length imposes a severe restriction on the availability of high momentum states, it is speculated that the central Fermi momentum cannot have values arbitrarily higher than pmax ∼β - 1 / 2. When this restriction is imposed, it is found that the system approaches limiting mass values higher than the Chandrasekhar mass upon decreasing the parameter β to a value given by a legitimate upper bound. Instead, when the more realistic restriction due to inverse β-decay is considered, it is found that the mass and radius approach the values 1.4518 M⊙ and 601.18 km near the legitimate upper bound for the parameter β.

  13. Group-Contribution based Property Estimation and Uncertainty analysis for Flammability-related Properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Marcarie, Camille; Abildskov, Jens

    2016-01-01

    regression and outlier treatment have been applied to achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of estimated parameters was performed. Therefore, every estimated property value of the flammability-related properties is reported together with its corresponding 95......%-confidence interval of the prediction. Compared to existing models the developed ones have a higher accuracy, are simple to apply and provide uncertainty information on the calculated prediction. The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2...

  14. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  15. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  16. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  17. Language of Uncertainty: the Expression of Decisional Conflict Related to Skin Cancer Prevention Recommendations.

    Science.gov (United States)

    Strekalova, Yulia A; James, Vaughan S

    2017-09-01

    User-generated information on the Internet provides opportunities for the monitoring of health information consumer attitudes. For example, information about cancer prevention may cause decisional conflict. Yet posts and conversations shared by health information consumers online are often not readily actionable for interpretation and decision-making due to their unstandardized format. This study extends prior research on the use of natural language as a predictor of consumer attitudes and provides a link to decision-making by evaluating the predictive role of uncertainty indicators expressed in natural language. Analyzed data included free-text comments and structured scale responses related to information about skin cancer prevention options. The study identified natural language indicators of uncertainty and showed that it can serve as a predictor of decisional conflict. The natural indicators of uncertainty reported here can facilitate the monitoring of health consumer perceptions about cancer prevention recommendations and inform education and communication campaign planning and evaluation.

  18. Development of Property Models with Uncertainty Estimate for Process Design under Uncertainty

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Sarup, Bent; Abildskov, Jens

    more reliable predictions with a new and improved set of model parameters for GC (group contribution) based and CI (atom connectivity index) based models and to quantify the uncertainties in the estimated property values from a process design point-of-view. This includes: (i) parameter estimation using....... The comparison of model prediction uncertainties with reported range of measurement uncertainties is presented for the properties with related available data. The application of the developed methodology to quantify the effect of these uncertainties on the design of different unit operations (distillation column......, the developed methodology can be used to quantify the sensitivity of process design to uncertainties in property estimates; obtain rationally the risk/safety factors in process design; and identify additional experimentation needs in order to reduce most critical uncertainties....

  19. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    Science.gov (United States)

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    Science.gov (United States)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance

  1. [Influence of Uncertainty and Uncertainty Appraisal on Self-management in Hemodialysis Patients].

    Science.gov (United States)

    Jang, Hyung Suk; Lee, Chang Suk; Yang, Young Hee

    2015-04-01

    This study was done to examine the relation of uncertainty, uncertainty appraisal, and self-management in patients undergoing hemodialysis, and to identify factors influencing self-management. A convenience sample of 92 patients receiving hemodialysis was selected. Data were collected using a structured questionnaire and medical records. The collected data were analyzed using descriptive statistics, t-test, ANOVA, Pearson correlations and multiple regression analysis with the SPSS/WIN 20.0 program. The participants showed a moderate level of uncertainty with the highest score being for ambiguity among the four uncertainty subdomains. Scores for uncertainty danger or opportunity appraisals were under the mid points. The participants were found to perform a high level of self-management such as diet control, management of arteriovenous fistula, exercise, medication, physical management, measurements of body weight and blood pressure, and social activity. The self-management of participants undergoing hemodialysis showed a significant relationship with uncertainty and uncertainty appraisal. The significant factors influencing self-management were uncertainty, uncertainty opportunity appraisal, hemodialysis duration, and having a spouse. These variables explained 32.8% of the variance in self-management. The results suggest that intervention programs to reduce the level of uncertainty and to increase the level of uncertainty opportunity appraisal among patients would improve the self-management of hemodialysis patients.

  2. Data related uncertainty in near-surface vulnerability assessments for agrochemicals in the San Joaquin Valley.

    Science.gov (United States)

    Loague, Keith; Blanke, James S; Mills, Melissa B; Diaz-Diaz, Ricardo; Corwin, Dennis L

    2012-01-01

    Precious groundwater resources across the United States have been contaminated due to decades-long nonpoint-source applications of agricultural chemicals. Assessing the impact of past, ongoing, and future chemical applications for large-scale agriculture operations is timely for designing best-management practices to prevent subsurface pollution. Presented here are the results from a series of regional-scale vulnerability assessments for the San Joaquin Valley (SJV). Two relatively simple indices, the retardation and attenuation factors, are used to estimate near-surface vulnerabilities based on the chemical properties of 32 pesticides and the variability of both soil characteristics and recharge rates across the SJV. The uncertainties inherit to these assessments, derived from the uncertainties within the chemical and soil data bases, are estimated using first-order analyses. The results are used to screen and rank the chemicals based on mobility and leaching potential, without and with consideration of data-related uncertainties. Chemicals of historic high visibility in the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene dibromide, and simazine) are ranked in the top half of those considered. Vulnerability maps generated for atrazine and DBCP, featured for their legacy status in the study area, clearly illustrate variations within and across the assessments. For example, the leaching potential is greater for DBCP than for atrazine, the leaching potential for DBCP is greater for the spatially variable recharge values than for the average recharge rate, and the leaching potentials for both DBCP and atrazine are greater for the annual recharge estimates than for the monthly recharge estimates. The data-related uncertainties identified in this study can be significant, targeting opportunities for improving future vulnerability assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  3. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    Science.gov (United States)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  4. Uncertainty Evaluation with Multi-Dimensional Model of LBLOCA in OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jieun; Oh, Deog Yeon; Seul, Kwang-Won; Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    KINS has used KINS-REM (KINS-Realistic Evaluation Methodology) which developed for Best- Estimate (BE) calculation and uncertainty quantification for regulatory audit. This methodology has been improved continuously by numerous studies, such as uncertainty parameters and uncertainty ranges. In this study, to evaluate the applicability of improved KINS-REM for OPR1000 plant, uncertainty evaluation with multi-dimensional model for confirming multi-dimensional phenomena was conducted with MARS-KS code. In this study, the uncertainty evaluation with multi- dimensional model of OPR1000 plant was conducted for confirming the applicability of improved KINS- REM The reactor vessel modeled using MULTID component of MARS-KS code, and total 29 uncertainty parameters were considered by 124 sampled calculations. Through 124 calculations using Mosaique program with MARS-KS code, peak cladding temperature was calculated and final PCT was determined by the 3rd order Wilks' formula. The uncertainty parameters which has strong influence were investigated by Pearson coefficient analysis. They were mostly related with plant operation and fuel material properties. Evaluation results through the 124 calculations and sensitivity analysis show that improved KINS-REM could be reasonably applicable for uncertainty evaluation with multi-dimensional model calculations of OPR1000 plants.

  5. Review of studies related to uncertainty in risk analsis

    International Nuclear Information System (INIS)

    Rish, W.R.; Marnicio, R.J.

    1988-08-01

    The Environmental Protection Agency's Office of Radiation Programs (ORP) is responsible for regulating on a national level the risks associated with technological sources of ionizing radiation in the environment. A critical activity of the ORP is analyzing and evaluating risk. The ORP believes that the analysis of uncertainty should be an integral part of any risk assessment; therefore, the ORP has initiated a project to develop framework for the treatment of uncertainty in risk analysis. Summaries of recent studies done in five areas of study are presented

  6. Information Seeking in Uncertainty Management Theory: Exposure to Information About Medical Uncertainty and Information-Processing Orientation as Predictors of Uncertainty Management Success.

    Science.gov (United States)

    Rains, Stephen A; Tukachinsky, Riva

    2015-01-01

    Uncertainty management theory outlines the processes through which individuals cope with health-related uncertainty. Information seeking has been frequently documented as an important uncertainty management strategy. The reported study investigates exposure to specific types of medical information during a search, and one's information-processing orientation as predictors of successful uncertainty management (i.e., a reduction in the discrepancy between the level of uncertainty one feels and the level one desires). A lab study was conducted in which participants were primed to feel more or less certain about skin cancer and then were allowed to search the World Wide Web for skin cancer information. Participants' search behavior was recorded and content analyzed. The results indicate that exposure to two health communication constructs that pervade medical forms of uncertainty (i.e., severity and susceptibility) and information-processing orientation predicted uncertainty management success.

  7. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  8. Quantifying uncertainties in precipitation: a case study from Greece

    Directory of Open Access Journals (Sweden)

    C. Anagnostopoulou

    2008-04-01

    Full Text Available The main objective of the present study was the examination and the quantification of the uncertainties in the precipitation time series over the Greek area, for a 42-year time period. The uncertainty index applied to the rainfall data is a combination (total of the departures of the rainfall season length, of the median data of the accumulated percentages and of the total amounts of rainfall. Results of the study indicated that all the stations are characterized, on an average basis, by medium to high uncertainty. The stations that presented an increasing rainfall uncertainty were the ones located mainly to the continental parts of the study region. From the temporal analysis of the uncertainty index, it was demonstrated that the greatest percentage of the years, for all the stations time-series, was characterized by low to high uncertainty (intermediate categories of the index. Most of the results of the uncertainty index for the Greek region are similar to the corresponding results of various stations all over the European region.

  9. Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts; a comparison, with application to Meuse and Rhine

    Science.gov (United States)

    Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.

    2017-12-01

    Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability

  10. Ruminations On NDA Measurement Uncertainty Compared TO DA Uncertainty

    International Nuclear Information System (INIS)

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-01-01

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  11. RUMINATIONS ON NDA MEASUREMENT UNCERTAINTY COMPARED TO DA UNCERTAINTY

    Energy Technology Data Exchange (ETDEWEB)

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-06-17

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  12. Review of studies related to uncertainty in risk analsis

    Energy Technology Data Exchange (ETDEWEB)

    Rish, W.R.; Marnicio, R.J.

    1988-08-01

    The Environmental Protection Agency's Office of Radiation Programs (ORP) is responsible for regulating on a national level the risks associated with technological sources of ionizing radiation in the environment. A critical activity of the ORP is analyzing and evaluating risk. The ORP believes that the analysis of uncertainty should be an integral part of any risk assessment; therefore, the ORP has initiated a project to develop framework for the treatment of uncertainty in risk analysis. Summaries of recent studies done in five areas of study are presented.

  13. Uncertainty enabled Sensor Observation Services

    Science.gov (United States)

    Cornford, Dan; Williams, Matthew; Bastin, Lucy

    2010-05-01

    Almost all observations of reality are contaminated with errors, which introduce uncertainties into the actual observation result. Such uncertainty is often held to be a data quality issue, and quantification of this uncertainty is essential for the principled exploitation of the observations. Many existing systems treat data quality in a relatively ad-hoc manner, however if the observation uncertainty is a reliable estimate of the error on the observation with respect to reality then knowledge of this uncertainty enables optimal exploitation of the observations in further processes, or decision making. We would argue that the most natural formalism for expressing uncertainty is Bayesian probability theory. In this work we show how the Open Geospatial Consortium Sensor Observation Service can be implemented to enable the support of explicit uncertainty about observations. We show how the UncertML candidate standard is used to provide a rich and flexible representation of uncertainty in this context. We illustrate this on a data set of user contributed weather data where the INTAMAP interpolation Web Processing Service is used to help estimate the uncertainty on the observations of unknown quality, using observations with known uncertainty properties. We then go on to discuss the implications of uncertainty for a range of existing Open Geospatial Consortium standards including SWE common and Observations and Measurements. We discuss the difficult decisions in the design of the UncertML schema and its relation and usage within existing standards and show various options. We conclude with some indications of the likely future directions for UncertML in the context of Open Geospatial Consortium services.

  14. Treatment and reporting of uncertainties for environmental radiation measurements

    International Nuclear Information System (INIS)

    Colle, R.

    1980-01-01

    Recommendations for a practical and uniform method for treating and reporting uncertainties in environmental radiation measurements data are presented. The method requires that each reported measurement result include the value, a total propagated random uncertainty expressed as the standard deviation, and a combined overall uncertainty. The uncertainty assessment should be based on as nearly a complete assessment as possible and should include every conceivable or likely source of inaccuracy in the result. Guidelines are given for estimating random and systematic uncertainty components, and for propagating and combining them to form an overall uncertainty

  15. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  16. Validation of an uncertainty of illness scale adapted to use with Spanish emergency department patients and their accompanying relatives or friends.

    Science.gov (United States)

    Ruymán Brito-Brito, Pedro; García-Tesouro, Esther; Fernández-Gutiérrez, Domingo Ángel; García-Hernández, Alfonso Miguel; Fernández-Gutiérrez, Raquel; Burillo-Putze, Guillermo

    2018-01-01

    To validate a Spanish adaptation of the Mishel Uncertainty of Illness Scale for use with emergency-department (ED) patients and their accompanying relatives or friends (the UIS-ED). We first developed a version of the questionnaire for Spanish ED situations. Next we assessed the content validity index for each of its items, revised it, and reassessed its face validity to produce a second version, which we then piloted in 20 hospital ED patients. A third revised version was then validated in a population of 320 adults (160 patients and 160 accompanying persons) who attended the ED between November 2015 and September 2016. The 12-item UIS-ED (60 points) was administered by 2 nurses while the patients and accompanying persons were in the ED. We gathered sociodemographic and clinical data as well as the subjects' perception about the information they were given. The mean (SD) uncertainty score among patients was 29 (11) points. Accompanying persons had a mean score of 36 (13) points. Factorial analysis confirmed the instrument's construct validity, finding that both dimensions of the original Mishel scale (complexity and ambiguity) were present in 6 items each. Factorial analysis explained 60% of the total variance in the patient version and 67% of the variance in the version for accompanying persons. Reliability statistics were good, with Cronbach's α values ranging from 0.912 to 0.938. Split-half reliability statistics ranged from 0.901 to 0.933. Correlations were significant in the analysis of convergent validity. The UIS-ED questionnaire may prove to be a simple, valid, and reliable way for assessing uncertainty in patients and their accompanying friends or relatives attending Spanish EDs.

  17. DS02 uncertainty analysis

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Woolson, William A.

    2005-01-01

    In order to avoid the pitfalls that so discredited DS86 and its uncertainty estimates, and to provide DS02 uncertainties that are both defensible and credible, this report not only presents the ensemble uncertainties assembled from uncertainties in individual computational elements and radiation dose components but also describes how these relate to comparisons between observed and computed quantities at critical intervals in the computational process. These comparisons include those between observed and calculated radiation free-field components, where observations include thermal- and fast-neutron activation and gamma-ray thermoluminescence, which are relevant to the estimated systematic uncertainty for DS02. The comparisons also include those between calculated and observed survivor shielding, where the observations consist of biodosimetric measurements for individual survivors, which are relevant to the estimated random uncertainty for DS02. (J.P.N.)

  18. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  19. Mapping of uncertainty relations between continuous and discrete time.

    Science.gov (United States)

    Chiuchiù, Davide; Pigolotti, Simone

    2018-03-01

    Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.

  20. Uncertainty Quantification and Regional Sensitivity Analysis of Snow-related Parameters in the Canadian LAnd Surface Scheme (CLASS)

    Science.gov (United States)

    Badawy, B.; Fletcher, C. G.

    2017-12-01

    The parameterization of snow processes in land surface models is an important source of uncertainty in climate simulations. Quantifying the importance of snow-related parameters, and their uncertainties, may therefore lead to better understanding and quantification of uncertainty within integrated earth system models. However, quantifying the uncertainty arising from parameterized snow processes is challenging due to the high-dimensional parameter space, poor observational constraints, and parameter interaction. In this study, we investigate the sensitivity of the land simulation to uncertainty in snow microphysical parameters in the Canadian LAnd Surface Scheme (CLASS) using an uncertainty quantification (UQ) approach. A set of training cases (n=400) from CLASS is used to sample each parameter across its full range of empirical uncertainty, as determined from available observations and expert elicitation. A statistical learning model using support vector regression (SVR) is then constructed from the training data (CLASS output variables) to efficiently emulate the dynamical CLASS simulations over a much larger (n=220) set of cases. This approach is used to constrain the plausible range for each parameter using a skill score, and to identify the parameters with largest influence on the land simulation in CLASS at global and regional scales, using a random forest (RF) permutation importance algorithm. Preliminary sensitivity tests indicate that snow albedo refreshment threshold and the limiting snow depth, below which bare patches begin to appear, have the highest impact on snow output variables. The results also show a considerable reduction of the plausible ranges of the parameters values and hence reducing their uncertainty ranges, which can lead to a significant reduction of the model uncertainty. The implementation and results of this study will be presented and discussed in details.

  1. Uncertainties in relation to CO2 capture and sequestration. Preliminary results. Working Paper

    International Nuclear Information System (INIS)

    Gielen, D.

    2003-03-01

    This paper has been presented at an expert meeting on CO2 capture technology learning at the IEA headquarters, January 24th, 2003. The electricity sector is a key source of CO2 emissions and a strong increase of emissions is forecast in a business-as-usual scenario. A range of strategies have been proposed to reduce these emissions. This paper focuses on one of the promising strategies, CO2 capture and storage. The future role of CO2 capture in the electricity sector has been assessed, using the Energy Technology Perspectives model (ETP). Technology data have been collected and reviewed in cooperation with the IEA Greenhouse Gas R and D implementing agreement and other expert groups. CO2 capture and sequestration is based on relatively new technology. Therefore, its characteristics and its future role in the energy system is subject to uncertainties, as for any new technology. The analysis suggests that the choice of a reference electricity production technology and the characteristics of the CO2 storage option constitute the two main uncertainties, apart from a large number of other factors of lesser importance. Based on the choices made cost estimates can range from less than zero USD for coal fired power plants to more than 150 USD per ton of CO2 for gas fired power plants. The results suggest that learning effects are important, but they do not affect the CO2 capture costs significantly, other uncertainties dominate the cost estimates. The ETP model analysis, where choices are based on the ideal market hypothesis and rational price based decision making, suggest up to 18% of total global electricity production will be equipped with CO2 capture by 2040, in case of a penalty of 50 US$ per ton of CO2. However this high penetration is only achieved in case coal fired IGCC-SOFC power plants are developed successfully. Without such technology only a limited amount of CO2 is captured from gas fired power plants. Higher penalties may result in a higher share of CO2

  2. New entropic uncertainty relations and tests of PMD-SQS-optimal limits in pion-nucleus scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    2002-01-01

    In this paper we define a new kind of quantum entropy, namely, the nonextensivity conjugated entropy S Jθ (p,q) bar.Then we prove the optimal nonextensivity conjugated entropic uncertainty relations (ONC-EUR) as well as optimal nonextensivity conjugated entropic uncertainty bands (ONC E UB). The results of the first experimental test of ONC-EUB in the pion-nucleus scattering, obtained by using 49-sets of experimental phase shift analysis, are presented. So, strong evidences for the saturation of the PMD-SQS-optimum limit are obtained with high accuracy (confidence level > 99%) for the nonextensivities: 1/2 ≤ p ≤ 2/3 and q = p/(2p-1). (authors)

  3. Uncertainty in estimating and mitigating industrial related GHG emissions

    International Nuclear Information System (INIS)

    El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.

    2001-01-01

    Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)

  4. UNCERTAINTIES IN GALACTIC CHEMICAL EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Côté, Benoit; Ritter, Christian; Herwig, Falk; O’Shea, Brian W.; Pignatari, Marco; Jones, Samuel; Fryer, Chris L.

    2016-01-01

    We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions, along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model

  5. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    Science.gov (United States)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  6. Interactions between perceived uncertainty types in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2018-01-01

    to avoid business failure. A conceptual framework of four uncertainty types is investigated: environmental, technological, organisational, and relational uncertainty. We present insights from four empirical cases of service dyads collected via multiple sources of evidence including 54 semi-structured...... interviews, observations, and secondary data. The cases show seven interaction paths with direct knock-on effects between two uncertainty types and indirect knock-on effects between three or four uncertainty types. The findings suggest a causal chain from environmental, technological, organisational......, to relational uncertainty. This research contributes to the servitization literature by (i) con-firming the existence of uncertainty types, (ii) providing an in-depth characterisation of technological uncertainty, and (iii) showing the interaction paths between four uncertainty types in the form of a causal...

  7. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  8. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  9. Total Evidence, Uncertainty and A Priori Beliefs

    NARCIS (Netherlands)

    Bewersdorf, Benjamin; Felline, Laura; Ledda, Antonio; Paoli, Francesco; Rossanese, Emanuele

    2016-01-01

    Defining the rational belief state of an agent in terms of her initial or a priori belief state as well as her total evidence can help to address a number of important philosophical problems. In this paper, I discuss how this strategy can be applied to cases in which evidence is uncertain. I argue

  10. Uncertainty in prostate cancer. Ethnic and family patterns.

    Science.gov (United States)

    Germino, B B; Mishel, M H; Belyea, M; Harris, L; Ware, A; Mohler, J

    1998-01-01

    Prostate cancer occurs 37% more often in African-American men than in white men. Patients and their family care providers (FCPs) may have different experiences of cancer and its treatment. This report addresses two questions: 1) What is the relationship of uncertainty to family coping, psychological adjustment to illness, and spiritual factors? and 2) Are these patterns of relationship similar for patients and their family care givers and for whites and African-Americans? A sample of white and African-American men and their family care givers (N = 403) was drawn from an ongoing study, testing the efficacy of an uncertainty management intervention with men with stage B prostate cancer. Data were collected at study entry, either 1 week after post-surgical catheter removal or at the beginning of primary radiation treatment. Measures of uncertainty, adult role behavior, problem solving, social support, importance of God in one's life, family coping, psychological adjustment to illness, and perceptions of health and illness met standard criteria for internal consistency. Analyses of baseline data using Pearson's product moment correlations were conducted to examine the relationships of person, disease, and contextual factors to uncertainty. For family coping, uncertainty was significantly and positively related to two domains in white family care providers only. In African-American and white family care providers, the more uncertainty experienced, the less positive they felt about treatment. Uncertainty for all care givers was related inversely to positive feelings about the patient recovering from the illness. For all patients and for white family members, uncertainty was related inversely to the quality of the domestic environment. For everyone, uncertainty was related inversely to psychological distress. Higher levels of uncertainty were related to a poorer social environment for African-American patients and for white family members. For white patients and their

  11. Public Perception of Uncertainties Within Climate Change Science.

    Science.gov (United States)

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  12. Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides. An Uncertainty Analysis for Risk Coefficients Reported in Federal Guidance Report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, David [U.S. Environmental Protection Agency; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Nelson, Christopher [U.S. Environmental Protection Agency

    2007-01-01

    Federal Guidance Report No. 13 (FGR 13) provides risk coefficients for estimation of the risk of cancer due to low-level exposure to each of more than 800 radionuclides. Uncertainties in risk coefficients were quantified in FGR 13 for 33 cases (exposure to each of 11 radionuclides by each of three exposure pathways) on the basis of sensitivity analyses in which various combinations of plausible biokinetic, dosimetric, and radiation risk models were used to generate alternative risk coefficients. The present report updates the uncertainty analysis in FGR 13 for the cases of inhalation and ingestion of radionuclides and expands the analysis to all radionuclides addressed in that report. The analysis indicates that most risk coefficients for inhalation or ingestion of radionuclides are determined within a factor of 5 or less by current information. That is, application of alternate plausible biokinetic and dosimetric models and radiation risk models (based on the linear, no-threshold hypothesis with an adjustment for the dose and dose rate effectiveness factor) is unlikely to change these coefficients by more than a factor of 5. In this analysis the assessed uncertainty in the radiation risk model was found to be the main determinant of the uncertainty category for most risk coefficients, but conclusions concerning the relative contributions of risk and dose models to the total uncertainty in a risk coefficient may depend strongly on the method of assessing uncertainties in the risk model.

  13. Sensitivity/uncertainty analysis for the Hiroshima dosimetry reevaluation effort

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Lillie, R.A.; Pace, J.V. III; Cacuci, D.G.

    1987-01-01

    Uncertainty estimates and cross correlations by range/survivor location have been obtained for the free-in-air (FIA) tissue kerma for the Hiroshima atomic event. These uncertainties in the FIA kerma include contributions due to various modeling parameters and the basic cross section data and are given at three ground ranges, 700, 1000 and 1500 m. The estimated uncertainties are nearly constant over the given ground ranges and are approximately 27% for the prompt neutron kerma and secondary gamma kerma and 35% for the prompt gamma kerma. The total kerma uncertainty is dominated by the secondary gamma kerma uncertainties which are in turn largely due to the modeling parameter uncertainties

  14. Probabilistic distributions of pin gaps within a wire-spaced fuel subassembly and sensitivities of the related uncertainties to pin gap

    International Nuclear Information System (INIS)

    Sakai, K.; Hishida, H.

    1978-01-01

    Probabilistic fuel pin gap distributions within a wire-spaced fuel subassembly and sensitivities of the related uncertainties to fuel pin gaps are discussed. The analyses consist mainly of expressing a local fuel pin gap in terms of sensitivity functions of the related uncertainties and calculating the corresponding probabilistic distribution through taking all the possible combinations of the distribution of uncertainties. The results of illustrative calculations show that with the reliability level of 0.9987, the maximum deviation of the pin gap at the cladding hot spot of a center fuel subassembly is 8.05% from its nominal value and the corresponding probabilistic pin gap distribution is shifted to the narrower side due to the external confinement of a pin bundle with a wrapper tube. (Auth.)

  15. From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions

    International Nuclear Information System (INIS)

    Al-Hashimi, M.H.; Wiese, U.-J.

    2012-01-01

    We consider a 1-parameter family of self-adjoint extensions of the Hamiltonian for a particle confined to a finite interval with perfectly reflecting boundary conditions. In some cases, one obtains negative energy states which seem to violate the Heisenberg uncertainty relation. We use this as a motivation to derive a generalized uncertainty relation valid for an arbitrarily shaped quantum dot with general perfectly reflecting walls in d dimensions. In addition, a general uncertainty relation for non-Hermitian operators is derived and applied to the non-Hermitian momentum operator in a quantum dot. We also consider minimal uncertainty wave packets in this situation, and we prove that the spectrum depends monotonically on the self-adjoint extension parameter. In addition, we construct the most general boundary conditions for semiconductor heterostructures such as quantum dots, quantum wires, and quantum wells, which are characterized by a 4-parameter family of self-adjoint extensions. Finally, we consider perfectly reflecting boundary conditions for relativistic fermions confined to a finite volume or localized on a domain wall, which are characterized by a 1-parameter family of self-adjoint extensions in the (1+1)-d and (2+1)-d cases, and by a 4-parameter family in the (3+1)-d and (4+1)-d cases. - Highlights: ► Finite volume Heisenberg uncertainty relation. ► General self-adjoint extensions for relativistic fermions. ► New prospective for the problem of particle in a box.

  16. An analysis of combined standard uncertainty for radiochemical measurements of environmental samples

    International Nuclear Information System (INIS)

    Berne, A.

    1996-01-01

    It is anticipated that future data acquisitions intended for use in radiological risk assessments will require the incorporation of uncertainty analysis. Often, only one aliquot of the sample is taken and a single determination is made. Under these circumstances, the total uncertainty is calculated using the open-quotes propagation of errorsclose quotes approach. However, there is no agreement in the radioanalytical community as to the exact equations to use. The Quality Assurance/Metrology Division of the Environmental Measurements Laboratory has developed a systematic process to compute uncertainties in constituent components of the analytical procedure, as well as the combined standard uncertainty (CSU). The equations for computation are presented here, with examples of their use. They have also been incorporated into a code for use in the spreadsheet application, QuattroPro trademark. Using the spreadsheet with appropriate inputs permits an analysis of the variations in the CSU as a function of several different variables. The relative importance of the open-quotes counting uncertaintyclose quotes can also be ascertained

  17. Extensive neutronic sensitivity-uncertainty analysis of a fusion reactor shielding blanket

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-01-01

    In this paper the results are presented of an extensive neutronic sensitivity-uncertainty study performed for the design of a shielding blanket for a next-step fusion reactor, such as ITER. A code system was used, which was developed at ECN Petten. The uncertainty in an important response parameter, the neutron heating in the inboard superconducting coils, was evaluated. Neutron transport calculations in the 100 neutron group GAM-II structure were performed using the code ANISN. For the sensitivity and uncertainty calculations the code SUSD was used. Uncertainties due to cross-section uncertainties were taken into account as well as uncertainties due to uncertainties in energy and angular distributions of scattered neutrons (SED and SAD uncertainties, respectively). The subject of direct-term uncertainties (i.e. uncertainties due to uncertainties in the kerma factors of the superconducting coils) is briefly touched upon. It is shown that SAD uncertainties, which have been largely neglected until now, contribute significantly to the total uncertainty. Moreover, the contribution of direct-term uncertainties may be large. The total uncertainty in the neutron heating, only due to Fe cross-sections, amounts to approximately 25%, which is rather large. However, uncertainty data are scarce and the data may very well be conservative. It is shown in this paper that with the code system used, sensitivity and uncertainty calculations can be performed in a straightforward way. Therefore, it is suggested that emphasis is now put on the generation of realistic, reliable covariance data for cross-sections as well as for angular and energy distributions. ((orig.))

  18. One Approach to the Fire PSA Uncertainty Analysis

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Vukovic, I.

    2002-01-01

    Experienced practical events and findings from the number of fire probabilistic safety assessment (PSA) studies show that fire has high relative importance for nuclear power plant safety. Fire PSA is a very challenging phenomenon and a number of issues are still in the area of research and development. This has a major impact on the conservatism of fire PSA findings. One way to reduce the level of conservatism is to conduct uncertainty analysis. At the top-level, uncertainty of the fire PSA can be separated in to three segments. The first segment is related to fire initiating events frequencies. The second uncertainty segment is connected to the uncertainty of fire damage. Finally, there is uncertainty related to the PSA model, which propagates this fire-initiated damage to the core damage or other analyzed risk. This paper discusses all three segments of uncertainty. Some recent experience with fire PSA study uncertainty analysis, usage of fire analysis code COMPBRN IIIe, and uncertainty evaluation importance to the final result is presented.(author)

  19. Evaluating prediction uncertainty

    International Nuclear Information System (INIS)

    McKay, M.D.

    1995-03-01

    The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty in a model prediction that arises from uncertainty in input values. Determination of important model inputs and subsets of inputs is made through comparison of the prediction distribution with conditional prediction probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the distributions and in construction of importance indicators. The assumption of a linear relation between model output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes an independent validation step is applied in two analysis applications to select subsets of input variables which are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for submodels are presented

  20. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  1. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  2. Tolerance for uncertainty in elderly people

    Directory of Open Access Journals (Sweden)

    KHRYSTYNA KACHMARYK

    2014-09-01

    Full Text Available The aim of the study. The aim of the paper is a comparison of tolerance to uncertainty in two groups of elderly: the students of the University of the Third Age (UTA and older people who are not enrolled but help to educate grandchildren. A relation to uncertainty was shown to influence on decision making strategy of elderly that indicates on importance of the researches. Methods. To obtain the objectives of the paper the following methods were used: 1 Personal change readiness survey (PCRS adapted by Nickolay Bazhanov and Galina Bardiyer; 2 Tolerance Ambiguity Scale (TAS adapted by Galina Soldatova; 3 Freiburg personality inventory (FPI and 4 The questionnaire of self-relation by Vladimir Stolin and Sergej Panteleev. 40 socially involved elderly people were investigated according the above methods, 20 from UTA and 20 who are not studied and served as control group. Results. It was shown that relations of tolerance to uncertainty in the study group of students of the University of the Third Age substantially differ from relations of tolerance to uncertainty in group of older people who do not learn. The majority of students of the University of the Third Age have an inherent low tolerance for uncertainty, which is associated with an increase in expression personality traits and characteristics in self-relation. The group of the elderly who are not enrolled increasingly shows tolerance of uncertainty, focusing on the social and trusting relationship to meet the needs of communication, and the ability to manage their own emotions and desires than a group of Third Age university students. Conclusions. The results of experimental research of the third age university student’s peculiarities of the tolerance to uncertainty were outlined. It was found that decision making in the ambiguity situations concerning social interaction is well developed in elderly who do not study. The students of the University of Third Age have greater needs in

  3. OR14-V-Uncertainty-PD2La Uncertainty Quantification for Nuclear Safeguards and Nondestructive Assay Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods.

  4. Estimation of the uncertainties considered in NPP PSA level 2

    International Nuclear Information System (INIS)

    Kalchev, B.; Hristova, R.

    2005-01-01

    The main approaches of the uncertainties analysis are presented. The sources of uncertainties which should be considered in PSA level 2 for WWER reactor such as: uncertainties propagated from level 1 PSA; uncertainties in input parameters; uncertainties related to the modelling of physical phenomena during the accident progression and uncertainties related to the estimation of source terms are defined. The methods for estimation of the uncertainties are also discussed in this paper

  5. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    Science.gov (United States)

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate

  6. Some remarks on modeling uncertainties

    International Nuclear Information System (INIS)

    Ronen, Y.

    1983-01-01

    Several topics related to the question of modeling uncertainties are considered. The first topic is related to the use of the generalized bias operator method for modeling uncertainties. The method is expanded to a more general form of operators. The generalized bias operator is also used in the inverse problem and applied to determine the anisotropic scattering law. The last topic discussed is related to the question of the limit to accuracy and how to establish its value. (orig.) [de

  7. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  8. Large-uncertainty intelligent states for angular momentum and angle

    International Nuclear Information System (INIS)

    Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M

    2005-01-01

    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases

  9. Sensitivity and uncertainty analyses of the HCLL mock-up experiment

    International Nuclear Information System (INIS)

    Leichtle, D.; Fischer, U.; Kodeli, I.; Perel, R.L.; Klix, A.; Batistoni, P.; Villari, R.

    2010-01-01

    Within the European Fusion Technology Programme dedicated computational methods, tools and data have been developed and validated for sensitivity and uncertainty analyses of fusion neutronics experiments. The present paper is devoted to this kind of analyses on the recent neutronics experiment on a mock-up of the Helium-Cooled Lithium Lead Test Blanket Module for ITER at the Frascati neutron generator. They comprise both probabilistic and deterministic methodologies for the assessment of uncertainties of nuclear responses due to nuclear data uncertainties and their sensitivities to the involved reaction cross-section data. We have used MCNP and MCSEN codes in the Monte Carlo approach and DORT and SUSD3D in the deterministic approach for transport and sensitivity calculations, respectively. In both cases JEFF-3.1 and FENDL-2.1 libraries for the transport data and mainly ENDF/B-VI.8 and SCALE6.0 libraries for the relevant covariance data have been used. With a few exceptions, the two different methodological approaches were shown to provide consistent results. A total nuclear data related uncertainty in the range of 1-2% (1σ confidence level) was assessed for the tritium production in the HCLL mock-up experiment.

  10. Uncertainty and minimum detectable concentrations using relative, absolute and K*0-IAEA standardization for the INAA laboratory of the ETRR-2

    International Nuclear Information System (INIS)

    Khalil, M. Y.

    2006-01-01

    Full text: The Instrumental Neutron Activation Analysis (INAA) Laboratory of Egypt Second Training and Research Reactor (ETRR-2) is increasingly requested to perform multi-element analysis to large number of samples from different origins. The INAA laboratory has to demonstrate competence by conforming to appropriate internationally and nationally accepted standards. The objective of this work is to determine the uncertainty budget and sensitivity of the INAA laboratory measurements. Concentrations of 9 elements; Mn, Na, K, Ca, Co, Cr, Fe, Rb, and Cs, were measured against a certified test sample. Relative, absolute, and Ko-IAEA standardization methods were employed and results compared. The flux was monitored using cadmium covered gold method, and multifoil (gold, nickel and zirconium) method. The combined and expanded uncertainties were estimated. Uncertainty of concentrations ranged between 2-21% depending on the standardization method used. The relative method, giving the lowest uncertainty, produced uncertainty budget between 2 and 11%. The minimum detectable concentration was the lowest for Cs ranging between 0.36 and 0.59 ppb and the highest being for K in the range of 0.32 to 8.64 ppm

  11. Understanding and reducing statistical uncertainties in nebular abundance determinations

    Science.gov (United States)

    Wesson, R.; Stock, D. J.; Scicluna, P.

    2012-06-01

    Whenever observations are compared to theories, an estimate of the uncertainties associated with the observations is vital if the comparison is to be meaningful. However, many or even most determinations of temperatures, densities and abundances in photoionized nebulae do not quote the associated uncertainty. Those that do typically propagate the uncertainties using analytical techniques which rely on assumptions that generally do not hold. Motivated by this issue, we have developed Nebular Empirical Analysis Tool (NEAT), a new code for calculating chemical abundances in photoionized nebulae. The code carries out a standard analysis of lists of emission lines using long-established techniques to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEATuses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances. We show that, for typical observational data, this approach is superior to analytic estimates of uncertainties. NEAT also accounts for the effect of upward biasing on measurements of lines with low signal-to-noise ratio, allowing us to accurately quantify the effect of this bias on abundance determinations. We find not only that the effect can result in significant overestimates of heavy element abundances derived from weak lines, but also that taking it into account reduces the uncertainty of these abundance determinations. Finally, we investigate the effect of possible uncertainties in R, the ratio of selective-to-total extinction, on abundance determinations. We find that the uncertainty due to this parameter is negligible compared to the statistical uncertainties due to typical line flux measurement uncertainties.

  12. EDITORIAL: Squeezed states and uncertainty relations

    Science.gov (United States)

    Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector

    2004-06-01

    This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly

  13. Estimating and managing uncertainties in order to detect terrestrial greenhouse gas removals

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Baritz, Rainer

    2002-01-01

    Inventories of emissions and removals of greenhouse gases will be used under the United Nations Framework Convention on Climate Change and the Kyoto Protocol to demonstrate compliance with obligations. During the negotiation process of the Kyoto Protocol it has been a concern that uptake of carbon in forest sinks can be difficult to verify. The reason for large uncertainties are high temporal and spatial variability and lack of representative estimation parameters. Additional uncertainties will be a consequence of definitions made in the Kyoto Protocol reporting. In the Nordic countries the national forest inventories will be very useful to estimate changes in carbon stocks. The main uncertainty lies in the conversion from changes in tradable timber to changes in total carbon biomass. The uncertainties in the emissions of the non-CO 2 carbon from forest soils are particularly high. On the other hand the removals reported under the Kyoto Protocol will only be a fraction of the total uptake and are not expected to constitute a high share of the total inventory. It is also expected that the Nordic countries will be able to implement a high tier methodology. As a consequence total uncertainties may not be extremely high. (Author)

  14. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  15. Some illustrative examples of model uncertainty

    International Nuclear Information System (INIS)

    Bier, V.M.

    1994-01-01

    In this paper, we first discuss the view of model uncertainty proposed by Apostolakis. We then present several illustrative examples related to model uncertainty, some of which are not well handled by this formalism. Thus, Apostolakis' approach seems to be well suited to describing some types of model uncertainty, but not all. Since a comprehensive approach for characterizing and quantifying model uncertainty is not yet available, it is hoped that the examples presented here will service as a springboard for further discussion

  16. Uncertainty representation of grey numbers and grey sets.

    Science.gov (United States)

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  17. Fuzzy Uncertainty Evaluation for Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Beom; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of); Jae, Moo Sung [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    This traditional probabilistic approach can calculate relatively accurate results. However it requires a long time because of repetitive computation due to the MC method. In addition, when informative data for statistical analysis are not sufficient or some events are mainly caused by human error, the probabilistic approach may not be possible because uncertainties of these events are difficult to be expressed by probabilistic distributions. In order to reduce the computation time and quantify uncertainties of top events when basic events whose uncertainties are difficult to be expressed by probabilistic distributions exist, the fuzzy uncertainty propagation based on fuzzy set theory can be applied. In this paper, we develop a fuzzy uncertainty propagation code and apply the fault tree of the core damage accident after the large loss of coolant accident (LLOCA). The fuzzy uncertainty propagation code is implemented and tested for the fault tree of the radiation release accident. We apply this code to the fault tree of the core damage accident after the LLOCA in three cases and compare the results with those computed by the probabilistic uncertainty propagation using the MC method. The results obtained by the fuzzy uncertainty propagation can be calculated in relatively short time, covering the results obtained by the probabilistic uncertainty propagation.

  18. Religion in the face of uncertainty: an uncertainty-identity theory account of religiousness.

    Science.gov (United States)

    Hogg, Michael A; Adelman, Janice R; Blagg, Robert D

    2010-02-01

    The authors characterize religions as social groups and religiosity as the extent to which a person identifies with a religion, subscribes to its ideology or worldview, and conforms to its normative practices. They argue that religions have attributes that make them well suited to reduce feelings of self-uncertainty. According to uncertainty-identity theory, people are motivated to reduce feelings of uncertainty about or reflecting on self; and identification with groups, particularly highly entitative groups, is a very effective way to reduce uncertainty. All groups provide belief systems and normative prescriptions related to everyday life. However, religions also address the nature of existence, invoking sacred entities and associated rituals and ceremonies. They are entitative groups that provide a moral compass and rules for living that pervade a person's life, making them particularly attractive in times of uncertainty. The authors document data supporting their analysis and discuss conditions that transform religiosity into religious zealotry and extremism.

  19. A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties

    International Nuclear Information System (INIS)

    Lv, Y.; Yan, X.D.; Sun, W.; Gao, Z.Y.

    2015-01-01

    Emergencies involved in a bus–subway corridor system are associated with many processes and factors with social and economic implications. These processes and factors and their interactions are related to a variety of uncertainties. In this study, an interval chance-constrained integer programming (EICI) method is developed in response to such challenges for bus–subway corridor based evacuation planning. The method couples a chance-constrained programming with an interval integer programming model framework. It can thus deal with interval uncertainties that cannot be quantified with specified probability distribution functions. Meanwhile, it can also reflect stochastic features of traffic flow capacity, and thereby help examine the related violation risk of constraint. The EICI method is applied to a subway incident based evacuation case study. It is solved through an interactive algorithm that does not lead to more complicated intermediate submodels and has a relatively low computational requirement. A number of decision alternatives could be directly generated based on results from the EICI method. It is indicated that the solutions cannot only help decision makers identify desired population evacuation and vehicle dispatch schemes under hybrid uncertainties, but also provide bases for in-depth analyses of tradeoffs among evacuation plans, total evacuation time, and constraint-violation risks. - Highlights: • An inexact model is developed for the bus–subway corridor evacuation management. • It tackles stochastic and interval uncertainties in an integer programming problem. • It can examine violation risk of the roadway flow capacity related constraint. • It will help identify evacuation schemes under hybrid uncertainties

  20. Evaluation of uncertainty of adaptive radiation therapy

    International Nuclear Information System (INIS)

    Garcia Molla, R.; Gomez Martin, C.; Vidueira, L.; Juan-Senabre, X.; Garcia Gomez, R.

    2013-01-01

    This work is part of tests to perform to its acceptance in the clinical practice. The uncertainties of adaptive radiation, and which will separate the study, can be divided into two large parts: dosimetry in the CBCT and RDI. At each stage, their uncertainties are quantified and a level of action from which it would be reasonable to adapt the plan may be obtained with the total. (Author)

  1. Estimating the uncertainty of damage costs of pollution: A simple transparent method and typical results

    International Nuclear Information System (INIS)

    Spadaro, Joseph V.; Rabl, Ari

    2008-01-01

    Whereas the uncertainty of environmental impacts and damage costs is usually estimated by means of a Monte Carlo calculation, this paper shows that most (and in many cases all) of the uncertainty calculation involves products and/or sums of products and can be accomplished with an analytic solution which is simple and transparent. We present our own assessment of the component uncertainties and calculate the total uncertainty for the impacts and damage costs of the classical air pollutants; results for a Monte Carlo calculation for the dispersion part are also shown. The distribution of the damage costs is approximately lognormal and can be characterized in terms of geometric mean μ g and geometric standard deviation σ g , implying that the confidence interval is multiplicative. We find that for the classical air pollutants σ g is approximately 3 and the 68% confidence interval is [μ g / σ g , μ g σ g ]. Because the lognormal distribution is highly skewed for large σ g , the median is significantly smaller than the mean. We also consider the case where several lognormally distributed damage costs are added, for example to obtain the total damage cost due to all the air pollutants emitted by a power plant, and we find that the relative error of the sum can be significantly smaller than the relative errors of the summands. Even though the distribution for such sums is not exactly lognormal, we present a simple lognormal approximation that is quite adequate for most applications

  2. Testing methodologies for quantifying physical models uncertainties. A comparative exercise using CIRCE and IPREM (FFTBM)

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, Jordi, E-mail: jordi.freixa-terradas@upc.edu; Alfonso, Elsa de, E-mail: elsa.de.alfonso@upc.edu; Reventós, Francesc, E-mail: francesc.reventos@upc.edu

    2016-08-15

    Highlights: • Uncertainty of physical models are a key issue in Best estimate plus uncertainty analysis. • Estimation of uncertainties of physical models of thermal hydraulics system codes. • Comparison of CIRCÉ and FFTBM methodologies. • Simulation of reflood experiments in order to evaluate uncertainty of physical models related to the reflood scenario. - Abstract: The increasing importance of Best-Estimate Plus Uncertainty (BEPU) analyses in nuclear safety and licensing processes have lead to several international activities. The latest findings highlighted the uncertainties of physical models as one of the most controversial aspects of BEPU. This type of uncertainties is an important contributor to the total uncertainty of NPP BE calculations. Due to the complexity of estimating this uncertainty, it is often assessed solely by engineering judgment. The present study comprises a comparison of two different state-of-the-art methodologies CIRCÉ and IPREM (FFTBM) capable of quantifying the uncertainty of physical models. Similarities and differences of their results are discussed through the observation of probability distribution functions and envelope calculations. In particular, the analyzed scenario is core reflood. Experimental data from the FEBA and PERICLES test facilities is employed while the thermal hydraulic simulations are carried out with RELAP5/mod3.3. This work is undertaken under the framework of PREMIUM (Post-BEMUSE Reflood Model Input Uncertainty Methods) benchmark.

  3. Uncertainty analysis of environmental models

    International Nuclear Information System (INIS)

    Monte, L.

    1990-01-01

    In the present paper an evaluation of the output uncertainty of an environmental model for assessing the transfer of 137 Cs and 131 I in the human food chain are carried out on the basis of a statistical analysis of data reported by the literature. The uncertainty analysis offers the oppotunity of obtaining some remarkable information about the uncertainty of models predicting the migration of non radioactive substances in the environment mainly in relation to the dry and wet deposition

  4. Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates

    International Nuclear Information System (INIS)

    Fenwick, John D.; Nahum, Alan E.

    2001-01-01

    A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding

  5. Characterisation of a reference site for quantifying uncertainties related to soil sampling

    International Nuclear Information System (INIS)

    Barbizzi, Sabrina; Zorzi, Paolo de; Belli, Maria; Pati, Alessandra; Sansone, Umberto; Stellato, Luisa; Barbina, Maria; Deluisa, Andrea; Menegon, Sandro; Coletti, Valter

    2004-01-01

    An integrated approach to quality assurance in soil sampling remains to be accomplished. - The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the 'fit-for-purpose' method; (iii) qualifying, in term of trace elements spatial variability, a reference site for national and international inter-comparison exercises. Preliminary results and considerations are illustrated

  6. A novel dose uncertainty model and its application for dose verification

    International Nuclear Information System (INIS)

    Jin Hosang; Chung Heetaek; Liu Chihray; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2005-01-01

    Based on statistical approach, a novel dose uncertainty model was introduced considering both nonspatial and spatial dose deviations. Non-space-oriented uncertainty is mainly caused by dosimetric uncertainties, and space-oriented dose uncertainty is the uncertainty caused by all spatial displacements. Assuming these two parts are independent, dose difference between measurement and calculation is a linear combination of nonspatial and spatial dose uncertainties. Two assumptions were made: (1) the relative standard deviation of nonspatial dose uncertainty is inversely proportional to the dose standard deviation σ, and (2) the spatial dose uncertainty is proportional to the gradient of dose. The total dose uncertainty is a quadratic sum of the nonspatial and spatial uncertainties. The uncertainty model provides the tolerance dose bound for comparison between calculation and measurement. In the statistical uncertainty model based on a Gaussian distribution, a confidence level of 3σ theoretically confines 99.74% of measurements within the bound. By setting the confidence limit, the tolerance bound for dose comparison can be made analogous to that of existing dose comparison methods (e.g., a composite distribution analysis, a γ test, a χ evaluation, and a normalized agreement test method). However, the model considers the inherent dose uncertainty characteristics of the test points by taking into account the space-specific history of dose accumulation, while the previous methods apply a single tolerance criterion to the points, although dose uncertainty at each point is significantly different from others. Three types of one-dimensional test dose distributions (a single large field, a composite flat field made by two identical beams, and three-beam intensity-modulated fields) were made to verify the robustness of the model. For each test distribution, the dose bound predicted by the uncertainty model was compared with simulated measurements. The simulated

  7. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  8. Propagation of interval and probabilistic uncertainty in cyberinfrastructure-related data processing and data fusion

    CERN Document Server

    Servin, Christian

    2015-01-01

    On various examples ranging from geosciences to environmental sciences, this book explains how to generate an adequate description of uncertainty, how to justify semiheuristic algorithms for processing uncertainty, and how to make these algorithms more computationally efficient. It explains in what sense the existing approach to uncertainty as a combination of random and systematic components is only an approximation, presents a more adequate three-component model with an additional periodic error component, and explains how uncertainty propagation techniques can be extended to this model. The book provides a justification for a practically efficient heuristic technique (based on fuzzy decision-making). It explains how the computational complexity of uncertainty processing can be reduced. The book also shows how to take into account that in real life, the information about uncertainty is often only partially known, and, on several practical examples, explains how to extract the missing information about uncer...

  9. Worry, Intolerance of Uncertainty, and Statistics Anxiety

    Science.gov (United States)

    Williams, Amanda S.

    2013-01-01

    Statistics anxiety is a problem for most graduate students. This study investigates the relationship between intolerance of uncertainty, worry, and statistics anxiety. Intolerance of uncertainty was significantly related to worry, and worry was significantly related to three types of statistics anxiety. Six types of statistics anxiety were…

  10. An examination of the relationships among uncertainty, appraisal, and information-seeking behavior proposed in uncertainty management theory.

    Science.gov (United States)

    Rains, Stephen A; Tukachinsky, Riva

    2015-01-01

    Uncertainty management theory (UMT; Brashers, 2001, 2007) is rooted in the assumption that, as opposed to being inherently negative, health-related uncertainty is appraised for its meaning. Appraisals influence subsequent behaviors intended to manage uncertainty, such as information seeking. This study explores the connections among uncertainty, appraisal, and information-seeking behavior proposed in UMT. A laboratory study was conducted in which participants (N = 157) were primed to feel and desire more or less uncertainty about skin cancer and were given the opportunity to search for skin cancer information using the World Wide Web. The results show that desired uncertainty level predicted appraisal intensity, and appraisal intensity predicted information-seeking depth-although the latter relationship was in the opposite direction of what was expected.

  11. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  12. Uncertainty analysis of energy consumption in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Trine Dyrstad

    1997-12-31

    This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.

  13. Model Uncertainty for Bilinear Hysteretic Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1984-01-01

    . The statistical uncertainty -due to lack of information can e.g. be taken into account by describing the variables by predictive density functions, Veneziano [2). In general, model uncertainty is the uncertainty connected with mathematical modelling of the physical reality. When structural reliability analysis...... is related to the concept of a failure surface (or limit state surface) in the n-dimensional basic variable space then model uncertainty is at least due to the neglected variables, the modelling of the failure surface and the computational technique used. A more precise definition is given in section 2...

  14. Communicating uncertainty in hydrological forecasts: mission impossible?

    Science.gov (United States)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  15. Conclusions on measurement uncertainty in microbiology.

    Science.gov (United States)

    Forster, Lynne I

    2009-01-01

    Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.

  16. The Effect of Uncertainty in Exposure Estimation on the Exposure-Response Relation between 1,3-Butadiene and Leukemia

    Directory of Open Access Journals (Sweden)

    George Maldonado

    2009-09-01

    Full Text Available Abstract: In a follow-up study of mortality among North American synthetic rubber industry workers, cumulative exposure to 1,3-butadiene was positively associated with leukemia. Problems with historical exposure estimation, however, may have distorted the association. To evaluate the impact of potential inaccuracies in exposure estimation, we conducted uncertainty analyses of the relation between cumulative exposure to butadiene and leukemia. We created the 1,000 sets of butadiene estimates using job-exposure matrices consisting of exposure values that corresponded to randomly selected percentiles of the approximate probability distribution of plant-, work area/job group-, and year specific butadiene ppm. We then analyzed the relation between cumulative exposure to butadiene and leukemia for each of the 1,000 sets of butadiene estimates. In the uncertainty analysis, the point estimate of the RR for the first non zero exposure category (>0–<37.5 ppm-years was most likely to be about 1.5. The rate ratio for the second exposure category (37.5–<184.7 ppm-years was most likely to range from 1.5 to 1.8. The RR for category 3 of exposure (184.7–<425.0 ppm-years was most likely between 2.1 and 3.0. The RR for the highest exposure category (425.0+ ppm-years was likely to be between 2.9 and 3.7. This range off RR point estimates can best be interpreted as a probability distribution that describes our uncertainty in RR point estimates due to uncertainty in exposure estimation. After considering the complete probability distributions of butadiene exposure estimates, the exposure-response association of butadiene and leukemia was maintained. This exercise was a unique example of how uncertainty analyses can be used to investigate and support an observed measure of effect when occupational exposure estimates are employed in the absence of direct exposure measurements.

  17. Estimating and managing uncertainties in order to detect terrestrial greenhouse gas removals

    Energy Technology Data Exchange (ETDEWEB)

    Rypdal, Kristin; Baritz, Rainer

    2002-07-01

    Inventories of emissions and removals of greenhouse gases will be used under the United Nations Framework Convention on Climate Change and the Kyoto Protocol to demonstrate compliance with obligations. During the negotiation process of the Kyoto Protocol it has been a concern that uptake of carbon in forest sinks can be difficult to verify. The reason for large uncertainties are high temporal and spatial variability and lack of representative estimation parameters. Additional uncertainties will be a consequence of definitions made in the Kyoto Protocol reporting. In the Nordic countries the national forest inventories will be very useful to estimate changes in carbon stocks. The main uncertainty lies in the conversion from changes in tradable timber to changes in total carbon biomass. The uncertainties in the emissions of the non-CO{sub 2} carbon from forest soils are particularly high. On the other hand the removals reported under the Kyoto Protocol will only be a fraction of the total uptake and are not expected to constitute a high share of the total inventory. It is also expected that the Nordic countries will be able to implement a high tier methodology. As a consequence total uncertainties may not be extremely high. (Author)

  18. Stereo-particle image velocimetry uncertainty quantification

    International Nuclear Information System (INIS)

    Bhattacharya, Sayantan; Vlachos, Pavlos P; Charonko, John J

    2017-01-01

    Particle image velocimetry (PIV) measurements are subject to multiple elemental error sources and thus estimating overall measurement uncertainty is challenging. Recent advances have led to a posteriori uncertainty estimation methods for planar two-component PIV. However, no complete methodology exists for uncertainty quantification in stereo PIV. In the current work, a comprehensive framework is presented to quantify the uncertainty stemming from stereo registration error and combine it with the underlying planar velocity uncertainties. The disparity in particle locations of the dewarped images is used to estimate the positional uncertainty of the world coordinate system, which is then propagated to the uncertainty in the calibration mapping function coefficients. Next, the calibration uncertainty is combined with the planar uncertainty fields of the individual cameras through an uncertainty propagation equation and uncertainty estimates are obtained for all three velocity components. The methodology was tested with synthetic stereo PIV data for different light sheet thicknesses, with and without registration error, and also validated with an experimental vortex ring case from 2014 PIV challenge. Thorough sensitivity analysis was performed to assess the relative impact of the various parameters to the overall uncertainty. The results suggest that in absence of any disparity, the stereo PIV uncertainty prediction method is more sensitive to the planar uncertainty estimates than to the angle uncertainty, although the latter is not negligible for non-zero disparity. Overall the presented uncertainty quantification framework showed excellent agreement between the error and uncertainty RMS values for both the synthetic and the experimental data and demonstrated reliable uncertainty prediction coverage. This stereo PIV uncertainty quantification framework provides the first comprehensive treatment on the subject and potentially lays foundations applicable to volumetric

  19. Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2015-03-01

    Full Text Available The most famous contribution of Heisenberg is uncertainty principle. But the original uncertainty principle is improper. Considering all the possible situations (including the case that people can create laws and applying Neutrosophy and Quad-stage Method, this paper presents "certainty-uncertainty principles" with general form and variable dimension fractal form. According to the classification of Neutrosophy, "certainty-uncertainty principles" can be divided into three principles in different conditions: "certainty principle", namely a particle’s position and momentum can be known simultaneously; "uncertainty principle", namely a particle’s position and momentum cannot be known simultaneously; and neutral (fuzzy "indeterminacy principle", namely whether or not a particle’s position and momentum can be known simultaneously is undetermined. The special cases of "certain ty-uncertainty principles" include the original uncertainty principle and Ozawa inequality. In addition, in accordance with the original uncertainty principle, discussing high-speed particle’s speed and track with Newton mechanics is unreasonable; but according to "certaintyuncertainty principles", Newton mechanics can be used to discuss the problem of gravitational defection of a photon orbit around the Sun (it gives the same result of deflection angle as given by general relativity. Finally, for the reason that in physics the principles, laws and the like that are regardless of the principle (law of conservation of energy may be invalid; therefore "certaintyuncertainty principles" should be restricted (or constrained by principle (law of conservation of energy, and thus it can satisfy the principle (law of conservation of energy.

  20. How Environmental Uncertainty Moderates the Effect of Relative Advantage and Perceived Credibility on the Adoption of Mobile Health Services by Chinese Organizations in the Big Data Era

    Directory of Open Access Journals (Sweden)

    Xing Chen

    2016-01-01

    Full Text Available Despite the importance of adoption of mobile health services by an organization on the diffusion of mobile technology in the big data era, it has received minimal attention in literature. This study investigates how relative advantage and perceived credibility affect an organization’s adoption of mobile health services, as well as how environmental uncertainty changes the relationship of relative advantage and perceived credibility with adoption. A research model that integrates relative advantage, perceived credibility, environmental uncertainty, and an organization’s intention to use mobile health service is developed. Quantitative data are collected from senior managers and information systems managers in 320 Chinese healthcare organizations. The empirical findings show that while relative advantage and perceived credibility both have positive effects on an organization’s intention to use mobile health services, relative advantage plays a more important role than perceived credibility. Moreover, environmental uncertainty positively moderates the effect of relative advantage on an organization’s adoption of mobile health services. Thus, mobile health services in environments characterized with high levels of uncertainty are more likely to be adopted because of relative advantage than in environments with low levels of uncertainty.

  1. How Environmental Uncertainty Moderates the Effect of Relative Advantage and Perceived Credibility on the Adoption of Mobile Health Services by Chinese Organizations in the Big Data Era.

    Science.gov (United States)

    Chen, Xing; Zhang, Xing

    2016-01-01

    Despite the importance of adoption of mobile health services by an organization on the diffusion of mobile technology in the big data era, it has received minimal attention in literature. This study investigates how relative advantage and perceived credibility affect an organization's adoption of mobile health services, as well as how environmental uncertainty changes the relationship of relative advantage and perceived credibility with adoption. A research model that integrates relative advantage, perceived credibility, environmental uncertainty, and an organization's intention to use mobile health service is developed. Quantitative data are collected from senior managers and information systems managers in 320 Chinese healthcare organizations. The empirical findings show that while relative advantage and perceived credibility both have positive effects on an organization's intention to use mobile health services, relative advantage plays a more important role than perceived credibility. Moreover, environmental uncertainty positively moderates the effect of relative advantage on an organization's adoption of mobile health services. Thus, mobile health services in environments characterized with high levels of uncertainty are more likely to be adopted because of relative advantage than in environments with low levels of uncertainty.

  2. Assessing the Uncertainty in QUANTEC's Dose–Response Relation of Lung and Spinal Cord With a Bootstrap Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wedenberg, Minna, E-mail: minna.wedenberg@raysearchlabs.com

    2013-11-15

    Purpose: To apply a statistical bootstrap analysis to assess the uncertainty in the dose–response relation for the endpoints pneumonitis and myelopathy reported in the QUANTEC review. Methods and Materials: The bootstrap method assesses the uncertainty of the estimated population-based dose-response relation due to sample variability, which reflects the uncertainty due to limited numbers of patients in the studies. A large number of bootstrap replicates of the original incidence data were produced by random sampling with replacement. The analysis requires only the dose, the number of patients, and the number of occurrences of the studied endpoint, for each study. Two dose–response models, a Poisson-based model and the Lyman model, were fitted to each bootstrap replicate using maximum likelihood. Results: The bootstrap analysis generates a family of curves representing the range of plausible dose–response relations, and the 95% bootstrap confidence intervals give an estimated upper and lower toxicity risk. The curve families for the 2 dose–response models overlap for doses included in the studies at hand but diverge beyond that, with the Lyman model suggesting a steeper slope. The resulting distributions of the model parameters indicate correlation and non-Gaussian distribution. For both data sets, the likelihood of the observed data was higher for the Lyman model in >90% of the bootstrap replicates. Conclusions: The bootstrap method provides a statistical analysis of the uncertainty in the estimated dose–response relation for myelopathy and pneumonitis. It suggests likely values of model parameter values, their confidence intervals, and how they interrelate for each model. Finally, it can be used to evaluate to what extent data supports one model over another. For both data sets considered here, the Lyman model was preferred over the Poisson-based model.

  3. A Novel Demand Response Method for Smart Microgrids Related to the Uncertainties of Renewable Energy Resources and Energy Price

    Directory of Open Access Journals (Sweden)

    R. Roofegari Nejad

    2016-06-01

    Full Text Available This paper presents novel methods for Demand Response (DR programs by considering welfare state of consumers, to deal with the operational uncertainties, such as wind energy and energy price, within the framework of a smart microgrid. In this regard, total loads of microgrid are classified into two groups and each one is represented by a typical load. First group is energy storage capability represents by heater loads and second is curtailment capability loads represents by lighting loads. Next by the proposed DR methods, consumed energy of the all loads is coupled to the wind energy rate and energy price. Finally these methods are applied in the operation of a smart microgrid, consists of dispatchable supplier (microturbine, nondispatchable supplier (wind turbine, energy storage system and loads with the capability of energy exchanging with upstream distribution network. In order to consider uncertainties, Monte Carlo simulation method is used, which various scenarios are generated and applied in the operation of microgrid. In the end, the simulation results on a typical microgrid show that implementing proposed DR methods contributes to increasing total operational profit of smart microgrid and also decreasing the risk of low profit too.

  4. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    Science.gov (United States)

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    The question of how to derive and present uncertainty information in climate data records (CDRs) has received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we review the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and the case is made that CDR products should follow international metrological norms for presenting quantified uncertainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR, meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assumptions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncertainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the

  6. The small sample uncertainty aspect in relation to bullwhip effect measurement

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2009-01-01

    The bullwhip effect as a concept has been known for almost half a century starting with the Forrester effect. The bullwhip effect is observed in many supply chains, and it is generally accepted as a potential malice. Despite of this fact, the bullwhip effect still seems to be first and foremost...... a conceptual phenomenon. This paper intends primarily to investigate why this might be so and thereby investigate the various aspects, possibilities and obstacles that must be taken into account, when considering the potential practical use and measure of the bullwhip effect in order to actually get the supply...... chain under control. This paper will put special emphasis on the unavoidable small-sample uncertainty aspects relating to the measurement or estimation of the bullwhip effect.  ...

  7. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11).

    Science.gov (United States)

    Okubo, Sho; Nakayama, Hirotaka; Iwakuni, Kana; Inaba, Hajime; Sasada, Hiroyuki

    2011-11-21

    We determine the absolute frequencies of 56 rotation-vibration transitions of the ν(3) band of CH(4) from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10(-11) over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F(2)((2)) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty. © 2011 Optical Society of America

  8. An approach of sensitivity and uncertainty analyses methods installation in a safety calculation

    International Nuclear Information System (INIS)

    Pepin, G.; Sallaberry, C.

    2003-01-01

    Simulation of the migration in deep geological formations leads to solve convection-diffusion equations in porous media, associated with the computation of hydrogeologic flow. Different time-scales (simulation during 1 million years), scales of space, contrasts of properties in the calculation domain, are taken into account. This document deals more particularly with uncertainties on the input data of the model. These uncertainties are taken into account in total analysis with the use of uncertainty and sensitivity analysis. ANDRA (French national agency for the management of radioactive wastes) carries out studies on the treatment of input data uncertainties and their propagation in the models of safety, in order to be able to quantify the influence of input data uncertainties of the models on the various indicators of safety selected. The step taken by ANDRA consists initially of 2 studies undertaken in parallel: - the first consists of an international review of the choices retained by ANDRA foreign counterparts to carry out their uncertainty and sensitivity analysis, - the second relates to a review of the various methods being able to be used in sensitivity and uncertainty analysis in the context of ANDRA's safety calculations. Then, these studies are supplemented by a comparison of the principal methods on a test case which gathers all the specific constraints (physical, numerical and data-processing) of the problem studied by ANDRA

  9. The uncertainty cascade in flood risk assessment under changing climatic conditions - the Biala Tarnowska case study

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata

    2016-04-01

    Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the

  10. Sources of uncertainty in future changes in local precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, David P. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-10-15

    This study considers the large uncertainty in projected changes in local precipitation. It aims to map, and begin to understand, the relative roles of uncertain modelling and natural variability, using 20-year mean data from four perturbed physics or multi-model ensembles. The largest - 280-member - ensemble illustrates a rich pattern in the varying contribution of modelling uncertainty, with similar features found using a CMIP3 ensemble (despite its limited sample size, which restricts it value in this context). The contribution of modelling uncertainty to the total uncertainty in local precipitation change is found to be highest in the deep tropics, particularly over South America, Africa, the east and central Pacific, and the Atlantic. In the moist maritime tropics, the highly uncertain modelling of sea-surface temperature changes is transmitted to a large uncertain modelling of local rainfall changes. Over tropical land and summer mid-latitude continents (and to a lesser extent, the tropical oceans), uncertain modelling of atmospheric processes, land surface processes and the terrestrial carbon cycle all appear to play an additional substantial role in driving the uncertainty of local rainfall changes. In polar regions, inter-model variability of anomalous sea ice drives an uncertain precipitation response, particularly in winter. In all these regions, there is therefore the potential to reduce the uncertainty of local precipitation changes through targeted model improvements and observational constraints. In contrast, over much of the arid subtropical and mid-latitude oceans, over Australia, and over the Sahara in winter, internal atmospheric variability dominates the uncertainty in projected precipitation changes. Here, model improvements and observational constraints will have little impact on the uncertainty of time means shorter than at least 20 years. Last, a supplementary application of the metric developed here is that it can be interpreted as a measure

  11. On Uncertainty and the WTA-WTP Gap

    OpenAIRE

    Douglas D. Davis; Robert J. Reilly

    2012-01-01

    We correct an analysis by Isik (2004) regarding the effects of uncertainty on the WTA-WTP gap. Isik presents as his primary result a proposition that the introduction of uncertainty regarding environmental quality improvements causes WTA to increase and WTP to decrease by identical amounts relative to a certainty condition where WTA=WTP. These conclusions are incorrect. In fact, WTP may equal WTA even with uncertainty, and increases in the uncertainty of environmental quality improvements cau...

  12. Application of extended statistical combination of uncertainties methodology for digital nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Ki; Uh, Keun Sun; Chul, Kim Heui [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    A technically more direct statistical combinations of uncertainties methodology, extended SCU (XSCU), was applied to statistically combine the uncertainties associated with the DNBR alarm setpoint and the DNBR trip setpoint of digital nuclear power plants. The modified SCU (MSCU) methodology is currently used as the USNRC approved design methodology to perform the same function. In this report, the MSCU and XSCU methodologies were compared in terms of the total uncertainties and the net margins to the DNBR alarm and trip setpoints. The MSCU methodology resulted in the small total penalties due to a significantly negative bias which are quite large. However the XSCU methodology gave the virtually unbiased total uncertainties. The net margins to the DNBR alarm and trip setpoints by the MSCU methodology agree with those by the XSCU methodology within statistical variations. (Author) 12 refs., 17 figs., 5 tabs.

  13. Sensitivity functions for uncertainty analysis: Sensitivity and uncertainty analysis of reactor performance parameters

    International Nuclear Information System (INIS)

    Greenspan, E.

    1982-01-01

    This chapter presents the mathematical basis for sensitivity functions, discusses their physical meaning and information they contain, and clarifies a number of issues concerning their application, including the definition of group sensitivities, the selection of sensitivity functions to be included in the analysis, and limitations of sensitivity theory. Examines the theoretical foundation; criticality reset sensitivities; group sensitivities and uncertainties; selection of sensitivities included in the analysis; and other uses and limitations of sensitivity functions. Gives the theoretical formulation of sensitivity functions pertaining to ''as-built'' designs for performance parameters of the form of ratios of linear flux functionals (such as reaction-rate ratios), linear adjoint functionals, bilinear functions (such as reactivity worth ratios), and for reactor reactivity. Offers a consistent procedure for reducing energy-dependent or fine-group sensitivities and uncertainties to broad group sensitivities and uncertainties. Provides illustrations of sensitivity functions as well as references to available compilations of such functions and of total sensitivities. Indicates limitations of sensitivity theory originating from the fact that this theory is based on a first-order perturbation theory

  14. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    Science.gov (United States)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  15. Micropollutants throughout an integrated urban drainage model: Sensitivity and uncertainty analysis

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    2017-11-01

    The paper presents the sensitivity and uncertainty analysis of an integrated urban drainage model which includes micropollutants. Specifically, a bespoke integrated model developed in previous studies has been modified in order to include the micropollutant assessment (namely, sulfamethoxazole - SMX). The model takes into account also the interactions between the three components of the system: sewer system (SS), wastewater treatment plant (WWTP) and receiving water body (RWB). The analysis has been applied to an experimental catchment nearby Palermo (Italy): the Nocella catchment. Overall, five scenarios, each characterized by different uncertainty combinations of sub-systems (i.e., SS, WWTP and RWB), have been considered applying, for the sensitivity analysis, the Extended-FAST method in order to select the key factors affecting the RWB quality and to design a reliable/useful experimental campaign. Results have demonstrated that sensitivity analysis is a powerful tool for increasing operator confidence in the modelling results. The approach adopted here can be used for blocking some non-identifiable factors, thus wisely modifying the structure of the model and reducing the related uncertainty. The model factors related to the SS have been found to be the most relevant factors affecting the SMX modeling in the RWB when all model factors (scenario 1) or model factors of SS (scenarios 2 and 3) are varied. If the only factors related to the WWTP are changed (scenarios 4 and 5), the SMX concentration in the RWB is mainly influenced (till to 95% influence of the total variance for SSMX,max) by the aerobic sorption coefficient. A progressive uncertainty reduction from the upstream to downstream was found for the soluble fraction of SMX in the RWB.

  16. Price Uncertainty in Linear Production Situations

    NARCIS (Netherlands)

    Suijs, J.P.M.

    1999-01-01

    This paper analyzes linear production situations with price uncertainty, and shows that the corrresponding stochastic linear production games are totally balanced. It also shows that investment funds, where investors pool their individual capital for joint investments in financial assets, fit into

  17. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Vivianaluxa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kruger, Albert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-19

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  18. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  19. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety

    Science.gov (United States)

    Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B.

    2012-01-01

    Entropy, a concept derived from thermodynamics and information theory, describes the amount of uncertainty and disorder within a system. Self-organizing systems engage in a continual dialogue with the environment and must adapt themselves to changing circumstances to keep internal entropy at a manageable level. We propose the entropy model of…

  20. Justification for recommended uncertainties

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Badikov, S.A.; Carlson, A.D.

    2007-01-01

    The uncertainties obtained in an earlier standards evaluation were considered to be unrealistically low by experts of the US Cross Section Evaluation Working Group (CSEWG). Therefore, the CSEWG Standards Subcommittee replaced the covariance matrices of evaluated uncertainties by expanded percentage errors that were assigned to the data over wide energy groups. There are a number of reasons that might lead to low uncertainties of the evaluated data: Underestimation of the correlations existing between the results of different measurements; The presence of unrecognized systematic uncertainties in the experimental data can lead to biases in the evaluated data as well as to underestimations of the resulting uncertainties; Uncertainties for correlated data cannot only be characterized by percentage uncertainties or variances. Covariances between evaluated value at 0.2 MeV and other points obtained in model (RAC R matrix and PADE2 analytical expansion) and non-model (GMA) fits of the 6 Li(n,t) TEST1 data and the correlation coefficients are presented and covariances between the evaluated value at 0.045 MeV and other points (along the line or column of the matrix) as obtained in EDA and RAC R matrix fits of the data available for reactions that pass through the formation of the 7 Li system are discussed. The GMA fit with the GMA database is shown for comparison. The following diagrams are discussed: Percentage uncertainties of the evaluated cross section for the 6 Li(n,t) reaction and the for the 235 U(n,f) reaction; estimation given by CSEWG experts; GMA result with full GMA database, including experimental data for the 6 Li(n,t), 6 Li(n,n) and 6 Li(n,total) reactions; uncertainties in the GMA combined fit for the standards; EDA and RAC R matrix results, respectively. Uncertainties of absolute and 252 Cf fission spectrum averaged cross section measurements, and deviations between measured and evaluated values for 235 U(n,f) cross-sections in the neutron energy range 1

  1. Uncertainties in risk assessment and decision making

    International Nuclear Information System (INIS)

    Starzec, Peter; Purucker, Tom; Stewart, Robert

    2008-02-01

    The general concept for risk assessment in accordance with the Swedish model for contaminated soil implies that the toxicological reference value for a given receptor is first back-calculated to a corresponding concentration of a compound in soil and (if applicable) then modified with respect to e.g. background levels, acute toxicity, and factor of safety. This result in a guideline value that is subsequently compared to the observed concentration levels. Many sources of uncertainty exist when assessing whether the risk for a receptor is significant or not. In this study, the uncertainty aspects have been addressed from three standpoints: 1. Uncertainty in the comparison between the level of contamination (source) and a given risk criterion (e.g. a guideline value) and possible implications on subsequent decisions. This type of uncertainty is considered to be most important in situations where a contaminant is expected to be spatially heterogeneous without any tendency to form isolated clusters (hotspots) that can be easily delineated, i.e. where mean values are appropriate to compare to the risk criterion. 2. Uncertainty in spatial distribution of a contaminant. Spatial uncertainty should be accounted for when hotspots are to be delineated and the volume of soil contaminated with levels above a stated decision criterion has to be assessed (quantified). 3. Uncertainty in an ecological exposure model with regard to the moving pattern of a receptor in relation to spatial distribution of contaminant in question. The study points out that the choice of methodology to characterize the relation between contaminant concentration and a pre-defined risk criterion is governed by a conceptual perception of the contaminant's spatial distribution and also depends on the structure of collected data (observations). How uncertainty in transition from contaminant concentration into risk criterion can be quantified was demonstrated by applying hypothesis tests and the concept of

  2. Model uncertainty: Probabilities for models?

    International Nuclear Information System (INIS)

    Winkler, R.L.

    1994-01-01

    Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising

  3. Information-theoretic approach to uncertainty importance

    International Nuclear Information System (INIS)

    Park, C.K.; Bari, R.A.

    1985-01-01

    A method is presented for importance analysis in probabilistic risk assessments (PRA) for which the results of interest are characterized by full uncertainty distributions and not just point estimates. The method is based on information theory in which entropy is a measure of uncertainty of a probability density function. We define the relative uncertainty importance between two events as the ratio of the two exponents of the entropies. For the log-normal and log-uniform distributions the importance measure is comprised of the median (central tendency) and of the logarithm of the error factor (uncertainty). Thus, if accident sequences are ranked this way, and the error factors are not all equal, then a different rank order would result than if the sequences were ranked by the central tendency measure alone. As an illustration, the relative importance of internal events and in-plant fires was computed on the basis of existing PRA results

  4. Entanglement criterion for tripartite systems based on local sum uncertainty relations

    Science.gov (United States)

    Akbari-Kourbolagh, Y.; Azhdargalam, M.

    2018-04-01

    We propose a sufficient criterion for the entanglement of tripartite systems based on local sum uncertainty relations for arbitrarily chosen observables of subsystems. This criterion generalizes the tighter criterion for bipartite systems introduced by Zhang et al. [C.-J. Zhang, H. Nha, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 81, 012324 (2010), 10.1103/PhysRevA.81.012324] and can be used for both discrete- and continuous-variable systems. It enables us to detect the entanglement of quantum states without having a complete knowledge of them. Its utility is illustrated by some examples of three-qubit, qutrit-qutrit-qubit, and three-mode Gaussian states. It is found that, in comparison with other criteria, this criterion is able to detect some three-qubit bound entangled states more efficiently.

  5. What is the uncertainty principle of non-relativistic quantum mechanics?

    Science.gov (United States)

    Riggs, Peter J.

    2018-05-01

    After more than ninety years of discussions over the uncertainty principle, there is still no universal agreement on what the principle states. The Robertson uncertainty relation (incorporating standard deviations) is given as the mathematical expression of the principle in most quantum mechanics textbooks. However, the uncertainty principle is not merely a statement of what any of the several uncertainty relations affirm. It is suggested that a better approach would be to present the uncertainty principle as a statement about the probability distributions of incompatible variables and the resulting restrictions on quantum states.

  6. How does uncertainty shape patient experience in advanced illness? A secondary analysis of qualitative data.

    Science.gov (United States)

    Etkind, Simon Noah; Bristowe, Katherine; Bailey, Katharine; Selman, Lucy Ellen; Murtagh, Fliss Em

    2017-02-01

    Uncertainty is common in advanced illness but is infrequently studied in this context. If poorly addressed, uncertainty can lead to adverse patient outcomes. We aimed to understand patient experiences of uncertainty in advanced illness and develop a typology of patients' responses and preferences to inform practice. Secondary analysis of qualitative interview transcripts. Studies were assessed for inclusion and interviews were sampled using maximum-variation sampling. Analysis used a thematic approach with 10% of coding cross-checked to enhance reliability. Qualitative interviews from six studies including patients with heart failure, chronic obstructive pulmonary disease, renal disease, cancer and liver failure. A total of 30 transcripts were analysed. Median age was 75 (range, 43-95), 12 patients were women. The impact of uncertainty was frequently discussed: the main related themes were engagement with illness, information needs, patient priorities and the period of time that patients mainly focused their attention on (temporal focus). A typology of patient responses to uncertainty was developed from these themes. Uncertainty influences patient experience in advanced illness through affecting patients' information needs, preferences and future priorities for care. Our typology aids understanding of how patients with advanced illness respond to uncertainty. Assessment of these three factors may be a useful starting point to guide clinical assessment and shared decision making.

  7. Uncertainty in hydrological signatures for gauged and ungauged catchments

    Science.gov (United States)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  8. The Uncertainties of Risk Management

    DEFF Research Database (Denmark)

    Vinnari, Eija; Skærbæk, Peter

    2014-01-01

    for expanding risk management. More generally, such uncertainties relate to the professional identities and responsibilities of operational managers as defined by the framing devices. Originality/value – The paper offers three contributions to the extant literature: first, it shows how risk management itself......Purpose – The purpose of this paper is to analyse the implementation of risk management as a tool for internal audit activities, focusing on unexpected effects or uncertainties generated during its application. Design/methodology/approach – Public and confidential documents as well as semi......-structured interviews are analysed through the lens of actor-network theory to identify the effects of risk management devices in a Finnish municipality. Findings – The authors found that risk management, rather than reducing uncertainty, itself created unexpected uncertainties that would otherwise not have emerged...

  9. Assessment the impact of samplers change on the uncertainty related to geothermalwater sampling

    Science.gov (United States)

    Wątor, Katarzyna; Mika, Anna; Sekuła, Klaudia; Kmiecik, Ewa

    2018-02-01

    The aim of this study is to assess the impact of samplers change on the uncertainty associated with the process of the geothermal water sampling. The study was carried out on geothermal water exploited in Podhale region, southern Poland (Małopolska province). To estimate the uncertainty associated with sampling the results of determinations of metasilicic acid (H2SiO3) in normal and duplicate samples collected in two series were used (in each series the samples were collected by qualified sampler). Chemical analyses were performed using ICP-OES method in the certified Hydrogeochemical Laboratory of the Hydrogeology and Engineering Geology Department at the AGH University of Science and Technology in Krakow (Certificate of Polish Centre for Accreditation No. AB 1050). To evaluate the uncertainty arising from sampling the empirical approach was implemented, based on double analysis of normal and duplicate samples taken from the same well in the series of testing. The analyses of the results were done using ROBAN software based on technique of robust statistics analysis of variance (rANOVA). Conducted research proved that in the case of qualified and experienced samplers uncertainty connected with the sampling can be reduced what results in small measurement uncertainty.

  10. Uncertainties in radioecological assessment models

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Miller, C.W.; Ng, Y.C.

    1983-01-01

    Environmental radiological assessments rely heavily on the use of mathematical models. The predictions of these models are inherently uncertain because models are inexact representations of real systems. The major sources of this uncertainty are related to bias in model formulation and imprecision in parameter estimation. The magnitude of uncertainty is a function of the questions asked of the model and the specific radionuclides and exposure pathways of dominant importance. It is concluded that models developed as research tools should be distinguished from models developed for assessment applications. Furthermore, increased model complexity does not necessarily guarantee increased accuracy. To improve the realism of assessment modeling, stochastic procedures are recommended that translate uncertain parameter estimates into a distribution of predicted values. These procedures also permit the importance of model parameters to be ranked according to their relative contribution to the overall predicted uncertainty. Although confidence in model predictions can be improved through site-specific parameter estimation and increased model validation, health risk factors and internal dosimetry models will probably remain important contributors to the amount of uncertainty that is irreducible. 41 references, 4 figures, 4 tables

  11. The Beam Dynamics and Beam Related Uncertainties in Fermilab Muon $g-2$ Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wanwei [Mississippi U.

    2018-05-01

    The anomaly of the muon magnetic moment, $a_{\\mu}\\equiv (g-2)/2$, has played an important role in constraining physics beyond the Standard Model for many years. Currently, the Standard Model prediction for $a_{\\mu}$ is accurate to 0.42 parts per million (ppm). The most recent muon $g-2$ experiment was done at Brookhaven National Laboratory (BNL) and determined $a_{\\mu}$ to 0.54 ppm, with a central value that differs from the Standard Model prediction by 3.3-3.6 standard deviations and provides a strong hint of new physics. The Fermilab Muon $g-2$ Experiment has a goal to measure $a_{\\mu}$ to unprecedented precision: 0.14 ppm, which could provide an unambiguous answer to the question whether there are new particles and forces that exist in nature. To achieve this goal, several items have been identified to lower the systematic uncertainties. In this work, we focus on the beam dynamics and beam associated uncertainties, which are important and must be better understood. We will discuss the electrostatic quadrupole system, particularly the hardware-related quad plate alignment and the quad extension and readout system. We will review the beam dynamics in the muon storage ring, present discussions on the beam related systematic errors, simulate the 3D electric fields of the electrostatic quadrupoles and examine the beam resonances. We will use a fast rotation analysis to study the muon radial momentum distribution, which provides the key input for evaluating the electric field correction to the measured $a_{\\mu}$.

  12. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    Science.gov (United States)

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  13. Sensitivity and uncertainty analysis of NET/ITER shielding blankets

    International Nuclear Information System (INIS)

    Hogenbirk, A.; Gruppelaar, H.; Verschuur, K.A.

    1990-09-01

    Results are presented of sensitivity and uncertainty calculations based upon the European fusion file (EFF-1). The effect of uncertainties in Fe, Cr and Ni cross sections on the nuclear heating in the coils of a NET/ITER shielding blanket has been studied. The analysis has been performed for the total cross section as well as partial cross sections. The correct expression for the sensitivity profile was used, including the gain term. The resulting uncertainty in the nuclear heating lies between 10 and 20 per cent. (author). 18 refs.; 2 figs.; 2 tabs

  14. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.; Kruger, A. A.

    2018-03-08

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  15. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    Science.gov (United States)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity

  16. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors

    Science.gov (United States)

    Quilcaille, Y.; Gasser, T.; Ciais, P.; Lecocq, F.; Janssens-Maenhout, G.; Mohr, S.

    2018-04-01

    Emission inventories are widely used by the climate community, but their uncertainties are rarely accounted for. In this study, we evaluate the uncertainty in projected climate change induced by uncertainties in fossil-fuel emissions, accounting for non-CO2 species co-emitted with the combustion of fossil-fuels and their use in industrial processes. Using consistent historical reconstructions and three contrasted future projections of fossil-fuel extraction from Mohr et al we calculate CO2 emissions and their uncertainties stemming from estimates of fuel carbon content, net calorific value and oxidation fraction. Our historical reconstructions of fossil-fuel CO2 emissions are consistent with other inventories in terms of average and range. The uncertainties sum up to a ±15% relative uncertainty in cumulative CO2 emissions by 2300. Uncertainties in the emissions of non-CO2 species associated with the use of fossil fuels are estimated using co-emission ratios varying with time. Using these inputs, we use the compact Earth system model OSCAR v2.2 and a Monte Carlo setup, in order to attribute the uncertainty in projected global surface temperature change (ΔT) to three sources of uncertainty, namely on the Earth system’s response, on fossil-fuel CO2 emission and on non-CO2 co-emissions. Under the three future fuel extraction scenarios, we simulate the median ΔT to be 1.9, 2.7 or 4.0 °C in 2300, with an associated 90% confidence interval of about 65%, 52% and 42%. We show that virtually all of the total uncertainty is attributable to the uncertainty in the future Earth system’s response to the anthropogenic perturbation. We conclude that the uncertainty in emission estimates can be neglected for global temperature projections in the face of the large uncertainty in the Earth system response to the forcing of emissions. We show that this result does not hold for all variables of the climate system, such as the atmospheric partial pressure of CO2 and the

  17. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    Science.gov (United States)

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  18. Reconsideration of the Uncertainty Relations and Quantum Measurements

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and discussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucialpieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii simple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information-transmission model, in which the quantum observables are considered as random variables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.

  19. Reconsideration of the Uncertainty Relations and Quantum Measurements

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and dis- cussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii sim- ple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information- transmission model, in which the quantum observables are considered as random vari- ables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.

  20. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  1. Uncertainty calculations made easier

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-07-01

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)

  2. Effect of uncertainty in pore volumes on the uncertainty in amount adsorbed at high-pressures on activated carbon cloth

    International Nuclear Information System (INIS)

    Pendleton, Ph.; Badalyan, A.

    2005-01-01

    Activated carbon cloth (ACC) is a good adsorbent for high rate adsorption of volatile organic carbons [1] and as a storage media for methane [2]. It has been shown [2] that the capacity of ACC to adsorb methane, in the first instance, depends on its micropore volume. One way of increasing this storage capacity is to increase micropore volume [3]. Therefore, the uncertainty in the determination of ACC micropore volume becomes a very important factor, since it affects the uncertainty of amount adsorbed at high-pressures, which usually accompany storage of methane on ACC. Recently, we developed a method for the calculation of experimental uncertainty in micropore volume using low pressure nitrogen adsorption data at 77 K for FM1/250 ACC (ex. Calgon, USA). We tested several cubic equations of state (EOS) and multiple parameter (EOS) to determine the amount of high-pressure nitrogen adsorbed, and compared these data with amounts calculated via interpolated NIST density data. The amount adsorbed calculated from interpolated NIST density data exhibit the lowest propagated combined uncertainty. Values of relative combined standard uncertainty for FM1/250 calculated using a weighted, mean-least-squares method applied to the low-pressure nitrogen adsorption data (Fig. 1) gave 3.52% for the primary micropore volume and 1.63% for the total micropore volume. Our equipment allows the same sample to be exposed to nitrogen (and other gases) at pressures from 10 -4 Pa to 17-MPa in the temperature range from 176 to 252 K. The maximum uptake of nitrogen was 356-mmol/g at 201.92 K and 15.8-MPa (Fig. 2). The delivery capacity of ACC is determined by the amount of adsorbed gas recovered when the pressure is reduced from that for maximum adsorption to 0.1-MPa [2]. In this regard, the total micropore volume becomes an important parameter in determining the amount of gas delivered during desorption. In the present paper we will discuss the effect of uncertainty in micropore volume

  3. Macro Expectations, Aggregate Uncertainty, and Expected Term Premia

    DEFF Research Database (Denmark)

    Dick, Christian D.; Schmeling, Maik; Schrimpf, Andreas

    2013-01-01

    as well as aggregate macroeconomic uncertainty at the level of individual forecasters. We find that expected term premia are (i) time-varying and reasonably persistent, (ii) strongly related to expectations about future output growth, and (iii) positively affected by uncertainty about future output growth...... and in ation rates. Expectations about real macroeconomic variables seem to matter more than expectations about nominal factors. Additional findings on term structure factors suggest that the level and slope factor capture information related to uncertainty about real and nominal macroeconomic prospects...

  4. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    Science.gov (United States)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model

  5. Using Statistical Downscaling to Quantify the GCM-Related Uncertainty in Regional Climate Change Scenarios: A Case Study of Swedish Precipitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.

  6. Phenomenon of Uncertainty as a Subjective Experience

    Directory of Open Access Journals (Sweden)

    Lifintseva A.A.

    2018-04-01

    Full Text Available The phenomenon of uncertainty in illness of patients is discussed and analyzed in this article. Uncertainty in illness is a condition that accompanies the patient from the moment of appearance of the first somatic symptoms of the disease and could be strengthened or weakened thanks to many psychosocial factors. The level of uncertainty is related to the level of stress, emotional disadaptation, affective states, coping strategies, mechanisms of psychological defense, etc. Uncertainty can perform destructive functions, acting as a trigger for stressful conditions and launching negative emotional experiences. As a positive function of uncertainty, one can note a possible positive interpretation of the patient's disease. In addition, the state of uncertainty allows the patient to activate the resources of coping with the disease, among which the leading role belongs to social support.

  7. The Stock Market: Risk vs. Uncertainty.

    Science.gov (United States)

    Griffitts, Dawn

    2002-01-01

    This economics education publication focuses on the U.S. stock market and the risk and uncertainty that an individual faces when investing in the market. The material explains that risk and uncertainty relate to the same underlying concept randomness. It defines and discusses both concepts and notes that although risk is quantifiable, uncertainty…

  8. The use of error and uncertainty methods in the medical laboratory.

    Science.gov (United States)

    Oosterhuis, Wytze P; Bayat, Hassan; Armbruster, David; Coskun, Abdurrahman; Freeman, Kathleen P; Kallner, Anders; Koch, David; Mackenzie, Finlay; Migliarino, Gabriel; Orth, Matthias; Sandberg, Sverre; Sylte, Marit S; Westgard, Sten; Theodorsson, Elvar

    2018-01-26

    Error methods - compared with uncertainty methods - offer simpler, more intuitive and practical procedures for calculating measurement uncertainty and conducting quality assurance in laboratory medicine. However, uncertainty methods are preferred in other fields of science as reflected by the guide to the expression of uncertainty in measurement. When laboratory results are used for supporting medical diagnoses, the total uncertainty consists only partially of analytical variation. Biological variation, pre- and postanalytical variation all need to be included. Furthermore, all components of the measuring procedure need to be taken into account. Performance specifications for diagnostic tests should include the diagnostic uncertainty of the entire testing process. Uncertainty methods may be particularly useful for this purpose but have yet to show their strength in laboratory medicine. The purpose of this paper is to elucidate the pros and cons of error and uncertainty methods as groundwork for future consensus on their use in practical performance specifications. Error and uncertainty methods are complementary when evaluating measurement data.

  9. Analysing relations between specific and total liking scores

    DEFF Research Database (Denmark)

    Menichelli, Elena; Kraggerud, Hilde; Olsen, Nina Veflen

    2013-01-01

    The objective of this article is to present a new statistical approach for the study of consumer liking. Total liking data are extended by incorporating liking for specific sensory properties. The approach combines different analyses for the purpose of investigating the most important aspects...... of liking and indicating which products are similarly or differently perceived by which consumers. A method based on the differences between total liking and the specific liking variables is proposed for studying both relative differences among products and individual consumer differences. Segmentation...... is also tested out in order to distinguish consumers with the strongest differences in their liking values. The approach is illustrated by a case study, based on cheese data. In the consumer test consumers were asked to evaluate their total liking, the liking for texture and the liking for odour/taste. (C...

  10. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  11. Impact of Uncertainties in the Cosmological Parameters on the Measurement of Primordial non-Gaussianity

    CERN Document Server

    Liguori, M

    2008-01-01

    We study the impact of cosmological parameters' uncertainties on estimates of the primordial NG parameter f_NL in local and equilateral models of non-Gaussianity. We show that propagating these errors increases the f_NL relative uncertainty by 16% for WMAP and 5 % for Planck in the local case, whereas for equilateral configurations the correction term are 14% and 4%, respectively. If we assume for local f_NL a central value of order 60, according to recent WMAP 5-years estimates, we obtain for Planck a final correction \\Delta f_NL = 3. Although not dramatic, this correction is at the level of the expected estimator uncertainty for Planck, and should then be taken into account when quoting the significance of an eventual future detection. In current estimates of f_NL the cosmological parameters are held fixed at their best-fit values. We finally note that the impact of uncertainties in the cosmological parameters on the final f_NL error bar would become totally negligible if the parameters were allowed to vary...

  12. Cost uncertainty for different levels of technology maturity

    International Nuclear Information System (INIS)

    DeMuth, S.F.; Franklin, A.L.

    1996-01-01

    It is difficult at best to apply a single methodology for estimating cost uncertainties related to technologies of differing maturity. While highly mature technologies may have significant performance and manufacturing cost data available, less well developed technologies may be defined in only conceptual terms. Regardless of the degree of technical maturity, often a cost estimate relating to application of the technology may be required to justify continued funding for development. Yet, a cost estimate without its associated uncertainty lacks the information required to assess the economic risk. For this reason, it is important for the developer to provide some type of uncertainty along with a cost estimate. This study demonstrates how different methodologies for estimating uncertainties can be applied to cost estimates for technologies of different maturities. For a less well developed technology an uncertainty analysis of the cost estimate can be based on a sensitivity analysis; whereas, an uncertainty analysis of the cost estimate for a well developed technology can be based on an error propagation technique from classical statistics. It was decided to demonstrate these uncertainty estimation techniques with (1) an investigation of the additional cost of remediation due to beyond baseline, nearly complete, waste heel retrieval from underground storage tanks (USTs) at Hanford; and (2) the cost related to the use of crystalline silico-titanate (CST) rather than the baseline CS100 ion exchange resin for cesium separation from UST waste at Hanford

  13. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    Science.gov (United States)

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G; Ring, David; Parisien, Robert

    2016-06-01

    of experience. Two hundred forty-two (34%) members completed the survey. We found no differences between responders and nonresponders. Each survey item measured its own trait better than any of the other traits. Recognition of uncertainty (0.70) and confidence bias (0.75) had relatively high Cronbach alpha levels, meaning that the questions making up these traits are closely related and probably measure the same construct. This was lower for statistical understanding (0.48) and trust in the orthopaedic evidence base (0.37). Subsequently, combining each trait's individual questions, we calculated a 0 to 10 score for each trait. The mean recognition of uncertainty score was 3.2 ± 1.4. Recognition of uncertainty in daily practice did not vary by years in practice (0-5 years, 3.2 ± 1.3; 6-10 years, 2.9 ± 1.3; 11-20 years, 3.2 ± 1.4; 21-30 years, 3.3 ± 1.6 years; p = 0.51), but overconfidence bias did correlate with years in practice (0-5 years, 6.2 ± 1.4; 6-10 years, 7.1 ± 1.3; 11-20 years, 7.4 ± 1.4; 21-30 years, 7.1 ± 1.2 years; p < 0.001). Accounting for a potential interaction of variables using multivariable analysis, less recognition of uncertainty was independently but weakly associated with working in a multispecialty group compared with academic practice (β regression coefficient, -0.53; 95% confidence interval [CI], -1.0 to -0.055; partial R(2), 0.021; p = 0.029), belief in God or any other deity/deities (β, -0.57; 95% CI, -1.0 to -0.11; partial R(2), 0.026; p = 0.015), greater confidence bias (β, -0.26; 95% CI, -0.37 to -0.14; partial R(2), 0.084; p < 0.001), and greater trust in the orthopaedic evidence base (β, -0.16; 95% CI, -0.26 to -0.058; partial R(2), 0.040; p = 0.002). Better statistical understanding was independently, and more strongly, associated with greater recognition of uncertainty (β, 0.25; 95% CI, 0.17-0.34; partial R(2), 0.13; p < 0.001). Our full model accounted for 29% of the variability in recognition of uncertainty (adjusted

  14. Uncertainty in spatial planning proceedings

    Directory of Open Access Journals (Sweden)

    Aleš Mlakar

    2009-01-01

    Full Text Available Uncertainty is distinctive of spatial planning as it arises from the necessity to co-ordinate the various interests within the area, from the urgency of adopting spatial planning decisions, the complexity of the environment, physical space and society, addressing the uncertainty of the future and from the uncertainty of actually making the right decision. Response to uncertainty is a series of measures that mitigate the effects of uncertainty itself. These measures are based on two fundamental principles – standardization and optimization. The measures are related to knowledge enhancement and spatial planning comprehension, in the legal regulation of changes, in the existence of spatial planning as a means of different interests co-ordination, in the active planning and the constructive resolution of current spatial problems, in the integration of spatial planning and the environmental protection process, in the implementation of the analysis as the foundation of spatial planners activities, in the methods of thinking outside the parameters, in forming clear spatial concepts and in creating a transparent management spatial system and also in the enforcement the participatory processes.

  15. Uncertainty estimation and risk prediction in air quality

    International Nuclear Information System (INIS)

    Garaud, Damien

    2011-01-01

    This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr

  16. A study on the propagation of measurement uncertainties into the result on a turbine performance test

    International Nuclear Information System (INIS)

    Cho, Soo Yong; Park, Chan Woo

    2004-01-01

    Uncertainties generated from the individual measured variables have an influence on the uncertainty of the experimental result through a data reduction equation. In this study, a performance test of a single stage axial type turbine is conducted, and total-to-total efficiencies are measured at the various off-design points in the low pressure and cold state. Based on an experimental apparatus, a data reduction equation for turbine efficiency is formulated and six measured variables are selected. Codes are written to calculate the efficiency, the uncertainty of the efficiency, and the sensitivity of the efficiency uncertainty by each of the measured quantities. The influence of each measured variable on the experimental result is figured out. Results show that the largest Uncertainty Magnification Factor (UMF) value is obtained by the inlet total pressure among the six measured variables, and its value is always greater than one. The UMF values of the inlet total temperature, the torque, and the RPM are always one. The Uncertainty Percentage Contribution (UPC) of the RPM shows the lowest influence on the uncertainty of the turbine efficiency, but the UPC of the torque has the largest influence to the result among the measured variables. These results are applied to find the correct direction for meeting an uncertainty requirement of the experimental result in the planning or development phase of experiment, and also to offer ideas for preparing a measurement system in the planning phase

  17. Coping with uncertainty in environmental impact assessments: Open techniques

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Halman, Johannes I.M.

    2016-01-01

    Uncertainty is virtually unavoidable in environmental impact assessments (EIAs). From the literature related to treating and managing uncertainty, we have identified specific techniques for coping with uncertainty in EIAs. Here, we have focused on basic steps in the decision-making process that take

  18. Pharmacological Fingerprints of Contextual Uncertainty.

    Directory of Open Access Journals (Sweden)

    Louise Marshall

    2016-11-01

    Full Text Available Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses.

  19. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  20. Addressing uncertainties in the ERICA Integrated Approach

    International Nuclear Information System (INIS)

    Oughton, D.H.; Agueero, A.; Avila, R.; Brown, J.E.; Copplestone, D.; Gilek, M.

    2008-01-01

    Like any complex environmental problem, ecological risk assessment of the impacts of ionising radiation is confounded by uncertainty. At all stages, from problem formulation through to risk characterisation, the assessment is dependent on models, scenarios, assumptions and extrapolations. These include technical uncertainties related to the data used, conceptual uncertainties associated with models and scenarios, as well as social uncertainties such as economic impacts, the interpretation of legislation, and the acceptability of the assessment results to stakeholders. The ERICA Integrated Approach has been developed to allow an assessment of the risks of ionising radiation, and includes a number of methods that are intended to make the uncertainties and assumptions inherent in the assessment more transparent to users and stakeholders. Throughout its development, ERICA has recommended that assessors deal openly with the deeper dimensions of uncertainty and acknowledge that uncertainty is intrinsic to complex systems. Since the tool is based on a tiered approach, the approaches to dealing with uncertainty vary between the tiers, ranging from a simple, but highly conservative screening to a full probabilistic risk assessment including sensitivity analysis. This paper gives on overview of types of uncertainty that are manifest in ecological risk assessment and the ERICA Integrated Approach to dealing with some of these uncertainties

  1. Some reflections on uncertainty analysis and management

    International Nuclear Information System (INIS)

    Aven, Terje

    2010-01-01

    A guide to quantitative uncertainty analysis and management in industry has recently been issued. The guide provides an overall framework for uncertainty modelling and characterisations, using probabilities but also other uncertainty representations (including the Dempster-Shafer theory). A number of practical applications showing how to use the framework are presented. The guide is considered as an important contribution to the field, but there is a potential for improvements. These relate mainly to the scientific basis and clarification of critical issues, for example, concerning the meaning of a probability and the concept of model uncertainty. A reformulation of the framework is suggested using probabilities as the only representation of uncertainty. Several simple examples are included to motivate and explain the basic ideas of the modified framework.

  2. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  3. Nuclear data uncertainties for local power densities in the Martin-Hoogenboom benchmark

    International Nuclear Information System (INIS)

    Van der Marck, S.C.; Rochman, D.A.

    2013-01-01

    The recently developed method of fast Total Monte Carlo to propagate nuclear data uncertainties was applied to the Martin-Hoogenboom benchmark. This Martin- Hoogenboom benchmark prescribes that one calculates local pin powers (of light water cooled reactor) with a statistical uncertainty lower than 1% everywhere. Here we report, for the first time, an estimate of the nuclear data uncertainties for these local pin powers. For each of the more than 6 million local power tallies, the uncertainty due to nuclear data uncertainties was calculated, based on random variation of data for 235 U, 238 U, 239 Pu and H in H 2 O thermal scattering. In the center of the core region, the nuclear data uncertainty is 0.9%. Towards the edges of the core, this uncertainty increases to roughly 3%. The nuclear data uncertainties have been shown to be larger than the statistical uncertainties that the benchmark prescribes

  4. Rapid research and implementation priority setting for wound care uncertainties.

    Directory of Open Access Journals (Sweden)

    Trish A Gray

    Full Text Available People with complex wounds are more likely to be elderly, living with multimorbidity and wound related symptoms. A variety of products are available for managing complex wounds and a range of healthcare professionals are involved in wound care, yet there is a lack of good evidence to guide practice and services. These factors create uncertainty for those who deliver and those who manage wound care. Formal priority setting for research and implementation topics is needed to more accurately target the gaps in treatment and services. We solicited practitioner and manager uncertainties in wound care and held a priority setting workshop to facilitate a collaborative approach to prioritising wound care-related uncertainties.We recruited healthcare professionals who regularly cared for patients with complex wounds, were wound care specialists or managed wound care services. Participants submitted up to five wound care uncertainties in consultation with their colleagues, via an on-line survey and attended a priority setting workshop. Submitted uncertainties were collated, sorted and categorised according professional group. On the day of the workshop, participants were divided into four groups depending on their profession. Uncertainties submitted by their professional group were viewed, discussed and amended, prior to the first of three individual voting rounds. Participants cast up to ten votes for the uncertainties they judged as being high priority. Continuing in the professional groups, the top 10 uncertainties from each group were displayed, and the process was repeated. Groups were then brought together for a plenary session in which the final priorities were individually scored on a scale of 0-10 by participants. Priorities were ranked and results presented. Nominal group technique was used for generating the final uncertainties, voting and discussions.Thirty-three participants attended the workshop comprising; 10 specialist nurses, 10 district

  5. Rapid research and implementation priority setting for wound care uncertainties

    Science.gov (United States)

    Dumville, Jo C.; Christie, Janice; Cullum, Nicky A.

    2017-01-01

    Introduction People with complex wounds are more likely to be elderly, living with multimorbidity and wound related symptoms. A variety of products are available for managing complex wounds and a range of healthcare professionals are involved in wound care, yet there is a lack of good evidence to guide practice and services. These factors create uncertainty for those who deliver and those who manage wound care. Formal priority setting for research and implementation topics is needed to more accurately target the gaps in treatment and services. We solicited practitioner and manager uncertainties in wound care and held a priority setting workshop to facilitate a collaborative approach to prioritising wound care-related uncertainties. Methods We recruited healthcare professionals who regularly cared for patients with complex wounds, were wound care specialists or managed wound care services. Participants submitted up to five wound care uncertainties in consultation with their colleagues, via an on-line survey and attended a priority setting workshop. Submitted uncertainties were collated, sorted and categorised according professional group. On the day of the workshop, participants were divided into four groups depending on their profession. Uncertainties submitted by their professional group were viewed, discussed and amended, prior to the first of three individual voting rounds. Participants cast up to ten votes for the uncertainties they judged as being high priority. Continuing in the professional groups, the top 10 uncertainties from each group were displayed, and the process was repeated. Groups were then brought together for a plenary session in which the final priorities were individually scored on a scale of 0–10 by participants. Priorities were ranked and results presented. Nominal group technique was used for generating the final uncertainties, voting and discussions. Results Thirty-three participants attended the workshop comprising; 10 specialist nurses

  6. Centralizing Data Management with Considerations of Uncertainty and Information-Based Flexibility

    OpenAIRE

    Velu, Chander K.; Madnick, Stuart E.; Van Alstyne, Marshall W.

    2013-01-01

    This paper applies the theory of real options to analyze how the value of information-based flexibility should affect the decision to centralize or decentralize data management under low and high uncertainty. This study makes two main contributions. First, we show that in the presence of low uncertainty, centralization of data management decisions creates more total surplus for the firm as the similarity of business units increases. In contrast, in the presence of high uncertainty, centraliza...

  7. Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Data Set

    Science.gov (United States)

    Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.

    2002-01-01

    The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

  8. Account of the uncertainty factor in forecasting nuclear power development

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1979-01-01

    Minimization of total discounted costs for linear constraints is commonly used in forecasting nuclear energy growth. This approach is considered inadequate due to the uncertainty of exogenous variables of the model. A method of forecasting that takes into account the presence of uncertainty is elaborated. An example that demonstrates the expediency of the method and its advantage over the conventional approximation method used for taking uncertainty into account is given. In the framework of the example, the optimal strategy for nuclear energy growth over period of 500 years is determined

  9. Deterministic uncertainty analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1987-12-01

    This paper presents a deterministic uncertainty analysis (DUA) method for calculating uncertainties that has the potential to significantly reduce the number of computer runs compared to conventional statistical analysis. The method is based upon the availability of derivative and sensitivity data such as that calculated using the well known direct or adjoint sensitivity analysis techniques. Formation of response surfaces using derivative data and the propagation of input probability distributions are discussed relative to their role in the DUA method. A sample problem that models the flow of water through a borehole is used as a basis to compare the cumulative distribution function of the flow rate as calculated by the standard statistical methods and the DUA method. Propogation of uncertainties by the DUA method is compared for ten cases in which the number of reference model runs was varied from one to ten. The DUA method gives a more accurate representation of the true cumulative distribution of the flow rate based upon as few as two model executions compared to fifty model executions using a statistical approach. 16 refs., 4 figs., 5 tabs

  10. Using Options to Manage Dynamic Uncertainty in Acquisition Projects

    National Research Council Canada - National Science Library

    Ceylan, B. K; Ford, David N

    2002-01-01

    Uncertainty in acquisition projects and environments can degrade performance. Traditional project planning, management tools, and methods can effectively deal with uncertainties in relatively stable environments...

  11. An uncertainty inventory demonstration - a primary step in uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Laboratory; Booker, Jane M [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Salazar, Issac F [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2009-01-01

    Tools, methods, and theories for assessing and quantifying uncertainties vary by application. Uncertainty quantification tasks have unique desiderata and circumstances. To realistically assess uncertainty requires the engineer/scientist to specify mathematical models, the physical phenomena of interest, and the theory or framework for assessments. For example, Probabilistic Risk Assessment (PRA) specifically identifies uncertainties using probability theory, and therefore, PRA's lack formal procedures for quantifying uncertainties that are not probabilistic. The Phenomena Identification and Ranking Technique (PIRT) proceeds by ranking phenomena using scoring criteria that results in linguistic descriptors, such as importance ranked with words, 'High/Medium/Low.' The use of words allows PIRT to be flexible, but the analysis may then be difficult to combine with other uncertainty theories. We propose that a necessary step for the development of a procedure or protocol for uncertainty quantification (UQ) is the application of an Uncertainty Inventory. An Uncertainty Inventory should be considered and performed in the earliest stages of UQ.

  12. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  13. Entanglement witness via quantum-memory-assisted entropic uncertainty relation

    Science.gov (United States)

    Shi, Jiadong; Ding, Zhiyong; Wu, Tao; He, Juan; Yu, Lizhi; Sun, Wenyang; Wang, Dong; Ye, Liu

    2017-12-01

    By virtue of the quantum-memory-assisted entropic uncertainty relation (EUR), we analyze entanglement witness via the efficiencies of the estimates proposed by Berta (2010 Nat. Phys. 6 659) and Pati (2012 Phys. Rev. A 86 042105). The results show that, without a structured reservoir, the entanglement regions witnessed by these EUR estimates are only determined by the chosen estimated setup, and have no correlation with the explicit form of the initial state. On the other hand, with the structured reservoirs, the time regions during which the entanglement can be witnessed, and the corresponding entanglement regions closely depend on the choice of the estimated setup, the initial state and the state purity p . Concretely, for a pure state with p=1 , the entanglement can be witnessed by both estimates, while for mixed states with p=0.78 , it can only be witnessed using the Pati estimate. What is more, we find that the time regions incorporating the Pati estimate become discontinuous for the initial state with ≤ft| {{φ }\\prime } \\right> ={≤ft(≤ft| 01 \\right> +≤ft| 10 \\right> \\right)}/{\\sqrt{2}} , and the corresponding entanglement regions remain the same; however the entanglement can only be witnessed once by utilizing the Berta estimate.

  14. Generally Recognized as Safe: Uncertainty Surrounding E-Cigarette Flavoring Safety

    Directory of Open Access Journals (Sweden)

    Clara G. Sears

    2017-10-01

    Full Text Available Despite scientific uncertainty regarding the relative safety of inhaling e-cigarette aerosol and flavorings, some consumers regard the U.S. Food and Drug Administration’s “generally recognized as safe” (GRAS designation as evidence of flavoring safety. In this study, we assessed how college students’ perceptions of e-cigarette flavoring safety are related to understanding of the GRAS designation. During spring 2017, an online questionnaire was administered to college students. Chi-square p-values and multivariable logistic regression were employed to compare perceptions among participants considering e-cigarette flavorings as safe and those considering e-cigarette flavorings to be unsafe. The total sample size was 567 participants. Only 22% knew that GRAS designation meant that a product is safe to ingest, not inhale, inject, or use topically. Of participants who considered flavorings to be GRAS, the majority recognized that the designation meant a product is safe to ingest but also considered it safe to inhale. Although scientific uncertainty on the overall safety of flavorings in e-cigarettes remains, health messaging can educate the public about the GRAS designation and its irrelevance to e-cigarette safety.

  15. Measurement uncertainties for vacuum standards at Korea Research Institute of Standards and Science

    International Nuclear Information System (INIS)

    Hong, S. S.; Shin, Y. H.; Chung, K. H.

    2006-01-01

    The Korea Research Institute of Standards and Science has three major vacuum systems: an ultrasonic interferometer manometer (UIM) (Sec. II, Figs. 1 and 2) for low vacuum, a static expansion system (SES) (Sec. III, Figs. 3 and 4) for medium vacuum, and an orifice-type dynamic expansion system (DES) (Sec. IV, Figs. 5 and 6) for high and ultrahigh vacuum. For each system explicit measurement model equations with multiple variables are, respectively, given. According to ISO standards, all these system variable errors were used to calculate the expanded uncertainty (U). For each system the expanded uncertainties (k=1, confidence level=95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) are summarized in Table IV and are estimated to be as follows. For UIM, at 2.5-300 Pa generated pressure, the expanded uncertainty is -2 Pa and the relative expanded uncertainty is -2 ; at 1-100 kPa generated pressure, the expanded uncertainty is -5 . For SES, at 3-100 Pa generated pressure, the expanded uncertainty is -1 Pa and the relative expanded uncertainty is -3 . For DES, at 4.6x10 -3 -1.3x10 -2 Pa generated pressure, the expanded uncertainty is -4 Pa and the relative expanded uncertainty is -3 ; at 3.0x10 -6 -9.0x10 -4 Pa generated pressure, the expanded uncertainty is -6 Pa and the relative expanded uncertainty is -2 . Within uncertainty limits our bilateral and key comparisons [CCM.P-K4 (10 Pa-1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table V)

  16. Harvest Regulations and Implementation Uncertainty in Small Game Harvest Management

    Directory of Open Access Journals (Sweden)

    Pål F. Moa

    2017-09-01

    Full Text Available A main challenge in harvest management is to set policies that maximize the probability that management goals are met. While the management cycle includes multiple sources of uncertainty, only some of these has received considerable attention. Currently, there is a large gap in our knowledge about implemention of harvest regulations, and to which extent indirect control methods such as harvest regulations are actually able to regulate harvest in accordance with intended management objectives. In this perspective article, we first summarize and discuss hunting regulations currently used in management of grouse species (Tetraonidae in Europe and North America. Management models suggested for grouse are most often based on proportional harvest or threshold harvest principles. These models are all built on theoretical principles for sustainable harvesting, and provide in the end an estimate on a total allowable catch. However, implementation uncertainty is rarely examined in empirical or theoretical harvest studies, and few general findings have been reported. Nevertheless, circumstantial evidence suggest that many of the most popular regulations are acting depensatory so that harvest bag sizes is more limited in years (or areas where game density is high, contrary to general recommendations. A better understanding of the implementation uncertainty related to harvest regulations is crucial in order to establish sustainable management systems. We suggest that scenario tools like Management System Evaluation (MSE should be more frequently used to examine robustness of currently applied harvest regulations to such implementation uncertainty until more empirical evidence is available.

  17. Uncertainty Assessment: What Good Does it Do? (Invited)

    Science.gov (United States)

    Oreskes, N.; Lewandowsky, S.

    2013-12-01

    The scientific community has devoted considerable time and energy to understanding, quantifying and articulating the uncertainties related to anthropogenic climate change. However, informed decision-making and good public policy arguably rely far more on a central core of understanding of matters that are scientifically well established than on detailed understanding and articulation of all relevant uncertainties. Advocates of vaccination, for example, stress its overall efficacy in preventing morbidity and mortality--not the uncertainties over how long the protective effects last. Advocates for colonoscopy for cancer screening stress its capacity to detect polyps before they become cancerous, with relatively little attention paid to the fact that many, if not most, polyps, would not become cancerous even if left unremoved. So why has the climate science community spent so much time focused on uncertainty? One reason, of course, is that articulation of uncertainty is a normal and appropriate part of scientific work. However, we argue that there is another reason that involves the pressure that the scientific community has experienced from individuals and groups promoting doubt about anthropogenic climate change. Specifically, doubt-mongering groups focus public attention on scientific uncertainty as a means to undermine scientific claims, equating uncertainty with untruth. Scientists inadvertently validate these arguments by agreeing that much of the science is uncertain, and thus seemingly implying that our knowledge is insecure. The problem goes further, as the scientific community attempts to articulate more clearly, and reduce, those uncertainties, thus, seemingly further agreeing that the knowledge base is insufficient to warrant public and governmental action. We refer to this effect as 'seepage,' as the effects of doubt-mongering seep into the scientific community and the scientific agenda, despite the fact that addressing these concerns does little to alter

  18. On how to understand and present the uncertainties in production assurance analyses, with a case study related to a subsea production system

    International Nuclear Information System (INIS)

    Aven, Terje; Pedersen, Linda Martens

    2014-01-01

    Production assurance analyses of production systems are in practice typically carried out using flow network modelling and Monte Carlo simulations. Based on the network and probability distribution assumptions for equipment lifetime and restoration time, the simulation tool produces predictions/estimates and uncertainty distributions of the production availability, which is defined as the ratio of production to planned production, or any other reference level, over a specified period of time. To adequately communicate the results from the analyses, it is essential that there is in place a framework which clarifies how to understand the concepts introduced, including the uncertainty distributions produced. Some key elements of such a conceptual framework are well established in the industry, for example the use of probability models to represent the stochastic variation related to lifetimes and restoration times. However an overall framework linking this variation, as well as “model uncertainties”, to the epistemic uncertainty distribution for the output production availability, has been lacking. The purpose of the present paper is to present such a framework, and in this way provide new insights to and guidelines on how to understand and present the uncertainties in practical production assurance analyses. An example related to a subsea production system is used to illustrate the framework and the guidelines

  19. Recognizing and responding to uncertainty: a grounded theory of nurses' uncertainty.

    Science.gov (United States)

    Cranley, Lisa A; Doran, Diane M; Tourangeau, Ann E; Kushniruk, Andre; Nagle, Lynn

    2012-08-01

    There has been little research to date exploring nurses' uncertainty in their practice. Understanding nurses' uncertainty is important because it has potential implications for how care is delivered. The purpose of this study is to develop a substantive theory to explain how staff nurses experience and respond to uncertainty in their practice. Between 2006 and 2008, a grounded theory study was conducted that included in-depth semi-structured interviews. Fourteen staff nurses working in adult medical-surgical intensive care units at two teaching hospitals in Ontario, Canada, participated in the study. The theory recognizing and responding to uncertainty characterizes the processes through which nurses' uncertainty manifested and how it was managed. Recognizing uncertainty involved the processes of assessing, reflecting, questioning, and/or being unable to predict aspects of the patient situation. Nurses' responses to uncertainty highlighted the cognitive-affective strategies used to manage uncertainty. Study findings highlight the importance of acknowledging uncertainty and having collegial support to manage uncertainty. The theory adds to our understanding the processes involved in recognizing uncertainty, strategies and outcomes of managing uncertainty, and influencing factors. Tailored nursing education programs should be developed to assist nurses in developing skills in articulating and managing their uncertainty. Further research is needed to extend, test and refine the theory of recognizing and responding to uncertainty to develop strategies for managing uncertainty. This theory advances the nursing perspective of uncertainty in clinical practice. The theory is relevant to nurses who are faced with uncertainty and complex clinical decisions, to managers who support nurses in their clinical decision-making, and to researchers who investigate ways to improve decision-making and care delivery. ©2012 Sigma Theta Tau International.

  20. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    International Nuclear Information System (INIS)

    Elert, M.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  1. Potential effects of organizational uncertainty on safety

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting Group, Kirkland, WA (United States); Lekberg, A. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Melber, B.D. [Melber Consulting, Seattle WA (United States)

    2001-12-01

    When organizations face significant change - reorganization, mergers, acquisitions, down sizing, plant closures or decommissioning - both the organizations and the workers in those organizations experience significant uncertainty about the future. This uncertainty affects the organization and the people working in the organization - adversely affecting morale, reducing concentration on safe operations, and resulting in the loss of key staff. Hence, organizations, particularly those using high risk technologies, which are facing significant change need to consider and plan for the effects of organizational uncertainty on safety - as well as planning for other consequences of change - technical, economic, emotional, and productivity related. This paper reviews some of what is known about the effects of uncertainty on organizations and individuals, discusses the potential consequences of uncertainty on organizational and individual behavior, and presents some of the implications for safety professionals.

  2. Potential effects of organizational uncertainty on safety

    International Nuclear Information System (INIS)

    Durbin, N.E.; Lekberg, A.; Melber, B.D.

    2001-12-01

    When organizations face significant change - reorganization, mergers, acquisitions, down sizing, plant closures or decommissioning - both the organizations and the workers in those organizations experience significant uncertainty about the future. This uncertainty affects the organization and the people working in the organization - adversely affecting morale, reducing concentration on safe operations, and resulting in the loss of key staff. Hence, organizations, particularly those using high risk technologies, which are facing significant change need to consider and plan for the effects of organizational uncertainty on safety - as well as planning for other consequences of change - technical, economic, emotional, and productivity related. This paper reviews some of what is known about the effects of uncertainty on organizations and individuals, discusses the potential consequences of uncertainty on organizational and individual behavior, and presents some of the implications for safety professionals

  3. Uncertainty in artificial intelligence

    CERN Document Server

    Levitt, TS; Lemmer, JF; Shachter, RD

    1990-01-01

    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  4. ESFR core optimization and uncertainty studies

    International Nuclear Information System (INIS)

    Rineiski, A.; Vezzoni, B.; Zhang, D.; Marchetti, M.; Gabrielli, F.; Maschek, W.; Chen, X.-N.; Buiron, L.; Krepel, J.; Sun, K.; Mikityuk, K.; Polidoro, F.; Rochman, D.; Koning, A.J.; DaCruz, D.F.; Tsige-Tamirat, H.; Sunderland, R.

    2015-01-01

    In the European Sodium Fast Reactor (ESFR) project supported by EURATOM in 2008-2012, a concept for a large 3600 MWth sodium-cooled fast reactor design was investigated. In particular, reference core designs with oxide and carbide fuel were optimized to improve their safety parameters. Uncertainties in these parameters were evaluated for the oxide option. Core modifications were performed first to reduce the sodium void reactivity effect. Introduction of a large sodium plenum with an absorber layer above the core and a lower axial fertile blanket improve the total sodium void effect appreciably, bringing it close to zero for a core with fresh fuel, in line with results obtained worldwide, while not influencing substantially other core physics parameters. Therefore an optimized configuration, CONF2, with a sodium plenum and a lower blanket was established first and used as a basis for further studies in view of deterioration of safety parameters during reactor operation. Further options to study were an inner fertile blanket, introduction of moderator pins, a smaller core height, special designs for pins, such as 'empty' pins, and subassemblies. These special designs were proposed to facilitate melted fuel relocation in order to avoid core re-criticality under severe accident conditions. In the paper further CONF2 modifications are compared in terms of safety and fuel balance. They may bring further improvements in safety, but their accurate assessment requires additional studies, including transient analyses. Uncertainty studies were performed by employing a so-called Total Monte-Carlo method, for which a large number of nuclear data files is produced for single isotopes and then used in Monte-Carlo calculations. The uncertainties for the criticality, sodium void and Doppler effects, effective delayed neutron fraction due to uncertainties in basic nuclear data were assessed for an ESFR core. They prove applicability of the available nuclear data for ESFR

  5. Responses to clinical uncertainty in Australian general practice trainees: a cross-sectional analysis.

    Science.gov (United States)

    Cooke, Georga; Tapley, Amanda; Holliday, Elizabeth; Morgan, Simon; Henderson, Kim; Ball, Jean; van Driel, Mieke; Spike, Neil; Kerr, Rohan; Magin, Parker

    2017-12-01

    Tolerance for ambiguity is essential for optimal learning and professional competence. General practice trainees must be, or must learn to be, adept at managing clinical uncertainty. However, few studies have examined associations of intolerance of uncertainty in this group. The aim of this study was to establish levels of tolerance of uncertainty in Australian general practice trainees and associations of uncertainty with demographic, educational and training practice factors. A cross-sectional analysis was performed on the Registrar Clinical Encounters in Training (ReCEnT) project, an ongoing multi-site cohort study. Scores on three of the four independent subscales of the Physicians' Reaction to Uncertainty (PRU) instrument were analysed as outcome variables in linear regression models with trainee and practice factors as independent variables. A total of 594 trainees contributed data on a total of 1209 occasions. Trainees in earlier training terms had higher scores for 'Anxiety due to uncertainty', 'Concern about bad outcomes' and 'Reluctance to disclose diagnosis/treatment uncertainty to patients'. Beyond this, findings suggest two distinct sets of associations regarding reaction to uncertainty. Firstly, affective aspects of uncertainty (the 'Anxiety' and 'Concern' subscales) were associated with female gender, less experience in hospital prior to commencing general practice training, and graduation overseas. Secondly, a maladaptive response to uncertainty (the 'Reluctance to disclose' subscale) was associated with urban practice, health qualifications prior to studying medicine, practice in an area of higher socio-economic status, and being Australian-trained. This study has established levels of three measures of trainees' responses to uncertainty and associations with these responses. The current findings suggest differing 'phenotypes' of trainees with high 'affective' responses to uncertainty and those reluctant to disclose uncertainty to patients. More

  6. Davis-Besse uncertainty study

    International Nuclear Information System (INIS)

    Davis, C.B.

    1987-08-01

    The uncertainties of calculations of loss-of-feedwater transients at Davis-Besse Unit 1 were determined to address concerns of the US Nuclear Regulatory Commission relative to the effectiveness of feed and bleed cooling. Davis-Besse Unit 1 is a pressurized water reactor of the raised-loop Babcock and Wilcox design. A detailed, quality-assured RELAP5/MOD2 model of Davis-Besse was developed at the Idaho National Engineering Laboratory. The model was used to perform an analysis of the loss-of-feedwater transient that occurred at Davis-Besse on June 9, 1985. A loss-of-feedwater transient followed by feed and bleed cooling was also calculated. The evaluation of uncertainty was based on the comparisons of calculations and data, comparisons of different calculations of the same transient, sensitivity calculations, and the propagation of the estimated uncertainty in initial and boundary conditions to the final calculated results

  7. Uncertainty in Forest Net Present Value Estimations

    Directory of Open Access Journals (Sweden)

    Ilona Pietilä

    2010-09-01

    Full Text Available Uncertainty related to inventory data, growth models and timber price fluctuation was investigated in the assessment of forest property net present value (NPV. The degree of uncertainty associated with inventory data was obtained from previous area-based airborne laser scanning (ALS inventory studies. The study was performed, applying the Monte Carlo simulation, using stand-level growth and yield projection models and three alternative rates of interest (3, 4 and 5%. Timber price fluctuation was portrayed with geometric mean-reverting (GMR price models. The analysis was conducted for four alternative forest properties having varying compartment structures: (A a property having an even development class distribution, (B sapling stands, (C young thinning stands, and (D mature stands. Simulations resulted in predicted yield value (predicted NPV distributions at both stand and property levels. Our results showed that ALS inventory errors were the most prominent source of uncertainty, leading to a 5.1–7.5% relative deviation of property-level NPV when an interest rate of 3% was applied. Interestingly, ALS inventory led to significant biases at the property level, ranging from 8.9% to 14.1% (3% interest rate. ALS inventory-based bias was the most significant in mature stand properties. Errors related to the growth predictions led to a relative standard deviation in NPV, varying from 1.5% to 4.1%. Growth model-related uncertainty was most significant in sapling stand properties. Timber price fluctuation caused the relative standard deviations ranged from 3.4% to 6.4% (3% interest rate. The combined relative variation caused by inventory errors, growth model errors and timber price fluctuation varied, depending on the property type and applied rates of interest, from 6.4% to 12.6%. By applying the methodology described here, one may take into account the effects of various uncertainty factors in the prediction of forest yield value and to supply the

  8. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    Science.gov (United States)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  9. Sensitivity/uncertainty analysis for free-in-air tissue kerma due to initial radiation at Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Lillie, R.A.; Broadhead, B.L.; Pace, J.V. III

    1988-01-01

    Uncertainty estimates and cross correlations by range/survivor have been calculated for the Hiroshima and Nagasaki free-in-air (FIA) tissue kerma obtained from two-dimensional air/ground transport calculations. The uncertainties due to modeling parameter and basic nuclear transport data uncertainties were calculated for 700-, 1000-, and 1500-m ground ranges. Only the FIA tissue kerma due to initial radiation was treated in the analysis; the uncertainties associated with terrain and building shielding and phantom attenuation were not considered in this study. Uncertainties of --20% were obtained for the prompt neutron and secondary gamma kerma and 30% for the prompt gamma kerma at both cities. The uncertainties on the total prompt kerma at Hiroshima and Nagasaki are --18 and 15%, respectively. The estimated uncertainties vary only slightly by ground range and are fairly highly correlated. The total prompt kerma uncertainties are dominated by the secondary gamma uncertainties, which in turn are dominated by the modeling parameter uncertainties, particularly those associated with the weapon yield and radiation sources

  10. Evaluation of cutting force uncertainty components in turning

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluco, Walter; De Chiffre, Leonardo

    2000-01-01

    A procedure is proposed for the evaluation of those uncertainty components of a single cutting force measurement in turning that are related to the contributions of the dynamometer calibration and the cutting process itself. Based on an empirical model including errors form both sources......, the uncertainty for a single measurement of cutting force is presented, and expressions for the expected uncertainty vs. cutting parameters are proposed. This approach gives the possibility of evaluating cutting force uncertainty components in turning, for a defined range of cutting parameters, based on few...

  11. Uncertainty analysis in comparative NAA applied to geological and biological matrices

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Ticianelli, Regina B.; Lange, Camila N.; Favaro, Deborah I.T.; Figueiredo, Ana M.G.

    2015-01-01

    Comparative nuclear activation analysis is a multielemental primary analytical technique that may be used in a rather broad spectrum of matrices with minimal-to-none sample preprocessing. Although the total activation of a chemical element in a sample depends on a rather large set of parameters, when the sample is irradiated together with a well-known comparator, most of these parameters are crossed out and the concentration of that element can be determined simply by using the activities and masses of the comparator and the sample, the concentration of this chemical element in the sample, the half-life of the formed radionuclide and the time between counting the sample and the comparator. This simplification greatly reduces not only the calculations required, but also the uncertainty associated with the measurement; nevertheless, a cautious analysis must be carried out in order to make sure all relevant uncertainties are properly treated, so that the final result can be as representative of the measurement as possible. In this work, this analysis was performed for geological matrices, where concentrations of the interest nuclides are rather high, but so is the density and average atomic number of the sample, as well as for a biological matrix, in order to allow for a comparison. The results show that the largest part of the uncertainty comes from the activity measurements and from the concentration of the comparator, and that while the influence of time-related terms in the final uncertainty can be safely neglected, the uncertainty in the masses may be relevant under specific circumstances. (author)

  12. Uncertainty analysis in comparative NAA applied to geological and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Guilherme S.; Ticianelli, Regina B.; Lange, Camila N.; Favaro, Deborah I.T.; Figueiredo, Ana M.G., E-mail: gzahn@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Comparative nuclear activation analysis is a multielemental primary analytical technique that may be used in a rather broad spectrum of matrices with minimal-to-none sample preprocessing. Although the total activation of a chemical element in a sample depends on a rather large set of parameters, when the sample is irradiated together with a well-known comparator, most of these parameters are crossed out and the concentration of that element can be determined simply by using the activities and masses of the comparator and the sample, the concentration of this chemical element in the sample, the half-life of the formed radionuclide and the time between counting the sample and the comparator. This simplification greatly reduces not only the calculations required, but also the uncertainty associated with the measurement; nevertheless, a cautious analysis must be carried out in order to make sure all relevant uncertainties are properly treated, so that the final result can be as representative of the measurement as possible. In this work, this analysis was performed for geological matrices, where concentrations of the interest nuclides are rather high, but so is the density and average atomic number of the sample, as well as for a biological matrix, in order to allow for a comparison. The results show that the largest part of the uncertainty comes from the activity measurements and from the concentration of the comparator, and that while the influence of time-related terms in the final uncertainty can be safely neglected, the uncertainty in the masses may be relevant under specific circumstances. (author)

  13. A study on the uncertainty based on Meteorological fields on Source-receptor Relationships for Total Nitrate in the Northeast Asia

    Science.gov (United States)

    Sunwoo, Y.; Park, J.; Kim, S.; Ma, Y.; Chang, I.

    2010-12-01

    Northeast Asia hosts more than one third of world population and the emission of pollutants trends to increase rapidly, because of economic growth and the increase of the consumption in high energy intensity. In case of air pollutants, especially, its characteristics of emissions and transportation become issued nationally, in terms of not only environmental aspects, but also long-range transboundary transportation. In meteorological characteristics, westerlies area means what air pollutants that emitted from China can be delivered to South Korea. Therefore, considering meteorological factors can be important to understand air pollution phenomena. In this study, we used MM5(Fifth-Generation Mesoscale Model) and WRF(Weather Research and Forecasting Model) to produce the meteorological fields. We analyzed the feature of physics option in each model and the difference due to characteristic of WRF and MM5. We are trying to analyze the uncertainty of source-receptor relationships for total nitrate according to meteorological fields in the Northeast Asia. We produced the each meteorological fields that apply the same domain, same initial and boundary conditions, the best similar physics option. S-R relationships in terms of amount and fractional number for total nitrate (sum of N from HNO3, nitrate and PAN) were calculated by EMEP method 3.

  14. Roadmap toward addressing and communicating uncertainty in LCA

    DEFF Research Database (Denmark)

    Laurin, Lise; Vigon, Bruce; Fantke, Peter

    2017-01-01

    -characterized uncertainty. The group has investigated current best LCA practices, such as refinements to the pedigree matrix used to assess LCI data quality. In parallel, in the frame of UNEP-SETAC Life Cycle Initiative flagship project on providing Harmonization and Global Guidance for Environmental Life Cycle Impact...... uncertainty is further related to input data, model selection and choices, amongst other aspects. Currently, methods exist to assess and assign uncertainty and variability on LCI data as well as LCIA characterization results. However, often uncertainty is only assessed and reported qualitatively......, is not comparable across impact categories and not consistently assessed and reported across levels of detail. Furthermore, many existing methods and models do not report uncertainty at all or limit their uncertainty assessment to a sensitivity analysis of selected input parameters, while ignoring variability...

  15. Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.

    1982-01-01

    The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections

  16. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    International Nuclear Information System (INIS)

    Lee, Seungchan; Sung, Jejung; Lee, Jongchan; Kim, Jonguk

    2014-01-01

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin

  17. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Sung, Jejung [Korea Hydro Nuclear Power Electricity Co., Daejeon (Korea, Republic of); Lee, Jongchan; Kim, Jonguk [FNC Technology Co., LTD., Yongin (Korea, Republic of)

    2014-05-15

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin.

  18. Determination of the reference air kerma rate for 192Ir brachytherapy sources and the related uncertainty

    International Nuclear Information System (INIS)

    Dijk, Eduard van; Kolkman-Deurloo, Inger-Karine K.; Damen, Patricia M. G.

    2004-01-01

    Different methods exist to determine the air kerma calibration factor of an ionization chamber for the spectrum of a 192 Ir high-dose-rate (HDR) or pulsed-dose-rate (PDR) source. An analysis of two methods to obtain such a calibration factor was performed: (i) the method recommended by [Goetsch et al., Med. Phys. 18, 462-467 (1991)] and (ii) the method employed by the Dutch national standards institute NMi [Petersen et al., Report S-EI-94.01 (NMi, Delft, The Netherlands, 1994)]. This analysis showed a systematic difference on the order of 1% in the determination of the strength of 192 Ir HDR and PDR sources depending on the method used for determining the air kerma calibration factor. The definitive significance of the difference between these methods can only be addressed after performing an accurate analysis of the associated uncertainties. For an NE 2561 (or equivalent) ionization chamber and an in-air jig, a typical uncertainty budget of 0.94% was found with the NMi method. The largest contribution in the type-B uncertainty is the uncertainty in the air kerma calibration factor for isotope i, N k i , as determined by the primary or secondary standards laboratories. This uncertainty is dominated by the uncertainties in the physical constants for the average mass-energy absorption coefficient ratio and the stopping power ratios. This means that it is not foreseeable that the standards laboratories can decrease the uncertainty in the air kerma calibration factors for ionization chambers in the short term. When the results of the determination of the 192 Ir reference air kerma rates in, e.g., different institutes are compared, the uncertainties in the physical constants are the same. To compare the applied techniques, the ratio of the results can be judged by leaving out the uncertainties due to these physical constants. In that case an uncertainty budget of 0.40% (coverage factor=2) should be taken into account. Due to the differences in approach between the

  19. Similarity and uncertainty analysis of the ALLEGRO MOX core

    International Nuclear Information System (INIS)

    Vrban, B.; Hascik, J.; Necas, V.; Slugen, V.

    2015-01-01

    The similarity and uncertainty analysis of the ESNII+ ALLEGRO MOX core has identified specific problems and challenges in the field of neutronic calculations. Similarity assessment identified 9 partly comparable experiments where only one reached ck and E values over 0.9. However the Global Integral Index G remains still low (0.75) and cannot be judge das sufficient. The total uncertainty of calculated k eff induced by XS data is according to our calculation 1.04%. The main contributors to this uncertainty are 239 Pu nubar and 238 U inelastic scattering. The additional margin from uncovered sensitivities was determined to be 0.28%. The identified low number of similar experiments prevents the use of advanced XS adjustment and bias estimation methods. More experimental data are needed and presented results may serve as a basic step in development of necessary critical assemblies. Although exact data are not presented in the paper, faster 44 energy group calculation gives almost the same results in similarity analysis in comparison to more complex 238 group calculation. Finally, it was demonstrated that TSUNAMI-IP utility can play a significant role in the future fast reactor development in Slovakia and in the Visegrad region. Clearly a further Research and Development and strong effort should be carried out in order to receive more complex methodology consisting of more plausible covariance data and related quantities. (authors)

  20. An uncertainty analysis of air pollution externalities from road transport in Belgium in 2010.

    Science.gov (United States)

    Int Panis, L; De Nocker, L; Cornelis, E; Torfs, R

    2004-12-01

    Although stricter standards for vehicles will reduce emissions to air significantly by 2010, a number of problems will remain, especially related to particulate concentrations in cities, ground-level ozone, and CO(2). To evaluate the impacts of new policy measures, tools need to be available that assess the potential benefits of these measures in terms of the vehicle fleet, fuel choice, modal choice, kilometers driven, emissions, and the impacts on public health and related external costs. The ExternE accounting framework offers the most up to date and comprehensive methodology to assess marginal external costs of energy-related pollutants. It combines emission models, air dispersion models at local and regional scales with dose-response functions and valuation rules. Vito has extended this accounting framework with data and models related to the future composition of the vehicle fleet and transportation demand to evaluate the impact of new policy proposals on air quality and aggregated (total) external costs by 2010. Special attention was given to uncertainty analysis. The uncertainty for more than 100 different parameters was combined in Monte Carlo simulations to assess the range of possible outcomes and the main drivers of these results. Although the impacts from emission standards and total fleet mileage look dominant at first, a number of other factors were found to be important as well. This includes the number of diesel vehicles, inspection and maintenance (high-emitter cars), use of air conditioning, and heavy duty transit traffic.

  1. An uncertainty analysis of air pollution externalities from road transport in Belgium in 2010

    International Nuclear Information System (INIS)

    Int Panis, L.; De Nocker, L.; Cornelis, E.; Torfs, R.

    2004-01-01

    Although stricter standards for vehicles will reduce emissions to air significantly by 2010, a number of problems will remain, especially related to particulate concentrations in cities, ground-level ozone, and CO 2 . To evaluate the impacts of new policy measures, tools need to be available that assess the potential benefits of these measures in terms of the vehicle fleet, fuel choice, modal choice, kilometers driven, emissions, and the impacts on public health and related external costs. The ExternE accounting framework offers the most up to date and comprehensive methodology to assess marginal external costs of energy-related pollutants. It combines emission models, air dispersion models at local and regional scales with dose-response functions and valuation rules. Vito has extended this accounting framework with data and models related to the future composition of the vehicle fleet and transportation demand to evaluate the impact of new policy proposals on air quality and aggregated (total) external costs by 2010. Special attention was given to uncertainty analysis. The uncertainty for more than 100 different parameters was combined in Monte Carlo simulations to assess the range of possible outcomes and the main drivers of these results. Although the impacts from emission standards and total fleet mileage look dominant at first, a number of other factors were found to be important as well. This includes the number of diesel vehicles, inspection and maintenance (high-emitter cars), use of air conditioning, and heavy duty transit traffic

  2. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    International Nuclear Information System (INIS)

    WILLS, C.E.

    1999-01-01

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary

  3. Regeneration decisions in forestry under climate change related uncertainties and risks

    DEFF Research Database (Denmark)

    Schou, Erik; Thorsen, Bo Jellesmark; Jacobsen, Jette Bredahl

    2015-01-01

    ) assigned to each outcome. Results show that the later a forest manager expects to obtain certainty about climate change or the more skewed their belief distribution, the more will decisions be based on ex ante assessments — suggesting that if forest managers believe that climate change uncertainty......Future climate development and its effects on forest ecosystems are not easily predicted or described in terms of standard probability concepts. Nevertheless, forest managers continuously make long-term decisions that will be subject to climate change impacts. The manager's assessment of possible...... to generate a set of alternative outcomes, investigating effects on decision making of three aspects of uncertainty: (i) the perceived time horizon before there will be certainty on outcome, (ii) the spread of impacts across the set of alternative outcomes, and (iii) the subjective probability (belief...

  4. Experiences of liver health related uncertainty and self-reported stress among people who inject drugs living with hepatitis C virus: a qualitative study.

    Science.gov (United States)

    Goutzamanis, Stelliana; Doyle, Joseph S; Thompson, Alexander; Dietze, Paul; Hellard, Margaret; Higgs, Peter

    2018-04-02

    People who inject drugs (PWID) are most at risk of hepatitis C virus infection in Australia. The introduction of transient elastography (TE) (measuring hepatitis fibrosis) and direct acting antiviral medications will likely alter the experience of living with hepatitis C. We aimed to explore positive and negative influences on wellbeing and stress among PWID with hepatitis C. The Treatment and Prevention (TAP) study examines the feasibility of treating hepatitis C mono-infected PWID in community settings. Semi-structured interviews were conducted with 16 purposively recruited TAP participants. Participants were aware of their hepatitis C seropositive status and had received fibrosis assessment (measured by TE) prior to interview. Questions were open-ended, focusing on the impact of health status on wellbeing and self-reported stress. Interviews were voice recorded, transcribed verbatim and thematically analysed, guided by Mishel's (1988) theory of Uncertainty in Illness. In line with Mishel's theory of Uncertainty in Illness all participants reported hepatitis C-related uncertainty, particularly mis-information or a lack of knowledge surrounding liver health and the meaning of TE results. Those with greater fibrosis experienced an extra layer of prognostic uncertainty. Experiences of uncertainty were a key motivation to seek treatment, which was seen as a way to regain some stability in life. Treatment completion alleviated hepatitis C-related stress, and promoted feelings of empowerment and confidence in addressing other life challenges. TE scores seemingly provide some certainty. However, when paired with limited knowledge, particularly among people with severe fibrosis, TE may be a source of uncertainty and increased personal stress. This suggests the need for simple education programs and resources on liver health to minimise stress.

  5. Can you put too much on your plate? Uncertainty exposure in servitized triads

    DEFF Research Database (Denmark)

    Kreye, Melanie E.

    2017-01-01

    -national servitized triad in a European-North African set-up which was collected through 29 semi-structured interviews and secondary data. Findings: The empirical study identified the existence of the three uncertainty types and directional knock-on effects between them. Specifically, environmental uncertainty...... relational governance reduced relational uncertainty. The knock-on effects were reduced through organisational and relational responses. Originality: This paper makes two contributions. First, a structured analysis of the uncertainty exposure in servitized triads is presented which shows the existence...... of three individual uncertainty types and the knock-on effects between them. Second, organisational responses to reduce the three uncertainty types individually and the knock-on effects between them are presented....

  6. Uncertainty in Measurement: A Review of Monte Carlo Simulation Using Microsoft Excel for the Calculation of Uncertainties Through Functional Relationships, Including Uncertainties in Empirically Derived Constants

    Science.gov (United States)

    Farrance, Ian; Frenkel, Robert

    2014-01-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional

  7. Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants.

    Science.gov (United States)

    Farrance, Ian; Frenkel, Robert

    2014-02-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship

  8. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  9. Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty

    International Nuclear Information System (INIS)

    Helton, Jon C.; Johnson, Jay D.

    2011-01-01

    In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. A previous presentation, 'Quantification of Margins and Uncertainties: Conceptual and Computational Basis,' describes the basic ideas that underlie QMU and illustrates these ideas with two notional examples that employ probability for the representation of aleatory and epistemic uncertainty. The current presentation introduces and illustrates the use of interval analysis, possibility theory and evidence theory as alternatives to the use of probability theory for the representation of epistemic uncertainty in QMU-type analyses. The following topics are considered: the mathematical structure of alternative representations of uncertainty, alternative representations of epistemic uncertainty in QMU analyses involving only epistemic uncertainty, and alternative representations of epistemic uncertainty in QMU analyses involving a separation of aleatory and epistemic uncertainty. Analyses involving interval analysis, possibility theory and evidence theory are illustrated with the same two notional examples used in the presentation indicated above to illustrate the use of probability to represent aleatory and epistemic uncertainty in QMU analyses.

  10. Uncertainty analysis guide

    International Nuclear Information System (INIS)

    Andres, T.H.

    2002-05-01

    This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)

  11. Uncertainty analysis guide

    Energy Technology Data Exchange (ETDEWEB)

    Andres, T.H

    2002-05-01

    This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)

  12. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Pasichnyk, Ihor; Zwermann, Winfried; Velkov, Kiril [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Nikonov, Sergey [VNIIAES, Moscow (Russian Federation)

    2016-09-15

    An uncertainty and sensitivity analysis is performed for the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). A switch off of one main coolant pump (MCP) at nominal reactor power is calculated using a coupled thermohydraulic and neutron-kinetic ATHLET-PARCS code. The objectives are to study uncertainty of total reactor power and to identify the main sources of reactor power uncertainty. The GRS uncertainty and sensitivity software package XSUSA is applied to propagate uncertainties in nuclear data libraries to the full core coupled transient calculations. A set of most important thermal-hydraulic parameters of the primary circuit is identified and a total of 23 thermohydraulic parameters are statistically varied using GRS code SUSA. The ATHLET model contains also a balance-of-plant (BOP) model which is simulated using ATHLET GCSM module. In particular the operation of the main steam generator regulators is modelled in detail. A set of 200 varied coupled ATHLET-PARCS calculations is analyzed. The results obtained show a clustering effect in the behavior of global reactor parameters. It is found that the GCSM system together with varied input parameters strongly influence the overall nuclear power plant behavior and can even lead to a new scenario. Possible reasons of the clustering effect are discussed in the paper. This work is a step forward in establishing a ''best-estimate calculations in combination with performing uncertainty analysis'' methodology for coupled full core calculations.

  13. Citizen Candidates Under Uncertainty

    OpenAIRE

    Eguia, Jon X.

    2005-01-01

    In this paper we make two contributions to the growing literature on "citizen-candidate" models of representative democracy. First, we add uncertainty about the total vote count. We show that in a society with a large electorate, where the outcome of the election is uncertain and where winning candidates receive a large reward from holding office, there will be a two-candidate equilibrium and no equilibria with a single candidate. Second, we introduce a new concept of equilibrium, which we te...

  14. Uncertainty analysis

    International Nuclear Information System (INIS)

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software

  15. Corporate income taxation uncertainty and foreign direct investment

    OpenAIRE

    Zagler, Martin; Zanzottera, Cristiana

    2012-01-01

    This paper analyzes the effects of legal uncertainty around corporate income taxation on foreign direct investment (FDI). Legal uncertainty can take many forms: double tax agreements, different types of legal systems and corruption. We test the effect of legal uncertainty on foreign direct investment with an international panel. We find that an increase in the ratio of the statutory corporate income tax rate of the destination relative to the source country exhibits a negati...

  16. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Ejsing Jørgensen, Hans

    2017-01-01

    In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry...... between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.......-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty...

  17. Perspectives on dosimetric uncertainties and radiological assessments of radioactive waste management

    International Nuclear Information System (INIS)

    Smith, G.M.; Pinedo, P.; Cancio, D.

    1997-01-01

    The purpose of this paper is to raise some issues concerning uncertainties in the estimation of doses of ionizing radiation arising from waste management practices and the contribution to those uncertainties arising from dosimetry modelling. The intentions are: (a) to provide perspective on the relative uncertainties in the different aspects of radiological assessments of waste management; (b) to give pointers as to where resources could best be targeted as regards reduction in overall uncertainties; and (c) to provide regulatory insight to decisions on low dose management as related to waste management practices. (author)

  18. Statistical characterization of roughness uncertainty and impact on wind resource estimation

    Directory of Open Access Journals (Sweden)

    M. Kelly

    2017-04-01

    Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.

  19. A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Campos, E [Argonne National Lab. (ANL), Argonne, IL (United States); Sisterson, Douglas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore, an easily accessible, well-articulated estimate of ARM measurement uncertainty is needed. Note that some of the instrument observations require mathematical algorithms (retrievals) to convert a measured engineering variable into a useful geophysical measurement. While those types of retrieval measurements are identified, this study does not address particular methods for retrieval uncertainty. As well, the ARM Facility also provides engineered data products, or value-added products (VAPs), based on multiple instrument measurements. This study does not include uncertainty estimates for those data products. We propose here that a total measurement uncertainty should be calculated as a function of the instrument uncertainty (calibration factors), the field uncertainty (environmental factors), and the retrieval uncertainty (algorithm factors). The study will not expand on methods for computing these uncertainties. Instead, it will focus on the practical identification, characterization, and inventory of the measurement uncertainties already available in the ARM community through the ARM instrument mentors and their ARM instrument handbooks. As a result, this study will address the first steps towards reporting ARM measurement uncertainty

  20. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir

    International Nuclear Information System (INIS)

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-01-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5–1030.6 t·yr"−"1; Total Phosphorus (TP): 23.3–31.0 t·yr"−"1; and Total Nitrogen (TN): 480–1918.0 t·yr"−"1. The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS

  1. Uncertainties in the simulation of groundwater recharge at different scales

    Directory of Open Access Journals (Sweden)

    H. Bogena

    2005-01-01

    Full Text Available Digital spatial data always imply some kind of uncertainty. The source of this uncertainty can be found in their compilation as well as the conceptual design that causes a more or less exact abstraction of the real world, depending on the scale under consideration. Within the framework of hydrological modelling, in which numerous data sets from diverse sources of uneven quality are combined, the various uncertainties are accumulated. In this study, the GROWA model is taken as an example to examine the effects of different types of uncertainties on the calculated groundwater recharge. Distributed input errors are determined for the parameters' slope and aspect using a Monte Carlo approach. Landcover classification uncertainties are analysed by using the conditional probabilities of a remote sensing classification procedure. The uncertainties of data ensembles at different scales and study areas are discussed. The present uncertainty analysis showed that the Gaussian error propagation method is a useful technique for analysing the influence of input data on the simulated groundwater recharge. The uncertainties involved in the land use classification procedure and the digital elevation model can be significant in some parts of the study area. However, for the specific model used in this study it was shown that the precipitation uncertainties have the greatest impact on the total groundwater recharge error.

  2. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration

    Science.gov (United States)

    Yang, Ming; Zhu, X. Ronald; Park, Peter C.; Titt, Uwe; Mohan, Radhe; Virshup, Gary; Clayton, James E.; Dong, Lei

    2012-07-01

    The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.

  3. Impacts of Korea's Exchange Rate Uncertainty on Exports

    Directory of Open Access Journals (Sweden)

    Kwon Sik Kim

    2003-12-01

    Full Text Available This paper examines the effects of two types of uncertainty related to the real effective exchange rate (REER in Korea for export trends. To decompose uncertainties into two types of component, I propose an advanced generalized Markov switching model, as developed by Hamilton (1989 and then expanded by Kim and Kim (1996. The proposed model is useful in uncovering two sources of uncertainty: the permanent component of REER and the purely transitory component. I think that the two types of uncertainties have a different effect on export trends in Korea. The transitory component of REER has no effect on the export trend at 5-percent significance, but the permanent component has an effect at this level. In addition, the degree of uncertainty, consisting of low, medium and high uncertainty in the permanent component, and low, medium and high uncertainty in transitory component of REER, also has different effects on export trends in Korea. Only high uncertainty in permanent components effects export trends. The results show that when the policy authority intends to prevent the shrinkage of exports due to the deepening of uncertainties in the foreign exchange market, the economic impacts of its intervention could appear differently according to the characteristics and degree of the uncertainties. Therefore, they imply that its economic measures, which could not grasp the sources of uncertainties properly, may even bring economic costs.

  4. Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method

    Science.gov (United States)

    Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin

    2016-03-01

    Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This

  5. Verification and uncertainty evaluation of CASMO-3/MASTER nuclear analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Seung; Cho, Byung Oh; Joo, Han Kyu; Zee, Sung Quun; Lee, Chung Chan; Park, Sang Yoon

    2000-06-01

    MASTER is a nuclear design code developed by KAERI. It uses group constants generated by CASMO-3 developed by Studsvik. In this report the verification and evaluation of uncertainty were performed for the code system application in nuclear reactor core analysis and design. The verification is performed via various benchmark comparisons for static and transient core condition, and core follow calculations with startup physics test predictions of total 14 cycles of pressurized water reactors. Benchmark calculation include comparisons with reference solutions of IAEA and OECA/NEA problems and critical experiment measurements. The uncertainty evaluation is focused to safety related parameters such as power distribution, reactivity coefficients, control rod worth and core reactivity. It is concluded that CASMO-3/MASTER can be applied for PWR core nuclear analysis and design without any bias factors. Also, it is verified that the system can be applied for SMART core, via supplemental comparisons with reference calculations by MCNP which is a probabilistic nuclear calculation code.

  6. Verification and uncertainty evaluation of CASMO-3/MASTER nuclear analysis system

    International Nuclear Information System (INIS)

    Song, Jae Seung; Cho, Byung Oh; Joo, Han Kyu; Zee, Sung Quun; Lee, Chung Chan; Park, Sang Yoon

    2000-06-01

    MASTER is a nuclear design code developed by KAERI. It uses group constants generated by CASMO-3 developed by Studsvik. In this report the verification and evaluation of uncertainty were performed for the code system application in nuclear reactor core analysis and design. The verification is performed via various benchmark comparisons for static and transient core condition, and core follow calculations with startup physics test predictions of total 14 cycles of pressurized water reactors. Benchmark calculation include comparisons with reference solutions of IAEA and OECA/NEA problems and critical experiment measurements. The uncertainty evaluation is focused to safety related parameters such as power distribution, reactivity coefficients, control rod worth and core reactivity. It is concluded that CASMO-3/MASTER can be applied for PWR core nuclear analysis and design without any bias factors. Also, it is verified that the system can be applied for SMART core, via supplemental comparisons with reference calculations by MCNP which is a probabilistic nuclear calculation code

  7. Best Practices of Uncertainty Estimation for the National Solar Radiation Database (NSRDB 1998-2015): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimately reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly

  8. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    Science.gov (United States)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than

  9. Partitioning Uncertainty In Aboveground Carbon Density Estimates: Relative Contributions From Lidar and Forest Inventory In The Brazilian Amazon.

    Science.gov (United States)

    Duffy, P.; Keller, M. M.; Morton, D. C.

    2016-12-01

    Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.

  10. The uncertainty of reference standards--a guide to understanding factors impacting uncertainty, uncertainty calculations, and vendor certifications.

    Science.gov (United States)

    Gates, Kevin; Chang, Ning; Dilek, Isil; Jian, Huahua; Pogue, Sherri; Sreenivasan, Uma

    2009-10-01

    Certified solution standards are widely used in forensic toxicological, clinical/diagnostic, and environmental testing. Typically, these standards are purchased as ampouled solutions with a certified concentration. Vendors present concentration and uncertainty differently on their Certificates of Analysis. Understanding the factors that impact uncertainty and which factors have been considered in the vendor's assignment of uncertainty are critical to understanding the accuracy of the standard and the impact on testing results. Understanding these variables is also important for laboratories seeking to comply with ISO/IEC 17025 requirements and for those preparing reference solutions from neat materials at the bench. The impact of uncertainty associated with the neat material purity (including residual water, residual solvent, and inorganic content), mass measurement (weighing techniques), and solvent addition (solution density) on the overall uncertainty of the certified concentration is described along with uncertainty calculations.

  11. Measurement Uncertainty

    Science.gov (United States)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  12. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1).

    Science.gov (United States)

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.

  13. On the uncertainties in the shell correction by Strutinsky smearing procedure for certain shapes relevant in fission

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Prakash, M.; Kapoor, S.

    1976-01-01

    It is found that for level schemes obtained from a folded Yukawa potential, the Strutinsky smearing procedure for the evaluation of the shell correction to the total potential energy of nuclei does not lead to a unique value for nuclear shapes near and beyond the outer fission barrier deformations and consequently introduces uncertainties in the relative fission barrier heights. (author)

  14. Uncertainty Analysis of RBMK-Related Experimental Data

    International Nuclear Information System (INIS)

    Urbonas, Rolandas; Kaliatka, Algirdas; Liaukonis, Mindaugas

    2002-01-01

    An attempt to validate state-of-the-art thermal hydraulic code ATHLET (GRS, Germany) on the basis of E-108 test facility was made. Originally this code was developed and validated for different type reactors than RBMK. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors, further codes' implementation and validation is required. The phenomena associated with channel type flow instabilities and CHF were found to be an important step in the frame of the overall effort of state-of-the-art validation and application for RBMK reactors. In the paper one-channel approach analysis is presented. Thus, the oscillatory behaviour of the system was not detected. The results show dependence on the nodalization used in the heated channels, initial and boundary conditions and code selected models. It is shown that the code is able to predict a sudden heat structure temperature excursion, when critical heat flux is approached. GRS developed uncertainty and sensitivity methodology was employed in the analysis. (authors)

  15. Evaluation of the 238U neutron total cross section

    International Nuclear Information System (INIS)

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of 238 U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V

  16. Avoiding climate change uncertainties in Strategic Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Sanne Vammen, E-mail: sannevl@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Kørnøv, Lone, E-mail: lonek@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark); Driscoll, Patrick, E-mail: patrick@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2013-11-15

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty.

  17. Avoiding climate change uncertainties in Strategic Environmental Assessment

    International Nuclear Information System (INIS)

    Larsen, Sanne Vammen; Kørnøv, Lone; Driscoll, Patrick

    2013-01-01

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty

  18. Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field

    Science.gov (United States)

    Huang, Zhiming

    2018-04-01

    In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.

  19. Perseveration induces dissociative uncertainty in obsessive-compulsive disorder.

    Science.gov (United States)

    Giele, Catharina L; van den Hout, Marcel A; Engelhard, Iris M; Dek, Eliane C P; Toffolo, Marieke B J; Cath, Danielle C

    2016-09-01

    Obsessive compulsive (OC)-like perseveration paradoxically increases feelings of uncertainty. We studied whether the underlying mechanism between perseveration and uncertainty is a reduced accessibility of meaning ('semantic satiation'). OCD patients (n = 24) and matched non-clinical controls (n = 24) repeated words 2 (non-perseveration) or 20 times (perseveration). They decided whether this word was related to another target word. Speed of relatedness judgments and feelings of dissociative uncertainty were measured. The effects of real-life perseveration on dissociative uncertainty were tested in a smaller subsample of the OCD group (n = 9). Speed of relatedness judgments was not affected by perseveration. However, both groups reported more dissociative uncertainty after perseveration compared to non-perseveration, which was higher in OCD patients. Patients reported more dissociative uncertainty after 'clinical' perseveration compared to non-perseveration.. Both parts of this study are limited by some methodological issues and a small sample size. Although the mechanism behind 'perseveration → uncertainty' is still unclear, results suggest that the effects of perseveration are counterproductive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    Science.gov (United States)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  1. Uncertainty and sensitivity analysis in nuclear accident consequence assessment

    International Nuclear Information System (INIS)

    Karlberg, Olof.

    1989-01-01

    This report contains the results of a four year project in research contracts with the Nordic Cooperation in Nuclear Safety and the National Institute for Radiation Protection. An uncertainty/sensitivity analysis methodology consisting of Latin Hypercube sampling and regression analysis was applied to an accident consequence model. A number of input parameters were selected and the uncertainties related to these parameter were estimated within a Nordic group of experts. Individual doses, collective dose, health effects and their related uncertainties were then calculated for three release scenarios and for a representative sample of meteorological situations. From two of the scenarios the acute phase after an accident were simulated and from one the long time consequences. The most significant parameters were identified. The outer limits of the calculated uncertainty distributions are large and will grow to several order of magnitudes for the low probability consequences. The uncertainty in the expectation values are typical a factor 2-5 (1 Sigma). The variation in the model responses due to the variation of the weather parameters is fairly equal to the parameter uncertainty induced variation. The most important parameters showed out to be different for each pathway of exposure, which could be expected. However, the overall most important parameters are the wet deposition coefficient and the shielding factors. A general discussion of the usefulness of uncertainty analysis in consequence analysis is also given. (au)

  2. The role of swift relationship and institutional structures in uncertainty reduction

    NARCIS (Netherlands)

    Huang, Q.; Ou, Carol; Davison, R.M.

    2016-01-01

    Uncertainty has been regarded as the most prominent barrier in ecommerce. However, how communication between buyers and seller contributes to a reduction in uncertainty is under-investigated. Integrating uncertainty reduction theory and relational contract theory, we develop a model that explain how

  3. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Rosu, Mihaela; Kessler, Marc L.; Fraass, Benedick A.; Haken, Randall K. ten; Kong, Feng-Ming; McShan, Daniel L.

    2006-01-01

    Purpose: To investigate methods of reporting and analyzing statistical uncertainties in doses to targets and normal tissues in Monte Carlo (MC)-based treatment planning. Methods and Materials: Methods for quantifying statistical uncertainties in dose, such as uncertainty specification to specific dose points, or to volume-based regions, were analyzed in MC-based treatment planning for 5 lung cancer patients. The effect of statistical uncertainties on target and normal tissue dose indices was evaluated. The concept of uncertainty volume histograms for targets and organs at risk was examined, along with its utility, in conjunction with dose volume histograms, in assessing the acceptability of the statistical precision in dose distributions. The uncertainty evaluation tools were extended to four-dimensional planning for application on multiple instances of the patient geometry. All calculations were performed using the Dose Planning Method MC code. Results: For targets, generalized equivalent uniform doses and mean target doses converged at 150 million simulated histories, corresponding to relative uncertainties of less than 2% in the mean target doses. For the normal lung tissue (a volume-effect organ), mean lung dose and normal tissue complication probability converged at 150 million histories despite the large range in the relative organ uncertainty volume histograms. For 'serial' normal tissues such as the spinal cord, large fluctuations exist in point dose relative uncertainties. Conclusions: The tools presented here provide useful means for evaluating statistical precision in MC-based dose distributions. Tradeoffs between uncertainties in doses to targets, volume-effect organs, and 'serial' normal tissues must be considered carefully in determining acceptable levels of statistical precision in MC-computed dose distributions

  4. The special theory of Brownian relativity: equivalence principle for dynamic and static random paths and uncertainty relation for diffusion.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-03-15

    The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.

  5. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability......Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  6. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    Science.gov (United States)

    Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A

    2016-09-08

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  7. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  8. Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings.

    Directory of Open Access Journals (Sweden)

    Elise Payzan-LeNestour

    Full Text Available Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating.

  9. Estimation of Properties of Pure Components Using Improved Group-Contribution+ (GC+) Based Models and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Sarup, Bent; Abildskov, Jens

    and uncertainty analysis, in general, is developed and used. In total 21 properties of pure components, which include normal boiling point, critical constants, normal melting point among others have been analysed. The statistical analysis of the model performance for these properties is highlighted through...... several illustrative examples. Important issues related to property modeling such as thermodynamic consistency of the predicted properties (relation of normal boiling point versus critical temperature etc.) are analysed. The developed methodology is simple, yet sound and effective and provides not only...

  10. Uncertainty analysis of thermal quantities measurement in a centrifugal compressor

    Science.gov (United States)

    Hurda, Lukáš; Matas, Richard

    2017-09-01

    Compressor performance characteristics evaluation process based on the measurement of pressure, temperature and other quantities is examined to find uncertainties for directly measured and derived quantities. CFD is used as a tool to quantify the influences of different sources of uncertainty of measurements for single- and multi-thermocouple total temperature probes. The heat conduction through the body of the thermocouple probe and the heat-up of the air in the intake piping are the main phenomena of interest.

  11. Assessing Groundwater Model Uncertainty for the Central Nevada Test Area

    International Nuclear Information System (INIS)

    Pohll, Greg; Pohlmann, Karl; Hassan, Ahmed; Chapman, Jenny; Mihevc, Todd

    2002-01-01

    The purpose of this study is to quantify the flow and transport model uncertainty for the Central Nevada Test Area (CNTA). Six parameters were identified as uncertain, including the specified head boundary conditions used in the flow model, the spatial distribution of the underlying welded tuff unit, effective porosity, sorption coefficients, matrix diffusion coefficient, and the geochemical release function which describes nuclear glass dissolution. The parameter uncertainty was described by assigning prior statistical distributions for each of these parameters. Standard Monte Carlo techniques were used to sample from the parameter distributions to determine the full prediction uncertainty. Additional analysis is performed to determine the most cost-beneficial characterization activities. The maximum radius of the tritium and strontium-90 contaminant boundary was used as the output metric for evaluation of prediction uncertainty. The results indicate that combining all of the uncertainty in the parameters listed above propagates to a prediction uncertainty in the maximum radius of the contaminant boundary of 234 to 308 m and 234 to 302 m, for tritium and strontium-90, respectively. Although the uncertainty in the input parameters is large, the prediction uncertainty in the contaminant boundary is relatively small. The relatively small prediction uncertainty is primarily due to the small transport velocities such that large changes in the uncertain input parameters causes small changes in the contaminant boundary. This suggests that the model is suitable in terms of predictive capability for the contaminant boundary delineation

  12. Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics

    Directory of Open Access Journals (Sweden)

    Griffin Patrick

    2017-01-01

    Full Text Available A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

  13. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  14. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  15. Effect of uncertainties on probabilistic-based design capacity of hydrosystems

    Science.gov (United States)

    Tung, Yeou-Koung

    2018-02-01

    Hydrosystems engineering designs involve analysis of hydrometric data (e.g., rainfall, floods) and use of hydrologic/hydraulic models, all of which contribute various degrees of uncertainty to the design process. Uncertainties in hydrosystem designs can be generally categorized into aleatory and epistemic types. The former arises from the natural randomness of hydrologic processes whereas the latter are due to knowledge deficiency in model formulation and model parameter specification. This study shows that the presence of epistemic uncertainties induces uncertainty in determining the design capacity. Hence, the designer needs to quantify the uncertainty features of design capacity to determine the capacity with a stipulated performance reliability under the design condition. Using detention basin design as an example, the study illustrates a methodological framework by considering aleatory uncertainty from rainfall and epistemic uncertainties from the runoff coefficient, curve number, and sampling error in design rainfall magnitude. The effects of including different items of uncertainty and performance reliability on the design detention capacity are examined. A numerical example shows that the mean value of the design capacity of the detention basin increases with the design return period and this relation is found to be practically the same regardless of the uncertainty types considered. The standard deviation associated with the design capacity, when subject to epistemic uncertainty, increases with both design frequency and items of epistemic uncertainty involved. It is found that the epistemic uncertainty due to sampling error in rainfall quantiles should not be ignored. Even with a sample size of 80 (relatively large for a hydrologic application) the inclusion of sampling error in rainfall quantiles resulted in a standard deviation about 2.5 times higher than that considering only the uncertainty of the runoff coefficient and curve number. Furthermore, the

  16. Uncertainty Assessments in Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    W. D. James; R. Zeisler

    2000-01-01

    Fast neutron activation analysis (FNAA) carried out with the use of small accelerator-based neutron generators is routinely used for major/minor element determinations in industry, mineral and petroleum exploration, and to some extent in research. While the method shares many of the operational procedures and therefore errors inherent to conventional thermal neutron activation analysis, its unique implementation gives rise to additional specific concerns that can result in errors or increased uncertainties of measured quantities. The authors were involved in a recent effort to evaluate irreversible incorporation of oxygen into a standard reference material (SRM) by direct measurement of oxygen by FNAA. That project required determination of oxygen in bottles of the SRM stored in varying environmental conditions and a comparison of the results. We recognized the need to accurately describe the total uncertainty of the measurements to accurately characterize any differences in the resulting average concentrations. It is our intent here to discuss the breadth of potential parameters that have the potential to contribute to the random and nonrandom errors of the method and provide estimates of the magnitude of uncertainty introduced. In addition, we will discuss the steps taken in this recent FNAA project to control quality, assess the uncertainty of the measurements, and evaluate results based on the statistical reproducibility

  17. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sjöstrand, Henrik; Conroy, Sean [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-07-11

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  18. Illness uncertainty and treatment motivation in type 2 diabetes patients.

    Science.gov (United States)

    Apóstolo, João Luís Alves; Viveiros, Catarina Sofia Castro; Nunes, Helena Isabel Ribeiro; Domingues, Helena Raquel Faustino

    2007-01-01

    To characterize the uncertainty in illness and the motivation for treatment and to evaluate the existing relation between these variables in individuals with type 2 diabetes. Descriptive, correlational study, using a sample of 62 individuals in diabetes consultation sessions. The Uncertainty Stress Scale and the Treatment Self-Regulation Questionnaire were used. The individuals with type 2 diabetes present low levels of uncertainty in illness and a high motivation for treatment, with a stronger intrinsic than extrinsic motivation. A negative correlation was verified between the uncertainty in the face of the prognosis and treatment and the intrinsic motivation. These individuals are already adapted, acting according to the meanings they attribute to illness. Uncertainty can function as a threat, intervening negatively in the attribution of meaning to the events related to illness and in the process of adaptation and motivation to adhere to treatment. Intrinsic motivation seems to be essential to adhere to treatment.

  19. Uncertainty evaluation of the kerma in the air, related to the active volume in the ionization chamber of concentric cylinders, by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lo Bianco, A.S.; Oliveira, H.P.S.; Peixoto, J.G.P.

    2009-01-01

    To implant the primary standard of the magnitude kerma in the air for X-ray between 10 - 50 keV, the National Metrology Laboratory of Ionizing Radiations (LNMRI) must evaluate all the uncertainties of measurement related with Victtoren chamber. So, it was evaluated the uncertainty of the kerma in the air consequent of the inaccuracy in the active volume of the chamber using the calculation of Monte Carlo as a tool through the Penelope software

  20. Qualitative uncertainty analysis in probabilistic safety assessment context

    International Nuclear Information System (INIS)

    Apostol, M.; Constantin, M; Turcu, I.

    2007-01-01

    In Probabilistic Safety Assessment (PSA) context, an uncertainty analysis is performed either to estimate the uncertainty in the final results (the risk to public health and safety) or to estimate the uncertainty in some intermediate quantities (the core damage frequency, the radionuclide release frequency or fatality frequency). The identification and evaluation of uncertainty are important tasks because they afford credit to the results and help in the decision-making process. Uncertainty analysis can be performed qualitatively or quantitatively. This paper performs a preliminary qualitative uncertainty analysis, by identification of major uncertainty in PSA level 1- level 2 interface and in the other two major procedural steps of a level 2 PSA i.e. the analysis of accident progression and of the containment and analysis of source term for severe accidents. One should mention that a level 2 PSA for a Nuclear Power Plant (NPP) involves the evaluation and quantification of the mechanisms, amount and probabilities of subsequent radioactive material releases from the containment. According to NUREG 1150, an important task in source term analysis is fission products transport analysis. The uncertainties related to the isotopes distribution in CANDU NPP primary circuit and isotopes' masses transferred in the containment, using SOPHAEROS module from ASTEC computer code will be also presented. (authors)

  1. Diagnostic uncertainty, guilt, mood, and disability in back pain.

    Science.gov (United States)

    Serbic, Danijela; Pincus, Tamar; Fife-Schaw, Chris; Dawson, Helen

    2016-01-01

    In the majority of patients a definitive cause for low back pain (LBP) cannot be established, and many patients report feeling uncertain about their diagnosis, accompanied by guilt. The relationship between diagnostic uncertainty, guilt, mood, and disability is currently unknown. This study tested 3 theoretical models to explore possible pathways between these factors. In Model 1, diagnostic uncertainty was hypothesized to correlate with pain-related guilt, which in turn would positively correlate with depression, anxiety and disability. Two alternative models were tested: (a) a path from depression and anxiety to guilt, from guilt to diagnostic uncertainty, and finally to disability; (b) a model in which depression and anxiety, and independently, diagnostic uncertainty, were associated with guilt, which in turn was associated with disability. Structural equation modeling was employed on data from 413 participants with chronic LBP. All 3 models showed a reasonable-to-good fit with the data, with the 2 alternative models providing marginally better fit indices. Guilt, and especially social guilt, was associated with disability in all 3 models. Diagnostic uncertainty was associated with guilt, but only moderately. Low mood was also associated with guilt. Two newly defined factors, pain related guilt and diagnostic uncertainty, appear to be linked to disability and mood in people with LBP. The causal path of these links cannot be established in this cross sectional study. However, pain-related guilt especially appears to be important, and future research should examine whether interventions directly targeting guilt improve outcomes. (c) 2015 APA, all rights reserved).

  2. Advanced probabilistic methods for quantifying the effects of various uncertainties in structural response

    Science.gov (United States)

    Nagpal, Vinod K.

    1988-01-01

    The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.

  3. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty

  4. Bayesian analysis of stage-fall-discharge rating curves and their uncertainties

    Science.gov (United States)

    Mansanarez, Valentin; Le Coz, Jérôme; Renard, Benjamin; Lang, Michel; Pierrefeu, Gilles; Le Boursicaud, Raphaël; Pobanz, Karine

    2016-04-01

    Stage-fall-discharge (SFD) rating curves are traditionally used to compute streamflow records at sites where the energy slope of the flow is variable due to variable backwater effects. Building on existing Bayesian approaches, we introduce an original hydraulics-based method for developing SFD rating curves used at twin gauge stations and estimating their uncertainties. Conventional power functions for channel and section controls are used, and transition to a backwater-affected channel control is computed based on a continuity condition, solved either analytically or numerically. The difference between the reference levels at the two stations is estimated as another uncertain parameter of the SFD model. The method proposed in this presentation incorporates information from both the hydraulic knowledge (equations of channel or section controls) and the information available in the stage-fall-discharge observations (gauging data). The obtained total uncertainty combines the parametric uncertainty and the remnant uncertainty related to the model of rating curve. This method provides a direct estimation of the physical inputs of the rating curve (roughness, width, slope bed, distance between twin gauges, etc.). The performance of the new method is tested using an application case affected by the variable backwater of a run-of-the-river dam: the Rhône river at Valence, France. In particular, a sensitivity analysis to the prior information and to the gauging dataset is performed. At that site, the stage-fall-discharge domain is well documented with gaugings conducted over a range of backwater affected and unaffected conditions. The performance of the new model was deemed to be satisfactory. Notably, transition to uniform flow when the overall range of the auxiliary stage is gauged is correctly simulated. The resulting curves are in good agreement with the observations (gaugings) and their uncertainty envelopes are acceptable for computing streamflow records. Similar

  5. Principal results of uncertainty and sensibility analysis for generic spanish AGP-granite

    International Nuclear Information System (INIS)

    Bolado, R.; Moya, J.A.

    1998-01-01

    Recently, ENRESA published his Performance Assessment of a deep geologic repository in granite. This paper summarises the main results of the uncertainty and sensitivity analysis performed on the data generated for the main scenario in the ENRESA Performance Assessment. The uncertainty analysis allowed us to determine the most important radionuclides, which were ''129I, ''36 Cl, ''79 Se and ''126 Sn, and to estimate upper bounds for the risk due to each one of them and for the global risk. Since ''129 I was the most important radionuclide, the main efforts in the sensitivity study were done in studying the most influential parameters on the maximum dose due to that radionuclide. The analysis shows that the order of magnitude of the maximum dose is essentially related to geosphere transport parameters. Nevertheless, the most influential parameters, when considering only the highest values of the maximum doses, are those that control the total amount of contaminant that can be driven into the main path to biosphere. (Author) 3 refs

  6. WE-B-19A-01: SRT II: Uncertainties in SRT

    International Nuclear Information System (INIS)

    Dieterich, S; Schlesinger, D; Geneser, S

    2014-01-01

    SRS delivery has undergone major technical changes in the last decade, transitioning from predominantly frame-based treatment delivery to imageguided, frameless SRS. It is important for medical physicists working in SRS to understand the magnitude and sources of uncertainty involved in delivering SRS treatments for a multitude of technologies (Gamma Knife, CyberKnife, linac-based SRS and protons). Sources of SRS planning and delivery uncertainty include dose calculation, dose fusion, and intra- and inter-fraction motion. Dose calculations for small fields are particularly difficult because of the lack of electronic equilibrium and greater effect of inhomogeneities within and near the PTV. Going frameless introduces greater setup uncertainties that allows for potentially increased intra- and interfraction motion, The increased use of multiple imaging modalities to determine the tumor volume, necessitates (deformable) image and contour fusion, and the resulting uncertainties introduced in the image registration process further contribute to overall treatment planning uncertainties. Each of these uncertainties must be quantified and their impact on treatment delivery accuracy understood. If necessary, the uncertainties may then be accounted for during treatment planning either through techniques to make the uncertainty explicit, or by the appropriate addition of PTV margins. Further complicating matters, the statistics of 1-5 fraction SRS treatments differ from traditional margin recipes relying on Poisson statistics. In this session, we will discuss uncertainties introduced during each step of the SRS treatment planning and delivery process and present margin recipes to appropriately account for such uncertainties. Learning Objectives: To understand the major contributors to the total delivery uncertainty in SRS for Gamma Knife, CyberKnife, and linac-based SRS. Learn the various uncertainties introduced by image fusion, deformable image registration, and contouring

  7. Assessment of uncertainty associated with measuring exposure to radon and decay products in the French uranium miners cohort

    International Nuclear Information System (INIS)

    Allodji, Rodrigue S; Leuraud, Klervi; Laurier, Dominique; Bernhard, Sylvain; Henry, Stéphane; Bénichou, Jacques

    2012-01-01

    The reliability of exposure data directly affects the reliability of the risk estimates derived from epidemiological studies. Measurement uncertainty must be known and understood before it can be corrected. The literature on occupational exposure to radon ( 222 Rn) and its decay products reveals only a few epidemiological studies in which uncertainty has been accounted for explicitly. This work examined the sources, nature, distribution and magnitude of uncertainty of the exposure of French uranium miners to radon ( 222 Rn) and its decay products. We estimated the total size of uncertainty for this exposure with the root sum square (RSS) method, which may be an alternative when repeated measures are not available. As a result, we identified six main sources of uncertainty. The total size of the uncertainty decreased from about 47% in the period 1956–1974 to 10% after 1982, illustrating the improvement in the radiological monitoring system over time.

  8. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  9. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  10. Planning for robust reserve networks using uncertainty analysis

    Science.gov (United States)

    Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.

    2006-01-01

    Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.

  11. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach

  12. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  13. Investment and uncertainty in the international oil and gas industry

    International Nuclear Information System (INIS)

    Mohn, Klaus; Misund, Baard

    2009-01-01

    The standard theory of irreversible investments and real options suggests a negative relation between investment and uncertainty. Richer models with compound option structures open for a positive relationship. This paper presents a micro-econometric study of corporate investment and uncertainty in a period of market turbulence and restructuring in the international oil and gas industry. Based on data for 115 companies over the period 1992-2005, we estimate four different specifications of the q model of investment, with robust results for the uncertainty variables. The estimated models suggest that macroeconomic uncertainty creates a bottleneck for oil and gas investment and production, whereas industry-specific uncertainty has a stimulating effect. (author)

  14. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Kristensen, Morten T; Bencke, Jesper

    2010-01-01

    To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA).......To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA)....

  15. Measuring and explaining eco-efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective.

    Science.gov (United States)

    Dong, Xin; Zhang, Xinyi; Zeng, Siyu

    2017-04-01

    In the context of sustainable development, there has been an increasing requirement for an eco-efficiency assessment of wastewater treatment plants (WWTPs). Data envelopment analysis (DEA), a technique that is widely applied for relative efficiency assessment, is used in combination with the tolerances approach to handle WWTPs' multiple inputs and outputs as well as their uncertainty. The economic cost, energy consumption, contaminant removal, and global warming effect during the treatment processes are integrated to interpret the eco-efficiency of WWTPs. A total of 736 sample plants from across China are assessed, and large sensitivities to variations in inputs and outputs are observed for most samples, with only three WWTPs identified as being stably efficient. Size of plant, overcapacity, climate type, and influent characteristics are proven to have a significant influence on both the mean efficiency and performance sensitivity of WWTPs, while no clear relationships were found between eco-efficiency and technology under the framework of uncertainty analysis. The incorporation of uncertainty quantification and environmental impact consideration has improved the liability and applicability of the assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Uncertainties in Climatological Seawater Density Calculations

    Science.gov (United States)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  17. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne

    1997-09-01

    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  18. Plurality of Type A evaluations of uncertainty

    Science.gov (United States)

    Possolo, Antonio; Pintar, Adam L.

    2017-10-01

    The evaluations of measurement uncertainty involving the application of statistical methods to measurement data (Type A evaluations as specified in the Guide to the Expression of Uncertainty in Measurement, GUM) comprise the following three main steps: (i) developing a statistical model that captures the pattern of dispersion or variability in the experimental data, and that relates the data either to the measurand directly or to some intermediate quantity (input quantity) that the measurand depends on; (ii) selecting a procedure for data reduction that is consistent with this model and that is fit for the purpose that the results are intended to serve; (iii) producing estimates of the model parameters, or predictions based on the fitted model, and evaluations of uncertainty that qualify either those estimates or these predictions, and that are suitable for use in subsequent uncertainty propagation exercises. We illustrate these steps in uncertainty evaluations related to the measurement of the mass fraction of vanadium in a bituminous coal reference material, including the assessment of the homogeneity of the material, and to the calibration and measurement of the amount-of-substance fraction of a hydrochlorofluorocarbon in air, and of the age of a meteorite. Our goal is to expose the plurality of choices that can reasonably be made when taking each of the three steps outlined above, and to show that different choices typically lead to different estimates of the quantities of interest, and to different evaluations of the associated uncertainty. In all the examples, the several alternatives considered represent choices that comparably competent statisticians might make, but who differ in the assumptions that they are prepared to rely on, and in their selection of approach to statistical inference. They represent also alternative treatments that the same statistician might give to the same data when the results are intended for different purposes.

  19. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  20. Intolerance of Uncertainty, Fear of Anxiety, and Adolescent Worry

    Science.gov (United States)

    Dugas, Michel J.; Laugesen, Nina; Bukowski, William M.

    2012-01-01

    A 5 year, ten wave longitudinal study of 338 adolescents assessed the association between two forms of cognitive vulnerability (intolerance of uncertainty and fear of anxiety) and worry. Multilevel mediational analyses revealed a bidirectional and reciprocal relation between intolerance of uncertainty and worry in which change in one variable…

  1. Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application to the design of optimal monitoring systems

    Science.gov (United States)

    Sévellec, Florian; Dijkstra, Henk A.; Drijfhout, Sybren S.; Germe, Agathe

    2017-11-01

    In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solution given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature (SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested metrics, except for SST, ˜ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condition uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction by 70% for 1-5 years lead times.

  2. Spatial GHG Inventory: Analysis of Uncertainty Sources. A Case Study for Ukraine

    International Nuclear Information System (INIS)

    Bun, R.; Gusti, M.; Kujii, L.; Tokar, O.; Tsybrivskyy, Y.; Bun, A.

    2007-01-01

    A geoinformation technology for creating spatially distributed greenhouse gas inventories based on a methodology provided by the Intergovernmental Panel on Climate Change and special software linking input data, inventory models, and a means for visualization are proposed. This technology opens up new possibilities for qualitative and quantitative spatially distributed presentations of inventory uncertainty at the regional level. Problems concerning uncertainty and verification of the distributed inventory are discussed. A Monte Carlo analysis of uncertainties in the energy sector at the regional level is performed, and a number of simulations concerning the effectiveness of uncertainty reduction in some regions are carried out. Uncertainties in activity data have a considerable influence on overall inventory uncertainty, for example, the inventory uncertainty in the energy sector declines from 3.2 to 2.0% when the uncertainty of energy-related statistical data on fuels combusted in the energy industries declines from 10 to 5%. Within the energy sector, the 'energy industries' subsector has the greatest impact on inventory uncertainty. The relative uncertainty in the energy sector inventory can be reduced from 2.19 to 1.47% if the uncertainty of specific statistical data on fuel consumption decreases from 10 to 5%. The 'energy industries' subsector has the greatest influence in the Donetsk oblast. Reducing the uncertainty of statistical data on electricity generation in just three regions - the Donetsk, Dnipropetrovsk, and Luhansk oblasts - from 7.5 to 4.0% results in a decline from 2.6 to 1.6% in the uncertainty in the national energy sector inventory

  3. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    Science.gov (United States)

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  4. Divide and Conquer: A Valid Approach for Risk Assessment and Decision Making under Uncertainty for Groundwater-Related Diseases

    Science.gov (United States)

    Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.

    2010-12-01

    Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  5. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density

    Science.gov (United States)

    Marroquin, Elsa Y. León; Herrera González, José A.; Camacho López, Miguel A.; Barajas, José E. Villarreal

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose

  6. Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty

    Science.gov (United States)

    Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.

    2012-12-01

    Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.

  7. Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Den Hartog, D.J.

    1996-06-01

    The fitting of data by χ 2 -minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimates for the fit parameters. They compare this method with a χ 2 -minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than ∼20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers

  8. Comparison of the uncertainties of several European low-dose calibration facilities

    Science.gov (United States)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  9. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 3: Temperature uncertainty budget

    Science.gov (United States)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Haefele, Alexander; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    typical of the NDACC temperature lidars transmitting at 355 nm. The combined temperature uncertainty ranges between 0.1 and 1 K below 60 km, with detection noise, saturation correction, and molecular extinction correction being the three dominant sources of uncertainty. Above 60 km and up to 10 km below the top of the profile, the total uncertainty increases exponentially from 1 to 10 K due to the combined effect of random noise and temperature tie-on. In the top 10 km of the profile, the accuracy of the profile mainly depends on that of the tie-on temperature. All other uncertainty components remain below 0.1 K throughout the entire profile (15-90 km), except the background noise correction uncertainty, which peaks around 0.3-0.5 K. It should be kept in mind that these quantitative estimates may be very different for other lidar instruments, depending on their altitude range and the wavelengths used.

  10. Aerosol-type retrieval and uncertainty quantification from OMI data

    Science.gov (United States)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.

  11. Aerosol-type retrieval and uncertainty quantification from OMI data

    Directory of Open Access Journals (Sweden)

    A. Kauppi

    2017-11-01

    difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.

  12. Uncertainty in social dilemmas

    OpenAIRE

    Kwaadsteniet, Erik Willem de

    2007-01-01

    This dissertation focuses on social dilemmas, and more specifically, on environmental uncertainty in these dilemmas. Real-life social dilemma situations are often characterized by uncertainty. For example, fishermen mostly do not know the exact size of the fish population (i.e., resource size uncertainty). Several researchers have therefore asked themselves the question as to how such uncertainty influences people’s choice behavior. These researchers have repeatedly concluded that uncertainty...

  13. Uncertainty theory

    CERN Document Server

    Liu, Baoding

    2015-01-01

    When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic,